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Abstract. The well known conjecture about exceptional almost perfect non-linear (excep-
tional APN) functions, stated by Aubry, McGuire and Rodier, says that the monomials 22"+

and x22k_2k+1, the Gold and Kasami-Welch functions respectively, are the only ones in this
class. Many results have been obtained in the last years confirming the conjecture. In this
article we list all these settled results, all the pending cases, and provide a new family of non
exceptional APN functions. Also, we comment the methods used to obtain the resolved cases
and propose a provable new one, using the Max Noether’s Fundamental theorem, to overcome
some pending cases.
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1 Introduction

The study of APN functions arose approximately 23 year ago when Biham
and Shamir [3] introduced differential cryptanalysis as a potential attack for
DES-like ciphers. APN functions, as defined and proved by Nyberg [17, 18],
have the property of being high resistant against differential attacks when they
are used as substitution components of block ciphers.

Definition 1. Let L =, with ¢ = 2" for some positive integer n. A function
f L — L is said to be almost perfect nonlinear (APN) on L if for all a,b € L,
a # 0, the equation

fleta)—flz)=0 (1)

have at most 2 solutions.

The best known examples of APN functions are the family of Gold functions
f(z) = ka“, which are APN on any field Fon where k,n are relatively prime
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integers. Other examples are the family of Welch functions f(x) = 22" +3 which
are APN on Fon, where n = 2r + 1.

The APN property is invariant under some transformations of functions. A
function f : L — L is called affine if

Two functions are Carlet, Charpin, Zinoviev equivalent (CCZ-equivalent) if
the graph of f, {x, f(z)}, can be obtained from the graph of g, {x, g(z)}, by an
affine permutation. Two CCZ-equivalent functions preserves the APN property.
Mostly, the CCZ-equivalence is very hard to prove (for more details see [5]).

Notice that, as shown in the above examples, the APN property may depends
on the extension degree of Fy. For any ¢ = 2" 4+ 1 there exist infinitely many
values m such that (r,m) = 1. That is, any fixed Gold function which is APN on
L is also APN on infinitely many extensions of L. Functions with this property
are called exceptional APN functions. The situation is different for our second
example, a Welch function that is APN over L is not necessarily APN on an
extension of L.

Definition 2. Let L = [y, ¢ = 2" for some positive integer n. A function
f L — L is called exceptional APN if f is APN on L and also on infinitely
many extensions of L.

One way to classify APN functions is to determine which of them has
the property of been exceptional. This problem has been studied for mono-
mials functions by Janwa, Wilson, Canteaut, McGuire, Jedlika and Hernando
[4, 13, 14, 15, 16] and more recently for polynomials by Aubry, McGuire, Rodier,
Caullery, Delgado, Janwa, Ferard and Oyono [1, 6, 7, 8, 21]. Aubry, McGuire
and Rodier conjectured the following [1].

CONJECTURE: Up to equivalence, the Gold and Kasami-Welch func-
tions, f(z) = 22" t! and f(z) = 22 ~2"+! respectively, are the only exceptional
APN functions.

The names Gold and Kasami-Welch are due to the degree of the monomials,
the well known families of Gold and Kasami-Welch numbers 2% +1, 22F —2F 1 1,
for k > 1 respectively. This is the sequence number AO64386 in the On-line
Encyclopedia of Integer sequences.

The conjecture is settled for monomial functions. Hernando and McGuire
[13], based on the work of Janwa and Wilson [15] and a partial result of Jedlicka
[16], proved that the Gold and Kasami-Welch functions are the only exceptional
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APN monomial functions. For non monomial functions, the conjecture is still
open.

The goal of this article is to provide an overview of all the obtained results
which contribute to the proof of the mentioned conjecture. The article is orga-
nized as follows. In section 2, a very important Rodier’s result, which make a link
between the exceptional property of a function f and the set of rational points
of an affine surface X defined by f, is shown. This result provides a criteria for
proving that f can not be exceptional APN. In section 3 and 4, considering the
degree of the functions, we list all the resolved and pending cases about this
conjecture. In section 5, we make a remark on the results obtained for the Gold
degree case, which lead us to obtain a new infinite family of non exceptional
APN polynomials. Finally, in section 6, we briefly comment the used methods
in each of the obtained results and propose a provable new method to overcame
some of the pending cases.

