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1 Introduction

A common method of composing a movie or a video is via a set of “frames”
or images that are projected sequentially. If a frame is an m× n grid of pixels,
then a transition between projections of consecutive frames requires reading
and then outputting to the screen each of the mn pixels of the incoming frame.
Since many frames must be displayed each second (in current technology, 30
per second is common), a video composed in this fashion uses a lot of memory,
and requires that a lot of data be processed rapidly.

Often, consecutive frames have a great deal of resemblance. In particular,
there are many pairs (i, j) such that the pixel in row i and column j is unchanged
between one frame and its successor. If, further, one can efficiently compute for
all changing pixels how they change between successive frames, then it is not
necessary to use as much storage for the video, as the pixels not changed between
successive frames need not be subjected to the i/o described above; and a larger
number of frames or their equivalent can be processed per second. E.g., this
approach can be taken in computer graphics when the changes in the viewer’s
screen are due to the movements or transformations of sprites. Thus, the world
of applications motivates us to understand the properties of structured single-
valued and multivalued functions between digital images.

Continuous (single-valued and multivalued) functions can often handle changes
between successive frames that seem modeled on continuous Euclidean changes.
Other changes, such as the sudden breaking of an object, may be discontinuous.

In this paper, we develop tools for modeling changes in digital images. We are
particularly concerned with properties of multivalued functions between digital
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images that are characterized by any of the following.

• Continuity [5, 6]

• Weak continuity [11]

• Strong continuity [11]

• Connectivity preservation [9]

2 Preliminaries

Much of this section is quoted or paraphrased from [4] and other papers
cited.

2.1 Basic notions of digital topology

We will assume familiarity with the topological theory of digital images. See,
e.g., [1] for the standard definitions. All digital images X are assumed to carry
their own adjacency relations (which may differ from one image to another).
When we wish to emphasize the particular adjacency relation we write the
image as (X,κ), where κ represents the adjacency relation.

Among the commonly used adjacencies are the cu-adjacencies. Let x, y ∈ Zn,
x 6= y, where we consider these points as n-tuples of integers:

x = (x1, . . . , xn), y = (y1, . . . , yn).

Let u be an integer, 1 ≤ u ≤ n. We say x and y are cu-adjacent if

• There are at most u indices i for which |xi − yi| = 1.

• For all indices j such that |xj − yj | 6= 1 we have xj = yj .

We often label a cu-adjacency by the number of points adjacent to a given point
in Zn using this adjacency. E.g.,

• In Z1, c1-adjacency is 2-adjacency.

• In Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency.

• In Z3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency, and c3-
adjacency is 26-adjacency.

• In Zn, c1-adjacency is 2n-adjacency and cn-adjacency is (3n−1)-adjacency.
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For κ-adjacent x, y, we write x ↔κ y or x ↔ y when κ is understood. We
write x -κ y or x - y to mean that either x↔κ y or x = y.

A subset Y of a digital image (X,κ) is κ-connected [10], or connected when
κ is understood, if for every pair of points a, b ∈ Y there exists a sequence
{yi}mi=0 ⊂ Y such that a = y0, b = ym, and yi ↔κ yi+1 for 0 ≤ i < m. The
following generalizes a definition of [10].

Definition 2.1. [2] Let (X,κ) and (Y, λ) be digital images. A single-valued
function f : X → Y is (κ, λ)-continuous if for every κ-connected A ⊂ X we
have that f(A) is a λ-connected subset of Y . �

When the adjacency relations are understood, we will simply say that f is
continuous. Continuity can be reformulated in terms of adjacency of points:

Theorem 2.1. [10, 2] A single-valued function f : X → Y is continuous if
and only if x↔ x′ in X implies f(x) - f(x′). �

For two subsets A,B ⊂ X, we will say that A and B are adjacent when
there exist points a ∈ A and b ∈ B such that a - b. Thus sets with nonempty
intersection are automatically adjacent, while disjoint sets may or may not be
adjacent.

2.2 Multivalued functions

A multivalued function f from X to Y assigns a subset of Y to each point of
x. We will write f : X ( Y . For A ⊂ X and a multivalued function f : X ( Y ,
let f(A) =

⋃
x∈A f(x).

