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Abstract. In this paper, we introduce a new class of harmonically convex functions. Several
interesting Hermite-Hadamard type inequalities are established. Results obtained are exten-
sions and generalizations of known results in literature. Applications to special means of real
numbers are also given.
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1 Introduction and Preliminaries

The role played by inequalities in mathematics cannot be undermined. In-
fact, most mathematical inequalities are basic tools for constructing analytic
proofs of many important theorems. Over the years, the study of convex in-
equalities has has steadily gained the attention of many researchers. Also, many
classes of convex functions have been introduced to extend several known in-
equalities in literature; see [1],[4], [11] and the references therein. An important
extension of convex function, the class of h-convex functions, was introduced

iThe first two authors gratefully acknowledge the partial support of the Research Group
in Mathematics and Applications at the University of Lagos.
http://siba-ese.unisalento.it/ (©) 2018 Universita del Salento



24 P. O. Olanipekun, A. A. Mogbademu, S. S. Dragomir

by Varosanec in [12]. This was further generalized in [8] when the ¢}, convex
function was introduced by the authors. In [4], the class of harmonically convex
functions was introduced and was significantly extended in [1] by the class of
harmonically h-convex functions.

In this paper, we extend the class of harmonically h-convex functions and then
establish some Hermite-Hadamard type inequalities using a new class of har-
monically convex function.

Theorem 1 (Hermite-Hadamard inequality, [2]). Let f: I CR — R be a
convez function and a,b € I with a < b. Then

("5 <4 /abf(a:)datgf(a)+f(b).

2 b—a 2

Definition 1. [1, 4] Let I C R\{0} be an interval. A function f: I — R is
said to be:

(). harmonically convex if for every z,y € I, t € [0,1],

zy
Moy ) <=0 +uw

(ii). harmonically Breckner s-convex where 0 < s < 1, if for every z,y € I,
t €[0,1],

xy S S
f(tw—k(l—t)y) < (A=) f(z) +t°f(y)

(iii). harmonically s-Godunova-Levin of the second kind if for every z,y € I,
t € (0,1) and s € [0,1],

Ty 1 1
/ (m+ (- t)y> Saop /@RI

(iv). harmonically Godunova-Levin of the second kind if for every x,y € I,
te(0,1),

Ty 1 1
f(tx+(1—t)y> Sa—p/@F3/W

(v). harmonically P-function if for every z,y € I, t € [0, 1],

xy
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Definition 2. [1] Let ~ : [0,1] € J — R be a non-negative function. A
function f : I C RT — R is said to be harmonically h-convex if for all z,y € I
and t € (0,1),

y
sy, ) <= 066 + a5 )

2 The class of harmonically ¢;_; convex functions

We introduce the following new concept in order to unify the classes of
harmonically convex functions given in the previous section.

Definition 3. Let h: [0,1] € J — (0,00), s € [0,1], t € (0,1) and ¢ be a
given real valued function. Let I C R\{0} be an interval, then f: I — R is an
harmonically ¢p_s convex if for all z,y € I,

) = () s (42 e o

Remark 1. We discuss the special cases of the harmonically ¢p_s con-
vex function. Denote by HSX (¢pn—s, 1), HSX (h,I), HSX(I), HQs(I), HQ(I)
and HP(I) the class of all harmonically ¢p_s convex functions, harmonically
h-convex functions, harmonically convex functions, harmonically s-Godunova-
Levin functions, harmonically Godunova-Levin functions and harmonically P-
functions respectively.

(i). Then for ¢(z) = =z, h(t) < t, one has the following relations;

HP(I) =HQo(I) = HSX(dn-o,1) CHSX(bp—s,,1)
C HSX(¢h—sy, 1) C HSX (1,1

where 0 < 51 < s9 < 1.
(ii). Let ¢ be the identity function. Observe that

(i). if s =0, then f € HP(I)

(ii). if h(t) =1 and s =1, then f € HSX(I)

(iii). if h(t) = t557, then f € HSX(h,I)
)
)
).

(iv
(v

(vi

)

)

) =t2, then f € HQ4(I)

) =t? and s = 1, then f € HQ(I).
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(iii). For t = %, we obtain the Jensen’s type harmonically ¢j_s convex function
or the harmonically-arithmetically (HA) ¢,_s convex function

(A < (n(3)) G+ o) @2

Example 1. (i). For h(t) < 1% and ¢(x) = z, all known examples of
harmonically convex functions are harmonically ¢,_s convex.

