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1 Introduction

In recent years, the integral inequalities have emerged as an important area
of research, since this theory has many applications in differential equations and
applied sciences. In this sense, a large number of papers have been developed,
for details, we refer the reader to [1]-[4], [7, 12, 14], [22]-[27] and the references
therein. Moreover, the fractional type inequalities have recently been studied
by several researchers. For some earlier work on the topic, we refer to [2, 3, 6],
[8]-[12] and [14, 17, 19, 20, 23]. In [5], using Korkine identity, N.S. Barnett et
al. established some integral inequalities for the expectation and the variance of
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a continuous random variable X having a probability density function defined
on [a,b]. In [16], P. Kumar presented new results involving higher moments for
continuous random variables. He also established some estimations for the cen-
tral moments. Other results based on Gruss inequality and some applications of
the truncated exponential distribution have been also discussed by the author.
In [18], P. Kumar established other good results for Ostrowski type integral in-
equalities involving moments of a continuous random variable with p.d. f. defined
on a finite interval. He also derived new bounds for the r—moments. Further,
he discussed some important applications of the proposed bounds to the Euler
beta mappings. Recently, G.A. Anastassiou et al. [2] proposed a generalization
of the weighted Montgomery identity for fractional integrals with weighted frac-
tional Peano kernel. Then, M. Niezgoda [21] proposed some generalizations for
the paper [17], by applying Ostrowski-Griiss type inequalities. In [12], the au-
thor established several integral inequalities for the fractional dispersion and
the fractional variance functions of continuous random variables with probabil-
ity density functions p.d.f. that are defined on some finite real intervals. Very
recently, A. Akkurt et al. [1] proposed new generalizations of the results in [12].
In a very recent work, Z. Dahmani et al. [13] presented new fractional integral
results for the (r, a)—fractional moments. In fact, by introducing other concepts
on the (r, a)—orders fractional moments of continuous random variables (noted
by M, ), the authors generalized Theorem 1 in the paper [17]. Other results
between the quantities Mo, o and Mf «, have been also generated by the authors.

Motivated by the results presented in [2, 5, 12], in this paper, we introduce
new w—weighted concepts for continuous random variables that have p.d.f.
defined on some finite real intervals. Then, we obtain new integral inequali-
ties for the fractional w—weighted expectation and the fractional w—weighted
variance functions. We also present new integral inequalities for the fractional
(r, w)—weighted moments. At the last section, some applications on the uniform
random distribution are given. For our results, some classical and fractional re-
sults can be deduced as some special cases.

2 Preliminaries

The following notations, definitions and preliminary facts will be used through-
out this paper.

Definition 1. [15] The Riemann-Liouville fractional integral operator of
order a > 0, for a continuous function f on [a, b] is defined as

Jelf@®)] = %j‘(t—T)a_lf(T)dT, a>0,a<t<b. (1)
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For o > 0, B > 0, we have:

JEIL[f @] = IS [F @], (2)

and

JeTa [f (0] = T [ (1) (3)
Let us consider a positive continuous function w defined on [a, b]. We introduce
the concepts:

Definition 2. The fractional w—weighted expectation function of order a >
0, for a random variable X with a positive p.d.f. f defined on [a, b] is defined as

¢
Exow(t) = ﬁf (t — T)ail Tw (1) f(T)dr, a <t <b, a>0, (4)

where w : [a,b] — R is a positive continuous function.

Definition 3. The fractional w—weighted expectation function of order a >
0 for the random variable X — E (X) is given by

Ex_px)aw (t) =
¢

/(t—T)a_l (r—E(X)w(r) f(r)dr, a<t<b a>0, (5)

a

1

I'(a)

where f : [a,b] — RT is the p.d.f. of X.
We introduce also the following definitions:

Definition 4. The fractional w—weighted variance function of order oo > 0
for a random variable X having a positive p.d.f. f on [a,b] is defined as

0% (1) =
t
1

I‘(a)/(t_T)al (T—E(X))QM(T)f(T)dT, a<t<b a>0. (6)
Definition 5. The fractional w—weighted moment function of orders r > 0,
a > 0 for a continuous random variable X having a p.d.f. f defined on [a, b] is

defined as
¢
My o (t) = %a)f (t — T)ail "w (1) f(T)dr, a <t <b, a>0. (7)

For the particular case t = b, we list the following definitions:



