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1 Introduction

Let G′ and Z(G) denote the derived group and center of a group G, respec-
tively. Let Aut(G) and Inn(G) denote the group of all automorphisms of G and
the group of all inner automorphisms of G, respectively. Let G∗ = K(G) =<
[g, α] = g−1α(g)|g ∈ G,α ∈ Aut(G) >, be the autocommutator subgroup of
G and L(G) = {g ∈ G|α(g) = g, α ∈ Aut(G)}, be the autocenter of G. The
concepts of autocommutator and autocenter have been studied in [2]. The au-
tocommutator of higher weight is defined inductively in [3] as follows:
[g, α1, α2, ..., αi] = [[g, α1, α2, ..., αi−1], αi] , for all α1, α2, ..., αi ∈ Aut(G), i ≥ 2.

The autocommutator subgroup of weight i is defined as:
Ki(G) = [G,Aut(G), Aut(G), ..., Aut(G)︸ ︷︷ ︸

i times

] =< [g, α1, α2, ..., αi]|g ∈ G,α1, α2, ..., αi ∈

Aut(G) > .
Clearly Ki(G) is a characteristic subgroup of G, for all i ≥ 1. Thus, we have a de-
scending chain of autocommutator subgroups G = K0(G) ⊇ K1(G) ⊇ K2(G) ⊇
... ⊇ Ki(G) ⊇ ..., called the lower autocentral series of G. Similarly to [3] the
upper autocentral series also has been defined as follows: 1 = L0(G) ⊆ L1(G) =

L(G) ⊆ ... ⊆ Ln(G) ⊆ ..., where Ln(G)
Ln−1(G) = L( G

Ln−1(G)
). In particular if we take
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the group of inner automorphisms, we obtain the usual lower and upper central
series of G. A group G is said to be autonilpotent group of class n if Ln(G) = G
and Ln−1(G) < G, for some natural number n. It has been proved in [3] that a
finite abelian group is autonilpotent if and only if it is a cyclic 2-group. It is easy
to check that if G is an autonilpotent group of class n, then Kn(G) = 1. In [4],
the authors gave the concept of A-nilpotency. We use the term lower autonilpo-
tent group instead of A-nilpotent group in the present paper as the concept is
derived from the lower autocentral series. A group G is said to be lower au-
tonilpotent of class n if Kn(G) = 1 and Kn−1(G) 6= 1. Thus an autonilpotent
group is always lower autonilpotent but the converse need not be true. For ex-
ample the dihedral group of order 8 is lower autonilpotent of class 3, but not
autonilpotent. Autosoluble groups have already been discussed in [5]. The au-
thors define a descending series G = K(0)(G) ≥ K(1)(G) ≥ · · · ≥ K(n)(G) = 1
of subgroups of G inductively as follows: K(0)(G) = G,K(1)(G) = K(G) and
K(n)(G) =< [g, α]|g ∈ K(n−1)(G), α ∈ Aut(K(n−1)(G)) >, for all n ≥ 2. A
group G is said to be autosoluble of length n if K(n)(G) = 1 and K(n−1)(G) 6= 1.
It is clear that G(n) ≤ γn+1(G) ≤ Kn(G) ≤ K(n)(G) and Ln(G) ≤ Zn(G), for
all natural numbers n, where G(n), γn(G) and Zn(G) denote the terms of the
derived series, lower central series and the upper central series of G respectively.
Thus we find that a lower autonilpotent group of class n is nilpotent of class
at most n and an autosoluble group of length n is soluble of derived length at
most n and also nilpotent of class at most n. The second section of this paper
deals with the properties of lower autonilpotent groups and the third section is
devoted to the study of autonilpotent and autosoluble groups. The main results
that are proved in this paper are the following:

Theorem 3.2. Let G be an lower autonilpotent abelian group. Then G is
a finite 2-group.

Theorem 3.1. A groupG is autonilpotent if and only if it is a cyclic 2-group.

Theorem 3.4. A finite autosoluble group is a 2-group.

Theorem 3.6. If G is a finite autosoluble of length 2, then G ∼= C4.

