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Abstract. In this paper, we aim to introduce a generating function for generalized Apostol
type Legendre-Based polynomials which extends some known results. We also deduce some
properties of the generalized Apostol-Bernoulli polynomials, the generalized Apostol-Euler
polynomials and the generalized Apostol-Genocchi polynomials of higher order. By making
use of the generating function method and some functional equations mentioned in the paper,
we conduct a further investigation in order to obtain some implicit summation formulae and
general symmetry identities for the generalized Apostol type Legendre-Based polynomials.
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1 Introduction

Generalized and multivariable forms of the special functions of mathematical
physics have witnessed a significant evolution during the recent years. In par-
ticular, the special polynomials of more than one variable provided new means
of analysis for the solution of large classes of partial differential equations often
encountered in physical problems. Most of the special function of mathematical
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physics and their generalization have been suggested by physical problems.

To give an example, we recall that the 2-variable Hermite Kampe′ de Fe′riet
polynomials Hn(x, y) [2] defined by the generating function

exp(xt+ yt2) =
∞∑
n=0

Hn(x, y)
tn

n!
(1.1)

are the solution of heat equation

∂

∂y
Hn(x, y) =

∂2

∂x2
Hn(x, y), Hn(x, 0) = xn (1.2)

The higher order Hermite polynomials, sometimes called the Kampe′ de Fe′riet

polynomials of order m or the Gould-Hopper polynomials H
(m)
n (x, y) defined by

the generating function ([11], p.58 (6.3))

exp(xt+ ytm) =

∞∑
n=0

H(m)
n (x, y)

tn

n!
(1.3)

are the solution of the generalized heat equation [7]

∂

∂y
f(x, y) =

∂m

∂xm
f(x, y), f(x, 0) = xn (1.4)

Also, we note that
H(2)
n (x, y) = Hn(x, y), (1.5)

Hn(2x,−1) = Hn(x), (1.6)

where Hn(x) are the classical Hermite polynomials [1].

Next, we recall that the 2-variable Legendre polynomials Sn(x, y) and Rn(x, y)
are given by Dattoli et al. [8]

Sn(x, y) = n!

[n
2

]∑
k=0

xkyn−2k

[(n− 2k)!(k!)2]
(1.7)

and

Rn(x, y) = (n!)2
∞∑
k=0

(−1)n−kxn−kyk

[(n− 2k)!]2(k!)2
(1.8)

respectively, and are related with the ordinary Legendre polynomials Pn(x)
[27] as
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Pn(x) = Sn

(
−1− x2

4
, x

)
= Rn

(
1− x

2
,
1 + x

2

)
.

From equation (7) and (8), we have

Sn(x, 0) = n!
x[n

2
]

[(n2 )!]2
, Sn(0, y) = yn, (1.9)

Rn(x, 0) = (−x)n, Rn(0, y) = yn. (1.10)

The generating functions for two variable Legendre polynomials Sn(x, y) and
Rn(x, y) are given by [8]

eytC0(−xt2) =

∞∑
n=0

Sn(x, y)
tn

n!
(1.11)

C0(xt)C0(−yt) =

∞∑
n=0

Rn(x, y)
tn

(n!)2
(1.12)

where C0(x) is the 0-th order Tricomi function [27]

C0(x) =
∞∑
r=0

(−1)rxr

(r!)2
(1.13)

The generalized Bernoulli polynomials B
(α)
n (x) of order α ∈ C, the gen-

eralized Euler polynomials E
(α)
n (x) of order α ∈ C and generalized Genocchi

polynomials G
(α)
n (x) of order α ∈ C, are defined respectively by the following

generating functions (see [10], vol. 3, p. 253 et seq.), ([16], section 2.8) and [18]):

(
t

et − 1

)α
ext =

∞∑
n=0

B(α)
n (x)

tn

n!
, (|t| < 2π; 1α := 1) (1.14)

(
2

et + 1

)α
ext =

∞∑
n=0

E(α)
n (x)

tn

n!
, (|t| < π; 1α := 1) (1.15)

(
2t

et + 1

)α
ext =

∞∑
n=0

G(α)
n (x)

tn

n!
, (|t| < π; 1α := 1) (1.16)

The literature contains a large number of interesting properties and relation-
ship involving these polynomials (see [3],[4],[5],[10],[12],[24]). Luo and Srivastava
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([20],[22]) introduced the generalized Apostol Bernoulli polynomials B
(α)
n (x;λ)

of order α, Luo [17] investigated Apostol Euler polynomials E
(α)
n (x;λ) of order

α and the generalized Apostol Genocchi polynomials G
(α)
n (x;λ) of order α (see

also [18],[19],[21]).

