Note di Matematica Note Mat. **38** (2018) no. 1, 17–22.

A spaceability result in the context of hypergroups

Seyyed Mohammad Tabatabaie

Department of Mathematics, University of Qom, Qom, Iran sm.tabatabaie@qom.ac.ir

Bentol Hoda Sadathoseyni

Department of Mathematics, University of Qom, Qom, Iran sb.sadathosseini@stu.qom.ac.ir

Received: 14.8.2017; accepted: 4.12.2017.

Abstract. In this paper, by an elementary constractive technique, it is shown that $L^r(\mathbb{Z}_+) - \bigcup_{q < r} L^q(\mathbb{Z}_+)$ is non-empty, where \mathbb{Z}_+ is the dual of a compact countable hypergroup introduced by Dunkl and Ramirez. Also, we prove that for each r > 1, $L^r(\mathbb{Z}_+) - \bigcup_{q < r} L^q(\mathbb{Z}_+)$ is spaceable.

Keywords: locally compact hypergroup, spaceability, L^p -space

MSC 2000 classification: primary 46A45, secondary 43A62, 46B45

1 Introduction and Notations

Suppose that X is a topological vector space. A subset $S \subseteq X$ is called *spaceable* if $S \cup \{0\}$ is large enough to contain a closed infinite dimensional subspace of X. This concept was first introduced in [6] and then the term *spaceable* was used in [1]. There have been several further works on this notion (for example see [4], [7] and [9]). It is well-known that for each 0 < p, there are sequences in l_p not belonging to $\bigcup_{q < p} l_q$. Usually, this fact is proved by non-constructive techniques, althought a constructive proof, depending on the Principle of Uniform Boundedness can be found in [8]. Actually, in [3] it is proved that for every p > 0, the set $l_p - \bigcup_{q < p} l_q$ is even spaceable.

Let \mathbb{Z}_+ be the set of non-negative integers equipped with discrete topology, $M(\mathbb{Z}_+)$ be the space of all Radon measures on \mathbb{Z}_+ , and p_0 be a fixed prime number. For any $k \in \mathbb{Z}_+$ and distinct non-zero $m, n \in \mathbb{Z}_+$ we put

$$\delta_k * \delta_0 = \delta_0 * \delta_k := \delta_k,$$

$$\delta_n * \delta_n := \frac{1}{p_0^{n-1}(p_0 - 1)} \delta_0 + \sum_{k=1}^{n-1} p_0^{k-1} \delta_k + \frac{p_0 - 2}{p_0 - 1} \delta_n,$$

http://siba-ese.unisalento.it/ © 2018 Università del Salento

and $\delta_m * \delta_n := \delta_{\max\{m,n\}}$. Then, by [5], \mathbb{Z}_+ equipped with the convolution $*: M(\mathbb{Z}_+) \times M(\mathbb{Z}_+) \to M(\mathbb{Z}_+)$ defined by

$$\mu * \nu := \int_{\mathbb{Z}_+} \int_{\mathbb{Z}_+} \delta_m * \delta_n \, d\mu(m) d\nu(n), \qquad (\mu, \nu \in M(\mathbb{Z}_+))$$

and the identity mapping on \mathbb{Z}_+ as involution, is a commutative discrete hypergroup. Also, the measure *m* defined by

$$m(\{k\}) := \begin{cases} 1, & \text{if } k = 0, \\ \\ (p_0 - 1)p_0^{k-1}, & \text{if } k \ge 1, \end{cases}$$

is a Haar measure for \mathbb{Z}_+ . For more details about locally compact hypergroups see [2].

In the sequel, we consider \mathbb{Z}_+ with above structure, and for each s > 0 we denote $L^s(\mathbb{Z}_+) := L^s(\mathbb{Z}_+, m)$.

In this paper, by an elementary technique, we give an algorithm that generates lots of sequences in $L^p(\mathbb{Z}_+)$ but not in $L^q(\mathbb{Z}_+)$ for every q < p. This argument can be regarded as a variant of the technique that was used to prove the Banach-Steinhaus Theorem in [8]. Also, we prove that for each r > 1, the set $L^r(\mathbb{Z}_+) - \bigcup_{q < r} L^q(\mathbb{Z}_+)$ is spaceable in $L^r(\mathbb{Z}_+)$.

2 Main Results

This is well-known that:

Lemma 1. There is a sequence $(a_n)_{n=1}^{\infty}$ of real numbers such that $a_n > 1$ for all n, $\lim_{n\to\infty} a_n = 1$, and $\sum_{n=1}^{\infty} \frac{1}{n^{a_n}}$ converges.