2 Properties of lower autonilpotent group

In this section we aim to present some results on lower autonilpotent groups.
These results provide some necessary conditions for a group to be lower au-
tonilpotent.
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”Unless specifically mentioned, throughout the paper all groups are considered
assumed nontrivial ”

Proposition 1. Let G be a lower autonilpotent group, then L(G) 6= 1.

Proof. LetG be a lower autonilpotent of class n. ThenKn(G) = 1 andKn−1(G) 6=
1, for some n ≥ 1. Since Kn(G) = [Kn−1(G), Aut(G)], it follows that Kn−1(G) ≤
L(G). QED

Proposition 2. For any nontrivial group G, K(G) = 1 implies L(G) =
G ∼= C2.

The proof is straight forward.

Remark 3. In a lower autonilpotent group, the lower autocentral factors
are central.

Lemma 4. Let G be a lower autonilpotent group. Then L(G) intersects
non trivially with every nontrivial characteristic subgroup of G.

Proof. Let 1 6= N be a characteristic subgroup of G. Suppose G is a lower
autonilpotent group of class n. Therefore Kn(G) = 1, and Kn−1(G) 6= 1. Since
Kn(G) = 1, therefore Kn−1(G) ≤ L(G). Suppose N ∩ L(G) = 1. Thus N ∩
Kn−1(G) = 1. Since N ∩ K0(G) = N ∩ G 6= 1, it follows that there exists an
integer i ≥ 0 such that N ∩ Ki(G) 6= 1 but N ∩ Ki+1(G) = 1. Now [Ki(G) ∩
N,Aut(G)] ⊆ Ki+1(G) ∩ N = 1, implies N ∩ Ki(G) ≤ L(G). Therefore N ∩
L(G) 6= 1. QED

Corollary 5. A minimal characteristic subgroup of a lower autonilpotent
group is contained in L(G).

Lemma 6. In a finite lower autonilpotent group G, the autocenter L(G) of
G intersects every maximal subgroup of G.

Proof. Let G be a lower autonilpotent group and M be a maximal subgroup of
G. We know that every autonilpotent group is nilpotent, therefore G is nilpotent
and thus M is normal and G/M is of prime order and hence abelian. It follows
that G′ ≤ M . Since G′ is a characteristic subgroup of G, by the above lemma,
L(G) ∩G′ 6= 1. Thus L(G) ∩M 6= 1. QED

Lemma 7. If G is a finite lower autonilpotent group, then every prime
divisor of the order of G divides the order of L(G).

Proof. Since G is lower autonilpotent, therefore it is nilpotent. Let the prime
p divides the order of G. Let P be a Sylow p-subgroup of G. Then P is char-
acteristic in G. It follows that L(G) ∩ P 6= 1. Therefore p divides the order of
L(G). QED
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Proposition 8. If G is a finite lower autonilpotent p-group, then L(G) ≤
Φ(G), where Φ(G) is the Frattini subgroup of G.

Proof. Suppose there exists x ∈ G such that x ∈ L(G) but x /∈ Φ(G). Then there
exists a maximal subgroup M of G such that x /∈M . Therefore G = M < x >.
Since G is nilpotent, therefore G/M is of prime order. Also L(G) ∩ M 6= 1,
there exists an element z ∈M ∩ L(G) of order p. Since every element of G has
a unique representation of the form mxk, m ∈M, 0 ≤ k ≤ p− 1. It follows that
the map

φ : G→ G defined by
φ(mxk) = mxkzk, where k ∈ {0, 1, 2, ..., p− 1}.

is an automorphism of G. We have φ(x) = xz. Since x ∈ L(G), therefore φ(x) =
x. It follows that z = 1, a contradiction. QED

Proposition 9. If G is a finite lower autonilpotent group, then L(G) ≤
Φ(G).

Proof. Since G is nilpotent and therefore is the direct product of its Sylow
p-subgroups and each Sylow p-subgroup is characteristic in G. Therefore the
autocenter and the Frattini subgroup of G is the direct product of the autocen-
ters and the Frattini subgroups of the corresponding Sylow p-subgroups of G,
respectively. By the above proposition, the result follows. QED

Remark 10. The lower autonilpotent groups in which L(G) and Z(G) are
identical are purely non-abelian, as Z(G) = L(G) ≤ Φ(G).