The generalized Apostol Bernoulli polynomials B
(α)
n (x;λ) of order α ∈ C,

the generalized Apostol Euler polynomials E
(α)
n (x;λ) of order α ∈ C and gen-

eralized Apostol Genocchi polynomials G
(α)
n (x;λ) of order α ∈ C, are defined

respectively by the following generating functions:

(
t

λet − 1

)α
ext =

∞∑
n=0

B(α)
n (x;λ)

tn

n!
, (|t+ ln λ| < 2π; 1α := 1) (1.17)

(
2

λet + 1

)α
ext =

∞∑
n=0

E(α)
n (x;λ)

tn

n!
, |t+ ln λ| < π; 1α := 1) (1.18)

(
2t

λet + 1

)α
ext =

∞∑
n=0

G(α)
n (x;λ)

tn

n!
, (|t+ ln λ| < π; 1α := 1) (1.19)

where, if we take x = 0 in the above, we have

B(α)
n (0;λ) := B(α)

n (λ), E(α)
n (0;λ) := E(α)

n (λ), G(α)
n (0;λ) = G(α)

n (λ) (1.20)

calling Apostol-Bernoulli number of order α, Apostol-Euler number of order α
and Apostol-Genocchi number of order α, respectivily. Also

B(α)
n (x) := B(α)

n (x; 1), E(α)
n (x) := E(α)

n (x; 1), G(α)
n (x) = G(α)

n (x; 1). (1.21)

Srivastava et al. [29],[30] have investigated the new class of generalized Apostol-

Bernoulli polynomials B
(α)
n (x;λ; a, b, e) of order α, Apostol-Euler polynomials

E
(α)
n (x;λ; a, b, e) of order α and Apostol-Genocchi polynomials G

(α)
n (x;λ; a, b, e)

of order α, are defined respectively by the following generating functions:

(
t

λbt − at

)α
ext =

∞∑
n=0

B(α)
n (x;λ; a, b, e)

tn

n!
, (|t ln

(a

b

)
+ ln λ| < 2π; 1α := 1)

(1.22)
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(
2

λbt + at

)α
ext =

∞∑
n=0

E(α)
n (x;λ; a, b, e)

tn

n!
, (|t ln

(a

b

)
+ ln λ| < π; 1α := 1)

(1.23)

(
2t

λbt + at

)α
ext =

∞∑
n=0

G(α)
n (x;λ; a, b, e)

tn

n!
, (|t ln

(a

b

)
+ ln λ| < π; 1α := 1)

(1.24)
If we take a = 1, b = e in (22), (23) and (24) respectively, we have (17), (18)
and (19). Obviously when we set λ = 1, α = 1, b = e in (22), (23) and (24), we
have classical Bernoulli polynomials Bn(x), classical Euler polynomials En(x)
and classical Genocchi polynomials Gn(x).

Recently, Luo et al. [23] introduced a generalized Apostol type polynomials

F
(α)
n (x;λ;µ, ν) (α ∈ N0, µ, ν ∈ C) of order α, are defined by means of the

following generating function:

(
2µtν

λet + 1

)α
ext =

∞∑
n=0

F (α)
n (x;λ;µ, ν)

tn

n!
, |t| < |log(−λ)) (1.25)

where

F (α)
n (λ;µ, ν) = F (α)

n (0;λ;µ, ν) (1.26)

denotes the so called Apostol type number of order α.
So that by comparing equation (17), (18) and (19), we have

B(α)
n (x;λ) = (−1)αF (α)

n (x;−λ; 0, 1) (1.27)

E(α)
n (x;λ) = F (α)

n (x;λ; 1, 0) (1.28)

G(α)
n (x;λ) = F (α)

n (x;λ; 1, 1) (1.29)

The special polynomials of more than one variable provide new means of analysis
for the solutions of a wide class of partial differential equations often encoun-
tered in physical problems. It happens very often that the solution of a given
problem in physics or applied mathematics requires the evaluation of infinite
sum, involving special functions. Problem of this type arise, for example, in the
computation of the higher-order moments of a distribution or in evaluation of
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transition matrix elements in quantum mechanics. In [6], Dattoli showed that
the summation formulae of special functions, often encountered in applications
ranging from electromagnetic process to combinatorics, can be written in terms
of Hermite polynomials of more than one variable.

In this paper, we first give definition of the generalized Apostol type Legendre-

Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) which generalizes the concept stated

above and then find their basic properties and relationships with Apostol type

Hermite-Based polynomials HF
(α)
n (x, y;λ;µ, ν) of Lu et al. [23]. Some implicit

summation formulae and general symmetry identities are derived by using differ-
ent analytical means and applying generating functions. These result extends
some known summation and identities of generalized Apostol type Hermite-
Bernoulli, Euler and Genocchi polynomials studied by Dattoli et al. [9], Yang
[31], Khan et al. [13]-[15], Pathan [25], Pathan and Khan [26], Yang et al. [32]
and Zhang et al. [33].