Definition 2.2. [9] A multivalued function f : X ( Y is connectivity preserv-
ing if f(A) ⊂ Y is connected whenever A ⊂ X is connected. �

As with Definition 2.1, we can reformulate connectivity preservation in terms
of adjacencies.

Theorem 2.2. [4] A multivalued function f : X ( Y is connectivity preserving
if and only if the following are satisfied:

• For every x ∈ X, f(x) is a connected subset of Y .

• For any adjacent points x, x′ ∈ X, the sets f(x) and f(x′) are adjacent. �

The papers [5, 6] define continuity for multivalued functions between digital
images based on subdivisions. (These papers make an error with respect to
compositions, which is corrected in [7].) We have the following.
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Figure 1. [4] Two images X and Y with their second subdivisions.

Definition 2.3. [5, 6] For any positive integer r, the r-th subdivision of Zn is

Znr = {(z1/r, . . . , zn/r) | zi ∈ Z}.

An adjacency relation κ on Zn naturally induces an adjacency relation (which
we also call κ) on Znr as follows: (z1/r, . . . , zn/r) ↔κ (z′1/r, . . . , z

′
n/r) in Znr if

and only if (z1, . . . , zn)↔κ (z′1, . . . , z
′
n) in Zn.

Given a digital image (X,κ) ⊂ (Zn, κ), the r-th subdivision of X is

S(X, r) = {(x1, . . . , xn) ∈ Znr | (bx1c, . . . , bxnc) ∈ X}.

Let Er : S(X, r)→ X be the natural map sending (x1, . . . , xn) ∈ S(X, r) to
(bx1c, . . . , bxnc).

For a digital image (X,κ) ⊂ (Zn, κ), a function f : S(X, r) → Y induces a
multivalued function F : X ( Y as follows:

F (x) =
⋃

x′∈E−1
r (x)

{f(x′)}.

A multivalued function F : X ( Y is called continuous when there is some r
such that F is induced by some single valued continuous function f : S(X, r)→
Y . �

Note that in contrast with the definition of continuity, the definition of
connectivity preservation makes no reference to X as being embedded inside of
any particular integer lattice Zn.

Example 2.3. [4] An example of two digital images and their subdivisions is
given in Figure 1. Note that the subdivision construction (and thus the notion
of continuity) depends on the particular embedding of X as a subset of Zn. In
particular we may have X,Y ⊂ Zn with X isomorphic to Y but S(X, r) not
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isomorphic to S(Y, r). This is the case for the two images in Figure 1, when we
use 8-adjacency for all images: X and Y in the figure are isomorphic, each being
a set of two adjacent points, but S(X, 2) and S(Y, 2) are not isomorphic since
S(X, 2) can be disconnected by removing a single point, while this is impossible
in S(Y, 2). �

Lemma 2.4. [3] Let F : (X, cu) ( (Y, cv) be a continuous multivalued func-
tion generated by the continuous single-valued function f : (S(X, r), cu) →
(Y, cv). Then for all n ∈ N there is a continuous single-valued function fn :
(S(X,nr), cu)→ (Y, cv) that generates F . �

Proposition 2.5. [5, 6] Let F : X ( Y be a continuous multivalued function
between digital images. Then

• for all x ∈ X, F (x) is connected; and

• F is connectivity preserving. �

Proposition 2.6. [4] Let X and Y be digital images. Suppose Y is connected.
Then the multivalued function f : X ( Y defined by f(x) = Y for all x ∈ X is
connectivity preserving. �

Proposition 2.7. [4] Let F : (X,κ) ( (Y, λ) be a multivalued surjection
between digital images (X,κ) and (Y, κ). If X is finite and Y is infinite, then F
is not continuous. �

Corollary 2.8. [4] Let F : X ( Y be the multivalued function between digital
images defined by F (x) = Y for all x ∈ X. If X is finite and Y is infinite and
connected, then F is connectivity preserving but not continuous. �

Other examples of connectivity preserving but not continuous multivalued
functions on finite spaces are given in [4].

Other terminology we use includes the following. Given a digital image
(X,κ) ⊂ Zn and x ∈ X, the set of points adjacent to x ∈ Zn is

Nκ(x) = {y ∈ Zn | y ↔κ x}.

