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Abstract. We introduce three generalizations of homotopy equivalence in digital images,
to allow us to express whether a bounded and an unbounded digital image with standard
adjacencies are similar with respect to homotopy.

We show that these three generalizations are not equivalent to ordinary homotopy equiv-
alence, and give several examples. We show that, like homotopy equivalence, our three gen-
eralizations imply isomorphism of fundamental groups, and are preserved under wedges and
Cartesian products.

Keywords: digital topology, digital image, homotopy, fundamental group

MSC 2000 classification: Primary 55P10; Secondary 55Q05

1 Introduction

In digital topology, we study geometric and topological properties of digital
images via tools adapted from geometric and algebraic topology. Prominent
among these tools are digital versions of continuous functions and homotopy.
Digital homotopy can be thought of as the topology of animated digital images.

In Euclidean topology, finite and infinite spaces can have the same homotopy
type. E.g., the Euclidean line R and a point have the same homotopy type. The
analogous statement is not true in digital topology; e.g., the digital line Z with
the c1 adjacency and a single point do not have the same digital homotopy
type, despite sharing homotopy properties such as having trivial fundamental
groups. We introduce in this paper the notions of digital homotopy similarity,
same long homotopy type, and same real homotopy type, all of which are more
general than digital homotopy equivalence and whose pointed versions are less
general than having isomorphic fundamental groups. These notions allow the
possibility of considering a bounded and an unbounded digital image as similar
with respect to homotopy.
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2 Preliminaries

We say a connected digital image X has bounded diameter if there is a
positive integer n such that if x and y are members of X, then there is a path
in X from x to y of length at most n.

Much of the material in this section is quoted or paraphrased from other
papers in digital topology, such as [4].

2.1 General Properties

Let N be the set of natural numbers, N∗ = {0} ∪N, and let Z denote the
set of integers. Then Zn is the set of lattice points in Euclidean n−dimensional
space.

Adjacency relations commonly used for digital images include the following
[10]. Two points p and q in Z2 are 8 − adjacent if they are distinct and differ
by at most 1 in each coordinate; p and q in Z2 are 4 − adjacent if they are
8-adjacent and differ in exactly one coordinate. Two points p and q in Z3 are
26−adjacent if they are distinct and differ by at most 1 in each coordinate; they
are 18− adjacent if they are 26-adjacent and differ in at most two coordinates;
they are 6−adjacent if they are 18-adjacent and differ in exactly one coordinate.
For k ∈ {4, 8, 6, 18, 26}, a k − neighbor of a lattice point p is a point that is
k−adjacent to p.

The adjacencies discussed above are generalized as follows. Let u, n be pos-
itive integers, 1 ≤ u ≤ n. Distinct points p, q ∈ Zn are called cu-adjacent, or
cu-neighbors, if there are at most u distinct coordinates j for which |pj−qj | = 1,
and for all other coordinates j, pj = qj . The notation cu represents the number
of points q ∈ Zn that are adjacent to a given point p ∈ Zn in this sense. Thus
the values mentioned above: if n = 1 we have c1 = 2; if n = 2 we have c1 = 4
and c2 = 8; if n = 3 we have c1 = 6, c2 = 18, and c3 = 26. Yet more general
adjacency relations are discussed in [8].

Let κ be an adjacency relation defined on Zn. A digital image X ⊂ Zn is
κ − connected [8] if and only if for every pair of points {x, y} ⊂ X, x 6= y,
there exists a set {x0, x1, . . . , xc} ⊂ X such that x = x0, xc = y, and xj and
xj+1 are κ−neighbors, i ∈ {0, 1, . . . , c − 1}. A κ-component of X is a maximal
κ-connected subset of X.

Often, we must assume some adjacency relation for the white pixels in Zn,
i.e., the pixels of Zn \X (the pixels that belong to X are sometimes referred to
as black pixels). In this paper, we are not concerned with adjacencies between
white pixels.



Homotopy Relations for Digital Images 101

Definition 1. [1] Let a, b ∈ Z, a < b. A digital interval is a set of the form

[a, b]Z = {z ∈ Z | a ≤ z ≤ b}

in which 2−adjacency is assumed. �

Definition 2. ([2]; see also [11]) Let X ⊂ Zn0 , Y ⊂ Zn1 . Let f : X → Y
be a function. Let κj be an adjacency relation defined on Znj , i ∈ {0, 1}. We
say f is (κ0, κ1)−continuous if for every κ0−connected subset A of X, f(A) is
a κ1−connected subset of Y . �

See also [5, 6], where similar notions are referred to as immersions, gradually
varied operators, and gradually varied mappings.

We say a function satisfying Definition 2 is digitally continuous. This defi-
nition implies the following.

Proposition 1. ([2]; see also [11]) Let X and Y be digital images. Then the
function f : X → Y is (κ0, κ1)-continuous if and only if for every {x0, x1} ⊂ X
such that x0 and x1 are κ0−adjacent, either f(x0) = f(x1) or f(x0) and f(x1)
are κ1−adjacent. �

For example, if κ is an adjacency relation on a digital image Y , then f :

[a, b]Z → Y is (2, κ)−continuous if and only if for every {c, c + 1} ⊂ [a, b]Z,
either f(c) = f(c + 1) or f(c) and f(c + 1) are κ−adjacent. If some function
f : [0, k]Z → Y is (2, κ)−continuous, we say f is a κ-path from f(0) to f(k) of
length k.

We have the following.

Proposition 2. [2] Composition preserves digital continuity, i.e., if f : X →
Y and g : Y → Z are, respectively, (κ0, κ1)−continuous and (κ1, κ2)−continuous
functions, then the composite function g ◦ f : X → Z is (κ0, κ2)−continuous. �

Digital images (X,κ) and (Y, λ) are (κ, λ) − isomorphic (called (κ, λ) −
homeomorphic in [1, 3]) if there is a bijection h : X → Y that is (κ, λ)-
continuous, such that the function h−1 : Y → X is (λ, κ)-continuous.

2.2 Digital homotopy

A homotopy between continuous functions may be thought of as a continuous
deformation of one of the functions into the other over a finite time period.

Definition 3. ([2]; see also [9]) Let X and Y be digital images. Let f, g :

X → Y be (κ, κ′)-continuous functions. Suppose there is a positive integer m
and a function F : X × [0,m]Z → Y such that

• for all x ∈ X, F (x, 0) = f(x) and F (x,m) = g(x);
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• for all x ∈ X, the induced function Fx : [0,m]Z → Y defined by

Fx(t) = F (x, t) for all t ∈ [0,m]Z

is (2, κ′)−continuous. That is, Fx(t) is a path in Y .

• for all t ∈ [0,m]Z, the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X

is (κ, κ′)−continuous.

Then F is a digital (κ, κ′)−homotopy between f and g, and f and g are digitally
(κ, κ′)−homotopic in Y . If for some x ∈ X we have F (x, t) = F (x, 0) for all
t ∈ [0,m]Z, we say F holds x fixed, and F is a pointed homotopy. �

We indicate a pair of homotopic functions as described above by f 'κ,κ′ g.
When the adjacency relations κ and κ′ are understood in context, we say f and
g are digitally homotopic to abbreviate “digitally (κ, κ′)−homotopic in Y ,” and
write f ' g.

Proposition 3. [9, 2] Digital homotopy is an equivalence relation among
digitally continuous functions f : X → Y . �

Definition 4. [3] Let f : X → Y be a (κ, κ′)-continuous function and let
g : Y → X be a (κ′, κ)-continuous function such that

f ◦ g 'κ′,κ′ 1X and g ◦ f 'κ,κ 1Y .

Then we say X and Y have the same (κ, κ′)-homotopy type and that X and
Y are (κ, κ′)-homotopy equivalent, denoted X 'κ,κ′ Y or as X ' Y when κ
and κ′ are understood. If for some x0 ∈ X and y0 ∈ Y we have f(x0) = y0,
g(y0) = x0, and there exists a homotopy between f ◦ g and 1X that holds
x0 fixed, and a homotopy between g ◦ f and 1Y that holds y0 fixed, we say
(X,x0, κ) and (Y, y0, κ

′) are pointed homotopy equivalent and that (X,x0) and
(Y, y0) have the same pointed homotopy type, denoted (X,x0) 'κ,κ′ (Y, y0) or
as (X,x0) ' (Y, y0) when κ and κ′ are understood. �

It is easily seen, from Proposition 3, that having the same homotopy type
(respectively, the same pointed homotopy type) is an equivalence relation among
digital images (respectively, among pointed digital images).