Lemma 11. Let G be a lower autonilpotent group of class 2. Then

(1) G∗ ≤ L(G).

(2) If exp(G/L(G)) = m, then exp(G∗) = m

Proof. Let g ∈ G, α ∈ Aut(G) then [g, α] ∈ G∗. Since G is lower autonilpotent
of class 2, K2(G) = 1 implies [g, α, β] = [[g, α], β] = 1, for all β ∈ Aut(G).
Thus, g−1α(g) ∈ L(G), for all g ∈ G and for all α ∈ Aut(G). Therefore (1)
holds. Since G∗ is generated by elements of the form g−1α(g), the result follows.

To prove (2), suppose exp(G/L(G)) = n and exp(G∗) = m. Since G∗ is
an abelian group generated by the elements of the form g−1α(g), g ∈ G,α ∈
Aut(G), therefore exp(G∗) = m implies that (g−1α(g))m = 1, for all g ∈ G and
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α ∈ Aut(G). Since (g−1α(g))m = g−mα(g)m

For all g ∈ G and α ∈ Aut(G) we have g−mα(g)m = 1, and so α(gm) = gm.
This implies gm ∈ L(G), for all g ∈ G and so exp(G/L(G)) ≤ exp(G∗).
Now exp(G/L(G)) = n, therefore gn ∈ L(G), for all g ∈ G. It follows that
α(gn) = xn and so (g−1α(g))n = 1, for all g ∈ G,α ∈ Aut(G). Therefore,
exp(G∗) ≤ exp(G/L(G)).

Thus, exp(G∗) = exp(G/L(G)). QED

Proposition 12. Let G be a group. Then,

(1) If L(G) is torsion free, then the factor groups Li(G)
Li−1(G) and subgroups Li(G)

are torsion free for each i ≥ 1,

(2) IfG/K1(G) is torsion, then so is each lower autocentral factorKi(G)/Ki+1(G),

(3) If G is a lower autonilpotent group, then G is torsion free if and only if
L(G) and K(G) ∩ Z(G) are torsion free,

(4) If G is a lower autonilpotent group, then G is torsion if and only if
G/K1(G) is torsion.

Proof. (1) Let x ∈ Li(G). Then x−1α(x) ∈ Li−1(G), for all α ∈ Aut(G). Suppose
i = 2. Then x−1α(x) ∈ L(G), for all α ∈ Aut(G). Since |x| = |α(x)| and L(G) is
torsion free as well as abelian , therefore |x| should be infinite as |x−1α(x)| ≤ |x|
Therefore L2(G) is torsion free. Now it can be proved by induction that each

Li(G) is torsion free. Let xLi−1(G) ∈ Li(G)
Li−1(G) .Then x−1α(x) ∈ Li−1(G) and |x|

is infinite. We have x−1α(x) ∈ Li−1(G) is torsion free for each i ≥1.

(2) We prove the result for i = 1 and the result for higher values of i will
follow on the same lines. Let xK2(G) ∈ K1(G)/K2(G), where x ∈ K1(G). Since
the lower autocentral factor K1(G)/K2(G) is central, therefore it is sufficient
to prove that generators are of finite order. Suppose xK2(G) = g−1α(g)K2(G),
for some g ∈ G,α ∈ Aut(G). Since G/K1(G) is torsion, there exists a positive
integer m, such that gm ∈ K1(G). We have xmK2(G) = (g−1α(g))mK2(G) =
g−mα(gm)K2(G) = K2(G). Thus K1(G)/K2(G) is a torsion group.