2.3 Weak and strong multivalued continuity

Other notions of continuity have been given for multivalued functions be-
tween graphs (equivalently, between digital images). We have the following.

Definition 2.4. [11] Let F : X ( Y be a multivalued function between digital
images.
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• F has weak continuity, or is weakly continuous, if for each pair of adjacent
x, y ∈ X, f(x) and f(y) are adjacent subsets of Y .

• F has strong continuity, or is strongly continuous, if for each pair of ad-
jacent x, y ∈ X, every point of f(x) is adjacent or equal to some point of
f(y) and every point of f(y) is adjacent or equal to some point of f(x). �

Clearly, strong continuity implies weak continuity. Example 2.11 below shows
that the converse assertion is false.

Theorem 2.9. [4] A multivalued function F : X ( Y is connectivity preserving
if and only if the following are satisfied:

• F has weak continuity.

• For every x ∈ X, F (x) is a connected subset of Y . �

Example 2.10. [4] If F : [0, 1]Z ( [0, 2]Z is defined by F (0) = {0, 2}, F (1) =
{1}, then F has both weak and strong continuity. Thus a multivalued function
between digital images that has weak or strong continuity need not have con-
nected point-images. By Theorem 2.2 and Proposition 2.5 it follows that neither
having weak continuity nor having strong continuity implies that a multivalued
function is connectivity preserving or continuous. �

Example 2.11. [4] Let F : [0, 1]Z ( [0, 2]Z be defined by F (0) = {0, 1},
F (1) = {2}. Then F is continuous and has weak continuity but does not have
strong continuity. �

3 Continuous and other structured multivalued func-
tions

We say a digital image (X,κ) has subdivisions preserving adjacency if when-
ever x ↔κ x

′ in X, there exist x0 ∈ S({x}, r) and x′0 ∈ S({x′}, r) such that
x0 ↔κ x

′
0. Images with any cu-adjacency or with the generalized normal product

adjacency [3] NPu(cu1 , . . . , cuv) on Πv
i=1Xi, where cui is the adjacency of Xi,

have subdivisions preserving adjacency.

Theorem 3.1. [5, 6, 4] Let (X,κ) and (Y, λ) have subdivisions preserving ad-
jacency. If F : (X,κ) ( (Y, λ) is a continuous multivalued function, then F is
connectivity preserving. �

Theorem 3.2. Let (X,κ) and (Y, λ) have subdivisions preserving adjacency.
Let F : (X,κ)( (Y, λ) be continuous. Then F is (κ, λ)-weakly continuous.
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Proof. Let f : S(X, r) → Y be a (κ, λ)-continuous function that generates F .
Let x↔κ x

′ in X. Then there exist x0 ∈ S({x}, r) and x′0 ∈ S({x′}, r) such that
x0 ↔κ x

′
0. Then we have f(x0) ∈ F (x), f(x′0) ∈ F (x′), and f(x0) -λ f(x′0).

Thus, F (X) and F (x′) are λ-adjacent sets, so F is weakly continuous. QED

The following example shows that neither weak continuity nor strong conti-
nuity implies continuity.

Example 3.3. Let F : [0, 1]Z( [0, 2]Z be defined by F (0) = {1}, F (1) = {0, 2}.
Then F is (c1, c1)-weakly continuous and (c1, c1)-strongly continuous but is not
(c1, c1)-continuous.

Proof. It is easily seen that F is weakly and strongly continuous. Since F (1) is
not c1-connected, by Theorem 3.1 we can conclude that F is not continuous.

QED

4 Composition

Suppose f : (X,κ) ( (Y, λ) and g : (Y, λ) ( (W,µ) are multivalued func-
tions between digital images. What properties of f and g are preserved by
their composition? The following are known concerning the multivalued func-
tion g ◦ f : X (W .

• [7]

If f and g are both continuous, g ◦ f need not be continuous. (4.1)

There are additional hypotheses explored in [7] under which a composition
g ◦ f of continuous multivalued functions is continuous.

• [4] If f and g are both connectivity preserving, then g ◦ f is connectivity
preserving.

We have the following.

Theorem 4.1. Let f : (X,κ)( (Y, λ) and g : (Y, λ)( (W,µ) be multivalued
functions between digital images.