For p ∈ Y , we denote by p the constant function p : X → Y defined by
p(x) = p for all x ∈ X.

Definition 5. A digital image (X,κ) is κ-contractible [9, 1] if its identity
map is (κ, κ)-homotopic to a constant function p for some p ∈ X. If the homo-
topy of the contraction holds p fixed, we say (X, p, κ) is pointed κ-contractible.
�
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When κ is understood, we speak of contractibility for short. It is easily seen
that X is contractible if and only if X has the homotopy type of a one-point
digital image.

2.3 Fundamental group

Inspired by the fundamental group of a topological space, several researchers [12,
10, 2, 4] have developed versions of a fundamental group for digital images.
These are not all equivalent; however, it is shown in [4] that the version of the
fundamental group developed in that paper is equivalent to the version in [2].

In the following, we present the version of the digital fundamental group
developed in [4].

Given a digital image X, a continuous function f : N∗ → X is an eventually
constant path or EC path if there is some point c ∈ X and some N ≥ 0 such
that f(x) = c whenever x ≥ N . We abbreviate the latter by f(∞) = c. The
endpoints of an EC path f are the two points f(0) and f(∞). If f is an EC
path and f(0) = f(∞), we say f is an EC loop, and f(0) is called the basepoint
of this loop.

We say that a homotopy H : [0, k]Z ×N∗ → X between EC paths is an EC
homotopy when the function Hs : N∗ → X defined by Hs(t) = H(s, t) is an
EC path for all s ∈ [0, k]Z. To indicate an EC homotopy, we write f 'EC g, or
f 'ECκ g if it is desirable to state the adjacency κ of X. We say an EC homotopy
H holds the endpoints fixed when Ht(0) = f(0) = g(0) and there is a c ∈ N such
that n ≥ c implies Ht(n) = f(n) = g(n) for all t.

Given an EC loop f : N∗ → X, we let

Nf = min{m ∈ N∗ |n ≥ m implies f(n) = f(m)}.

For x0 ∈ X, suppose f0, f1 : N∗ → X are x0-based EC loops. Define an
x0-based EC loop f0 ∗ f1 : N∗ → X via

f0 ∗ f1(n) =

{
f0(n) if 0 ≤ n ≤ Nf0 ;
f1(n−Nf0) if Nf0 ≤ n.

Given an x0-based EC loop f : N∗ → X, we denote by [f ]X , or [f ] when
X is understood, the equivalence class of EC loops that are homotopic to f in
X holding the endpoints fixed. We let Πκ

1(X,x0) be the set of all such sets [f ].
The ∗ operation enables us to define an operation on Πκ

1(X,x0) via

[f ] · [g] = [f ∗ g].

This operation is well defined, and makes Πκ
1(X,x0) into a group in which the

identity element is the class [x0] of the constant loop x0 and in which inverse
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elements are given by [f ]−1 = [f−1], where f−1 : N∗ → X is the EC loop defined
by

f−1(n) =

{
f(Nf − n) if 0 ≤ n ≤ Nf ;
x0 if n ≥ Nf .

3 Homotopically similar images

In Euclidean topology, it is often possible to say that a bounded space X
and an unbounded space Y have the same homotopy type. For example, a
single point and n-dimensional Euclidean space Rn have the same homotopy
type, roughly since the points of Rn can be moved continuously within Rn over
a finite time interval to a single point. However, Definition 3 does not permit a
digital image with unbounded diameter to have the homotopy type of an image
with bounded diameter, since the second factor of the domain of a homotopy
is a finite interval [0,m]Z. In this paper, we seek to circumvent this limitation.
One of the ways we do so depends on the following.

Definition 6. Let X and Y be digital images. We say (X,κ) and (Y, λ) are
homotopically similar, denoted X 'sκ,λ Y , if there exist subsets {Xj}∞j=1 of X
and {Yj}∞j=1 of Y such that:

• X =
⋃∞
j=1Xj , Y =

⋃∞
j=1 Yj , and, for all j, Xj ⊂ Xj+1, Yj ⊂ Yj+1.

• There are continuous functions fj : Xj → Yj , gj : Yj → Xj such that
gj ◦ fj 'κ,κ 1Xj and fj ◦ gj 'λ,λ 1Yj .

• For v ≤ w, fw|Xv 'κ,λ fv in Yv and gw|Yv 'λ,κ gv in Xv.

If all of these homotopies are pointed with respect to some x1 ∈ X1 and
y1 ∈ Y1, we say (X,x1) and (Y, y1) are pointed homotopically similar, denoted
(X,x1) 'sκ,λ (Y, y1) or (X,x1) 's (Y, y1) when κ and λ are understood. �

Proposition 4. If X 'κ,λ Y , then X 'sκ,λ Y . If (X,x1) 'κ,λ (Y, y1), then
(X,x1) 'sκ,λ (Y, y1).

Proof. Let f : X → Y and g : Y → X realize a homotopy equivalence between
(X,κ) and (Y, λ), or a pointed homotopy equivalence between (X,κ, x1) and
(Y, λ, y1). Then corresponding to Definition 6, we can take, for all j, Xj = X,
Yj = Y , fj = f , gj = g. QED

Although Definition 6 does not require it, we often choose the Xj and Yj to
be finite sets. Example 1 has an image with bounded diameter and an image
with unbounded diameter that are not homotopy equivalent but are pointed
homotopically similar.
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Theorem 1. Let X and Y be finite digital images. Then X 'κ,λ Y if and
only if X 'sκ,λ Y , and (X,x0) 'κ,λ (Y, y0) if and only if (X,x0) 'sκ,λ (Y, y0).

Proof. That X 'κ,λ Y implies X 'sκ,λ Y is shown in Proposition 4. To show the
converse: if X 'sκ,λ Y , let {Xj , Yj , fj , gj}∞j=1 be as in Definition 6. Since X and
Y are finite, there exists a positive integer m such that i ≥ m implies X = Xi

and Y = Yi. Then fm : X = Xm → Ym = Y and gm : Y = Ym → Xm = X
satisfy

gm ◦ fm 'κ,κ 1X , fm ◦ gm 'λ,λ 1Y .

Thus, X 'κ,λ Y .

A similar argument yields the pointed assertion. QED

In Example 3, we show that two digital images with unbounded diameters
can be homotopically similar but not homotopy equivalent.

Theorem 2. Homotopic similarity and pointed homotopic similarity are
reflexive and symmetric relations among digital images.

Proof. The assertion follows easily from Definition 6. QED

Remark 1. At the current writing, we do not have an answer for the fol-
lowing: Is the homotopy similarity (unpointed or pointed) of digital images a
transitive relation?

This appears to be a difficult problem. We need a positive resolution to
this question if we are to conclude that homotopic similarity is an equivalence
relation. Notice that if A 's B via subsets {Ai}∞i=1 of A and {Bi}∞i=1 of B, and
B 's C via subsets {B′i}∞i=1 of B and {Ci}∞i=1 of C, we would have A 's C if
Bi = B′i for infinitely many i, but one can easily construct examples for which
the latter is not satisfied.

We show transitivity for the following special case.

Theorem 3. Let B be finite. Let A 's B 's C. Then A 's C. If (A, a0) 's
(B, b0) 's (C, c0), then (A, a0) 's (C, c0).

Proof. We sketch a proof for the unpointed assertion. A similar argument yields
the pointed assertion.

Let A 's B via A =
⋃∞
i=1Ai, B =

⋃∞
i=1Bi, as in Definition 6. Let B 's C

via B =
⋃∞
i=1B

′
i, C =

⋃∞
i=1Ci, as in Definition 6. Since B is finite, there

exists i0 such that i ≥ i0 implies Bi = B = B′i. Since homotopy of continuous
functions and homotopy type of digital images are transitive relations, it follows
easily from Definition 6 that A 's C. QED
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4 Long homotopy type

In this section, we introduce long homotopy type. We obtain for this no-
tion several properties analogous to those discussed in Section 3 for homotopic
similarity.

The following definition is a step in the direction of the idea that a long ho-
motopy is a homotopy over an infinite time interval. The following is essentially
an EC version of Definition 3.

Definition 7. Let (X,κ) and (Y, λ) be digital images. Let f, g : X → Y be
continuous. Let F : X ×N∗ → Y be a function such that

• for all x ∈ X, F (x, 0) = f(x) and there exists n ∈ N∗ such that t ≥ n
implies F (x, t) = g(x).