(3) It is clear if G is torsion free. Then L(G) and K(G) ∩ Z(G) are torsion
free. Conversely, suppose L(G) and K(G) ∩ Z(G) are torsion free. Since G is
nilpotent, G/L(G) is nilpotent. We prove that Z(G/L(G)) is torsion free. Sup-
pose xL(G) ∈ Z(G/L(G)) is of finite order, say m, then xm ∈ L(G). Now for
any y ∈ G, we have xy = yxt, for some t ∈ L(G). Thus, xmy = yxmtm. Since
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xm ∈ L(G) ≤ Z(G), we get tm = 1, but then t = 1. This implies xy = yx.
Therefore x ∈ Z(G). We claim x ∈ L(G). Suppose there exists α ∈ Aut(G) such
that α(x) 6= x. We have 1 6= x−1α(x) ∈ K(G) ∩ Z(G). We get α(x) = xz, for
some 1 6= z ∈ Z(G) ∩K(G). This implies xm = α(xm) = xmzm. It follows that
zm = 1, which implies K(G) ∩ Z(G) is not torsion free, a contradiction. Thus
x ∈ L(G). Hence Z(G/L(G)) is torsion free, but then G/L(G) is torsion free,
also L(G) is torsion free. Hence G is torsion free.

(4) Let G be a lower autonilpotent group of class n. Suppose G is torsion,
this implies G/K1(G) is torsion. Conversely, suppose G/K1(G) is torsion. We
prove that G/Ki(G) is torsion, for each i ≥ 2. We prove the result for i = 2,
and the claim will follow by a simple induction on i. Now by(2) K1(G)/K2(G)
is torsion, also G/K1(G) is torsion, and this implies G/K2(G) is torsion. In
particular G = G/Kn(G) is torsion. QED

Corollary 13. If G is a group such that exp(L(G)) = m, then Li(G)
Li−1(G) has

exponent dividing m.

Theorem 14. Let M be a maximal characteristic subgroup of G such that
G∗ ≤ M . Then M is maximal in G. In particular, if G is lower autonilpotent,
then every maximal characteristic subgroup is maximal.

Proof. Take x ∈ G\M , and let A =< α(x)|α ∈ Aut(G) >. Then A is a charac-
teristic subgroup of G and A is not contained in M . Therefore G = MA. Now
x−1α(x) ∈ G∗ ≤M , for all α ∈ Aut(G). Therefore A ≤< x > M . It follows that
G/M is cyclic and G/M is also characteristically simple, but then |G/M | = p,
for some prime p. Hence M is a maximal subgroup of G. QED

Theorem 15. If H is a characteristic subgroup of a group G such that H
and G/H are lower autonilpotent, then G is lower autonilpotent.

Proof. LetH andG/H be lower autonilpotent groups of classesm and n, respec-
tively. Let x ∈ G, and α1, α2, ..., αn ∈ Aut(G). Then ᾱ1, ᾱ2, ..., ᾱn ∈ Aut(G/H),
where ᾱ(xH) = α(x)H, for α ∈ Aut(H). Then [xH, ᾱ1, ᾱ2, ..., ᾱn] = H. This
implies [x, α1, α2, ..., αn] ∈ H. Thus Kn(G) ≤ H. Since Km(H) = 1 and H is
characteristic in G, we have Kn+m(G) = 1. QED

Definition 16. [Autonormalizer] Let G be a group and H be a subgroup
of G. The subset NG(H) = {x ∈ G|[x, α] ∈ H, for all α ∈ Aut(G)} of G is called
the autonormalizer of H in G.

We prove that NG(H) is a subgroup of G contained in NG(H)(the normal-
izer of H in G).
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Since x ∈ NG(H) implies [x, α] ∈ H, for all α ∈ Aut(G), and this implies
that [x, fh] ∈ H, for all fh ∈ Inn(G), h ∈ H. It follows that x−1h−1xh =
x−1(fh(x)) ∈ H, thus x−1h−1x ∈ H. Thus x−1Hx ≤ H. We have x−1Hx ≤ H,
for all x ∈ NG(H). Let x, y ∈ NG(H). Then

[xy, α] = (xy)−1α(xy)

= y−1x−1α(x)α(y)

= y−1x−1α(x)yy−1α(y)

= (y−1x−1α(x)y)(y−1α(y))