Lemma 2. If $0 < q < r < \infty$, then $L^q(\mathbb{Z}_+) \subseteq L^r(\mathbb{Z}_+)$.

Proof. Let $f := (x_n)_{n=0}^{\infty} \in L^q(\mathbb{Z}_+)$. Since

$$||f||_{q}^{q} = |x_{0}|^{q} + \sum_{n=1}^{\infty} |x_{n}|^{q} (p_{0} - 1) p_{0}^{n-1} < \infty,$$
(2.1)

there is a positive number N such that for each $n \ge N$,

$$|x_n| \left((p_0 - 1)p_0^{n-1} \right)^{\frac{1}{q}} < 1.$$

But for each $n \in \mathbb{N}$,

$$((p_0-1)p_0^{n-1})^{\frac{1}{q}} \ge 1.$$

Hence, for all $n \ge N$, $|x_n| < 1$, and then $|x_n|^r < |x_n|^q$. Therefore, for each $n \ge N$ we have

$$|x_n|^r (p_0 - 1)p_0^{n-1} < |x_n|^q (p_0 - 1)p_0^{n-1}.$$

By (2.1) we get $\sum_{n=1}^{\infty} |x_n|^r (p_0 - 1)p_0^{n-1} < \infty$, i.e. $f \in L^r(\mathbb{Z}_+).$ QED

Lemma 3. Let q < r, p_0 be a prime number, and $(a_n)_{n=1}^{\infty}$ be a sequence as in Lemma 1. If the sequence $\mathbf{x} = (x_n)_{n=0}^{\infty}$ is defined by

$$x_n := \begin{cases} 1 & \text{if } n = 0, \\ \\ \frac{1}{(p_0^{n-1}(p_0 - 1)n^{a_n})^{\frac{1}{r}}} & \text{if } n \ge 1, \end{cases}$$

then $\mathbf{x} \in L^r(\mathbb{Z}_+) - L^q(\mathbb{Z}_+)$.

Proof. From

$$\|\boldsymbol{x}\|_{r}^{r} = \sum_{n=0}^{\infty} |x_{n}|^{r} m(\{n\})$$

= $1 + \sum_{n=1}^{\infty} \frac{1}{p_{0}^{n-1}(p_{0}-1)n^{a_{n}}} (p_{0}-1)p_{0}^{n-1}$
= $1 + \sum_{n=1}^{\infty} \frac{1}{n^{a_{n}}} < \infty$

we conclude that $\boldsymbol{x} \in L^r(\mathbb{Z}_+)$. Let 0 < q < r. Since $\frac{r}{a_n} < r$ for every n and $\lim_{n\to\infty} \frac{r}{a_n} = r$, there is some $t_0 \in \mathbb{N}$ such that $q < \frac{r}{a_{t_0}}$. Since

$$\lim_{n \to \infty} \frac{a_n}{a_{t_0}} = \frac{1}{a_{t_0}} < 1,$$

we can choose $s \in (\frac{1}{a_{t_0}}, 1)$, and there is $N_0 \in \mathbb{N}$ such that $\frac{a_n}{a_{t_0}} < s < 1$ for all $n \geq N_0$. Hence,

$$\frac{1}{n^s} < \frac{1}{n^{\frac{a_n}{a_{t_0}}}}$$

for all $n \geq N_0$. We have

$$\begin{aligned} \|\boldsymbol{x}\|_{\frac{r}{a_{t_0}}}^{\frac{r}{a_{t_0}}} &= \sum_{n=0}^{\infty} |x_n|^{\frac{r}{a_{t_0}}} m(\{n\}) \\ &= 1 + \sum_{n=1}^{\infty} \left(\frac{1}{\left(p_0^{n-1}(p_0-1)n^{a_n}\right)^{\frac{1}{r}}} \right)^{\frac{r}{a_{t_0}}} (p_0-1)p_0^{n-1} \\ &= 1 + \sum_{n=1}^{\infty} \left((p_0-1)p_0^{n-1}\right)^{1-\frac{1}{a_{t_0}}} \frac{1}{n^{\frac{a_n}{a_{t_0}}}}. \end{aligned}$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^s} = \infty$ and

$$\left((p_0-1)p_0^{n-1}\right)^{1-\frac{1}{a_{t_0}}} \ge 1,$$

we have

$$\sum_{n=N_0}^{\infty} \frac{1}{n^s} \le \sum_{n=N_0}^{\infty} \frac{1}{n^{\frac{a_n}{t_0}}} \le 1 + \sum_{n=1}^{\infty} \left((p_0 - 1) p_0^{n-1} \right)^{1 - \frac{1}{a_{t_0}}} \frac{1}{n^{\frac{a_n}{a_{t_0}}}} \le \| \boldsymbol{x} \|_{\frac{r}{a_{t_0}}}^{\frac{r}{a_{t_0}}},$$

and so, $\boldsymbol{x} \notin L^{\frac{r}{a_{t_0}}}(\mathbb{Z}_+)$. Therefore, $\boldsymbol{x} \notin L^q(\mathbb{Z}_+)$ because $q < \frac{r}{a_{t_0}}$ and $L^q(\mathbb{Z}_+) \subseteq L^{\frac{r}{a_{t_0}}}(\mathbb{Z}_+)$.