• If f and g are both weakly continuous, then g ◦ f is weakly continuous.

• If f and g are both strongly continuous, then g ◦ f is strongly continuous.
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Proof. Suppose f and g are both weakly continuous. Let x ↔κ x
′ in X. Then

there exist y ∈ f(x) and y′ ∈ f(x′) such that y -λ y
′. Therefore, there exist

w ∈ g(y) ⊂ g ◦ f(x) and w′ ∈ g(y′) ⊂ g ◦ f(x′) such that w -µ w
′. Thus, g ◦ f

is weakly continuous.
Suppose f and g are both strongly continuous. Let x ↔κ x

′ in X. Then
for each y ∈ f(x) there exists y′ ∈ f(x′) such that y -λ y′. Then for each
w ∈ g(y) ⊂ g ◦ f(x) there exists w′ ∈ g(y′) ⊂ g ◦ f(x′) such that w -µ w′.
Since y was taken as an arbitrary member of f(x), it follows that for each
w ∈ g ◦ f(x) there exists w′ ∈ g ◦ f(x′) such that w -µ w

′. Similarly, for each
w′ ∈ g ◦f(x′) there exists w ∈ g ◦f(x) such that w′ -µ w. Thus, g ◦f is strongly
continuous. QED

5 Retractions and extensions

Retractions and extensions are studied for single-valued continuous functions
between digital images in [1], for continuous multivalued functions in [5, 6], and
for connectivity preserving multivalued functions between digital images in [4].
In this section, we obtain more results for retractions and extensions among
multivalued functions.

Since we wish to study multivalued functions that have properties of retrac-
tions and that are any of continuous, weakly continuous, strongly continuous,
or connectivity preserving, we will call a multivalued function F : X ( A a
retraction if A ⊂ X and for all a ∈ A, F (a) = {a}.

Theorem 5.1. Let A ⊂ (X,κ). Then there is a multivalued continuous re-
traction R : X ( A if and only if for each continuous single-valued function
f : A→ Y , there is a continuous multivalued function F : X ( Y that extends
f .

Proof. Suppose there is a multivalued continuous retraction R : X ( A. Then
there is a continuous single-valued function R′ : S(X, r)→ A that generates R.
Given a continuous single-valued function f : A → Y , f ◦ R′ : S(X, r) → Y is
a continuous extension of f and therefore generates a continuous multivalued
extension of f from X to Y .

Suppose given any continuous single-valued function f : A → Y for any
Y , there is a continuous multivalued function F : X ( Y that extends f .
Then, in particular, 1A : A→ A extends to a continuous multivalued retraction
R : X ( A. QED

The composition of continuous multivalued functions between digital images
need not be continuous [7]. However, we have the following (note for X ⊂ Zm,
cm-adjacency is (3m − 1)-adjacency [8]).
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Theorem 5.2. [7] Let X ⊂ (Zm, 3m − 1), Y ⊂ (Zn, cu) where 1 ≤ u ≤ n,
W ⊂ (Zp, cv) where 1 ≤ v ≤ p. Suppose F : X ( Y and G : Y ( W are
continuous multivalued functions. Then G ◦ F : (X, 3m − 1) ( (W, cv) is a
continuous multivalued function. �

This enables us to examine cases for which we can obtain a stronger result
than Theorem 5.1.

Theorem 5.3. Let A ⊂ X ⊂ (Zm, 3m − 1). Then there is a multivalued con-
tinuous retraction R : X ( A if and only if for each continuous multivalued
function F : (A, 3m − 1) ( (Y, cu), there is a continuous multivalued function
F ′ : X ( Y that extends F .

Proof. This assertion follows from an argument like that of the proof of The-
orem 5.1, using for one of the implications that by Theorem 5.2, F ◦ R is a
continuous multivalued function. QED

We say a multivalued function f : X ( Y is a surjection if for every y ∈ Y
there exists x ∈ X such that y ∈ f(x).

Proposition 5.4. Let (X,κ) and (Y, λ) be nonempty digital images. Then there
is a (κ, λ)-strongly continuous multivalued function F : X ( Y that is a sur-
jection. Further, if Y is connected then there exists such a multivalued function
F that is also connectivity preserving.