2 Definition and Properties of the Generalized Apos-
tol type Legendre-Based polynomials

In this section, we present further definition and properties for the generalized

Apostol type Legendre-Based polynomials SF
(α)
n (x, y, z;λ;µ, ν).

Definition 2.1. The generalized Apostol type Legendre-Based polynomials

SF
(α)
n (x, y, z;λ;µ, ν) (α ∈ N0, µ, ν ∈ C) for nonnegative integer n, are defined

by

∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!
=

(
2µtν

λet + 1

)α
eyt+zt

2
C0(−xt2), (|t| < |log(−λ))

(2.1)
so that

SF
(α)
n (x, y, z;λ;µ, ν) =

n∑
m=0

[m
2

]∑
k=0

F
(α)
n−m(λ;µ, ν) Sm−2k(x, y)zkn!

(m− 2k)!k!(n−m)!
(2.2)

For α = 1, in (30) we obtain the following generating function

∞∑
n=0

SFn(x, y, z;λ;µ, ν)
tn

n!
=

(
2µtν

λet + 1

)
eyt+zt

2
C0(−xt2), (|t| < |log(−λ))

(2.3)
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For x = 0 in (30), the result reduces to Hermite-Based generalized Apostol
type polynomials of Lu et al. [23] is defined as

∞∑
n=0

HF
(α)
n (y, z;λ;µ, ν)

tn

n!
=

(
2µtν

λet + 1

)α
eyt+zt

2
, (|t| < |log(−λ)) (2.4)

As in the case y = z = 0 in (30), it leads to an extension of the generalized

Apostol type polynomials denoted by F
(α)
n (x;λ;µ, ν) for a nonnegative integer

n defined earlier by (25).

The generalized Apostol type Legendre-Based polynomials SF
(α)
n (x, y, z;λ;µ, ν, e)

defined by (30) have the following properties which are stated as theorem below.

Theorem 2.1. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following relation for the generalized Apostol type Legendre-Based polynomials

SF
(α)
n (x, y, z;λ;µ, ν) holds true:

SF
(α)
n (x, y, z;λ;µ, ν, e) = SF

(α)
n (x, y, z;λ;µ, ν),

(−1)αSF
(α)
n (x, y, z;−λ; 0, 1) = SB

(α)
n (x, y, z;λ)

SF
(α)
n (x, y, z;λ; 1, 0) = SE

(α)
n (x, y, z;λ),

SF
(α)
n (x, y, z;λ; 1, 1) = SG

(α)
n (x, y, z;λ)

(2.5)

SF
(α+β)
n (x, y + z, v + u;λ;µ, ν) =

n∑
k=0

(
n
k

)
SF

(α)
n−k(x, z, v;λ;µ, ν)HF

(β)
k (y, u;λ;µ, ν) (2.6)

SF
(α+β)
n (x, y + v, z;λ;µ, ν) =

n∑
k=0

(
n
k

)
SF

(α)
n−k(x, y, z;λ;µ, ν)F

(β)
k (v;λ;µ, ν) (2.7)

Proof. The proof of (34) are obvious. Applying definition (30), we have

∞∑
n=0

SF
(α+β)
n (x, y + z, v + u;λ;µ, ν)

tn

n!

=

( ∞∑
n=0

SF
(α)
n (x, z, v;λ;µ, ν)

tn

n!

)( ∞∑
k=0

HF
(β)
k (y, u;λ;µ, ν)

tk

k!

)
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=

∞∑
n=0

(
n∑
k=0

(
n
k

)
SF

(α)
n−k(x, z, v;λ;µ, ν)HF

(β)
k (x, y, u;λ;µ, ν)

)
tn

n!

Now equating the coefficient of tn

n! in the above equation, we get the result (35).
Again by definition (30) of Apostol type Legendre-Based polynomials, we have

∞∑
n=0

SF
(α+β)
n (x, y + v, z;λ;µ, ν)

tn

n!
=

(
2µtν

λet + 1

)α+β

e(y+v)t+zt2C0(−xt2)

=

((
2µtν

λet + 1

)α
eyt+zt

2
C0(−xt2)

)((
2µtν

λet + 1

)β
evt

)
which can be written as

=
∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!

∞∑
k=0

F
(β)
k (v;λ;µ, ν)

tk

k!

=
∞∑
n=0

(
n∑
k=0

(
n
k

)
SF

(α)
n−k(x, y, z;λ;µ, ν)F

(β)
k (v;λ;µ, ν)

)
tn

n!

Now equating the coefficient of the like power of tn

n! in the above equation, we
get the result (36).