• For all x ∈ X, the induced function Fx : N∗ → Y defined by

Fx(t) = F (x, t) for all t ∈ [0,∞]Z

is an EC-path in Y .

• For all t ∈ N∗, the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X

is (κ, λ)–continuous.

Then F is an l-homotopy from f to g. If for some x0 ∈ X and y0 ∈ Y we
have F (x0, t) = y0 for all t ∈ N∗, we say F is a pointed l-homotopy. We write
f 'lκ,λ g, or f 'l g when the adjacencies κ and λ are understood, to indicate
that f and g are l-homotopic functions. �

Note that the definition above generalizes EC homotopy of paths: if two EC
paths f, g : [0,∞]Z → Y are EC homotopic, then the EC homotopy from f to
g is an l-homotopy of f to g.

Proposition 5. Let f, g : X → Y be (unpointed or pointed) continuous
functions between digital images. If f and g are (unpointed or pointed) homo-
topic in Y , then f and g are (unpointed or pointed, respectively) l-homotopic in
Y . The converse is true if X is finite.

Proof. We give a proof for the unpointed assertions. The pointed assertions are
proven similarly.

If f ' g, there is a homotopy h : X × [0,m]Z → Y such that h(x, 0) = f(x)
and h(x,m) = g(x). Then the function H : X × [0,∞]Z → Y defined by
H(x, t) = h(x,min{m, t}) is an l-homotopy from f to g.
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Suppose X is finite and f 'l g. Then there is an l-homotopy H : X ×
[0,∞]Z → Y such that H(x, 0) = f(x) and, for all x ∈ X, there exists

tx = min{t ∈ N∗ | s ≥ t implies H(x, s) = H(x, t)}.

Let m = max{tx |x ∈ X}. Then the function h : X × [0,m]Z → Y defined by
h(x, t) = H(x, t) is a homotopy from f to g. QED

Remark 2. At the current writing, we have not found answers to the fol-
lowing.

(Unpointed and pointed versions:) Is l-homotopy a symmetric relation among
continuous functions between digital images?

Remark 3. (Unpointed and pointed versions:) Is l-homotopy a transitive
relation among continuous functions between digital images?

Positive answers to the questions of Remarks 2 and 3 are necessary for
(unpointed or pointed) l-homotopy to be an equivalence relation. In the absence
of such results, we proceed with the following definition.

Definition 8. Let (X,κ) and (Y, λ) be digital images. Let f, g : X → Y be
continuous. Let F : X × Z→ Y be a function such that

• for all x ∈ X, there exists NF,x ∈ N such that t ≤ −NF,x implies F (x, t) =
f(x) and t ≥ NF,x implies F (x, t) = g(x).

• For all x ∈ X, the induced function Fx : Z→ Y defined by

Fx(t) = F (x, t) for all t ∈ Z

is (c1, λ)-continuous.

• For all t ∈ Z, the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X

is (κ, λ)–continuous.

Then F is a long homotopy from f to g. If for some x0 ∈ X and y0 ∈ Y we have
F (x0, t) = y0 for all t ∈ N∗, we say F is a pointed long homotopy. We write
f 'Lκ,λ g, or f 'L g when the adjacencies κ and λ are understood, to indicate
that f and g are long homotopic functions. �

It is easy to show that the existence of an l-homotopy implies a long homo-
topy:

Proposition 6. Let f, g : (X,κ) → (Y, λ) be continuous functions between
digital images. If f 'l g then f 'L g. If the l-homotopy between f and g is
pointed, then the long homotopy between f and g is pointed.
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Proof. Clearly, if F : X ×N∗ → Y is a (pointed) l-homotopy from f to g, then
the function F ′ : X × Z→ Y defined by

F ′(x, t) =

{
F (x, t) if t ≥ 0;
F (x, 0) if t < 0,

is a (pointed) long homotopy from f to g. QED

The same argument used in Proposition 5 proves the corresponding assertion
for long homotopy:

Proposition 7. Let f, g : X → Y be (unpointed or pointed) continuous
functions between digital images. If f and g are (unpointed or pointed) homo-
topic in Y , then f and g are (unpointed or pointed, respectively) long homotopic
in Y . The converse is true if X is finite. �

Unlike with l-homotopy, it is easy to see that long homotopy is symmetric.

Theorem 4. Long homotopy and pointed long homotopy are reflexive and
symmetric relations.

Proof. We state a proof for the unpointed assertion. The same argument works
for the pointed assertion.

For the reflexive property, we note the following. Given a continuous function
f : (X,κ) → (Y, λ), it is clear that the function F : X × Z → Y given by
F (x, t) = f(x) is a long homotopy from f to f .

For the symmetric property, we note that if F : X × Z → Y is a long
homotopy from f to g, where f, g : (X,κ) → (Y, λ) are continuous, then F ′ :

X × Z → Y , defined by F ′(x, t) = F (x,−t), is a long homotopy from g to
f . QED

Remark 4. At the current writing, we lack answers to the following: Is
long homotopy (pointed or unpointed) between continuous functions a transitive
relationship?

These seem to be difficult problems. If X is finite and f, g, h : X → Y with
f 'L g 'L h, then f 'L h since it follows from Proposition 7 that in this case,
long homotopy coincides with homotopy, which is transitive. To demonstrate
the difficulty involved in the general case, we will prove transitivity for another
special case.

It is easy to see that if c, d : X → Y are two different constant maps whose
constant values c = c(x) and d = d(x) are in the same component of X, then c
and d are homotopic, and thus long homotopic. Thus the following theorem is
a very special case of transitivity, but the proof is already somewhat involved.
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Say that a digital image X is locally finite when each point x ∈ X is adjacent
to only finitely many other points of X. E.g., if X is finite, or if X has a cu-
adjacency, then X is locally finite.

Theorem 5. Let X be locally finite, and let f : X → Y be a continuous
function, and let c, d : X → Y be two constant functions with constant values c
and d in the same component of Y . If f 'L c, then f 'L d.

Proof. Let σ : [0, k]Z → Y be a path from c to d. Our proof is by induction on
k. If k = 0, then c = d and there is nothing to prove. Letting c′ = σ(k − 1), for
our induction case we may assume that f 'L c′, and we will show that f 'L d.
(Note that c′ and d are adjacent.)

Let H : X × Z → Y be a long homotopy of f to c′. Then for each x ∈ X,
there is a number Nx such that, whenever t ≥ Nx, we have H(x, t) = c′. Since
X is locally finite, there is a number N ′x ≥ Nx such that, whenever t ≥ N ′x, we
have H(x′, t) = c′ for every x′ adjacent to x.

Then we define G : X × Z→ Y as:

G(x, t) =

{
H(x, t) if t ≤ N ′x;

d if t > N ′x.

We claim that G is a long homotopy of f to d. It is clear that for all x ∈ X
there exists nx ∈ N such that t ≤ −nx implies G(x, t) = H(x, t) = f(x) and
t ≥ nx implies G(x, t) = d. Furthermore, the induced function Gx(t) is given
by:

Gx(t) =

{
Hx(t) if t ≤ N ′x;

d if t > N ′x.
,

which is continuous since H(x,N ′x) = c′ is adjacent to d.
Lastly we show that the induced function Gt(x) is continuous: take any point

y adjacent to x, and we will show that Gt(x) is adjacent or equal to Gt(y).

• When t ≤ N ′x, we have Gt(x) = Ht(x), which is adjacent or equal to Ht(y)
because H is a homotopy.

– If Ht(y) = Gt(y), we have the desired conclusion that Gt(x) is adja-
cent or equal to Gt(y).

– Otherwise, Gt(y) = d 6= Ht(y), so t > N ′y, which implies H(x, t) = c′.
Thus, Gt(x) ∈ {c′, d}, so Gt(x) is adjacent or equal to Gt(y).