Since y−1x−1α(x)y ∈ H, therefore [xy, α] ∈ H. We have xy ∈ NG(H). Also
[x, α] = x−1α(x) ∈ H, implies that x−1α(x)x ∈ Hx. From this it follows that
(fxα)(x) ∈ H, where fx is inner automorphism induced by x. Hence β(x) ∈ Hx,
for all β ∈ Aut(G). We get β(x)x−1 ∈ H, this gives xβ(x−1) = [x−1, β] ∈ H,
for all β ∈ Aut(G). Thus we get x−1 ∈ NG(H), showing that NG(H) is a
subgroup of G. Also for x ∈ NG(H), x−1Hx ≤ H and NG(H) is a subgroup of
G, therefore x−1Hx = H. Hence x ∈ NG(H). Thus NG(H) becomes a subgroup
of G contained in NG(H)
Clearly if H is a characteristic subgroup of G, then NG(H) is a characteristic
subgroup of G containing H.

Proposition 17. A finite group G is lower autonilpotent if and only if every
proper characteristic subgroup of G is a proper subgroup of its autonormalizer.

Proof. Let G be a lower autonilpotent group of class n. Then K0(G) = G and
Kn(G) = 1. Suppose H is a proper characteristic subgroup of G. There exists
a positive integer i, such that Ki(G) ≤ H but Ki−1(G) is not contained in H.
Thus, there exists x ∈ Ki−1(G) such that x /∈ H. Then [x, α] ∈ [Ki−1(G), α] ≤
Ki(G) ≤ H, for all α ∈ Aut(G). Therefore x ∈ NG(H).

Conversely, suppose every proper characteristic subgroup of G is a proper
subgroup of its autonormalizer. Define H0 = 1 and H1 = NG(H0) and Hi =
NG(Hi−1) for i ≥ 1. Thus we have a proper ascending chain {Hi}i≥0 of charac-
teristic subgroups of G. Since G is finite, there exists a positive integer n such
that Hn = G. Since G = Hn = NG(Hn−1), we have K1(G) ≤ Hn−1. Now a
simple induction shows that Ki(G) ≤ Hn−i, for all i,1 ≤ i ≤ n. In particular,
Kn(G) ≤ H0 = 1. Therefore G is lower autonilpotent.

QED
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3 Autonilpotent groups and Autosoluble groups

This section is mainly devoted to find the structure of an autonilpotent
group, an abelian lower autonilpotent group and a finite autosoluble group. M.
R.R. Moghaddam [3] proved that a finite abelian group is autonilpotent if and
only if it is a cyclic 2-group. We prove the following theorem:

Theorem 18. A group G is autonilpotent if and only if it is a cyclic 2-group.

To prove this result, we need the following ,

Theorem 19. Let G be an abelian lower autonilpotent group. Then G is a
finite 2-group.

Proof. Let G be an abelian lower autonilpotent group of class n. First we
prove that G is a 2-group with bounded exponent. Let x ∈ G. Since the map
α which sends an element to its inverse is an automorphism of G, we have
x2n ∈ Kn(G) = 1. Thus G is a 2-group with bounded exponent.
Further we prove that G is a finite group. Suppose exp(G) = 2m. Then G =
Σλ∈ΛAλ is the direct sum of cyclic subgroups Aλ each of order less than equal
to 2m. We may write G = B1⊕B2⊕ ...⊕Bm, where each Bi is the direct sum of
cyclic groups each of order 2i. We prove that each Bi is a cyclic group of order
2i. Suppose Bi =< x1 > ⊕ < x2 > ⊕B′, where |x1| = |x2| = 2i by collecting
A′λs of same same order . Then G =< x1 > × < x2 > ⊕B, for some subgroup
B of G. Define a map,

f : G→ G , by f(xr1x
s
2) = xr1x

r+s
2 , 0 ≤ r, s ≤ 2i and identity on B.

Then f is an automorphism of G. We have x2 = x−1
1 f(x1) ∈ K1(G), this

gives x2 ∈ K1(G). Similarly, by interchanging the roles of x1 and x2, we have
x1 ∈ K1(G). We get x1, x2 ∈ K2(G). Proceeding in this way, we have both
x1, x2 ∈ Kn(G), a contradiction. Therefore each Bi is cyclic of order 2i, but
then G is a finite group and hence G is a finite 2-group. QED

Lemma 20. If G is autonilpotent of class n, then G/L(G) is autonilpotent
of class at the most n− 1.