26 Z. Dahmani, A.E Bouziane, M. Houas, M.Z. Sarikaya

Definition 6. The fractional w—weighted expectation of order v > 0 for a
random variable X with a positive p.d.f. f defined on [a, ] is defined as

1

Exaw = ) (b— T)O‘_l 7w (7) f(7)dr, a > 0. ()

Q —

Definition 7. The fractional w—weighted variance of order a@ > 0 for a
random variable X having a positive p.d.f. f on [a,b] is given by

b
o2 w = %a)f(b—T)afl (T*E(X))Q’w(’r)f(T) dr, a> 0. 9)

Definition 8. The fractional w—weighted moment of orders r > 0, a > 0
for a continuous random variable X having a p.d.f. f defined on [a, b] is defined
by

b
My ow = ﬁ{ (b— T)O‘_l m"w (1) f (1) dr, o> 0. (10)

Based on the above definitions, we give the following remark:

Remark 1. (1:) If we take @ = 1,w(t) = 1,¢ € [a,b] in Definition 4, we
obtain the classical expectation: Ex 11 = FE (X).
(2:) If we take o = 1,w(t) = 1,t € [a,b] in Definition 8, we obtain the classical

variance: a%al,l =0 (X) = } (r—E (X))2 f(r)dr.

ozfl

)

tela b] in Definition 8, we obtain the classical

(3:) For o > 0, we have J [ ] <!
(4:) If we take o = 1, w(t ) =

(=

moment of order > 0 given by M, := [7"f () dr

S]

3 Main Results

In this section, we present new w—weighted integral inequalities for random
variables with probability density functions defined on some finite real intervals.
We begin by the following theorem:

Theorem 1. Let X be a continuous random variable having a p.d.f. f :
[a,b] — R, and let w : [a,b] — RT be a positive continuous function. Then for
all o > 0, a <t < b, the following inequalities for fractional integrals hold:

T [@N1)] 0% 0 ()~ (Bx_ )00 (1)

1)
< A1 |72 [o)] 7 [Pato)] - (2 [rw@))| 7 € Luclant],



New W —weighted concepts for continuous random variables with applications 27

and

T [0 F)0)] s ()~ (Bx_py0 1) <
S (Je[wn®])” . (12)
PrROOF. We define the quantities:

H(r,p) = (9(1) =g (p)) (h(1) =h(p)), Tp€ (a;t), a<t<b,  (13)

and »
pa (t.7) =T p(r), T (a,t), a<t <D, (14)
where p : [a,b] — R™ is a continuous function.
Using (13) by (14), we can write

Jou (67) H (r.p) dr = [ou (67) (9() — g (9) (h(7) — h(p)) dr.  (15)
And then,

Ji J2pa (t,7) @a (£ p) H (7, p) drdp (16)
= [ [ pa (t,7) @a () (9 (1) — g (p) (h(7) = h(p)) drdp.

ria)ﬁ (t=m) " t=p)* " p(™)p(p) (9(1) =g (p) (h(7) = h(p))drdp
=2J2 [p ()] Jg [(pgh) (V)] — 2J¢ [(pg) (1)] J& [(ph) (1)] -

Now, replacing p (t) = w(t)f (t), g(t) = h(t) =t — E(X), w : [a,b] = RT,
a<t<bin (17), we obtain

S [T (=7 (= ) (= R wlr)w(e)f (7) £ (o) drdp
=272 [(wf) (0] J¢ [(wf) (5) (¢ = BX))?] —207¢ [(wh)(®)(t ~ B(X)))?
=272 [(WH)(1)] 0% 0 () = 2 (Bx_px)0 1) -
(18)
Since f € Lo ([a,b]), we have
15wt [ (=77 = o) T eyl (=P drdp

<2712 [J8 [w ®)] Jg [Pu®)] - (Jg frw®)])?]
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On the other hand, for 7, p € [a,t], a < t < b, we obtain

7,p€[a,t]
= (t=a)* (Jg [(wH(®)])?
(20)
Combining (18) and (19), we conclude that
T2 (@0 7 () = (Bx_posa0 0) o

< A1 [ [w (0] g [Pw®)] - (g frw®))?] |

and thanks to (18) and (20), it yields that

T [ 1] 7% g () — (Bx_px0 (0) < 3 (= ) (2 [(wh)(D)])2
(22)
Theorem 1 is thus proved.

Remark 2. If we take w(t) = 1, a < t < b in Theorem 1, we obtain
Theorem 3.1 of [12].