• If t > N ′x then Gt(x) = d. For Gt(y) there are two cases. If t ≥ N ′y then
Gt(y) = d = Gt(x). If t < N ′y we still must have t ≥ Ny since t > N ′x
and y is adjacent to x. Thus in this case Gt(y) = Ht(y) = c′, and thus
Gt(x) = d and Gt(y) = c′ are adjacent as desired.
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QED

Definition 9. Let f : (X,κ)→ (Y, λ) and g : (Y, λ)→ (X,κ) be continuous
functions. Suppose g ◦ f 'L 1X and f ◦ g 'L 1Y . Then we say (X,κ) and (Y, λ)
have the same long homotopy type, denoted X 'Lκ,λ Y or simply X 'L Y . If
there exist x0 ∈ X and y0 ∈ Y such that f(x0) = y0, g(y0) = x0, the long
homotopy g ◦ f 'L 1X holds x0 fixed, and the long homotopy f ◦ g 'L 1Y holds
y0 fixed, then (X,x0, κ) and (Y, y0, λ) have the same pointed long homotopy
type, denoted (X,x0) 'Lκ,λ (Y, y0) or (X,x0) 'L (Y, y0). �

Proposition 8. If X 'κ,λ Y , then X 'Lκ,λ Y . If (X,x0) 'κ,λ (Y, y0), then

(X,x0) 'Lκ,λ (Y, y0). The converses of both statements hold when X and Y are
both finite.

Proof: The assertions follow from Definition 9 and Proposition 7. �

Theorem 6. Long homotopy type, and pointed long homotopy type, are
reflexive and symmetric relations among digital images.

Proof. The assertions follow easily from Definition 9. QED

Remark 5. At the current writing, we lack answers to the following: Is
long homotopy type (unpointed or pointed) a transitive relation among digital
images?

These appear to be difficult problems. A positive resolution is necessary in
order for us to conclude that long homotopy type is an equivalence relation.
Since homotopy equivalence is an equivalence relation, Proposition 8 implies
(for both the pointed and unpointed questions) that if there exists an example
of non-transitivity for long homotopy type, i.e., images A,B,C such that A 'L
B 'L C with A and C not long homotopically equivalent, then at least one of
A,B,C must be infinite.

In the next result, we prove transitivity for a special case. The following
resembles Theorem 3 for homotopic similarity, but requires that the intermediate
image be a single point. It does not seem easy to generalize to finite sets as in
Theorem 3.

Theorem 7. Let X 'L {a} 'L Y . Then X 'L Y . If (X,x0) 'L ({a}, a) 'L
(Y, y0), then (X,x0) 'L (Y, y0).

Proof. We state a proof for the pointed assertion; the unpointed assertion is
handled similarly.

By hypothesis, there are pointed functions f : (X,x0) → ({a}, a) and g :

({a}, a) → (X,x0) and a pointed long homotopy H : X × Z → X from 1X to
g ◦ f = x0. Similarly, there are pointed functions h : (Y, y0) → ({a}, a) and
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k : ({a}, a)→ (Y, y0) and a pointed long homotopy K : Y × Z→ Y from 1Y to
k ◦ h = y0.

Let y0
′ be the constant function from X to Y . Let x0

′ be the constant
function from Y to X. Then H is a pointed long homotopy from 1X to x0 =
x0
′ ◦ y0

′, and K is a pointed long homotopy from 1Y to y0 = y0
′ ◦ x0

′. The
assertion follows. QED

A digital image with bounded diameter and an image with infinite diameter
cannot have the same homotopy type, but Example 1 shows that such a pair
of images can have the same long homotopy type. Example 3 gives two digital
images with unbounded diameters that have the same long homotopy type but
not the same homotopy type.

5 Real homotopy type

In this section we present another generalization of digital homotopy that
we call real homotopy. As in the case of long homotopy, we will allow the time
interval to be infinite, this time using the real interval [0, 1]. Though nondiscrete
sets are not typically used in digital topology, we will see as in the other sections
that real homotopy and digital homotopy are equivalent when the images under
consideration are finite. The advantage in using the real interval rather than
the integer interval [0,∞) is that two copies of [0, 1] can be concatenated in a
natural way, which allows us to prove that real homotopy is transitive.

It also turns out that long homotopy can tell us a lot about real homotopy.

We begin with a preliminary definition that is a kind of continuity property
for a function from a real interval into a digital image. Informally we want to
require that such a function be locally constant with jump discontinuities only
between adjacent points.

Definition 10. Let (X,κ) be a digital image, and [0, 1] ⊂ R be the unit
interval. A function f : [0, 1]→ X is a real [digital] [κ-]path in X if:

• there exists ε0 > 0 such that f is constant on (0, ε0) with constant value
equal or κ-adjacent to f(0),

• there exists ε1 > 0 such that f is constant on (1 − ε1, 1) with constant
value equal or κ-adjacent to f(1),

• for each t ∈ (0, 1) there exists εt > 0 such that f is constant on each of
the intervals (t − εt, t) and (t, t + εt), and these two constant values are
equal or κ-adjacent, with at least one of them equal to f(t).
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If t = 0 and f(0) 6= f((0, ε0)), or 0 < t < 1 and the two constant values
f((t− εt, t)) and f((t, t+ εt)) are not equal, or t = 1 and f(1) 6= f((1− ε1, 1)),
we say t is a jump of f . �

In fact such a real path can only have finitely many jumps, as the following
Proposition shows.

Proposition 9. Let p, q ∈ (X,κ). Let f : [a, b] → X be a real κ-path from
p to q. Then the number of jumps of f is finite.

Proof. Suppose f has an infinite set of jumps in the domain [a, b]. By the
Bolzano-Weierstrass Theorem this set of jumps has an accumulation point.
Thus there exists t0 ∈ [a, b] and a sequence of distinct jumps {tj}∞j=1 such that
limj→∞ tj = t0. Then for every ε > 0, at least one of the intervals (t0−ε, t0) and
(t0, t0 + ε) has infinitely many members of {tj}∞j=1, contrary to the requirement
of Definition 10 that there be ε > 0 such that f is constant on each of the
intervals (t0 − ε, t0) and (t0, t0 + ε). QED

Now we can define real digital homotopy of functions. The following is a
“real” version of Definitions 3 and 7.

Definition 11. Let (X,κ) and (Y, κ′) be digital images, and let f, g : X →
Y be (κ, κ′) continuous. Then a real [digital] homotopy of f and g is a function
F : X × [0, 1]→ Y such that:

• for all x ∈ X, F (x, 0) = f(x) and F (x, 1) = g(x)

• for all x ∈ X, the induced function Fx : [0, 1]→ Y defined by

Fx(t) = F (x, t) for all t ∈ [0, 1]

is a real κ-path in X.

• for all t ∈ [0, 1], the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X

is (κ, κ′)–continuous.

If such a function exists we say f and g are real homotopic and write f 'R g.
If there are points x0 ∈ X and y0 ∈ Y such that F (x0, t) = y0 for all t ∈ [0, 1],
we say f and g are pointed real homotopic. �

Unlike long homotopy, real homotopy is easily shown to be an equivalence
relation.

Theorem 8. Real homotopy and pointed real homotopy are equivalence re-
lations among continuous functions between digital images.
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Proof. We give the proof for the unpointed assertion. A similar argument can
be used to establish the pointed assertion.

Reflexivity is clear: for any digitally continuous function f : X → Y , the
function F (x, t) = f(x) is a real homotopy from f to f .

For symmetry, let f, g : X → Y be digitally continuous with f 'R g, and let
F : X×[0, 1]→ Y be a real homotopy from f to g. Then defineG : X×[0, 1]→ Y
by G(x, t) = F (x, 1 − t). It is easy to verify that G is a real homotopy from g
to f , and so g 'R f .

For transitivity, let f, g, h : X → Y with f 'R g and g 'R h. Let F,G :

X × [0, 1] → Y be real homotopies from f to g and g to h, respectively. Then
define H : X × [0, 1]→ Y by

H(x, t) =

{
F (x, 2t) if t ≤ 1/2,

G(x, 2t− 1) if t ≥ 1/2.

Again it is routine to check that H is a real homotopy from f to h, and so
f 'R h as desired. QED

Next we show that long homotopy of functions implies real homotopy.

Theorem 9. Let X and Y be digital images, and let f, g : X → Y be
continuous. If f 'L g then f 'R g. If f and g are pointed long homotopic, then
they are pointed real homotopic.

Proof. Let h : (0, 1) → R be a homeomorphism with limx→0 h(x) = −∞ and
limx→1 h(x) = ∞. For example h can be taken to be a rescaled version of the
tangent function. Let H : X × Z → Y be a long homotopy from f to g, and
define F : X × [0, 1]→ Y by:

F (x, t) =


f(x) if t = 0,

H(x, bh(t)c) if t ∈ (0, 1),

g(x) if t = 1.