Theorem 1. If $1 \le q < r < \infty$, then $L^q(\mathbb{Z}_+)$ is not closed in $L^r(\mathbb{Z}_+)$.

Proof. First Proof: Let $C_c(\mathbb{Z}_+)$ be the space of all functions from \mathbb{Z}_+ into \mathbb{C} with finite support. We have $C_c(\mathbb{Z}_+) \subseteq L^q(\mathbb{Z}_+) \subseteq L^r(\mathbb{Z}_+)$, and $C_c(\mathbb{Z}_+)$ is dense in $L^q(\mathbb{Z}_+)$ and in $L^r(\mathbb{Z}_+)$. So, if $L^q(\mathbb{Z}_+)$ is closed in $L^r(\mathbb{Z}_+)$, then we have $L^q(\mathbb{Z}_+) = L^r(\mathbb{Z}_+)$, a contradiction.

Second Proof: Let $T : L^q(\mathbb{Z}_+) \longrightarrow L^r(\mathbb{Z}_+)$ be the inclusion mapping. We claim that T is continuous. For this, suppose that $(f_n)_{n=0}^{\infty}$ is a sequence in $L^q(\mathbb{Z}_+)$ with $f_n := (x_{n,i})_{i=0}^{\infty}$, and $f_n \to f$ in $L^q(\mathbb{Z}_+)$, where $f := (x_i)_{i=0}^{\infty} \in L^q(\mathbb{Z}_+)$. For each $0 < \varepsilon < 1$ there is $N \in \mathbb{N}$ such that for all $n \ge N$,

$$||f_n - f||_q^q = |x_{n,0} - x_0|^q + \sum_{i=1}^\infty |x_{n,i} - x_i|^q (p_0 - 1) p_0^{i-1} < \varepsilon < 1.$$

Hence, $|x_{n,i} - x_i|^q < 1$ for all $n \ge N$ and $i \in \mathbb{Z}_+$. Since q < r, we get

$$|x_{n,i} - x_i|^r \le |x_{n,i} - x_i|^q$$
,

A spaceability result in the context of hypergroups

where $n \ge N$ and $i \in \mathbb{Z}_+$, and so $||f_n - f||_r \le ||f_n - f||_q$ for all $n \ge N$. Therefore, $f_n \to f$ with respect to the norm $|| \cdot ||_r$, and T is continuous.

Now, we show that $\|\cdot\|_q$ and $\|\cdot\|_r$ are not equivalent. In contrast, suppose that there exists M > 0 such that for each $f \in L^q(\mathbb{Z}_+)$, $\|f\|_q \leq M \|f\|_r$. For any $n \in \mathbb{N}$, let χ_n be the characteristic function of the set $\{n\}$. Then for all $n \in \mathbb{N}$, we have

$$((p_0-1)p_0^{n-1})^{\frac{1}{q}} = \|\chi_n\|_q \le M \|\chi_n\|_r = M ((p_0-1)p_0^{n-1})^{\frac{1}{r}},$$

and so,

$$((p_0-1)p_0^{n-1})^{\frac{1}{q}-\frac{1}{r}} \le M,$$

which is a contradiction, since $\frac{1}{q} - \frac{1}{r} > 0$. Therefore, the norms $\|\cdot\|_q$ and $\|\cdot\|_r$ are not equivalent. Finally, suppose that $L^q(\mathbb{Z}_+)$ is closed in $L^r(\mathbb{Z}_+)$. Since T is continuous, the induced mapping

$$\widetilde{T}: L^q(\mathbb{Z}_+) \longrightarrow T(L^q(\mathbb{Z}_+)) = (L^q(\mathbb{Z}_+), \|\cdot\|_r), \quad \widetilde{T}(f) := T(f) = f,$$

is a bijective continuous linear operator between Banach spaces. So, by the Open Mapping Theorem, \widetilde{T} is an isomorphism, and in particular the norms $\|\cdot\|_q$ and $\|\cdot\|_r$ are equivalent on $L^q(\mathbb{Z}_+)$, a contradiction. Therefore, $L^q(\mathbb{Z}_+)$ is not closed in $L^r(\mathbb{Z}_+)$.

