
Note di Matematica 28, suppl. n. 1, 2009, 349–376.

Intrinsic torsion varieties

Georgi Mihaylov
Dipartimento di Matematica, Università di Torino,
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Introduction

At each point of an even-dimensional oriented Riemannian manifold M ,
the set of compatible complex structures is parametrized by the coset space
Zn = SO(2n)/U(n) that is in fact Hermitian symmetric. The fact that Zn
is a complex manifold is particularly significant. For example, it leads to the
definition of twistor spaces [3, 8], and invariant Hermitian structures on a par-
allelizable manifold are typically described by a complex subvariety of Zn [1].

The fact that Zn is a symmetric space may be less significant. One can easily
conceive of other subgroups H and homogeneous spaces SO(n)/H with which
to classify geometrical structures on a Riemannian manifold. However, amongst
these, the coadjoint orbits appear to have a privileged role, since they are si-
multaneously complex and symplectic manifolds. The resulting theory retains
some features of the almost-Hermitian case, which it is the goal of this essay to
generalize when n = 3.

In six real dimensions, the coset space Z3 is isomorphic to complex projective
space ��3, arising from the double covering of Lie groups SU(4) → SO(6). As
a consequence, we consider geometrical structures associated to other coadjoint
orbits for SU(4), or equivalently SO(6). In particular, we shall discuss those
almost-product structures that arise from the Grassmannians

	r2(�6) =
SO(6)

SO(2)×SO(4)
∼= U(4)

U(2)×U(2)
= 	r2(�4).
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350 G. Mihaylov, S. Salamon

We shall also consider ‘mixed’ structures parametrized by the flag manifold
SO(6)/(U(2)×SO(2)), and in essence previously discussed by Blair [6].

One reason for focusing on a coadjoint orbit O is that such a space can be
understood by means of a moment mapping τ : O → �3 induced by the action
of the maximal torus T 3 of SU(4) or SO(6). It is well known that the image
of τ is a convex polytope, and one of the more symmetric ones is illustrated in
Figure 2 in Section 5. A good reference for a study of examples in our situation
is [12], and this book also helped to motivate the present study.

This article is based on [19], whose aim is to convert an understanding of
the relevant polytopes into various results concerning the underlying differential
geometry. One series of indicative results concerns the classification of invari-
ant structures on nilmanifolds by means of varieties representing ‘null-torsion’
classes. This is explained at the end of both Sections 4 and 5.

1 Riemannian pre-holonomy

In this section, we summarize the preliminary theory that forms the back-
bone of this article, and motivate the discussion with simple examples.

1.1 Structure groups

Consider a closed subgroup H ⊂ SO(n). Although we have chosen the letter
‘H’ to stand for ‘holonomy’, one can more readily contemplate examples in which
there is merely a topological reduction of the structure to H. Algebraically, at
each point, such reductions are parametrized by the homogeneous space R =
SO(n)/H (‘R’ for reduction), whose elements are left cosets gH with g ∈ SO(n).

Now let M be an oriented Riemannian manifold of dimension n. It possesses
a principal SO(n)-bundle P of oriented orthonormal frames. An H-structure on
M is a section s of the associated bundle

P/H⏐⏐⏐⏐� R

M

(1)

with fibre R. An element of P/H is determined by an equivalence class [p,H] =
[pg, g−1H] with p ∈ P and g ∈ SO(n); it is unchanged when p is replaced by ph
with h ∈ H.

The Levi Civita connection induces a horizontal distribution on this bundle
that can be used to interpret geometrically the covariant derivative ∇s. Indeed,
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its value at a point m ∈M can be regarded as a linear map

∇s : TmM → Vs(m),

where Vs(m) denotes the tangent space at s(m) to the fibre π−1(m). The image
of X ∈ TmM is denoted ∇Xs and can be identified with the vertical component
of s∗X complementary to the horizontal space Hs(m).

The quantity ∇s represents the intrinsic torsion tensor of the H-structure.
Fixing a frame p ∈ P allows us to identify the tangent space Vs(m) with h⊥,
relative to the orthogonal sum

so(n) = h⊕ h⊥.

This in turn enables us to view (∇s)m as an element

ξm ∈ �n ⊗ h⊥.

Moving from point to point, the associated tensor ξ measures the failure of
the Levi Civita connection to reduce to the H-structure s. This point of view
is explained in [22]. A more recent interpretation of conditions defined by the
vanishing of components of ξ in terms of ‘energy’ is given in [10].