2 Absolute irreducibility and the exceptional prop-
erty

Let L = F4, ¢ = 2" for some positive integer n. Rodier, using algebraic
geometry concepts, characterized APN functions and proposed a criteria for
these functions to be exceptional APN [19].

Rodier proved that a function f : L — L is APN if and only if the rational
points of the affine surface

f@)+fy)+fz)+fla+y+2)=0

are contained in the surface (z + y)(x + 2)(y + z) = 0.

Let f be a polynomial function in L[z, y, z], deg(f) = d. Let us define:

_f@+ W+ IR+ ety +2)
N [ [ .

Then ¢ is a polynomial over L[z, vy, z| of degree d — 3. This polynomial defines
a surface X in the three dimensional affine space L3.
It can be shown that if f(x) = Z;l:o a;xj, then:

d
¢($, Y, Z) = Z a]d)](:va Y, Z)
=3

where A 4 . ,
oty + 2+ (v +y+2)

(z+y)(z+2)(y+2)

¢j(l" Y, Z) =
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is homogeneous of degree j — 3.

From the above characterization and the results of Lang-Weil and Ghorpade-
Lachaud [12], which guarantees enough L-rational points on a surface for n
sufficiently large, it can be deduced the next theorem whose proof can be found
in [19].

Theorem 2.1. Let f : L — L a polynomial function of degree d. Suppose
that the surface X of affine equation

f@)+fy) +fz)+ fla+y+2)

CE ) (T R

is absolutely irreducible (or has an absolutely irreducible component over L)
and d > 9, d < 0.45¢"/* + 0.5, then f is not an APN function.

This theorem establish the criteria that, if X is absolutely irreducible (or
has an absolutely irreducible factor over L) then f is not exceptional APN.

3 Resolved cases

In this section we list all the families of functions for which the statement
of the conjecture is proved. From now on, let L = Fon for n a positive integer.
Let us divide the cases according to the degree of the families.

3.1 0Odd degree case

The conclusions of the next theorems follows by proving that the function
is absolutely irreducible or contain an absolutely irreducible factor.

As commented before, the conjecture is proved for monomial functions. Her-
nando and McGuire completed the proof of the conjecture on the sequence of
exceptional numbers [13], which can be stated equivalently as follows.

Theorem 3.1. (Hernando, McGuire [13]) The Gold and Kasami-Welch
functions are the only exceptional APN monomial functions.

The next theorems refers to non monomial functions.

Theorem 3.2. (Aubry, McGuire, Rodier [1]) If the degree of the polynomial
function f is odd and not a Gold or a Kasami-Welch number, then f is not
exceptional APN

Aubry, McGuire and Rodier also found results for Gold degree polynomials.
Theorem 3.3. (Aubry, McGuire, Rodier [1]) Suppose f(z) = 22 +g(x) €

L[z] where deg(g) < 287! + 1. Let g(z) = Z?}:Ohrl ajx’. Suppose that there
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exists a nonzero coefficient a; of g such that ¢;(z,y, 2) is absolutely irreducible.
Then f is not exceptional APN.

The authors remarked that, in theorem 4, the weaker condition of being
both ¢or, 1 and ¢; relatively prime is sufficient.
They also studied the case when deg(g) = 2F~! 4 2.

Theorem 3.4. (Aubry, McGuire, Rodier [1]) Suppose f(z) = x2k+1—|—g(m) €
L[z] and deg(g) = 2¥~1 4-2. Let k be odd and relatively prime to n. If g(x) does
not have the form az?" ' +2 +a223 then ¢ is absolutely irreducible, while if g(z)
does have this form, then either ¢ is absolutely irreducible or ¢ splits into two
absolutely irreducible factors that are both defined over L.

In the next two theorems, the authors extended these two previous results.

Theorem 3.5. (Delgado, Janwa [7])For k > 2, let f(z) = 22 +! + h(z) €
L[z], where deg(h) =3 (mod 4) < 2¥ + 1. Then f is not exceptional APN.

Theorem 3.6. (Delgado, Janwa [7]) For k > 2, let f(z) = 22+! + h(z) €
L[z] where d = deg(h) = 1 (mod 4) < 2 + 1. If ¢gr_, g are relatively prime,
then f is not exceptional APN.