Proof. For all x ∈ X, let F (x) = Y . Let x ↔κ x
′ in X. Then for any y ∈ F (x)

we also have y ∈ F (x′), and for any y′ ∈ F (x′) we also have y′ ∈ F (x), so F is
strongly continuous.

Clearly, if Y is connected then F is connectivity preserving. QED

Corollary 5.5. Let (X,κ) and (Y, λ) be nonempty digital images such that
the number of κ-components of X is greater than or equal to the number of λ-
components of Y . Then there is a (κ, λ)-strongly continuous multivalued function
F : X ( Y that is a connectivity preserving surjection.

Proof. Let {Xu}u∈U be the set of distinct κ-components of X. Let {Yv}v∈V be
the set of distinct λ-components of Y . Since |U | ≥ |V |, there is a surjection s :
U → V . By Proposition 5.4, there is a (κ, λ)-strongly continuous, connectivity
preserving surjective multivalued function Fu : Xu ( Ys(u) for every u ∈ U .
Then the multivalued function F : X ( Y defined by F (x) = Fu(x) for x ∈ Xu

is easily seen to be a strongly continuous connectivity preserving surjection.
QED
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Lemma 5.6. Let A ⊂ (X,κ), A 6= ∅, where X is connected. For all x ∈ X, let
lκX(x,A) be the length of a shortest κ-path in X from x to any point of A. For
all x, x′ ∈ X, if x↔κ x

′ then |lκX(x,A)− lκX(x′, A)| ≤ 1.

Proof. Note the assumption that X is connected guarantees that for all x ∈ X,
lκX(x,A) is finite.

Let {xi}mi=0 be a path in X from x = x0 to xm ∈ A, where m = lκX(x,A).
Then {x′} ∪ {xi}mi=0 is a path of length m + 1 from x′ to xm ∈ A. Therefore,
lκX(x′, A) ≤ m + 1 = lκX(x,A) + 1. Similarly, lκX(x,A) ≤ lκX(x′, A) + 1. The
assertion follows. QED

In the following, for x ∈ X, A ⊂ X, let LκA(x,X) be the set such that
a ∈ LκA(x,X) implies a ∈ A and there is a path in X from x to a of length in
{lκX(x,A), lκX(x,A) + 1}.

Theorem 5.7. Let (X,κ) be connected. Suppose ∅ 6= A ⊂ X. Then the multi-
valued function f : X ( A defined by

f(x) =

{
{x} if x ∈ A;
LκA(x,X) if x ∈ X \A,

is a weakly continuous retraction.

Proof. Let x↔κ x
′ in X. We must consider the following cases.

• x, x′ ∈ A. Then f(x) = {x} and f(x′) = {x′} are clearly adjacent sets.

• x ∈ A, x′ ∈ X \ A. Then lκX(x′, A) = 1 and x ∈ f(x) ∩ f(x′), so f(x) and
f(x′) are κ-adjacent sets.

• x′ ∈ A, x ∈ X \A. This is similar to the previous case.

• x, x′ ∈ X \A. Without loss of generality,

lκX(x,A) ≤ lκX(x′, A). (5.1)

Let a ∈ A be such that there is a κ-path P = {xi}mi=0 in X from x′ = x0

to xm = a, such that m = lκX(x′, A). By Lemma 5.6 and statement (5.1),
{x} ∪ P is a path in X from x to a of length at most LκX(x,A) + 1.
Therefore, a ∈ f(x) ∩ f(x′).

In all cases, f(x) and f(x′) are adjacent sets, so f has weak continuity.
Clearly, f is a retraction. QED

The function constructed for Theorem 5.7 does not generally have strong
continuity, as shown in the following example.
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Example 5.8. Let X = [0, 4]Z. Let A = {0, 4}. Then the multivalued function
f : (X, c1)( (A, c1) of Theorem 5.7 does not have strong continuity.

Proof. This follows from the observations that f(1) = {0}, f(2) = {0, 4}, 1↔c1

2, and 4 ∈ f(2) is not c1-adjacent to any member of f(1). QED

For A ⊂ X, let BdκX(A) = {a ∈ A |Nκ
X(a) \A 6= ∅}.

As an alternative to the multivalued function f of Theorem 5.7, we can
consider the following.