1.2 Six dimensions

The focus of this article will be on subgroups H of SO(6). The possible
holonomy groups of an (oriented and simply-connected) irreducible Riemannian
6-manifold (excluding SO(6) itself) are

U(3), SU(3), SO(2)×SO(3). (2)

The subgroup U(3) is the linear holonomy group of the complex projective space

��3 =
SU(4)/�4

U(3)
,

and also the holonomy group that characterizes a generic complex 3-dimensional
Kähler manifold. When the latter has zero Ricci tensor, its holonomy reduces
(at least locally) to SU(3) and this is the basis for Calabi-Yau (CY) geometry. In
this sense, a real 6-manifold with a U(3) structure is ‘pre-Kähler’ (traditionally,
it is called almost-Hermitian), and one with structure SU(3) is ‘pre-CY’.

The last subgroup of (2) equals the stabilizer of the Grassmannian

	r2(�5) =
SO(5)

SO(2)×SO(3)
, (3)
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352 G. Mihaylov, S. Salamon

a symmetric space with the same real homology as (but not homeomorphic to)
��3. A given tangent space of the manifold (3) can be identified with the tensor
product �2⊗�3 of the basic representations of the isotropy factors SO(2), SO(3).
However, this representation does not appear in Berger’s list of irreducible non-
symmetric holonomy groups [5], and SO(2)×SO(3) can only arise as the holon-
omy of a manifold locally isometric to 	r2(�5) or its non-compact dual.

For each group H in (2), we are at liberty to consider the homogeneous
space R = SO(6)/H featuring in (1). It is remarkable that in the first case, the
resulting manifold SO(6)/U(3) can again be identified with ��3. This follows
from the well-known isomorphism Spin(6) ∼= SU(4). There is then a double
fibration

��7 =
SO(6)
SU(3)

SO(6)
SO(2)×SO(3)

↘ ↙

��3 =
SO(6)
U(3)

(4)

in which the respective fibres have real dimensions 1 and 5.
Of course, the real projective space ��7 is an S1-bundle over ��3; the S1

(or better, ��1) parametrizes those real lines contained in a given complex one.
The importance of ��7 in the theory of Riemannian structures derives from
the fact that it is also isomorphic to SO(7)/G2 (exploited in [9]). But the lat-
ter is an irreducible Riemannian space of the sort classified in [25], whereas
SO(6)/SU(3) has reducible isotropy. The top right-hand space in (4) also has
reducible isotropy; its generic tangent space splits into a 6-dimensional horizon-
tal part duplicating that of ��3 and a vertical part, tangent to the symmetric
space U(3)/(SO(2)×SO(3)) ∼= SU(3)/SO(3).

1.3 An algebraic example

To see that Zn = SO(2n)/U(n) is a symmetric space, one can proceed as
follows.

An element of so(2n) is a skew-symmetric matrix. Such a matrix A can be
decomposed as

A = U + V, U = 1
2 (A− JAJ), V = 1

2(A + JAJ),

the point being that JU = UJ and JV = −V J . Of these two equations, the
former defines u(n) as a Lie subalgebra of so(2n), and we can write

so(2n) = u(n)⊕m, (5)
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with U ∈ u(n) and V ∈ m.
We need merely observe now that if V1, V2 anti-commute with J then their

Lie bracket [V1, V2] = V1V2 − V2V1 commutes with J . In symbols,

V1, V2 ∈ m ⇒ [V1, V2] ∈ u(n),

and this is exactly the condition that makes (5) an involutive Lie algebra. For
the endomorphism σ : so(2n) → so(2n) acting as +1 on u(n) and −1 on m

satisfies
[σ(A1), σ(A2)] = [A1, A2],

and is a Lie algebra automorphism. It integrates to give the involutive symmetry
on Zn.

We remark that if Λ1,0 = �n denotes the standard representation of U(n)
then m ∼= [[Λ2,0]], meaning that the complexification of m is isomorphic to the
second exterior power

∧2(Λ1,0) plus complex conjugate. This space (of 2-forms
anti-invariant by J) figures largely in Section 4.

2 Coadjoint orbits

Here we summarize some well-known theory that is a meeting point for com-
plex and symplectic geometry. We illustrate it with familiar geometry underlying
complex 4-space.

2.1 Symplectic and complex structure

Let G be a compact simple Lie group, and g its Lie algebra. The group G
acts on g via the adjoint representation

Ad : G→ Aut(g),

and we shall also use Ad to denote the dual action defined by

(Ad(g)(α))(A) = α(Ad(g−1)A), A ∈ g, α ∈ g∗.

We shall adopt the notation

Oα = {Ad(g)(α) : g ∈ G}
to denote the orbit containing some fixed element α ∈ g∗, omitting the subscript
α if there is only one orbit under consideration.