We claim that F is a real homotopy from f to g. We have defined F so that
F (x, 0) = f(x) and F (x, 1) = g(x) for all x. Observe also that each induced
function Ft(x) is continuous - for t ∈ {0, 1} this is true because f and g are
continuous, and for other t because Hs is continuous for any s ∈ Z.

It remains to show that the induced function Fx : [0, 1] → Y is a real path
for every x. Note that the value of Hx(t) = H(x, bh(t)c) changes only when h(t)
is an integer. When h(t) is an integer, the value of Hx can only change from one
point of Y to an adjacent point. Thus for any t ∈ (0, 1), there is some εt such
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that Hx is constant on (t − εt, t) and (t, t + εt), and these constant values are
adjacent, and one of them equals Fx(t).

It remains to show the existence of ε0 and ε1 as in Definition 11. Because
H is a long homotopy, there is a natural number Nx such that H(x, t) = g(x)
whenever t > Nx and H(x, t) = f(x) whenever t < −Nx. Then choose ε0 with
0 < ε0 < h−1(−Nx), and then Fx will be constant on [0, ε0) as required. Choose
ε1 such that h−1(Nx) < ε1 < 1, and Fx will be constant on (1−ε1, 1], as required.
Thus Fx is a real path and so F is a real homotopy. QED

Next we show that real homotopy is weaker than digital homotopy, and that
the two notions are equivalent when the domain is finite. This result is analogous
to Proposition 7 for long homotopy.

Theorem 10. Let (X,κ) and (Y, κ′) be digital images, and let f, g : X → Y
be (κ, κ′)–continuous. Then f ' g implies f 'R g, and the converse is true
when X is finite. If f and g are pointed homotopic, then they are pointed real
homotopic, and the converse is true when X is finite.

Proof. We give the proof for the unpointed assertion. A similar argument can
be used to establish the pointed assertion.

First we assume that f ' g. This implies, by Proposition 5, that f 'L g.
Hence by Theorem 9, f 'R g.

Now for the converse we assume that f 'R g and X is finite, and show
that f ' g. Let F be a real homotopy from f to g. Since X is finite and each
real path Fx(t) has finitely many jumps, there are only finitely many values of
t ∈ [0, 1] which can be jumps for any of the paths Fx(t). Let j0 < · · · < jk be
these jump points, and choose t1, . . . , tk−1 so that ji < ti < ji+1 for each i. Also
let t0 = 0 and tk+1 = 1. Since jumps in real paths only move to adjacent points,
Fx(ti) is adjacent or equal to Fx(ti+1) for each i.

Now define G : X × [0, k+ 1]Z → Y by G(x, i) = F (x, ti). We will show that
G is a homotopy from f to g. We have G(x, 0) = F (x, t0) = F (x, 0) = f(x) and
G(x, k + 1) = F (x, tk+1) = F (x, 1) = g(x). Since Fti(x) is (κ, κ′)–continuous
for each ti ∈ [0, 1], we have Gi(x) (κ, κ′)-continuous for each i ∈ [0, k + 1]Z as
required.

It remains to show that the induced function Gx : [0, k+ 1]Z → Y is (2, κ′)–
continuous for each x ∈ X. Equivalently, we must show that Gx(i) is κ′–adjacent
or equal to Gx(i+ 1) for each i. But we have already stated that Fx(ti) = Gx(i)
is adjacent or equal to Fx(ti+1) = Gx(i+ 1) for each i, as desired. QED

In the case when X is finite, the converse above shows that a real homotopy
implies an ordinary (finite) homotopy, which by Proposition 7 implies a long
homotopy. Combining all these results gives:
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Corollary 1. Let X be a finite digital image, Y be any digital image, and
f, g : X → Y be continuous. Then the following three statements are equivalent:
f ' g, f 'L g, and f 'R g. Similar equivalences hold for pointed relations. �

Remark 6. The following simple question seems hard to answer: Is Corol-
lary 1 true without the finiteness assumption?

With our real homotopy relation we can make the obvious definition for real
homotopy type of digital images.

Definition 12. We say digital images (X,κ) and (Y, κ′) have the same real
homotopy type, denoted X 'R

κ,κ′ Y or X 'R Y when κ and κ′ are understood, if

there are continuous functions f : X → Y and g : Y → X such that g◦f 'R 1X
and f ◦ g 'R 1Y . If there exist x0 ∈ X and y0 ∈ Y such that f(x0) = y0,
g(y0) = x0, and the real homotopies implicit above are pointed with respect to
x0 and y0, we say X and Y have the same pointed real homotopy type, denoted
(X,x0) 'R

κ,κ′ (Y, y0) or (X,x0) 'R (Y, y0). �

Having the same real homotopy type is also easily seen to be an equivalence
relation.

Theorem 11. Having the same real homotopy type or pointed real homotopy
type is an equivalence relation among digital images.

Proof. We prove the unpointed assertion. Simple modifications to the argument
give the pointed assertion.

For the reflexive property it is easy to see that an identity map 1X shows that
X 'R X. The symmetric property follows from the symmetry in Definition 12.
It remains to prove transitivity.

Suppose X 'R Y 'R W . Then there are continuous functions f : X → Y ,
f ′ : Y → X, g : Y →W , and g′ : W → Y , and real homotopies F : X × [0, 1]→
X from f ′ ◦ f to 1X , F ′ : Y × [0, 1]→ Y from f ◦ f ′ to 1Y , G : Y × [0, 1]→ Y
from g′ ◦ g to 1Y , and G′ : W × [0, 1]→W from g ◦ g′ to 1W . We will show that
X 'R W using the functions g ◦ f : X →W and f ′ ◦ g′ : W → X.

Consider the functionH : X×[0, 1]→ X defined byH(x, t) = f ′(G(f(x), t)).
We will show that H is a real homotopy from f ′ ◦g′ ◦g◦f to f ′ ◦f . First observe
that

H(x, 0) = f ′(G(f(x), 0)) = f ′(g′(g(f(x)))) = f ′ ◦ g′ ◦ g ◦ f(x)

and

H(x, 1) = f ′(G(f(x), 1)) = f ′(f(x)) = f ′ ◦ f(x).

Also observe that Ht = f ′ ◦Gt ◦f , and thus Ht is continuous by Theorem 2. For
Hx, we have Hx = f ′ ◦Gf(x). Since Gf(x) is a real path and f ′ is continuous, it
is easy to see that Hx is a real path.
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Thus we have shown that f ′ ◦ g′ ◦ g ◦ f 'R f ′ ◦ f . By our assumption we
have f ′ ◦ f 'R 1X , and thus by transitivity of real homotopy (Theorem 8) we
have f ′ ◦ g′ ◦ g ◦ f 'R 1X . A similar argument shows that g ◦ f ◦ f ′ ◦ g′ ' 1W ,
and thus X 'R W as desired. QED

Because of the theorem above, when X 'R Y , we say X and Y are real
homotopy equivalent.

Corollary 2. If X ' Y then X 'R Y . If (X,x0) ' (Y, y0) then (X,x0) 'R

(Y, y0). If both X and Y are finite, then the converses hold.

Proof. This follows easily from Theorem 10. QED

Corollary 3. If X 'L Y , then X 'R Y . If (X,x0) 'L (Y, y0), then
(X,x0) 'R (Y, y0).

Proof. This follows from Definitions 9 and 12 and Theorem 9. QED

Note that in light of Corollary 3, Example 3 below shows it is possible for two
digital images to be pointed real homotopy equivalent without being pointed
homotopy equivalent.

6 Examples

A finite set and an infinite set cannot have the same digital homotopy type.
In particular the set Zn is not of the same digital homotopy type as a single
point, even though the continuous objects they represent (Rn and a point) are
classically homotopy equivalent. In the following example we show that Zn is
homotopically similar to a point, and also of the same long homotopy type (and
thus the same real homotopy type).

Example 1. Let x = (x0, x1, . . . , xn−1) ∈ Zn and let u, v ∈ [1, n]Z. Then
({x}, x) and (Zn, x) are (cu, cv)-pointed homotopically similar and have the
same (cu, cv)-pointed long homotopy type.

Proof. Corresponding to Definition 6, letXj = {x}, let Yj = Πn−1
i=0 [xi−j, xi+j]Z,

let fj be the inclusion map, and let gj be the constant map with image {x}.
Since a digital cube is pointed (cu, cv)-contractible with respect to any of its
points [1], the assertion of pointed homotopic similarity follows.