We prove also the following theorem.

Theorem 2. Suppose that X is a continuous random variable with a p.d.f.
f:]a,b] = RT and let w: [a,b] — RT be a continuous function.
(I):If f € Loo ([a,b}), then for alla>0,8>0,a <t <b,

TS [(whH®)] 0% g0 (1) +J2 [(wh(B)] 0% 0w (F)
—2Ex_p(x)aw (1) Ex—p(x),8,w (t)
gm&PﬂMMﬁkmﬂ+ﬁwwwﬂﬁwﬂ
—2J2 [tw(t)] JE [tw(t)ﬂ . (23)
(II): For a <t <b, the inequality
TS [(whH®)] 0% g0 (1) +J2 [(WF(B)] 0% 0w (F)
—2Ex_p(x),aw (1) Ex—p(x),8,0 (t)
<(t—a)?J¢ [(wh®)] TE [(wh)t)] (24)

is also valid for any o > 0,5 > 0.
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PRrROOF. Thanks to (15), yields the following identity

o fi#a(t,7) e (t p)H (1, >drdp 5)
= i frea(t.7) 05 (L) (9(7) = g (p) (h(7) = (p)) drdp.

This implies that

L T = = 0 5 () () (9.7) — 9 () (A () — B () drdp
= Jo [ )] J2 [(pgh) (1)] +Ja [p(t)] Jo [(pgh) )]
2 [(oh) ()] J2 [(pa) ()] — JE [(p) (6] T [(pg) ()]

(26)
In (26), if we take p(t) = w(t)f(t), g(t) = h(t) =t — E(X), then we obtain

) t ot » y 2
F(a)F(ﬁ)[[ (t=7)"t=p)" " (r = p) w(n)w(p)f () f (p) drdp

=Jg [(wf)(®)] J7 [wf)(B) — BX)?]
+ I8 [whH®)] T [(wf)(B)E - BX))?] (27)
=272 [(wf)(#)(t = BQXO)] I [(wf)(B)(t - B(X))

=J¢ [(wh)()] 0% g () + JE [(w ()] 0% o (£)
—2Ex_p(x),aw (1) Ex—B(x),8,w (1) -

Let f € Lo ([a,0]). Then,

1 O // (t— T)a—l (t— p)ﬂ—l (1 — ,0)2 w(T)w(p)f (1) f (p)drdp

S g [ -7 =0 = 0wl uoldrds

— 1 72 [w(0] 72 [Puto)] + 2 [wlo)] g2 [Puto]

—2J¢ [tw(t)] J? [tw(t)]} :
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Using the fact that sup |(7 — p)‘2 = (t — a)?, it follows that

7,pEa,t]
tt
>ff (= )P wm)wlp) (7 — ) £ () £ (p) drdp
< \<r - /] L (t— )PV w(r ) f(r) () drdp
T,p€|a,t aa

( a)QJ [(w )()] 2 [(wh)(@)].

Thanks to (27) and (28), we obtain

T wh)®)] 0% g ) + T2 [(WhE)] 0% ()
—2Ex_p(x),0w (1) Ex—p(x),8,w (t)

<712 [Jg" [w®] JZ [Pw(t)] + ¢ [w(t)] I [Pu)]

—2J2 [tw(t)] JE [tw(t)ﬂ . (30)

(29)

By (27) and (29), we have

T [wh)()] 0% g () + J7 [(Wh(E)] 0% 0 (1)
= 2Ex_p(x),aw (1) Ex—B(x),8,0 (t)
< (t—a)*J¢ [(wh)(®)] JF [(wf)(®)] . (31)
QED

Remark 3. (i) : Applying Theorem 2 for a = 3, we obtain Theorem 1.
(71) : Taking w(t) = 1, a < t < b in Theorem 2, we obtain theorem 3.2 of [12].

The third main result is the following theorem which generalizes the second
part of Theorem 1. We have:

Theorem 3. Let [ be the p.d.f. of X on [a,b] and w : [a,b] — RT. Then
the following fractional inequality holds:

T [@N0] 0% s 0~ (Ex_px (1) < 50— a)* (2 [wh)(0)]).

fora>0anda <t <b.

PrROOF. Let | < h(t) < L and m < g(t) < M, with [,L,m,M € RT. For
a > 0 and for each a < t <b, by Theorem 3.1 of [9], we have

T [p(®)] Jg [(phg) 0] = Jg (k) )] I [(p9) (1)]
2
(Je [p()]) (L= 1) (M = m).