It is clear that this last theorem applies for the cases when ¢4 is absolutely
irreducible. In [10], Férard provided sufficient conditions for this irreducible fact
to happen, when d =5 (mod 8), with the next theorem.

Theorem 3.7. (Ferard, [10]) Let [ be an odd integer, | > 7, t = 4l + 1 and
¢¢(x,y,1) as in equation (3). We assume that there are no points (z,y) € (15'72)2
which satisfy the following system

v#FLy#FLrFy
=1y =1(z+y+1) =1
P13(z,y) =0

Then the polynomial ¢; is absolutely irreducible.

Using this theorem, Ferard verified, with the aid of SAGE, that ¢; is abso-
lutely irreducible for all ¢, t =5 (mod 8), 13 < t < 205.

In the same direction, Delgado et.al proved that the relatively prime condi-
tion of theorem 7 is satisfied for all d = 5 (mod 8) [9]. Very recently, theorem 7
was improved with the next one without conditions.

Theorem 3.8. (Delgado, Janwa [8]) For k > 2, let f(z) = 22! + h(z) €
L[z] where deg(h) = 1 (mod 4) < 2% + 1 (deg(h) is not a Gold number), then
f is not exceptional APN.

The case for Kasami-Welch degree polynomials seems to be the hardest one.
Ferard, Oyono and Rodier proved the following two theorems.

Theorem 3.9. (Ferard, Oyono and Rodier [20]) Suppose that f(z) = 22*" 2"

+1+
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— _ 22k7172k—1 1 .
g(x) € L[] where deg(g) < 2%=1 — 2k=1 1 1 Let g(z) = > i—0 ajal.

Suppose moreover that there exist a nonzero coefficient a; of g such that ¢;(z,y, 2)
is absolutely irreducible. Then f is not exceptional APN.

They also studied the case when deg(g) = 22F~1 — 2F=1 4 2 [21].

Theorem 3.10. (Ferard, Oyono and Rodier [20]) Suppose that f(z) =
22" =21 4 g(2) € Llz] where deg(g) < 22F=1 — 2F=1 1 2 Let k > 3 be odd

and relatively prime to n. If g(z) does not have the form az? T2 2,3

then ¢ is absolutely irreducible, while if g(z) does have this form then either ¢
is irreducible or ¢ splits into two absolutely irreducible factors which are both
defined over L

3.2 Even degree case

For this case, very few results have been established.

Theorem 3.11. (Aubry, McGuire, Rodier [1]) If the degree of the polyno-
mial function f is 2e with e odd, and if f contains a term of odd degree, then
f is not APN over L = Fy» for all n sufficiently large.

For polynomials of degree 4e, Rodier proved the following;:

Theorem 3.12. (Rodier [21]) If the degree of the polynomial function f is
even such that deg(f) = 4e with e = 3( mod 4) and if the polynomials of the
form (x +y)(y + 2)(z + x) + P with

P(z,y,2) = cl(m2 + 9%+ 22) +ealzy+az+yz)+ bz +y+2)+d

for ¢1,c¢4,b1,d € Fys, do not divide ¢ then f is not exceptional APN.
Florian Caullery extended the last result with the next theorem.

Theorem 3.13. (Caullery [6]) Let f : F, — F, of degree 4e with e > 3 such
that ¢ is absolutely irreducible. Then f is not a exceptional APN function.

4 Pending cases

Given the list of results in section 3 and a subsequent result in section 5, the
list of pending cases are:

4.1 Odd degree case

Gold degree functions:

o f(z)=2a2*14h(z) € Lzl where deg(h) is a Gold number and (¢gr 41, ¢5) #
1 for all j in h(z) = )" aja’.
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o f(z) = 22"t + h(z) € L[z], where d = deg(h) is an even number, d >
2k 42,

The case d = 28! + 2 is only partially resolved (see theorem 5).
Kasami-Welch degree functions:

o f(z)=a2""2"*1 4 p(x) € L[z], where deg(h) > 22k—1 —2k=1 1 2,

The case deg(h) = 22k=1 — 2k=1 1 2 is only partially resolved (see theorem
11)

4.2 Even degree case

e f(z) € L[z] such that deg(f) = 2e, where e is an odd number and f have
only even degree terms.

e f(x) € L[x] such that deg(f) = 4e, such that ¢, is not absolutely irre-
ducible.