Theorem 5.9. Suppose ∅ 6= A ⊂ (X,κ). Then the multivalued function g :
X ( A defined by

g(x) =

{
{x} if x ∈ A;
BdκX(A) if x ∈ X \A,

is a weakly continuous retraction. Further, if BdκX(A) is connected, then g is
connectivity preserving.

Proof. Clearly g is a retraction. To show g is weakly continuous, suppose x↔κ x
′

in X. We consider the following cases.

• x, x′ ∈ A. Then x ∈ g(x) and x′ ∈ g(x′), so g(x) and g(x′) are κ-adjacent
sets.

• x ∈ A, x′ ∈ X \A. Then x ∈ BdκX(A), so x ∈ g(x)∩ g(x′). Thus, g(x) and
g(x′) are κ-adjacent sets.

• x′ ∈ A, x ∈ X \A. This is similar to the previous case.

• x, x′ ∈ X \A. Then g(x) = g(x′).

Thus, in all cases, g(x) and g(x′) are adjacent sets. Therefore, g is weakly con-
tinuous.

Suppose BdκX(A) is connected. Then for every x ∈ X, g(x) is connected. It
follows from Theorem 2.9 that g is connectivity preserving. QED

Example 5.10. Let X = [0, 4]Z ⊂ (Z, c1). Let A = [1, 3]Z ⊂ (Z, c1). Then the
multivalued function g of Theorem 5.9 is not strongly continuous.

Proof. We have g(1) = {1} and g(0) = {1, 3}. Thus, 0 ↔c1 1 but 3 ∈ g(0) has
no c1-neighbor in g(1). QED

Theorem 5.11. [1] X0 is a (single-valued) retract of (X,κ) if and only if
for every digital image (Y, λ) and every (κ, λ)-continuous single-valued function
f : X0 → Y , there exists a (κ, λ)-continuous extension f ′ : X → Y . �
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The proof of this assertion depends on the fact that the composition of
continuous single-valued functions is continuous. Since statement (4.1) implies
that a similar argument does not work for multivalued functions, it is not known
whether an analog of Theorem 5.11 for multivalued functions is correct.

Theorem 5.12. Let X0 ⊂ (X,κ) and let F : X0 ( (Y, λ) be a weakly con-
tinuous multivalued function. Then there is an extension F ′ : X ( Y that is
(κ, λ)-weakly continuous. Further, if F is connectivity preserving and F (X0) is
λ-connected, then F ′ can be taken to be connectivity preserving.

Proof. Let F ′ be defined by

F ′(x) =

{
F (x) if x ∈ X0;
F (X0) if x ∈ X \X0.

Let x ↔κ x
′. If {x, x′} ⊂ X0, then F ′(x) = F (x) and F (x′) = F ′(x′) are

λ-adjacent subsets of Y . If {x, x′} ⊂ X \ X0, then F ′(x) = F (X0) = F ′(x′).
Otherwise, without loss of generality we have x ∈ X0 and x′ ∈ X \ X0. Then
F ′(x) = F (x) ⊂ F (X0) = F ′(x′). Thus, in all cases, F ′(x) and F ′(x′) are
λ-adjacent subsets of Y . Therefore, F ′ is weakly continuous.

Suppose F is connectivity preserving and F (X0) is λ-connected. Let A be
a κ-connected subset of X. If A ⊂ X0, then F ′(A) = F (A) is connected.
Otherwise, F ′(A) = F (X0) is λ-connected. Thus, F ′ is connectivity preserv-
ing. QED

Corollary 5.13. Let X0 ⊂ (X,κ). Then X0 is a weakly continuous multivalued
retract of X.

Proof. Since the identity function on X0 is a weakly continuous multivalued
function, the assertion follows from Theorem 5.12. QED

Theorem 5.14. Let ∅ 6= X0 ⊂ X and let F : X0 ( Y be a (κ, λ)-connectivity
preserving multivalued function. If

• Y is connected, or

• F (X0) is connected, or

• F (BdκX(X0)) is connected,

then there is a (κ, λ)-connectivity preserving extension F ′ : X ( Y of F .