Let H : Zn ×N∗ → Zn be the map defined as follows. Let H(y, 0) = y. For
t > 0, let q be the reduction of t modulo n, and we bring the q-th coordinate of
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H(y, t) one unit closer to the q-th coordinate of x, i.e., if H((y0, . . . , yn−1), t −
1) = (z0, . . . , zn−1) then

H((y0, . . . , yn−1), t) =


(z0, . . . , zq−1, zq − 1, zq+1, . . . , zn−1) if zq > xq;
(z0, . . . , zn−1) if zq = xq;
(z0, . . . , zq−1, zq + 1, zq+1, . . . , zn−1) if zq < xq.

Since, in a single time step, H changes only one coordinate, it is easily seen that
this map holds x fixed and, for all u, v ∈ [1, n]Z, is a (cu, cv)-l-homotopy from
1Zn to the map ix ◦x, where x : Zn → {x} is a constant map and ix : {x} → Zn

is the inclusion function. From Proposition 6, we have that 1Zn and ix ◦ x are
pointed long homotopic. Since 1{x} = x ◦ ix, the assertion of the same pointed
long homotopy type follows. QED

Recall that a tree is an acyclic graph in which every pair of points is con-
nected by a unique injective path. We consider both finite and infinite trees.

Example 2. Let (X,κ) be a digital image that is a tree. Let x0 ∈ X.
Then (X,x0) is pointed homotopically similar to, and has the same pointed
long homotopy type, as ({x0}, x0).

Proof. In the following, for x 6= x0 we use parent(x) to denote the unique
vertex in X adjacent to x along the unique shortest path in X from x to
x0; and, by dist(x, y) (the distance between vertices x and y) we mean the
length of the shortest path in X from x to y. Note if dist(x, x0) = n > 0, then
dist(parent(x), x0) = n− 1.

Corresponding to the notation of Definition 6, letXj = {x ∈ X | dist(x, x0) ≤
j}. Let Y = Yj = {x0}. Let fj : Xj → Yj be the function fj(x) = x0. Let
gj : Yj → Xj be the function g(x0) = x0. Let Hj : Xj × [0, j]Z → Xj be the
function

Hj(x, t) =


x if t = 0;
x0 if t > 0 and H(x, t− 1) = x0;
parent(H(x, t− 1)) if t > 0 and H(x, t− 1) 6= x0.

Then Hj is a pointed homotopy from 1Xj to gj ◦ fj . Further, fj ◦ gj = 1Yj . It
follows easily that (X,x0) and ({x0}, x0) are pointed homotopically similar.

Let H : X ×N∗ → X be the function

H(x, t) =


x if t = 0;
x0 if t > 0 and H(x, t− 1) = x0;
parent(H(x, t− 1)) if t > 0 and H(x, t− 1) 6= x0.
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Figure 1. The image Y of Example 3, with the subsets A,B,C of its proof
marked by arrows

Then H is a pointed l-homotopy from 1X to x0. From Proposition 6, 1X and
i{x0} ◦ x0 are pointed long homotopic, where i{x0} is the inclusion function of
{x0} into Zn. Since x0 ◦ i{x0} = 1{x0}, it follows that (X,x0) and ({x0}, x0) have
the same pointed long homotopy type. QED

Example 3. Let X = Z× {0} ⊂ Z2 and let Y = X ∪ ({0} ×N) ⊂ Z2 (see
Figure 1). Then (X, (0, 0)) 'sc1,c1 (Y, (0, 0)), and (X, (0, 0)) 'Lc1,c1 (Y, (0, 0)), but
(X, (0, 0)) and (Y, (0, 0)) do not have the same (c1, c1)-pointed homotopy type.

Proof. It follows from Example 2 and Theorems 3 and 7 that (X, (0, 0)) 'sc1,c1
(Y, (0, 0)), and (X, (0, 0)) 'Lc1,c1 (Y, (0, 0)).

Suppose (X, (0, 0)) 'c1,c1 (Y, (0, 0)). Then there are continuous functions
f : X → Y , g : Y → X, with, and pointed homotopies H : X × [0, k]Z → X
and H ′ : Y × [0,m]Z → Y such that H(x, 0) = x and H(x, k) = g ◦ f(x) for all
x ∈ X, and H ′(y, 0) = y and H ′(y,m) = f ◦ g(y) for all y ∈ Y .

We show f is a surjection. Note if A = N∗ × {0}, B = {(n, 0) |n ∈
Z, (−n, 0) ∈ A}, and C = {0} ×N∗, we have Y = A ∪ B ∪ C. Suppose there
exists p = (u, v) ∈ Y \ f(X).

• If p ∈ A then, since f(X) is c1-connected and contains (0, 0), A1 =
{(x, 0) |x ≥ u} ⊂ Y \ f(X). In particular,

A2 = [u, u+ 2m]Z × {0} ⊂ Y \ f(X). (1)

Since u > 0, A2 is the set of all points in Y within m steps of (u+m, 0), so
we have a contradiction of the assumption that 1Y and f ◦g are homotopic
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in m steps, as statement (1) implies no point of (f ◦ g)(X) is within m
steps of (u+m, 0). Therefore, we cannot have p ∈ A.

• The cases p ∈ B and p ∈ C yield contradictions similarly.

Thus, we must have that f is a surjection, since assuming otherwise yields a
contradiction.

Since Y \ {(0, 0)} is disconnected and each of A, B, and C is infinite, the
fact that f is a continuous surjection implies there exist infinitely many x ∈ X
such that f(x) = (0, 0). Therefore, there exist p0 = (a, 0), p1 = (b, 0) ∈ X with
b > a+2k such that f(p0) = f(p1) = (0, 0). Then g ◦f(p0) = g ◦f(p1) = g(0, 0).
Therefore, at least one of p0 or p1 is carried by g ◦ f more than k steps away
from itself, contrary to the assumption that g◦f and 1X are homotopic within k
steps. The assertion that (X, (0, 0)) and (Y, (0, 0)) do not have the same pointed
homotopy type follows from this contradiction. QED

Example 4. There exist digital images (X,κ) and (Y, λ) that are homo-
topically similar but not pointed homotopically similar, and that have the same
long homotopy type but not the same pointed long homotopy type, and that
have the same real homotopy type but not the same pointed real homotopy
type.

Proof. By [7, 4], there exist finite digital images X and Y that are homo-
topically equivalent but not pointed homotopically equivalent. By Theorem 1,
X and Y are homotopically similar but not pointed homotopically similar. By
Proposition 8, X and Y have the same long homotopy type but not the same
pointed long homotopy type. By Theorem 10, X and Y have the same real
homotopy type but not the same pointed real homotopy type. QED

7 Fundamental groups

In this section, we show that digital images that are pointed homotopically
similar, or that have the same pointed real homotopy type, or that have the
same pointed long homotopy type, have isomorphic fundamental groups.

Theorem 12. Let (X,x1) 's (Y, y1). Let {Xj , Yj , fj , gj}∞j=1 be as in Defi-

nition 6. Then there is an isomorphism F : Πκ
1(X,x1)→ Πλ

1(Y, y1).

Proof. By hypothesis, for all indices j we have that gj ◦fj is pointed homotopic
in Xj , hence in X, to 1Xj and fj ◦ gj is pointed homotopic in Yj , hence in Y ,
to 1Yj .

We define a function F : Πκ
1(X,x1) → Πλ

1(Y, y1) as follows. Let f be an
x1-based EC loop in X. There is a smallest positive integer j such that the
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image of f is contained in Xj . Then fj ◦ f is a y1-based EC loop in Yj . Define
F ([f ]) = [fj ◦ f ].

Suppose f ′ ∈ [f ]X . For some smallest indices j, j′, the images of f, f ′ lie in
Xj , Xj′ , respectively. Further, there is some a > j, j′ such that f and f ′ are
EC-homotopic in Xa. We have:

F ([f ]) = [fj ◦ f ] = [(fa|Xj) ◦ f ] = [fa ◦ f ] = [fa ◦ f ′]
= [(fa|Xj′) ◦ f ′] = [fj′ ◦ f ′] = F ([f ′]). (2)

Therefore, F is well defined.

Suppose f is an x1-based EC loop in X such that F ([f ]) = [y1], the identity
element of Πλ

1(Y, y1). If j is the minimal index such that the image of f is
contained in Yj , then

F ([f ]) = [y1] = [fj ◦ f ],

so

[f ] = [(gj ◦ fj) ◦ f ] = [gj ◦ (fj ◦ f)] = [gj ◦ y1] = [x1],

the identity element of Πκ
1(X,x1). Therefore, F is one-to-one.