5 A new family

Stated the theorems 6 and 9, the conjecture is done for Gold degree poly-
nomials of the form f(z) = 22" *! + h(z), where d = deg(h) is any odd number
(not a Gold number). Then, the remaining case is when d is a Gold number.

For polynomials of the form f(x) = 22"+ +h(z), where deg(h) = 2" +1 and
(k,K') = 1, ¢or 1, Pour 4 are relatively prime [7]. Then ¢(z,y,z2) is absolutely
irreducible by theorem 7.

For non relatively prime numbers k, &/, assuming reducibility of ¢:

H(x,y,2) = (Ps+ P14+ ... + Po)(Qr + Qi1+ ... + Qo) (4)

where F;, (); are zero or forms of degree 1.

Equating the homogeneous terms degree by degree, as in the proof of theo-
rem 7 (first case) [7], we have that: Q;—1 = Qi—2 = ... = Q1 = Qo = 0 (Observe
in this proof that t < e, where e = 2F + 1 — d).

Then, the surface ¢ related to f factors as:

2k 41
Z Clj(,bj(l’,y,Z) = (PS + Ps—l + ...+ PO)(Qt)
=3

Therefore Q; divides each ¢;(x,vy, z). This implies that ¢(z,y, z) would be
absolutely irreducible if h contains a non zero term a,,z"™ such that ¢or; and
¢m are relatively prime.
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Using the fact that the absolute irreducibility of ¢ implies the non excep-
tional APN property, we can summarize the above discussion in the following
theorem.

Theorem 5.1. For k > 2, let f(z) = 22" T! + h(z) € L[z] where deg(h) =
2° +1 < 2F + 1. Then:

a) If (k,s) =1, then f is not exceptional APN.

b) If (k, s) # 1 and h contains a term of degree m such that (¢or 1, ) = 1,
then f is not exceptional APN.

In this theorem, the condition of the part b is best possible in the sense that
if h does not have such a term, then ¢(x,y, z) would be reducible.

Some cases that this theorem covers, and no one theorem enumerated in
section 3 do it, are the Gold degree polynomials:

f(x) = 27 + h(x), where deg(h) = 9,

f(z) = 233 + h(x), where deg(h) = 5, 9 or 17,

f(x) = 2% 4 h(z), where deg(h) = 33.

6 The used methods and a proposed new method

In theorem 2, Hernando and McGuire showed that for an odd degree mono-
mial f (not a Gold or a Kasami-Welch function), the surface ¢ (related to f) has
always an absolutely irreducible factor over Fo. They got this result by the way
of contradiction, using a general form of the classical Bezout’s theorem for pro-
jective curves. For this proof, a computation of all the singular points of ¢ and
the computation of the intersection multiplicity at these points was required.
These computations becomes very difficult for non monomial functions.

In theorem 3, Aubry, McGuire and Rodier showed that for polynomials of
odd degree (not a Gold and Kasami-Welch number), the projective surface X
defined by ¢ have an absolutely irreducible component defined over Fo. They
proved this indirectly, by showing that the intersection X N H has an absolutely
irreducible component, where H is the projective hyperplane at infinity. For a
family of Gold degree polynomials, theorems 4 and 5, the authors proved, by
contradiction, that ¢ is absolutely irreducible.

Delgado and Janwa, in theorems 6, 7 and 9, extended the results for Gold
degree polynomials. They proved the absolute irreducibility of ¢ by reductions
of variables, using the hyperplane section y+ 2z = 0. The authors also used affine
transformations to get the relatively primeness propertiy for pairs of functions
;-

For the Kasami-Welch degree case, theorem 10, Ferard, Oyono and Rodier
made an adaptation of the Gold degree results in theorems 4 and 5.
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On the other hand, for even degree families (deg(f) = 2e), the authors of
theorem 12 applied similar arguments of theorem 3. Finally, Caullery in theorem
14 (deg(f) = 4e) generalized the result of Rodier in theorem 13. The author
proved that, assuming that the function f is exceptional APN, f have a very
particular form. Then, he showed that f is CCZ-equivalent to a non exceptional
APN function, leading to a contradiction.