(ii). Let I = [a,b] € R\{0}. Consider the function g : [3,1] — R defined by
glx) = f (%), then f € HSX(¢p—s,I) if and only if g € SX(dp—s,J)
where ¢(z) =z, I = [a,b], J = [%, %] and SX (¢p_s,J) is the class of all

on_s convex functions on J.
(iii). Let I € R\{0} be a real interval, ¢ : I — I and f: I — R be a function,
a. if I C (0,00) and f € SX(¢p—s,I) where f is nondecreasing on I

then f € HSX (pp—s,I).

b. if I C (0,00), f € HSX (pp_s,I) where f is nonincreasing on I, then
feSX (s, 1)

c. if I C (—00,0), f € HSX(¢p_s,I) where f is nondecreasing on [
then f € SX(ép—s,1).

d. if I C (—00,0), f € SX(¢pn—s,I) where f is nonincreasing on I, then
f e HSX(pn—s, 1)

Definition 4. The functions f,g : R — R are said to be similarly ordered

if for every z,y € R, (f(z) = f(y))(9(z) — g(y)) = 0.
Proposition 1. Let f,g € HSX (pn—s,I). If f and g are similarly ordered

and H(t,s) = (@)ﬂ + (%)ﬂ <1, then the product fg € HSX (¢p—s,I).
Proof. Since f,g € HSX (¢p—s, 1), then

(z)d(y) (x)p(y)
/ (tqs(w g t)qs(y)) 9 <t¢<x> g t>¢<y>>

(o)™ MDY fotaatota)

F(6)g(6(y)) + (

(ORI sgtynatot + siotanotonn)
h

h(1 — 1)
1—1t

IA
——~ +
@‘@

—2s —2s
) F6)9(6(y)) + ( ) F(6(@))g((x))
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3 Hermite-Hadamard type inequalities for HSX (¢, s, I)

Theorem 2. Let f € HSX (pn—s, ). Suppose that f € L[a,b] where a,b € I
with a < b and ¢ is the identity function, then

= (hl(;))—s (20 <3 [ w < wson [ (M) dt).
(3.1

Proof. Since f € HSX(¢p—s,I), then by setting ¢t = % we obtain (2.2). Set

_ b _ b
T = ta+{ll—t)b and y = (1_%a+tb7 then

()= (0 0)) [ (aettg) o (o) o2

Integrating (3.2) with respect to t over (0, 1), we get

(as) = (o
(

IA
7 N
)
>

/01f<ta—|—(alb—t)b> dt:/01f<(1—gl;+tb> dt:&/abwdx‘
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Thus, we have that

1(05) =2 (2 (3) o[ e
and
) <2h (;)) b‘iba /ab f:;)dx <9 <2h @)) (F(a)+f () /01 (fﬁ”) T

This gives (3.1), hence the proof. QED

Theorem 3. Let f,g € HSX (pn—s, 1) be two non-negative functions where
a,b e I witha <b. If fg € Lla,b], then

d(a)p(b)  [*P) f(z)g(x) L (h(t)
d(b) — ¢(a) /¢(a) 2 v /o < t )
Lrn)h(1—t)\~°
0 ( t(1—1) ) a
M(d(a),d(b)) = f(¢(a))g(d(a)) + f(#(b))g((D))

N(¢(a), ¢(b)) = f(¢(b)g(¢(a)) + f(d(a))g(d(b)).
Proof. Since f,g € HSX (¢p—s, 1), then

(i) < (M) o+ (M=) sy 6
9<1_t 20 ) = (M) seon+ (M) g e

Multiplying (3.3) by (3.4) and integrating with respect to ¢ over (0, 1), we obtain

1 o(a)é(b) o(a)6(b)
I <t¢<a> T —t>¢<b>> g (tqs(a) gy

1
< (F(o(1)g(p(b)) + f(o(a))g(é(a))) /0 (

where
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By using the substitution x = %, we have

6(a)@(b) / W f@o(@) 4o M(¢(a),¢>(b))/01 (hf))Q

50) ~ ola) -
1 . —s
oo [ (M)

QED

Corollary 1. Under the conditions of Theorem 3, suppose that f and g are
—S —S
similarly ordered and (@) + (’1(117_—;)) <1, then

_o(@)eb) [V flx)g(z) . . O N
#(b) — ¢(a) /¢>(a) 22 dx < 2M (¢( )7¢(b))/0 < . > dt.