Proof. It is easy to verify that Li(G/L1(G)) = Li+1(G)/L(G) by induction on
i. Thus the result follows. QED

Proof. ( Theorem 3.1 ) Let G be an autonilpotent group of class n. We prove
the result by induction on n. For n = 1, G = L1(G) = L(G), therefore G ∼= C2.
Therefore the result is true when n = 1. Suppose n ≥ 2. Now G/L(G) is
autonilpotent group of class at most n − 1, by induction hypothesis, G/L(G)
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is a cyclic 2-group. Since L(G) ≤ Z(G), G is an abelian group. Thus G is an
abelian group in which Kn(G) = 1. Using the theorem 19, G is a finite abelian
2-group. This implies by [3], that G is a cyclic 2-group.

QED

3.1 Autosoluble Groups

Further we characterize finite autosoluble groups. F.Parvaneh and M. R. R.
Moghaddam [5] proved that a finite abelian group is autosoluble if and only if
it is a cyclic 2-group. We find the structure of finite autosoluble groups.

Theorem 21. A finite autosoluble group is a 2-group.

Proof. Let G be a finite autosoluble group of length n. Then K(n)(G) = 1.
Suppose n = 1. Then K(1)(G) = K1(G) = 1, this implies L(G) = G, and
therefore G ∼= C2. For n = 2, K(2)(G) = 1 implies [K(1)(G), Aut(K(1)(G))] = 1,
thus K(1)(G) ∼= C2. Since γ2(G) ≤ K(1)(G), either γ2(G) = 1 or γ2(G) ∼= C2.
Thus γ2(G) is a 2- group. In the first case G is abelian, therefore [5] G is a
cyclic 2-group. In the later case |G| is even. Since G is autosoluble, therefore G
is nilpotent and hence G is the direct product of its Sylow p-subgroups and each
Sylow p-subgroup is characteristic. Let G = A×G1 ×G2 × ...×Gk, where A is
the Sylow 2-subgroup of G and Gi’s are the Sylow subgroups of G of odd prime
power order. Since γ2(G) ∼= C2, we have γ2(Gi) is trivial for each i, 1 ≤ i ≤ k.
Therefore the Gi’s are abelian. Let α ∈ Aut(Gi) be the automorphism which
sends elements to their inverses, then this automorphism can be extended to an
automorphism of G. Now if x ∈ Gi, we get x−2 = [x, α] ∈ K(G) = K(1)(G).
Thus x ∈ K(G) ∼= C2, for the order of x is odd, a contradiction. Therefore each
Gi. is trivial. Thus G is a 2-group. Suppose n ≥ 2. Since G is autosoluble of
length n, K(1)(G) = K(G) is an autosoluble group of length n−1. By induction
K(G) is a 2-group. As γ2(G) ≤ K(G), it follows that γ2(G) is a 2-group, now
by proceeding on the same lines as above, we get that G is a 2-group. QED

We know that an extra special p-group is the central product of non-abelian
subgroups of order p3 [6]. For p = 2, it is either the central product of D′8s (Di-
hedral group of order 8) or a central product of D′8s and a single Q8(Quaternion
group of order 8).

Lemma 22. Let G be an extra special 2-group. Then any automorphism
of its central factor can be extended to an automorphism of G.

Proof. We prove the result for G which is the central product of two subgroups.
Let G be the central product of G1 and G2. Therefore G1 ∩ G2 ≤ Z(G) =
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G′ ∼= C2. Let σ1 : G1 → G1 be an automorphism of G1. Define σ : G → G by
σ(g1g2) = σ1(g1)g2. Since Z(G) is a characteristic subgroup and |Z(G)| = 2, it
follows that σ fixes the elements of Z(G) and therefore σ is an automorphism
of G, QED

Theorem 23. If G is a finite autosoluble of length 2, then G ∼= C4.