3 Implicit Summation Formulae Involving Apostol
type Legendre-Based Polynomials

For the derivation of implicit formulae involving generalized Apostol type Legendre-

Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) the same consideration as developed for

the ordinary Hermite and related polynomials in Khan et al. [14] and Hermite-
Bernoulli polynomials in Pathan [25], Pathan and Khan [26] and Khan et al.
[13]-[15] holds as well. First we prove the following results involving generalized

Apostol type Legendre-Based polynomials SF
(α)
n (x, y, z;λ;µ, ν).

Theorem 3.1. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N .
The following implicit summation formulae for the generalized Apostol type

Legendre-Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) holds true:

SF
(α)
m+n(x, v, z;λ;µ, ν) =

m,n∑
s,k=0

(
m
s

)(
n
k

)
(v − y)s+kSF

(α)
m+n−s−k(x, v, z;λ;µ, ν) (3.1)
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Proof. We replace t by t+ u and rewrite the generating function (30) as(
2µ(t+ u)ν

λet+u + 1

)α
ez(t+u)2C0(−x(t+ u)2)

= e−y(t+u)
∞∑

m,n=0

SF
(α)
m+n(x, y, z;λ;µ, ν)

tn

n!

um

m!
(3.2)

Replacing y by v in the above equation and equating the resulting equation to
the above equation, we get

e(v−y)(t+u)
∞∑

m,n=0

SF
(α)
m+n(x, y, z;λ;µ, ν)

tn

n!

um

m!

=

∞∑
m,n=0

SF
(α)
m+n(x, v, z;λ;µ, ν)

tn

n!

um

m!
(3.3)

On expanding exponential function (39) gives

∞∑
N=0

[(v − y)(t+ u)]N

N !

∞∑
m,n=0

SF
(α)
m+n(x, y, z;λ;µ, ν)

tn

n!

um

m!

=

∞∑
m,n=0

SF
(α)
m+n(x, v, z;λ;µ, ν)

tn

n!

um

m!
(3.4)

which on using the following formula ([28], p. 52(2))

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(m+ n)
xn

n!

ym

m!
(3.5)

in the left hand side becomes

∞∑
k,s=0

(v − y)k+s tkus

k!s!

∞∑
m,n=0

SF
(α)
m+n(x, y, z;λ;µ, ν)

tn

n!

um

m!

=
∞∑

m,n=0

SF
(α)
m+n(x, v, z;λ;µ, ν)

tn

n!

um

m!
(3.6)

Now replacing n by n− k, s by n− s and using the lemma ([28], p. 100(1))
in the left hand side of (42), we get

∞∑
m,n=0

m,n∑
k,s=0

(v − y)k+s

k!s!
SF

(α)
m+n−k−s(x, y, z;λ;µ, ν)

tn

(n− k)!

um

(m− s)!
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=
∞∑

m,n=0

SF
(α)
m+n(x, v, z;λ;µ, ν)

tn

n!

um

m!
(3.7)

Finally, on equating the coefficient of the like powers of tn and um in the
above equation, we get the required result.

Remark 3.1.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (3.1) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 3.1.1. The following implicit summation formula for the generalized

Apostol type Legendre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

SB
(α)
m+n(x, v, z;λ) =

m,n∑
s,k=0

(
m
s

)(
n
k

)
(v − y)s+kSB

(α)
m+n−s−k(x, v, z;λ) (3.8)

Remark 3.1.2. By taking µ = 1 and ν = 0 in Theorem (3.1), we immediately
deduce the following corollary.

Corollary 3.1.2. The following implicit summation formula for the generalized

Apostol type Legendre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

SE
(α)
m+n(x, v, z;λ) =

m,n∑
s,k=0

(
m
s

)(
n
k

)
(v − y)s+kSE

(α)
m+n−s−k(x, v, z;λ) (3.9)

Remark 3.1.3. By taking µ = 1 and ν = 1 in Theorem (3.1), we immediately
deduce the following corollary.

Corollary 3.1.3. The following implicit summation formula for the generalized

Apostol type Legendre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

SG
(α)
m+n(x, v, z;λ) =

m,n∑
s,k=0

(
m
s

)(
n
k

)
(v − y)s+kSG

(α)
m+n−s−k(x, v, z;λ) (3.10)

Theorem 3.2. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following implicit summation formula for the generalized Apostol type Legendre-

Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) holds true:

SF
(α)
n (x, y + u, z;λ;µ, ν) =

n∑
j=0

(
n
j

)
ujSF

(α)
n−j(x, y, z;λ;µ, ν) (3.11)
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Proof. Since
∞∑
n=0

SF
(α)
n (x, y + u, z;λ;µ, ν)

tn

n!
=

(
2µtν

λet + 1

)α
e(y+u)t+zt2C0(−xt2)

∞∑
n=0

SF
(α)
n (x, y + u, z;λ;µ, ν)

tn

n!
=

( ∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!

) ∞∑
j=0

uj
tj

j!