Remark 2. Theorem 2 reduces to Theorem 2.4 in [4] when h(t) = s = 1.
By setting ¢(z) = z, h(t) = t2,s = 1 in Theorem 3, we obtain Theorem 3.6 in
[1]. By setting ¢(x) = x, h(t) = t5+7 in Theorem 2, we obtain Theorem 3.2 in
[1] and by applying Remark 1(ii) accordingly, we obtain Corollaries 3.3 — 3.5 in
[1]. Corollary 1 reduces to Theorem 3.7 in [1] when ¢(x) =

4 Inequalities for HSX (¢;_s, ) via fractional integra-
tion

Let f € Lla, b}, the Riemann-Liouville integrals J¢, f and J;* of order o > 0
are defined by

Jo fx) = I‘(la) /aw(x — )" f(t)dt, x> aand

b
o f(z) = F(la)/ (t—2)* " f()dt, x<b

respectively where F( ) is the Gamma function defined by I'(« fooo e~ttelat
and J2, f(z) = JP f(z) = f(x). Fractional integral reduces to the classical
integral for a = 1

Hermite-Hadamard type inequalities have been proved for fractional inte-
grals which naturally extends the classical integrals (see for example, [3], [5], [9],
[10], [13], [14]). Infact, M. Z. Sarikaya et. al. [9] proved the following Hermite-
Hadamard inequalities for convex functions via fractional integrals.
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Theorem 4. Let f : I — R be a positive function with 0 < a < b and
f € Lla,b]. If f is a convez function on [a,b], then the following inequality for
fractional integrals holds.

/ <a;b> = QF((;,O[_:;BY (Je () + T3 f(a)) < f(a>-2H‘"(b>

In this section, we establish Hermite-Hadamard type inequalities for har-
monically ¢p_, via fractional integrals.

Theorem 5. Let f : I C R\{0} — R be a function such that f € L|a,b]
where a,b € I witha < b. If f € HSX (¢p—s,1) and ¢ : I — I, then the following
holds.

(0 (1)) 1(253)

< (b“baf P(a+1) (0 (f 0 9)(1/8) + Ty, (F 0 9)(1/a))

<2(foa)@+ (Fo0) [ ((hf)) + (M= f)>_s) @

where g(z) = ¢(2).

PTOOf. Set gb(l‘) = m and qb(y) = ta-‘rél%t)b in (22), then

1(@5) = () O Grt=m) o (st=m)) o

Multiplying both sides of (4.1) by t*~! and integrating the result with respect
to t over (0, 1),

()

Cr()) o (e i)
e (atv=m) )

6) G2 = () (=5) o ()
G )

_ <2h (;) > - ( b‘f’@)“ D+ 1) (50 (/0 9)(1/0) + T, (0 9)(1/a) )

IN
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This proves the first inequality. Since f € HSX (¢p—s,I), then for a,b € I,

f <1tb+(a1b_t)a> +f (?faJr(alb—t)b>

< (M) “geaw+ (M) weaw

. (h(l —t)>_s (f o ¢)(a) + (h(t)>_s (f o ¢)(b).

1-1¢ t

The remaining part of the proof follows by multiplying both sides of the last
inequality by t*~! and integrating the result with respect to ¢ over (0,1).

QED

Corollary 2. [6] Let f : I C (0,00) — R be a function such that f € L|a, b],
where a,b € I with a <b. If f is a harmonically convex function on [a,b], then
the following inequalities for fractional integral holds

, (;ﬂ) g F(a2+ 1) <bciba>“ (780 (F 0 9)A/D) + Ty (F 0 6)(1/a))

_ @)+ 1)

- 2

with o > 0.

Proof. The result follows by setting h(t) = 1, s = 1 and ¢(z) = x in Theorem

5. QED

5 Application to special means of real numbers

We recall the following definitions of some special means of two non-negative
real numbers which are quite important for numerical approximations and com-
putations.

Definition 5. (1) The Arithmetic mean A = A(a,b) :== %2,
(2) The Geometric mean G = G(a,b) := Vab.

(3) The Harmonic mean H = H(a,b) := %.

(4) The Logarithmic mean L = L(a,b) := 2=

~ Inb—Ina-’

1
(5) The p-logarithmic mean L, = Ly(a,b) := (%) op#—1,0.

Proposition 2. Let h(t) = 75 s € (0,1), ¢(z) =2 and 0 < a < b, then
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. 2 a
(i). =H(a,b) < T80 < 4 4(a,b).

(it). 2=H?(a,b) < G?*(a,b) < $A(a?,b?).

(iii). ~=H™(a,b) < LEG2LF(a,b) < A(a™,b")

V2 — p+l
where p=n—2, p# —1,0.

Proof. Define f : (0,00) — R by f(z) = =z, clearly f € HSX(I) and so by
Example 1, f € HSX (¢p_s,I) since h(t) < t1=%. The remaining part of the
proof then follows from Theorem 2. The proofs of (ii) and (iii) similarly follow
by setting f(x) = 2 and f(x) = 2™ respectively. QED
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