As commented at the beginning of this section, a complete analysis of sin-
gular points and intersection multiplicities for polynomials with more than 2
terms is a very hard task. Max Noether’s theorem, under certain conditions,
could provide a new way to prove the absolute irreducibility of ¢.

Let p € P?2(L), F and G projective curves with no common components

through p. Noether’s conditions are satisfied at p with respect to F,G and H if
there exist a,b € Op(P?) such that H, = aF, + bG., where O,(P?) is the local
ring of P? at p and the asterisk indexes means the affine part of the curves.
If F,G and H are projective plane curves in P?(L) such that F' and G have no
common components, then Max Noether’s Fundamental theorem [11] says that
exist forms A, B such that H = AF + BG if and only if Noether’s conditions
are satisfied for every p € F N G.

When assuming that the surface ¢(z,y, z), related to a polynomial func-
tion f, is not absolutely irreducible and factors as in (4), the following pair of
equations result

Pth = ¢n (5)

Pthfe + Psfth = ¢d (6)

where F;, Q); are zero or forms of degree ¢ in the variables x,y, z.

Forn = 28 +1 or n = 22 — 2% 4+ 1, the forms P,,Q; have no common
components because of the factorization of ¢, (x,y,z) [14]. If we know that
Noether’s conditions, with respect to Ps, Q; and ¢4, are not satisfied for some
p € Ps N Qy, then equation (6) is not possible and ¢ is absolutely irreducible,
implying that f is not exceptional APN.

As an application of this method, let the Gold degree polynomial f(z) =
29 + h(z), where deg(h) = 7, and ¢(z, y, 2) its related surface. Let p = (1,1,1).
p € PsNQ: and Ps, Q¢ have no common components through p because of the
factorization of ¢, (z,y,z) as product of different linear factors. Let us show
that Noether’s conditions, with respect to Ps, Q; and ¢g, are not satisfied at p.
Suppose by a contrary fact that the conditions are satisfied. Then there exist
a,b € Oy(P?) such that

a(Ps)* + b(Qt)* = (¢7)*
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where (Ps)«(Q¢)x = [[(z + ay + 1+ «), a € Fg, o # 0,1 [14]. Then, for y = 1:
a(z,1,1)(z+ 1) 4+ b(z,1,1)(z+1) =2t +22 +1

where i+ j = 6,¢ > 1,5 > 1. But this is not possible since, in this last equation,
(x 4+ 1) divides the left hand side but does not divides the right hand side.
Therefore Noether’s conditions are not satisfied at p and f is not exceptional
APN.

As a second application, let the Kasami-Welch degree polynomial f(z) =
213 + h(z), deg(h) = 7, ¢(x,v, 2) its related surface and p = (1,1, 1). As before,
p € PsN Q¢ and Ps,@Q; have no common components through p [14]. Let us
suppose that Noether’s conditions, with respect to Py, Q¢ and ¢13, are satisfied
at p. Then

a(Ps)* + b(Qt)* = (¢7)*

for some a,b € O,(P?).
In [14], a factorization of ¢13(x,y, 1) is provided. Using this fact, and making
y =1 we get:

a(z, 1,1) (2P +a + 23+ 2242+ 1)+0(z, 1, 1) (2P + 2t + 2P + 2?42 +1) = 2422 +1

Which is not possible by the same reason in the first application, and f is not
exceptional APN.

Remark 1. The following remarks can clarify a little bit more about the
applications of the proposed method.

(a) In the first application, the absolute irreducibility of f is already guar-
anteed by Delgado and Janwa in theorem 6 of section 3. However, this
is not the case for the Kasami-Welch application. Theorem 9 of section
3 requires an additional absolutely irreducible condition for ensuring the
irreducibility of f. Similar applications can be do it for higher Gold and
Kasami-Welch degree polynomials.

(a) Both previous applications use explicit factorization of the Gold and Kasami-
Welch monomial functions in order to guarantee the impossibility of the
Noether’s conditions. Many times this is not an easy task. Then, the use-
fulness of this new method depends on finding criteria for Noether’s con-
ditions to not apply at some particular point.
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