Proof. Let G be a finite autosoluble group of length 2. If G is abelian, then by
[5] G is a cyclic 2-group. Since K(2)(G) = 1, we have G ∼= C4.
We claim that there is no non-abelian autosoluble group of length 2. Suppose
this is not true. We take G to be non-abelian autosoluble group of length 2 hav-
ing smallest order. By the preceding theorem, G is a 2-group. Since K(2)(G) = 1,
we have γ2(G) = K(G) ∼= C2. Also G is nilpotent group of class 2. Therefore
γ2(G) ≤ Z(G). Now if γ2(G) = Z(G), then G is an extra special 2-group.
Therefore G is central product of D8s or Q8s, and any automorphism of cen-
tral factor can be extended to automorphism of G. Therefore K(2)(G) 6= 1, as
K(2)(D8) 6= 1, K(2)(Q8) 6= 1, a contradiction. Therefore Z(G) 6= γ2(G). Hence
γ2(G) < Z(G).
Let z ∈ Z(G) be of order 2. Let M be maximal subgroup of G.Then G = M <
x >, for any x /∈M . Since G is a nilpotent 2- group, we have |G/M | = 2, and so
x2 ∈M . The map f which sends mxi to mxizi, for i = 0, 1 is an automorphism
of G. So, z = [x, f ] ∈ K(G) = γ2(G). Thus each element in Z(G) of order 2
belong to γ2(G).
Further we prove Z(G) is cyclic. Suppose Z(G) =< x1 > × < x2 > ×...× <
xn > (n ≥ 2). Let |xi| = 2ki , 1 ≤ i ≤ n.. Without loss of generality, sup-

pose k1, k2 > 1. Then |x2k1−1

1 | = 2 = |x2k2−1

2 |, therefore lies in γ2(G), this

implies both are same, as γ2(G) has only one nontrivial element. Thus x2k1−1

1 =

x2k2−1

2 ∈< x1 > ∩ < x2 >= 1, a contradiction. Therefore Z(G) must be cyclic
and |Z(G)| ≥ 4.
Next we claim exp(G/γ2(G)) ≥ 4. Suppose G/γ2(G) is an elementary abelian
2-group. Then each element in G has order at most 4. In particular |Z(G)| = 4
as Z(G) is cyclic. Let Z(G) =< x >. Now G/γ2(G) = Z(G)/γ2(G)× A/γ2(G).
Therefore G = A < x >, where x2 ∈ γ2(G). Let A be abelian, then G is
abelian, a contradiction. Therefore A is non-abelian, hence 1 6= γ2(A) = γ2(G).
Any automorphism of A can be extended to an automorphism of G. For if
σ1 : A → A be an automorphism of A. Define σ : G → G by σ(axi) = σ1(a)xi,
for i = 0, 1. Then it is easy to check σ is automorphism of G. Thus K(2)(G) = 1,
this implies K(2)(A) = 1. Since |A| < |G|, and G is non-abelian autosoluble
of length 2 of least order, this is a contradiction, hence exp(G/γ2(G)) ≥ 4.
Suppose G/γ2(G) =< y1γ2(G) > × < y2γ2(G) > ×... < yrγ2(G) >, where
|y1γ2(G)| = 2k, k ≥ 2. Take M =< y2, y3, ...yr, γ2(G) >. Then G = M < y1 >,
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y2k
1 ∈ γ2(G) ≤M . Choose an element z in Z(G) of order 4. The map β : G→ G,

defined by β(myi1) = myi1z
i, is an automorphism of G. Now β(y1) = y1z, so

z ∈ K(G) = γ2(G), a contradiction. Therefore the only possibility for G is to
be abelian. QED

Remark: (1) A lower autonilpotent group need not be autosoluble group.
C4 × C2 is an example of such a kind of the group. Here K3(G) = 1, but the
group is not autosoluble.
(2) An autosoluble group need not be a cyclic 2-group. D8 is an example of such
a kind of the group.

We conclude our paper with the following questions which are helpful for
the readers to carry out further research in this area.
1. Does there exist any odd order lower autonilpotent group?
2. What are the sufficient conditions for a group to be autosoluble (resp. lower
autonilpotent )?
3. Are there only finitely many groups up to isomorphisms which are autosolu-
ble (resp.lower autonilpotent) of class n, for each natural number n.
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