(33)
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In this above inequality, we replace h by g, we will have

<1 (Je o) O —m? . (39)

T2 [p®] 72 |(09?) ()] - (2 [pg (1)])?

By taking p(t) = w(t)f(t), g(t) =t — E(X), a <t < b in (34), we obtain:

(35)
In (35), we take M = b — E(X) and m = a — E(X), then we have

0 < J2 [(wf) (0] Jg [(wf) (1) (t = BX))?| = (U2 |w) (@) (¢ = B(X))))?
<3 o-a? (2 [(wh) @)])

(36)
which is clearly equivalent to the following inequality
2 2
T (@) ®)] 0% ) = (Bx—peamw ®) <3 0-a)? (12 () 0)])
(37)

Remark 4. Taking w(t) =1, a <t < b in Theorem 3, we obtain Theorem
3.3 of [12].

Another result is the following:

Theorem 4. Let f be the p.d.f. of the random wvariable X on [a,b] and
w : [a,b] = RY. Then for alla > 0,8 >0, a < t < b, the inequality

o [(wh) (O] 0% g () + T35 [(wF) (D] 0% ( 7f) +2(a— E(X))
x (b= E (X)) Jg [(wf) (0] I [(wf) (1)]
<(a+b— 2E(X))

x (2 [w) ()] Bx-poo,p (6) + J2 [(@h) ()] Bx_pxyan(®)), (38)

15 valid.

PRrOOF. We take p(t) = w(t)f(t), g(t) = t—E(X). Then, thanks to Theorem
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3.4 of [9], we can write

e [wh) @] 2 |(wh) 0 = BX))?] + 2 [(wf) ()] T2 [ wf) (@) -
—27g [(wf) ()¢t~ BOO)] JE [(wf) ()¢~ B(x))] |

B(X))?|

(39)

By (27) and (39) and taking into account the fact that the left-hand side of (27)

is positive, we can write

wf) (0)(t = BQO)] I [(wf) (1)(t ~ B(X))]
] = Je [(wh) ()t - BCO)] )
(t = B(X))] = mJ [(wf) (1)])
wf) ()t - B(X))] = mJg [(wf) (1))
x (M [(wf) (0] = 2 [(wh) @)t - BX))] ).

Therefore,

JE[(wf) (1)] 0% g () + JE (W) ()] 0% a0 ()
_2EX—E(X) ( )EX E(X )Bw(t
< (Mg [wh) )] = Bxpoa )
X (EX—E(X), 8w () — mJﬂ[ ) (t) )

]
+ (EX—E(X),a,w (t) —mJg [(wf) (1))

)
X (MJf [(wf) ()] — Ex— E(X)Bw(t))‘

()t~ B(X))?| + J2 [(wh) ()] Je | (wf) ()t~ B(X))?]

(40)

(41)
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This implies that

JE[(wf) ()] 0% g () + T [(wf) (H)] 0% a0 (t)
+2mM IS [(wf) ()] J2 [(wf) (t)]
< (M +m)

x (2 [(wh) (0] Bx—pox) s (6) + T2 (@) (0] Ex-px).am (1)) -

(42)

In (42), we take M =b— E(X), m = a — E(X). We obtain:

o [(wf) (O] 0% g (8) + IF [(wf) (1)] 0% 00 (D) +2 (@ = B (X))
x (b= E (X)) Jg [(wf) (0] I3 [(wf) (1)
S(a—l—b—QE )

X [Jél [(wf) ()] Ex—px),p0 @) + T2 [(wf) ()] Ex—px)aw (75)} . (43)

QED

Remark 5. If we take w (t) = 1,¢ € [a, b] in Theorem 4, we obtain Theorem
3.4 of [12)].

Next, we present the following five results for fractional w—weighted mo-
ments, where w is a positive continuous function defined on [a, b].