Now, replacing n by n− j and comparing the coefficient of tn, we get the result
(47).

Remark 3.2.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (3.2) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 3.2.1. The following implicit summation formula for the generalized

Apostol type Legendre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

SB
(α)
n (x, y + u, z;λ) =

n∑
j=0

(
n
j

)
ujSB

(α)
n−j(x, y, z;λ) (3.12)

Remark 3.2.2. By taking µ = 1 and ν = 0 in Theorem (3.2), we immediately
deduce the following corollary.

Corollary 3.2.2. The following implicit summation formula for the generalized

Apostol type Legendre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

SE
(α)
n (x, y + u, z;λ) =

n∑
j=0

(
n
j

)
ujSE

(α)
n−j(x, y, z;λ) (3.13)

Remark 3.2.3. By taking µ = 1 and ν = 1 in Theorem (3.2), we immediately
deduce the following corollary.

Corollary 3.2.3. The following implicit summation formula for the generalized

Apostol type Legendre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

SG
(α)
n (x, y + u, z;λ) =

n∑
j=0

(
n
j

)
ujSG

(α)
n−j(x, y, z;λ) (3.14)
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Theorem 3.3. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following implicit summation formula for the generalized Apostol type Legendre-

Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) holds true:

SF
(α)
n (x, y + u, z + w;λ;µ, ν) =

n∑
m=0

(
n
m

)
SF

(α)
n−m(x, y, z;λ;µ, ν)Hm(u,w)

(3.15)
Proof. By the definition of Apostol type Legendre-Based polynomials and the
definition (1), we have(

2µtν

λet + 1

)α
e(y+u)t+(z+w)t2C0(−xt2) =( ∞∑

n=0

SF
(k)
n (x, y, z)

tn

n!

)( ∞∑
m=0

Hm(u,w)
tm

m!

)
(3.16)

Now, replacing n by n−m and comparing the coefficient of tn, we get the result
(51).

Remark 3.3.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (3.3) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 3.3.1. The following implicit summation formula for the generalized

Apostol type Legendre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

SB
(α)
n (x, y + u, z + w;λ) =

n∑
m=0

(
n
m

)
SB

(α)
n−m(x, y, z;λ)Hm(u,w) (3.17)

Remark 3.3.2. By taking µ = 1 and ν = 0 in Theorem (3.3), we immediately
deduce the following corollary.

Corollary 3.3.2. The following implicit summation formula for the generalized

Apostol type Legendre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

SE
(α)
n (x, y + u, z + w;λ) =

n∑
m=0

(
n
m

)
SE

(α)
n−m(x, y, z;λ)Hm(u,w) (3.18)

Remark 3.3.3. By taking µ = 1 and ν = 1 in Theorem (3.3), we immediately
deduce the following corollary.
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Corollary 3.3.3. The following implicit summation formula for the generalized

Apostol type Legendre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

SG
(α)
n (x, y + u, z + w;λ) =

n∑
m=0

(
n
m

)
SG

(α)
n−m(x, y, z;λ)Hm(u,w) (3.19)

Theorem 3.4. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following implicit summation formula for the generalized Apostol type Legendre-

Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) holds true:

SF
(α)
n (x, y, z;λ;µ, ν) =

n−2j∑
m=0

[n
2

]∑
j=0

F
(α)
m (λ;µ, ν)Sn−m−2j(x, y)zjn!

m!j!(n−m− 2j)!
(3.20)

Proof. Applying the definition (30) to the term
(

2µtν

λet+1

)α
and expanding the

exponential and tricomi function eyt+zt
2
C0(−xt2) at t = 0 yields(

2µtν

λet + 1

)α
eyt+zt

2
C0(−xt2) =( ∞∑

m=0

F (α)
m (λ;µ, ν)

tm

m!

)( ∞∑
n=0

Sn(x, y)
tn

n!

) ∞∑
j=0

zj
t2j

j!


∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!
=

∞∑
n=0

(
n∑

m=0

F
(α)
m (λ;µ, ν)Sn−m(x, y)

(n−m)!m!

)
tn

 ∞∑
j=0

zj
t2j

j!


Now, replacing n by n−2j and comparing the coefficient of tn, we get the result
(55).

Remark 3.4.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (3.4) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 3.4.1. The following implicit summation formula for the generalized

Apostol type Legendre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

SB
(α)
n (x, y, z;λ) =

n−2j∑
m=0

[n
2

]∑
j=0

B
(α)
m (λ)Sn−m−2j(x, y)zjn!

m!j!(n−m− 2j)!
(3.21)
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Remark 3.4.2. By taking µ = 1 and ν = 0 in Theorem (3.4), we immediately
deduce the following corollary.