Given a y1-based EC loop g in Y , the image of g is contained in some Yj for
some smallest j. If j′ ≤ j is the minimal index such that the image of gj ◦ g is
contained in Xj′ , then

[g] = [fj ◦ gj ◦ g] = [fj′ ◦ (gj ◦ g)] = F ([(gj ◦ g)]).

Thus, F is onto.

Let Li be x1-based EC loops in X, i ∈ {0, 1}. Suppose the minimal indices
for the Xj containing the images of the Li are j0, j1 respectively, where, without
loss of generality, j0 ≤ j1. Then j1 is the minimal index of the Xj containing
L0 ∗ L1. Then

F ([L0 ∗ L1]) = [fj1 ◦ (L0 ∗ L1)] = [fj1(L0) ∗ fj1(L1)] = [(fj1 |Xj0)(L0) ∗ fj1(L1)]

= [fj0 ◦ (L0)] · [fj1 ◦ (L1)] = F (L0) · F (L1).

Therefore, F is a homomorphism. This completes the proof. QED

Theorem 13. Let (X,x0) 'R
κ,λ (Y, y0). Then Πκ

1(X,x0) and Πλ
1(Y, y0) are

isomorphic.

Proof. The hypothesis implies that there exist pointed continuous functions
f : (X,x0) → (Y, y0) and g : (Y, y0) → (X,x0), and pointed long homotopies
H : X × [0, 1]→ X from g ◦ f to 1X and G : Y × [0, 1]→ Y from f ◦ g to 1Y .
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Given an x0-based EC loop L in X, define f∗ : Πκ
1(X,x0) → Πλ

1(Y, y0) by
f∗([L]) = [f ◦L]. This function f∗ is the homomorphism induced by f : X → Y
(see [4] for a proof that f∗ is a well-defined homomorphism). It remains to show
that f∗ is one-to-one and onto.

Suppose f∗([L]) = [f ◦ L] = [y0], the identity element of Πλ
1(Y, y0). Since

g ◦f 'R 1X , we have g ◦f ◦L 'R L. Since the image of L is finite, an argument
similar to that used in the proof of Theorem 10 shows that g ◦ f ◦ L ' L by a
pointed homotopy, and thus by a pointed EC homotopy. Thus,

[L] = [g ◦ f ◦ L] = [g ◦ (f ◦ L)] = [g ◦ y0] = [x0],

the identity element of Πκ
1(X,x0). Hence, f∗ is one-to-one.

Suppose M is a y0-based EC loop in Y . Then there is a real homotopy in Y
between M and f ◦ g ◦M that holds the endpoints fixed. As above, since the
image of M is finite, the argument from Theorem 10 gives a homotopy between
M and f ◦ g ◦M that holds the endpoints fixed. Therefore,

[M ] = [f ◦ g ◦M ] = f∗([g ◦M ]).

Thus, f∗ is onto. QED

Theorem 14. Let (X,x1) 'Lκ,λ (Y, y1). Then Πκ
1(X,x0) and Πλ

1(Y, y0) are
isomorphic.

Proof. By Theorem 9, (X,κ, x0) and (Y, λ, y0) have the same real homotopy
type. Then Theorem 13 gives the result. QED

8 Wedges and Cartesian products

In this section we show that the wedge and Cartesian product operations
preserve pointed homotopic similarity, pointed long homotopy type, and pointed
real homotopy type.

Recall that if X1, X2 are digital images in Zm with the same adjacency
relation κ such that X1 ∩ X2 = {x0} for some point x0, and such that x0 is
the only point of X1 adjacent to any point of X2 and is also the only point of
X2 adjacent to any point of X1, then X = X1 ∪ X2, with the κ adjacency, is
the wedge of X1 and X2, denoted X = X1 ∧ X2, and x0 is the wedge point of
X. Also, if X = X1 ∧ X2, Y = Y1 ∧ Y2, x0 is the wedge point of X, y0 is the
wedge point of Y , and fi : (Xi, x0) → (Yi, y0) are (κ, λ)-pointed continuous for
i ∈ {1, 2}, then the function f1 ∧ f2 : X → Y defined by

(f1 ∧ f2)(x) =

{
f1(x) if x ∈ X1;
f2(x) if x ∈ X2,
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is easily seen to be (κ, λ)-continuous.

Theorem 15. Suppose X1, X2 are digital images in Zm, and Y1 and Y2 are
digital images in Zn. If (X1, x0) 'sκ,λ (Y1, y0) and (X2, x0) 'sκ,λ (Y2, y0), and
X = X1 ∧ X2 has wedge point x0 and Y = Y1 ∧ Y2 has wedge point y0, then
(X,x0) 'sκ,λ (Y, y0).

Proof. By hypothesis, there are subsets Xj,n of Xj and Yj,n of Yj , such that
Xj,n ⊂ Xj+1,n and Yj,n ⊂ Yj+1,n, for j ∈ {1, 2}, n ∈ N, Xj =

⋃∞
n=1Xj,n, Yj =⋃∞

n=1 Yj,n, and pointed continuous functions fn : (X1,n, x0) → (Y1,n, y0), gn :

(Y1,n, y0) → (X1,n, x0), f ′n : (X2,n, x0) → (Y2,n, y0), g′n : (Y2,n, y0) → (X2,n, x0),
such that gn ◦ fn is pointed homotopic in X1,n to 1X1,n , fn ◦ gn is pointed
homotopic in Y1,n to 1Y1,n , g′n ◦ f ′n is pointed homotopic in X2,n to 1X2,n , and
f ′n ◦g′n is pointed homotopic in Y2,n to 1Y2,n . Also, x0 is the wedge point for each
X1,n ∧X2,n, and y0 is the wedge point for each Y1,n ∧ Y2,n.

Then it is easily seen that (gn∧g′n)◦(fn∧f ′n) is pointed homotopic in X1∧X2

to 1X1∧X2 and (fn ∧ f ′n) ◦ (gn ∧ g′n) is pointed homotopic in Y1 ∧ Y2 to 1Y1∧Y2 .
The assertion follows. QED

Theorem 16. Suppose X1, X2 are digital images in Zm, and Y1 and Y2 are
digital images in Zn. If (X1, x0) 'Lκ,λ (Y1, y0), and (X2, x0) 'Lκ,λ (Y2, y0), and
X = X1 ∧ X2 has wedge point x0 and Y = Y1 ∧ Y2 has wedge point y0, then
(X,x0) 'Lκ,λ (Y, y0).

Proof. By hypothesis, for i ∈ {1, 2} there exist pointed continuous functions
fi : (Xi, x0) → (Yi, y0) and gi : (Yi, y0) → (Xi, x0), long pointed homotopies
Hi : (Xi, x0)×Z→ (Xi, x0) from 1Xi to gi◦fi inXi, and long pointed homotopies
Ki : (Yi, y0)× Z→ (Yi, y0) from 1Yi to fi ◦ gi in Yi.

Then the function H : (X1 ∧X2, x0)× Z→ (X1 ∧X2, x0) defined by

H(x, t) =

{
H1(x, t) if x ∈ X1;
H2(x, t) if x ∈ X2,

is a pointed long homotopy in X from 1X1∧X2 to (g1 ∧ g2) ◦ (f1 ∧ f2). Similarly,
the function K : (Y1 ∧ Y2, x0)× Z→ (Y1 ∧ Y2, x0) defined by

K(y, t) =

{
K1(y, t) if y ∈ Y1;
K2(y, t) if y ∈ Y2,

is a pointed long homotopy in Y from 1Y1∧Y2 to (f1∧f2)◦(g1∧g2). The assertion
follows. QED

Arguments similar to those above demonstrate the following.
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Theorem 17. Suppose X1, X2 are digital images in Zm, and Y1 and Y2 are
digital images in Zn. If (X1, κ, x0) 'R

κ,λ (Y1, λ, y0) and (X2, x0) 'R
κ,λ (Y2, y0),

and X = X1 ∧X2 has wedge point x0 and Y = Y1 ∧Y2 has wedge point y0, then
(X,x0) 'R

κ,λ (Y, y0). �

Now we consider Cartesian products. For our pointed assertions in the fol-
lowing, we assume

xi = (xi,1, xi,2, . . . , xi,ni) ∈ Xi ⊂ Zni , yi = (yi,1, yi,2, . . . , yi,ni) ∈ Yi ⊂ Zni ,

x0 = (x1, x2, . . . , xni) =

(x1,1, x1,2, . . . , x1,n1 , x2,1, x2,2, . . . , x2,n2 , . . . , xk,1, xk,2, . . . , xk,nk) ∈ Πk
i=1Xi ⊂ ZD,

y0 = (y1, y2, . . . , yni) =

(y1,1, y1,2, . . . , y1,n1 , y2,1, y2,2, . . . , y2,n2 , . . . , yk,1, yk,2, . . . , yk,nk) ∈ Πk
i=1Yi ⊂ ZD,

where D =
∑k

i=1 ni.