Theorem 5. Let X be a continuous random variable having a p.d.f. f :
[a,b] — RT. Then, for any a <t <b and a > 0, the following two inequalities
hold:

ch [(wf) (t)] EXT—l(X—E(X)),a,w (t) - EX—E(X),a,w (t) Mrfl,a,w (t)

< I [Je [w@] Jg [ru)] - Jg [w®)] J¢ [ w]], f € Loolab
(44)
and

Jg [(wf) (t)] EXr—l(X,E(X))@,w (t) — EX—E(X),a,w (t) M 10w (t)

<lt—a)(tr—a ) (Jg [(wf) (t)])z, a>0 a<t<b. (45)

PROOF. In (17), we choose p(t) = w(t)f(t), g(t) = t—E(X) and h(t) = t"L.
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So, we obtain

i [ [ = =) (7 =) wlee) i

=272 [(wf) (0] Jg [t = B(X)) (wf) (1)
208 [(t— BCO) (wf) ()] T2 [0 (wf) (1)
=2J; [(wf) (t )] Eerl(XfE(X)),a,w (t)

-2 <EX—E(X),a,w (ﬂ) Mr—l,a,w (t) :
(46)
We use the fact f € Lo ([a,b]), we can write

tt

— ) = p)* T (r = p) (T = pr ) wir)w(p) £ () f (p)drdp

aa

<712, maﬁﬁ—f (¢ = 9" (r = p) (77 — =) wlr)w(p)drdp

= IF1% [27 [w®)] Jg [rre(®)] - 27g [w(®)] Jg [ w(e)] ]

(47)
By (46) and (47), we have

Ja [(wf) (t)] Exr—l(xfE(X)),mw (t) — (EX—E(X),a,w (t)) M 1,00 (t)

48
< IA12, I8 [w(®)] Jg [tru(®)] = g [tw(®)] Jo [ e@)]]. o

Since sup [|7—p||[7" = p ] = (t—a) ("' —a"'), then we observe
7,pEa,t]
that

FQl(Oé) {[ ) 1 (1 —p) (7-7"71 — prfl) w(T)w(p)f(T)f(p)drdp
< sup “7- R e

T,p€la,t]
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Thanks to (46) and (49), we obtain

T [0 F) (0] B (xpy s (1)~ (Bx-pe0,am () Mecvaw () 50
< (t—a) (1 =) (g [wh) 0)*
QED

Theorem 6. Let X be a continuous random variable having a p.d.f. f :
[a,b] — RT. Then we have:
(I*): For any a > 0,8 > 0,

J& [(wf) (#)] EX"*l(X—E(X)),B,w (t)+ J& [(wf) (t)] EXT*l(X—E(X)),a,w (t)
—Exaw () Mr-1,80(t) — Ex,gw (1) Mr—1,0,u(t)
< 0% [Je w®)] 2 [Erw(®)] + J2 [w(t)] Jg [ru(®)]
—J2 [tw(t)] JE [ w(t)] — T8 [tw(t)] T [t?”—lw(t)ﬂ ,a<t<b,

(51)
where f € Lo [a,b].
(II*): The inequality
Je [@h) (O] Bxrr(x—p(x)) g t) +Ja [(wf) (1)) Ex (X B(X)) 0w ()
_EX,a,w (t) M; ,8 w(t) EX,B (t) M, o w(t)
< (t—a) (=t —am ) I [(wf) (0)] JE [(wf) (1)], a <t <b, )
52

is also valid for any a > 0, > 0.
PROOF. In (26), we take p(t) = w(t)f(t), g(t) =t — E(X), h(t) =t"L. So,
we get

1 1 T a— - r— r—
ST / / (t=7)" (=) )T = p) (7= ) w(nw(p)f()f (p) drdp

+J7 [wh) ®)] I |74 = B(0) (wf) ()]
= Je [t = B(X)) (wf) (0] J¢ [ wf (o))
—J2 (- B(X) (wf) (0] ¢ | (
=Jg [(wf)( )] X (X-E(X)),Bw (t)

+ I8 [@F) O] Bxes (x-5x)) o )

= Exaw (t) Mr—1,80(t) — Ex g (t) Mr—1,0,0(t)-
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We have also

<% wy /S @ =) = p)7 (7= p) (7 = p ) w(r)w(p)drdp
= A1, [z [w(e)] 2 [trw(®)] + 2 [w(®)] Jg [tw(®)

|
— JC [tw(®)] JE [t w(t)] — J8 [tw(t)] J¢ [t’"*lw(t)ﬂ :

(54)
By (53) and (54), we obtain (51).
To prove (52), we remark that

o1 o _ 1
F(a)F(B)Z[ t—71) Lt = )L w@)w(p)(r — p) (T L—p 1) f(m)f(p)drdp

<ap ool =
T,p€at]
t t
1 _
W / / )P w(r))w(p) (£ (p)drdp

~(t—a) (tr e PAICHIOIFATIICIE
(55)

Therefore, by (53) and (55), we get (52). This ends the proof of Theorem 6.