Corollary 3.4.2. The following implicit summation formula for the generalized

Apostol type Legendre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

SE
(α)
n (x, y, z;λ) =

n−2j∑
m=0

[n
2

]∑
j=0

E
(α)
m (λ)Sn−m−2j(x, y)zjn!

m!j!(n−m− 2j)!
(3.22)

Remark 3.4.3. By taking µ = 1 and ν = 1 in Theorem (3.4), we immediately
deduce the following corollary.

Corollary 3.4.3. The following implicit summation formula for the generalized

Apostol type Legendre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

SG
(α)
n (x, y, z;λ) =

n−2j∑
m=0

[n
2

]∑
j=0

G
(α)
m (λ)Sn−m−2j(x, y)zjn!

m!j!(n−m− 2j)!
(3.23)

Theorem 3.5. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following implicit summation formula for the generalized Apostol type Legendre-

Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) holds true:

SF
(α)
n (x, y + 1, z;λ;µ, ν) =

n∑
m=0

(
n
m

)
SF

(α)
n−m(x, y, z;λ;µ, ν) (3.24)

Proof. By the definition of Apostol type Legendre-Based polynomials, we have

∞∑
n=0

SF
(α)
n (x, y + 1, z;λ;µ, ν)

tn

n!
−
∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!

=

(
2µtν

λet + 1

)α
(et − 1)eyt+zt

2
C0(−xt2)

=

∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!

( ∞∑
m=0

tm

m!
− 1

)

=
∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!

∞∑
m=0

tm

m!
−
∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!

=
∞∑
n=0

n∑
m=0

SF
(α)
n−m(x, y, z;λµ, ν)

tn

m!(n−m)!
−
∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!
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Finally equating the coefficient of the like powers of tn, we get the result (59).

Remark 3.5.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (3.5) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 3.5.1. The following implicit summation formula for the generalized

Apostol type Legendre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

SB
(α)
n (x, y + 1, z;λ) =

n∑
m=0

(
n
m

)
SB

(α)
n−m(x, y, z;λ) (3.25)

Remark 3.5.2. By taking µ = 1 and ν = 0 in Theorem (3.5), we immediately
deduce the following corollary.

Corollary 3.5.2. The following implicit summation formula for the generalized

Apostol type Legendre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

SE
(α)
n (x, y + 1, z;λ) =

n∑
m=0

(
n
m

)
SE

(α)
n−m(x, y, z;λ) (3.26)

Remark 3.5.3. By taking µ = 1 and ν = 1 in Theorem (3.5), we immediately
deduce the following corollary.

Corollary 3.5.3. The following implicit summation formula for the generalized

Apostol type Legendre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

SG
(α)
n (x, y + 1, z;λ) =

n∑
m=0

(
n
m

)
SG

(α)
n−m(x, y, z;λ) (3.27)

Theorem 3.6. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following implicit summation formula for the generalized Apostol type Legendre-

Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) holds true:

SF
(α)
n (x, y, z;λ, µ, ν) =

n∑
m=0

F
(α−1)
n−m (λ;µ, ν)SFm(x, y, z;λ;µ, ν) (3.28)
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Proof. By the definition of Apostol type Legendre-Based polynomials, we have

∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!
=

(
2µtν

λet + 1

)α
eyt+zt

2
C0(−xt2)

∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!
=

(
2µtν

λet + 1

)α−1( 2µtν

λet + 1

)
eyt+zt

2
C0(−xt2)

∞∑
n=0

SF
(α)
n (x, y, z;λ;µ, ν)

tn

n!
=( ∞∑

n=0

F (α−1)
n (λ;µ, ν)

tn

n!

)( ∞∑
m=0

SFm(x, y, z;λ;µ, ν)
tm

m!

)
Now replacing n by n −m then equating the coefficients of the like powers of
tn, we get the result (63).

Remark 3.6.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (3.6) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 3.6.1. The following implicit summation formula for the generalized

Apostol type Legendre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

SB
(α)
n (x, y, z;λ) =

n∑
m=0

B
(α−1)
n−m (λ)SBm(x, y, z;λ) (3.29)

Remark 3.6.2. By taking µ = 1 and ν = 0 in Theorem (3.6), we immediately
deduce the following corollary.

Corollary 3.6.2. The following implicit summation formula for the generalized

Apostol type Legendre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

SE
(α)
n (x, y, z;λ) =

n∑
m=0

E
(α−1)
n−m (λ)SEm(x, y, z;λ) (3.30)

Remark 3.6.3. By taking µ = 1 and ν = 1 in Theorem (3.6), we immediately
deduce the following corollary.