Theorem 18. Let Xi and Yi be digital images in (Zni , cni), i ∈ {1, 2, . . . , k}.
Let xi ∈ Xi, yi ∈ Yi. Let D =

∑k
i=1 ni.

• If Xi 'cni ,cni Yi for i ∈ {1, 2, . . . , k}, then Πk
i=1Xi 'cD,cD Πk

i=1Yi. If

(Xi, xi) 'cni ,cni (Yi, yi) for i ∈ {1, 2, . . . , k}, then (Πk
i=1Xi, x0) 'cD,cD

(Πk
i=1Yi, y0).

• If Xi 'scni ,cni Yi for i ∈ {1, 2, . . . , k}, then Πk
i=1Xi 'scD,cD Πk

i=1Yi. If

(Xi, xi) 'scni ,cni (Yi, yi) for i ∈ {1, 2, . . . , k}, then (Πk
i=1Xi, x0) 'scD,cD

(Πk
i=1Yi, y0).

• If Xi 'Lcni ,cni Yi for i ∈ {1, 2, . . . , k}, then Πk
i=1Xi 'LcD,cD Πk

i=1Yi. If

(Xi, xi) 'Lcni ,cni (Yi, yi) for i ∈ {1, 2, . . . , k}, then (Πk
i=1Xi, x0) 'LcD,cD

(Πk
i=1Yi, y0).

• If Xi 'R
cni ,cni

Yi for i ∈ {1, 2, . . . , k}, then Πk
i=1Xi 'R

cD,cD
Πk
i=1Yi. If

(Xi, xi) 'R
cni ,cni

(Yi, yi) for i ∈ {1, 2, . . . , k}, then (Πk
i=1Xi, x0) 'R

cD,cD

(Πk
i=1Yi, y0).

Proof. We give proofs for the unpointed assertions. In all cases, the proof of the
pointed assertion is virtually identical to that for its unpointed analog. We let
X = Πk

i=1Xi ⊂ ZD, Y = Πk
i=1Yi ⊂ ZD.
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First we prove the statement about ordinary homotopy equivalence. Sup-
pose Xi 'cni ,cni Yi for i ∈ {1, 2, . . . , k}. Then there exist (cni , cni)-continuous
functions fi : Xi → Yi and gi : Yi → Xi, and homotopies Hi : Xi× [0, ui]Z → Xi

from 1Xi to fi ◦ gi and Ki : Yi× [0, vi]Z → Yi from 1Yi to gi ◦ fi. Without loss of
generality, we can replace each ui and each vi with U = max{u1, v1, . . . , uk, vk},
since if ui < U then we can extend Hi by defining Hi(x, t) = Hi(x, ui) = gi◦fi(x)
for ui ≤ t ≤ U , and similarly for Ki.

For ai ∈ Xi, let f : X → Y be defined by

f(a1, a2, . . . , ak) = (f1(a1), f2(a2), . . . , fk(ak)).

For bi ∈ Yi, let g : Y → X be defined by

g(b1, b2, . . . , bk) = (g1(b1), g2(b2), . . . , gk(bk)).

Let H : X × [0, U ]Z → X be defined by

H(a1, a2, . . . , ak, t) = (H1(a1, t), H2(a2, t), . . . ,Hk(ak, t)).

Let K : Y × [0, U ]Z → Y be defined by

K(b1, b2, . . . , bk, t) = (K1(b1, t),K2(b2, t), . . . ,Kk(bk, t)).

It is easy to see that H is a (cD, cD)-homotopy from 1X to g ◦ f , and K is a
(cD, cD)-homotopy from 1Y to f ◦ g.

Minor modifications in the argument given above allow us to demonstrate
the claims for long homotopy type and real homotopy type.

It remains to prove the statement about homotopic similarity. Suppose
Xi 'scni ,cni Yi for i ∈ {1, 2, . . . , k}. Then there exist {Xi,j}∞j=1 ⊂ Xi such that

Xi,j ⊂ Xi,j+1 and
⋃∞
j=1Xi,j = Xi, {Yi,j}∞j=1 ⊂ Yi such that Yi,j ⊂ Yi,j+1 and⋃∞

j=1 Yi,j = Yi, continuous functions fi,j : Xi,j → Yi,j and gi,j : Yi,j → Xi,j ,
and homotopies Hi,j : Xi,j × [0, ui,j ]Z → Xi,j from gi,j ◦ fi,j to 1Xi,j and
Ki,j : Yi,j × [0, vi,j ]Z → Yi,j from fi,j ◦ gi,j to 1Yi,j . As above, for each j we

can replace each ui,j and each vi,j by Uj = max{ui,j , vi,j}ki=1. Further, these
functions satisfy the homotopy restrictions required by Definition 6.

Notice that for all j, Πk
i=1Xi,j ⊂ Πk

i=1Xi,j+1 and Πk
i=1Yi,j ⊂ Πk

i=1Yi,j+1. Also,⋃∞
j=1 Πk

i=1Xi,j = X and
⋃∞
j=1 Πk

i=1Yi,j = Y .

Let fj : Πk
i=1Xi,j → Πk

i=1Yi,j be defined by

fj(a1, . . . , ak) = (f1,j(a1), . . . , fk,j(ak))

for ai ∈ Xi,j . Let gj : Πk
i=1Yi,j → Πk

i=1Xi,j be defined by

gj(b1, . . . , bk) = (g1,j(b1), . . . , gk,j(bk))
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for bi ∈ Yi,j . Let Hj : Πk
i=1Xi,j × [0, Uj ]Z → Πk

i=1Xi,j be defined by

Hj(a1, . . . , ak, t) = (H1,j(a1, t), . . . ,Hk,j(ak, t)),

for ai ∈ Xi,j . Let Kj : Πk
i=1Yi,j × [0, Uj ]Z → Πk

i=1Yi,j be defined by

Kj(b1, . . . , bk, t) = (K1,j(b1, t), . . . ,Kk,j(bk, t)),

for bi ∈ Yi,j . Then it is easily seen that Hj is a homotopy from fj ◦ gj to
1Xj , and Kj is a homotopy from gj ◦ fj to 1Yj . Also, it is easily shown that
these homotopies satisfy the restrictions required by Definition 6. Therefore,
X 's Y . QED

9 Further remarks and open questions

We have introduced three notions of digital images having homotopic resem-
blance - homotopic similarity, having the same long homotopy type, and having
the same real homotopy type - in both unpointed and pointed versions. Unlike
the usual definition of digital homotopy equivalence, these let us consider two
digital images X and Y as similar with respect to homotopy properties even
if one of them has a component with infinite diameter and the other does not.
We have shown that two digital images that are homotopy equivalent are ho-
motopically similar, have the same long homotopy type, and have the same real
homotopy type, and that the converses hold when both images are finite; how-
ever, we have shown the converses to be false if one of the images has infinite
diameter. We have shown that two digital images that share any of these three
pointed homotopy resemblances have isomorphic fundamental groups. We have
also shown that wedges preserve pointed homotopy similarity, pointed long ho-
motopy type, and pointed real homotopy type; as do finite Cartesian products
when we use relaxed adjacencies.

Remark 7. In addition to several questions stated earlier that we have
not answered at this writing, we have the following. (Unpointed and pointed
versions:) Which, if any, of homotopic similarity, having the same long homotopy
type, and having the same real homotopy type, implies either of the others?

Corollary 3 is our only result concerning the question of Remark 7, that
having the same long homotopy type implies having the same real homotopy
type.

Remark 8. Also currently unanswered (unpointed and pointed versions):
Which, if any, of these relations are equivalent?

As above, a negative example for the question of Remark 8 would require a
pair of digital images (X,Y ) in which at least one of the members is infinite.
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