QED

Theorem 7. Let X be a continuous random wvariable having a p.d.f. f :
[a,b] — R*. Then, for all a > 0, we have:

T [0 F) (1)) Marao(t) = M2ou(0) < 7 (7 —a')? (J¢ [(wf) (0)])

a<t<b. (56)

=

PROOF. We use the same arguments as in the proof of Theorem 3 by taking
p(t) =w(t)f(t),g(t) =t", a<t<b,m=a" and M =1".

Theorem 8. Let X be a continuous random variable having a p.d.f. f :
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[a,b] — R*. Then, for all « > 0,5 > 0, we have:

J& [(wf) (4)] Marga(t) + T2 [(wf) ()] Mopa,w(t)
+2a"b"J¢ [(wf) (8)] JE [(wf) (t)]

< (a"+ ") I [(wf) (O] Mrpu(t) + 7 [(wf) (8)] Mraw(t),
a<t<b. (57)

PrROOF. We use the same techniques as in the proof of Theorem 4 by letting
p(t) =w(t)f(t), g(t) =t",a<t<b, m=a" and M =10".

Theorem 9. Let X be a continuous random variable having a p.d.f. f :
[a,b] = RY such that m < f < M, m, M, are positive real numbers. Then for
a > 0, the following inequality holds:

‘ (t(aj-)l)Mrozw( ) - Jg [f(t)] J& [trw(t)]‘

1

<M(M_m)<( DT [t ()] - (2 [trw(t)})2)2> a<t<b.

> 30(a+1) T(a+1)
(58)
PrOOF. Using Theorem 3.1 and lemma 3.2 of [11], we can write
fei e [(fo) ()] = T2 [£(8)] J2 [9)]|
(t-a)® (t-a) 2 (59)
< el (= m) ({58572 [920)] - (e [o0)])?)
Taking g(t) = w(t)t", a <t < b, we obtain
{Es e [ (Fw) ()] = T2 [£(8)] g [trw )| “
< st M —m) (£ e [Brwto)] - (e [re@])?)
This implies that
2 M aut) = Jg [F(8)] T2 [tr()]| o
< Sl (M —m) (fe e (e )] - (g [Fw®])?)”
QED

To end this section, we give the following theorem.
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Theorem 10. Let X be a continuous random variable having a p.d.f. f :
[a,b] = R, m < f < M. Then, for alla > 0,8 >0, a <t <b, we have:

(t—a)® (t—a)’
mMr,ﬁ,w(t) + mMr,a,w (t)
— JELFWO)] JD [Fwt)] = T2 [f(1)] I [trw(t)]
t—a)® 5 _(t—a)
<|(Mrgyp FHOIRRRANG) MEET)

Proor. Taking ¢(t) = w(t)t", a < t < b, and using Theorem 3.3 and Lemma
3.4 of [11], we can obtain (62). QED

Remark 6. Applying Theorem 10 for @ = §, we obtain Theorem 9.

4 Applications

We present some fractional applications for the uniform random variable X
whose p.d.f. is defined for any x € [a,b] by f(z) = (b—a)~L.
Case 1: Taking w(z) = 1,z € [a, ], we can obtain:
al: Fractional Expectation of Order a:

_ —1[ (=)t | a(b—a)*].
Exa1=(b-a) 1[ Tat2) T Tty }¥ =1 (63)

Note that if we take o = 1, then we get:
Exqq = %% = E(X). (64)

bl: Fractional Moment of Orders (2, a):

Mool gt o) Sl o ()

Ex2a1 = [(a+3) T'(at2) (at1) T(at1)

Taking o = 1, we obtain the classical moment of order 2:

By = 4 = p(x?), (66)
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cl: Fractional Variance of Order «:
By simple calculations, we obtain

don = S+ 20y + ) - S a1, (67)

9X,a,1 = "T(at3) T(a+2) C(a+1) T(a+1)

which corresponds, for a = 1, to the classical variance of the uniform distribu-
tion X.

Case 2: Consider w as an arbitrary positive function on [a, b] and apply Theo-
rem 1, we obtain the following fractional estimation on ox q u:

1
b—a
W[Z (b_T)a_l (7' - E(X))w(T) d’7‘:|2 + % (JgY [w(b)])2.

I [w(®)] 0% a0 <
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