Proof. Suppose Y is connected. Let F ′ : X ( Y be defined by

F ′(x) =

{
F (x) if x ∈ X0;
Y if x ∈ X \X0.
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Let A be a κ-connected subset of X. If A ⊂ X0, then F ′(A) = F (A) is connected.
Otherwise, F ′(A) = Y is connected. Thus, F ′ is connectivity preserving.

Suppose F (X0) is connected. Let F ′ : X ( Y be defined by

F ′(x) =

{
F (x) if x ∈ X0;
F (X0) if x ∈ X \X0.

Let A be a κ-connected subset of X. If A ⊂ X0, then F ′(A) = F (A) is connected.
Otherwise, F ′(A) = F (X0) is connected. Thus, F ′ is connectivity preserving.

Suppose BdκX(X0) is connected. Let F ′ : X ( Y be defined by

F ′(x) =

{
F (x) if x ∈ X0;
F (BdκX(X0)) if x ∈ X \X0.

Let A be a κ-connected subset of X.

• If A ⊂ X0, then F ′(A) = F (A) is connected.

• If A ⊂ X \X0, then F ′(A) = F (BdκX(X0)) is connected.

• Otherwise, there exists a0 ∈ A \X0 and, for all a ∈ A, a κ-path Pa in A
from a to a0. Then

F ′(A) =
⋃
a∈A

F ′(Pa). (5.2)

Since F ′(a0) ⊂ F ′(Pa) for all a ∈ A, if we can show each F ′(Pa) is λ-
connected then it will follow from equation (5.2) that F ′(A) is λ-connected.

Suppose Pa = {xi}mi=1 where x1 = a, xm = a0, and xi+1 ↔κ xi for
1 ≤ i < m. For each maximal segment {xi}vi=u of Pa contained in A∩X0,
we have xv ∈ BdκX(X0), so

F ′(xv) = F (xv) ⊂ F (BdκX(X0)) = F ′(xv+1).

Thus, F ({xv, xv+1}) is λ-connected. Similarly, if u > 1 then F ({xu−1, xu})
is λ-connected. It follows that F (Pa) is connected.

Thus, F ′ is connectivity preserving. QED

Corollary 5.15. Let ∅ 6= X0 ⊂ (X,κ). If X0 is connected or if BdκX(X0) is
connected, then X0 is a connectivity preserving multivalued retract of X.

Proof. Since the identity function on X0 is a connectivity preserving multivalued
function, the assertion follows from Theorem 5.14. QED

An alternate proof of the first assertion of Corollary 5.15 is given for Theo-
rem 7.2 of [4].
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6 Wedges

Let (W,κ) be a digital image such that W = X ∪X ′, where X ∩X ′ = {x0}
for some x0 ∈W . We say W is the wedge of X and X ′, written W = X ∧X ′ or
(W,κ) = (X,κ) ∧ (X ′, κ).

Let X ∩ X ′ = {x0}, Y ∩ Y ′ = {y0}, F : X ( Y and F ′ : X ′ ( Y ′

be multivalued functions such that F (x0) = {y0} = F ′(x0). Define F ∧ F ′ :
X ∧X ′( Y ∧ Y ′ by

(F ∧ F ′)(a) =


F (a) if a ∈ X \ {x0};
F ′(a) if a ∈ X ′ \ {x0};
{y0} if a = x0.

Lemma 6.1. Let (W,κ) = (X,κ)∧ (X ′, κ), where {x0} = X ∩X ′. Let A ⊂W .
Then A is κ-connected if and only if each of A ∩X and A ∩X ′ is κ-connected.

Proof. Suppose A is κ-connected. Let a0, a1 ∈ A ∩ X. Then there is a κ-path
P = {xi}ni=1 in A from a0 to a1. If P is not a subset of A ∩ X then there are
smallest and largest indices u, v such that {xu, xv} ⊂ (A ∩ X ′) \ {x0}. Then
P0 = {xi}u−1

i=1 is a path in A ∩X from a0 to x0, and P1 = {xi}ni=v+1 is a path
in A ∩X from x0 to a1. Therefore, P0 ∪ P1 is a path in A ∩X from a0 to a1.
Since a0 and a1 were arbitrarily chosen, A ∩X is connected. Similarly, A ∩X ′
is connected.