Corollary 3.6.3. The following implicit summation formula for the generalized

Apostol type Legendre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

SG
(α)
n (x, y, z;λ) =

n∑
m=0

G
(α−1)
n−m (λ)SGm(x, y, z;λ) (3.31)
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4 General Symmetry Identities for the Generalized
Apostol type Legendre-Based polynomials

In this section, we give general symmetry identities for the generalized Apostol

type Legendre-Based polynomials SF
(α)
n (x, y, z;λ;µ, ν) by applying the gener-

ating function (2.1). The result extends some known identities of Lu et al. [23],
Yang [31], Khan et al. [13]-[15], Pathan [25], Pathan and Khan [26], Yang et al.
[32] and Zhang et al. [33]. As it has been mentioned in previous sections, α will
be considered as an arbitrary real or a complex parameter.

Theorem 4.1. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following identity for the generalized Apostol type Legendre-Based polynomials

SF
(α)
n (x, y, z;λ;µ, ν) holds true:

n∑
m=0

(
n
m

)
bman−mSF

(α)
n−m(x, by, b2z;λ;µ, ν)SF

(α)
m (x, ay, a2z;λ;µ, ν)

=
n∑

m=0

(
n
m

)
ambn−mSF

(α)
n−m(x, ay, a2z;λ;µ, ν)SF

(α)
m (x, by, b2z;λ;µ, ν) (4.1)

Proof. Start with

g(t) =

(
((ab)ν22µt2ν)2

(λeat + 1)(λebt + 1)

)α
e(a+b)yt+(a2+b2)zt2 (C0(−xt2))2 (4.2)

and
C0(abxt) 6= C0(axt)C0(bxt)

Then the expression for g(t) is symmetric in a and b and we can expand g(t)
into series in two ways to obtain

g(t) =

∞∑
n=0

SF
(α)
n (x, by, b2z;λ;µ, ν)

(at)n

n!

∞∑
m=0

SF
(α)
m (x, ay, a2z;λ;µ, ν)

(bt)m

m!

=

∞∑
n=0

n∑
m=0

(
n
m

)
an−mbmSF

(α)
m (x, by, b2z;λ;µ, ν)SF

(α)
n−m(x, ay, a2z;λ;µ, ν)tn

On the similar lines we can show that

g(t) =
∞∑
n=0

SF
(α)
n (x, ay, a2z;λ;µ, ν)

(bt)n

n!

∞∑
m=0

SF
(α)
m (x, by, b2z;λ;µ, ν)

(at)m

m!
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=
∞∑
n=0

n∑
m=0

(
n
m

)
ambn−mSF

(α)
n−m(x, ay, a2z;λ;µ, ν)SF

(λ)
m (x, by, b2z;λ;µ, ν)tn

Comparing the coefficient of tn on the right hand sides of the last two equations
we arrive at the desired result.

Remark 4.1.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (4.1) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 4.1.1. The following identity for the generalized Apostol type Legen-

dre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

n∑
m=0

(
n
m

)
bman−mSB

(α)
n−m(x, by, b2z;λ)SB

(α)
m (x, ay, a2z;λ)

=
n∑

m=0

(
n
m

)
ambn−mSB

(α)
n−m(x, ay, a2z;λ)SB

(α)
m (x, by, b2z;λ) (4.3)

Remark 4.1.2. By taking µ = 1 and ν = 0 in Theorem (4.1), we immediately
deduce the following corollary.

Corollary 4.1.2. The following identity for the generalized Apostol type Legen-

dre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

n∑
m=0

(
n
m

)
bman−mSE

(α)
n−m(x, by, b2z;λ)SE

(α)
m (x, ay, a2z;λ)

=

n∑
m=0

(
n
m

)
ambn−mSE

(α)
n−m(x, ay, a2z;λ)SE

(α)
m (x, by, b2z;λ) (4.4)

Remark 4.1.3. By taking µ = 1 and ν = 1 in Theorem (4.1), we immediately
deduce the following corollary.

Corollary 4.1.3. The following identity for the generalized Apostol type Legen-

dre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

n∑
m=0

(
n
m

)
bman−mSG

(α)
n−m(x, by, b2z;λ)SG

(α)
m (x, ay, a2z;λ)
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=

n∑
m=0

(
n
m

)
ambn−mSG

(α)
n−m(x, ay, a2z;λ)SG

(α)
m (x, by, b2z;λ) (4.5)

Theorem 4.2. For any integral n ≥ 1, x, y, z ∈ R, λ ∈ C and α ∈ N . The
following identity for the generalized Apostol type Legendre-Based polynomials

SF
(α)
n (x, y, z;λ;µ, ν) holds true:

n∑
m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−λ)i+j

×SF
(α)
n−m

(
x, by +

b

a
i+ j, b2u;λ;µ, ν

)
SF

(α)
m (x, az, a2v;λ;µ, ν)

=
n∑

m=0

(
n
m

)
ambn−m

b−1∑
i=0

a−1∑
j=0

(−λ)i+j

×SF (α)
n−m

(
x, ay +

a

b
i+ j, a2u;λ;µ, ν

)
SF

(α)
m (x, bz, b2v;λ;µ, ν) (4.6)