By [9, Theorem 2.4], we can conclude:

Corollary 1. If $0 < q < r < \infty$, then $L^r(\mathbb{Z}_+) - L^q(\mathbb{Z}_+)$ is spaceable.

Here, we recall the following result (see [9, Theorem 3.3]).

Theorem 2. Suppose that X is a Frechet space, and for each $n = 1, 2, ..., Z_n$ is a Banach space. Let for each $n \in \mathbb{N}, T_n : Z_n \longrightarrow X$ be bounded linear operators. If $Y := span(\bigcup_{n=1}^{\infty} T_n(Z_n))$ is not closed in X, then X - Y is spaceable.

Theorem 3. If r > 1, then

$$L^r(\mathbb{Z}_+) - \bigcup_{q < r} L^q(\mathbb{Z}_+)$$

is spaceable.

Proof. The sequence $\boldsymbol{x} \in L^r(\mathbb{Z}_+)$ constructed in Lemma 3 does not belong to $L^q(\mathbb{Z}_+)$ for all q < r, i.e. $L^r(\mathbb{Z}_+) - \bigcup_{q < r} L^q(\mathbb{Z}_+)$ is non-empty. Let q < r. Since $C_c(\mathbb{Z}_+)$ is dense in $L^r(\mathbb{Z}_+)$, and

$$C_c(\mathbb{Z}_+) \subseteq L^q(\mathbb{Z}_+) \subseteq L^r(\mathbb{Z}_+),$$

 $L^{q}(\mathbb{Z}_{+})$ is dense in $L^{r}(\mathbb{Z}_{+})$, and so $\bigcup_{q < r} L^{q}(\mathbb{Z}_{+})$ is not closed in $L^{r}(\mathbb{Z}_{+})$. By Lemma 2, the set $\bigcup_{q < r} L^{q}(\mathbb{Z}_{+})$ is actually a countable union:

$$\bigcup_{q < r} L^q(\mathbb{Z}_+) = \bigcup_{n=1}^{\infty} L^{q_n}(\mathbb{Z}_+), \qquad (2.2)$$

where $q_1 < q_2 < \cdots < r$, and moreover, the sequence $(q_n)_n$ converges to r. Easily, one can see that span $(\bigcup_{n=1}^{\infty} L^{q_n}(\mathbb{Z}_+)) = \bigcup_{n=1}^{\infty} L^{q_n}(\mathbb{Z}_+)$. So, applying Theorem 2 (put $Z_n := (L^{q_n}(\mathbb{Z}_+), \|\cdot\|_{q_n})$ and $T_n : Z_n \hookrightarrow L^r(\mathbb{Z}_+)), L^r(\mathbb{Z}_+) - \bigcup_{q < r} L^q(\mathbb{Z}_+)$ is spaceable. QED

Acknowledgements. We would like to thank the referee of this paper for a careful reading and helpful comments. Also, we are specially grateful to Professor G. Botelho for his effective comments and suggestions on this paper.

References

- R. M. ARON, V. I. GURARIY, J. B. SEOANE-SEPÚLVEDA: Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc., 133, n. 3 (2005), 795–803.
- [2] W. R. BLOOM, H. HEYER: Harmonic analysis of probability measures on hypergroups, De GruYte, Berlin, 1995.
- [3] G. BOTELHO, D. DINIZ, V. V. FÁVARO, D. PELLEGRINO: Spaceability in Banach and quasi-Banach sequence spaces, Linear Algebra Appl., 434, n. 5 (2011), 1255–1260.
- [4] G. BOTELHO, V. V. FÁVARO, D. PELLEGRINO, J. B. SEOANE-SEPÚLVEDA: $L_p[0,1] \setminus \bigcup_{q>p} L_q[0,1]$ is spaceable for every p > 0, Linear Algebra Appl., **436** (2012), 2963–2965.
- [5] C. F. DUNKL, D. E. RAMIREZ: A family of countably compact P_{*}-hypergroups, Trans. Amer. Math. Soc., 202 (1975), 339–356.
- [6] V. P. FONF, V. I. GURARIY, M. I. KADETS: An infinite dimensional subspace of C[0, 1] consisting of nowhere differentiable functions, C. R. Acad. Bulgare Sci., 52 (1999), 13–16.
- [7] V. I. GURARIY, L. QUARTA: On lineability of sets of continuous functions, J. Math. Anal. Appl., 294 (2004), 62–72.
- [8] H. HAHN: Uber folgen linearer operationen, Monatsh. Math. Phys., 32 (1922), 3-88.
- [9] D. KITSON, R. M. TIMONEY: Operator ranges and spaceability, J. Math. Anal. Appl., 378 (2011), 680–686.