Suppose each of A∩X and A∩X ′ is κ-connected. Let a0, a1 ∈ A. If a0 ∈ A∩X
then there is a path P in A ∩X from a0 to x0. Similarly, if a0 ∈ A ∩X ′ then
there is a path P in A ∩X ′ from a0 to x0. In either case, there is a path P in
A from a0 to x0. Similarly, there is a path P ′ in A from x0 to a1. Therefore,
P ∪ P ′ is a path in A from a0 to a1. Since a0 and a1 were arbitrarily chosen, it
follows that A is connected. QED

Theorem 6.2. Let X ∩ X ′ = {x0}, Y ∩ Y ′ = {y0}. Let F : X ( Y and
F ′ : X ′( Y ′ be multivalued functions such that {y0} = F (x0) = F ′(x0).

(1) If F and F ′ are both (κ, λ)-continuous, then F ∧F ′ : X ∧X ′( Y ∧ Y ′ is
(κ, λ)-continuous.

(2) If F and F ′ are both (κ, λ)-connectivity preserving, then F ∧F ′ : X∧X ′(
Y ∧ Y ′ is (κ, λ)-connectivity preserving.

(3) If F and F ′ are both (κ, λ)-weakly continuous, then F ∧ F ′ : X ∧ X ′ (
Y ∧ Y ′ is (κ, λ)-weakly continuous.

(4) If F and F ′ are both (κ, λ)-strongly continuous, then F ∧ F ′ : X ∧X ′ (
Y ∧ Y ′ is (κ, λ)-strongly continuous.
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Proof. We argue as follows.

(1) Suppose F and F ′ are both (κ, λ)-continuous. From Lemma 2.4, we con-
clude that for some r ∈ N, there are continuous functions f : S(X, r)→ Y
and f ′ : S(X ′, r) → Y ′ that generate F and F ′, respectively. Then the
single-valued function f̂ : S(X, r) ∪ S(X ′, r) = S(X ∧ X ′, r) → Y ∧ Y ′
defined by

f̂(a) =

{
f(a) if a ∈ S(X, r);
f ′(a) if a ∈ S(X ′, r)

is well defined since F (x0) = {y0} = F ′(x0), and is continuous and gener-
ates F ∧ F ′. Thus, F ∧ F ′ is continuous.

(2) Suppose F and F ′ are both (κ, λ)-continuity preserving. Let A be a con-
nected subset of X ∧ X ′. If A ⊂ X or if A ⊂ X ′ then (F ∧ F ′)(A) is
either F (A) or F ′(A), hence is connected. Otherwise, by Lemma 6.1, each
of A ∩X and A ∩X ′ is connected. Therefore, F (A ∩X) and F ′(A ∩X ′)
are connected, and F (A ∩X) ∩ F ′(A ∩X ′) = {y0}. Thus, (F ∧ F ′)(A) =
F (A∩X)∪F ′(A∩X ′) is connected. Hence F∧F ′ is connectivity preserving.

(3) Suppose F and F ′ are both (κ, λ)-weakly continuous. Let a0 ↔κ a1 in
X ∧ X ′. Then either {a0, a1} ⊂ X or {a0, a1} ⊂ X ′. Therefore either
(F ∧ F ′)({a0, a1}) = F ({a0, a1}) or (F ∧ F ′)({a0, a1}) = F ′({a0, a1}). In
either case, (F∧F ′)(a0) and (F∧F ′)(a1}) are adjacent sets. Thus, (F∧F ′)
is weakly continuous.

(4) Suppose F and F ′ are both (κ, λ)-strongly continuous. Let a0 ↔κ a1 in
X ∧ X ′. As above for our argument concerning weak continuity, either
(F ∧ F ′)({a0, a1}) = F ({a0, a1}) or (F ∧ F ′)({a0, a1}) = F ′({a0, a1}). In
either case, one sees from Definition 2.4 that F ∧F ′ is strongly continuous.

QED

7 Further remarks

We have studied properties of structured multivalued functions between dig-
ital images. In section 3, we studied relations between continuous multivalued
functions and other structured types of multivalued functions. In section 4, we
studied properties of multivalued functions that are preserved by composition.
In section 5, we studied retractions and extensions of structured multivalued
functions. In section 6, we studied properties of multivalued functions that are
preserved by the wedge operation.
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