Proof. Let

g(t) =

(
((ab)ν22µt2ν)2)α(C0(−xt2))2(λ(−1)a+1eabt + 1)2eab(y+z)t+a2b2(u+v)t2

(λeat + 1)α+1(λebt + 1)α+1

)

g(t) =

(
2µ(at)νC0(−xt2)

λeat + 1

)α
eabyt+a

2b2ut2
(

1− λe−abt

λebt + 1

)
×
(

2µ(bt)νC0(−xt2)

λebt + 1

)α
eabzt+a

2b2vt2
(

1− λe−abt

λeat + 1

)

From where we have

=
∞∑
n=0

 n∑
m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−λ)i+j

× SF
(α)
n−m

(
x, by +

b

a
i+ j, b2uλ;µ, ν

)
SF

(α)
m (x, az, a2v;λ;µ, ν)

)
tn

n!

=

∞∑
n=0

 n∑
m=0

(
n
m

)
ambn−m

b−1∑
i=0

a−1∑
j=0

(−λ)i+j
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× SF
(α)
n−m

(
x, ay +

a

b
i+ j, a2u;λ;µ, ν

)
SF

(α)
m (x, bz, b2v;λ;µ, ν)

) tn
n!

Our assertion follows from comparing the coefficients of tn

n on the right hand
sides of the last two equations, we arrive at the desired result.

Remark 4.2.1. Replacing λ = −λ, µ = 0 and ν = 1 in Theorem (4.2) and
then multiplying (−1)α on both side of the result, we immediately deduce the
following corollary.

Corollary 4.2.1. The following identity for the generalized Apostol type Legen-

dre-Bernoulli polynomials SB
(α)
n (x, y, z;λ) holds true:

n∑
m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−λ)i+j

×SB(α)
n−m

(
x, by +

b

a
i+ j, b2u;λ

)
SB

(α)
m (x, az, a2v;λ)

=

n∑
m=0

(
n
m

)
ambn−m

b−1∑
i=0

a−1∑
j=0

(−λ)i+j

× SB
(α)
n−m

(
x, ay +

a

b
i+ j, a2u;λ

)
SB

(α)
m (x, bz, b2v;λ) (4.7)

Remark 4.2.2. By taking µ = 1 and ν = 0 in Theorem (4.2), we immediately
deduce the following corollary.

Corollary 4.2.2. The following identity for the generalized Apostol type Legen-

dre-Euler polynomials SE
(α)
n (x, y, z;λ) holds true:

n∑
m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−λ)i+j

× SE
(α)
n−m

(
x, by +

b

a
i+ j, b2u;λ

)
SE

(α)
m (x, az, a2v;λ)

=

n∑
m=0

(
n
m

)
ambn−m

b−1∑
i=0

a−1∑
j=0

(−λ)i+j

×SE
(α)
n−m

(
x, ay +

a

b
i+ j, a2u;λ

)
SE

(α)
m (x, bz, b2v;λ) (4.8)
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Remark 4.2.3. By taking µ = 1 and ν = 1 in Theorem (4.2), we immediately
deduce the following corollary.

Corollary 4.2.3. The following identity for the generalized Apostol type Legen-

dre-Genocchi polynomials SG
(α)
n (x, y, z;λ) holds true:

n∑
m=0

(
n
m

)
bman−m

a−1∑
i=0

b−1∑
j=0

(−λ)i+j

× SG
(α)
n−m

(
x, by +

b

a
i+ j, b2u;λ

)
SG

(α)
m (x, az, a2v;λ)

=

n∑
m=0

(
n
m

)
ambn−m

b−1∑
i=0

a−1∑
j=0

(−λ)i+j

×SG
(α)
n−m

(
x, ay +

a

b
i+ j, a2u;λ

)
SG

(α)
m (x, bz, b2v;λ) (4.9)

5 Conclusion and Suggestion

By applying the 2-variable Legendre polynomial Sn(x, y), which are defined
by means of a generating function (11), we have introduced and systemat-
ically investigated a family of the Legendre-based Apostol-type polynomials

SF
(α)
n (x, y, z;λ;µ, ν) defined by means of the generating function (30). In the

readily-accessible literature on the subject, there exits a more general class of
polynomials than the 2-variable Legendre polynomial Sn(x, y). These general
2-variable polynomials Rn(x, y) are popularly known as the 2-variable Legendre
polynomial and are defined by means of a generating function (12). Moreover,
it is good enough to say that to suitably extend the results asserted in this
paper holds true for the generalized Legendre-based Apostol-type polynomials

RF
(α)
n (x, y, z;λ;µ, ν). The corresponding extension of the result in this paper

based on RF
(α)
n (x, y, z;λ;µ, ν) are still an open problem derived by means of

the generating function (12).
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