Now let O = Oα ⊂ g∗ denote a coadjoint orbit, and let β be a typical point
of O. Any element A ∈ g induces both a function Aˇ on O (whose value Aˇ(β)
at β is β(A)), and a fundamental vector field A∗ (whose value is induced by
differentiating Ad(g(t))β where g′(0) = A). The following result is well known.
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1 Proposition. The prescription ω(A∗, B∗) = [A,B ]̌ defines a symplectic
form on O, called the Kostant-Kirillov-Souriau (KKS) form.

We can use the inner product defined by (minus) the Killing form to identify
g and g∗, and the Lie algebra t of a maximal torus T with t∗. It is well known that
any coadjoint orbit intersects t∗, and we shall see an example of this from first
principles in the first part of Section 3. The residual adjoint action preserving
t∗ gives rise to the finite Weyl group W = N(T )/T , and so it suffices to take
α to lie in a fundamental Weyl chamber (FWC), i.e. a fundamental domain for
the action of W on t∗. Points α in the interior give rise to the ‘principal’ or
generic orbits G/T with stabilizer T , whereas points on the boundary give rise
to lower-dimensional orbits.

Now let G = SU(n), and take T to be the subset of diagonal matrices with
entries

(eiθ1 , eiθ2 , · · · , eiθn),
n∑
i=1

θi = 0.

The above considerations then lead to the fact that any coadjoint orbit for
SU(n) is diffeomorphic to one of the complex flag manifolds

SU(n)
S(U(n1)× · · · × U(nk))

, n =
k∑
i=1

nk. (6)

We can of course remove the ‘S’ (the restriction to unit determinant) top and
bottom, without changing the spaces.

The manifold (6) represents the set of Hermitian direct sums

�n =
k⊕
i=1

Vi, dimVi = ni.

There are many ways in which such a splitting defines a flag, for example by
selecting

{0} ⊂ V1 ⊂ V1 ⊕ V2 ⊂ V1 ⊕ V2 ⊕ V3 ⊂ · · · ⊂ �n.

Making such a choice immediately endows (6) with the structure of a complex
manifold, but this is not always appropriate because a typical orbit has many
inequivalent such structures.

At this juncture, we briefly formulate the Borel-Weil theory that provides a
link between coadjoint orbits and representations of a compact group G.

The (isomorphism classes of) complex irreducible representations of G are
in one-to-one correspondence with the so-called dominant weights lying in an
FWC. Such a weight λ : t → � is effectively a simultaneous eigenvalue for the
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action of the maximal torus T . For U(n), the dominant weights are n-tuples of
the form

(a1, a2, · · · , an), a1 � a2 � · · · � an.

The complex vector space Vλ associated to λ (upon which G acts) contains a
eigenvector vλ with eigenvalue λ.

2 Theorem. The coadjoint orbit Oλ can be identified with the orbit of [vλ] in
the complex projective space �(Vλ), and has the structure of a Kähler manifold.

The so-called Borel-Weil theorem goes on to asserts that Vλ is isomorphic
to the space of holomorphic sections over Oλ of the standard line bundle O(1)
pulled back from �(V ).

2.2 Examples for SU(4)

The theory that relates the various coadjoint orbits can be quickly grasped
by considering the first case that is not straightforward, namely n = 4.

Consider the diagram

U(4)
U(1)×U(1)×U(1)×U(1)⏐�

U(4)
U(2) × U(1) × U(1)

↙ ↘
U(4)

U(3)× U(1)
U(4)

U(2)× U(2)

(7)

The top space is the ‘full flag manifold’ equal to SU(4)/T 3, where T 3 is a
maximal torus of SU(4). A complex description would be SL(4,�)/B, where B
is the Borel subgoup of upper triangular matrices. The middle space belongs to
the family

Fn =
U(n + 2)

U(n)×U(1)×U(1)

of flag manifolds studied in [16], itself motivated by an example of distinct
complex structures on F2 [7]. We set F2 = F . All the coadjoint orbits featuring
in (7) have symplectic forms compatible with the partial ordering visible [12].
Moreover, the action of T 3 will provide a moment map of each space to �3 that
we shall study in Section 5.

The spaces on the bottom line of (7) are (left) ��3 and (right) 	r2(�4). The
latter can be identified with a complex quadric Q (the so-called Klein quadric)
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in ��5 as follows. Let V = �4. A 2-dimensional subspace of V is completely
determined by the projective class [u ∧ v] of a nonzero simple (decomposable)
2-form u ∧ v ∈ ∧2

V . But it is easy to see that an arbitrary element σ ∈ ∧2
V

is simple if and only if σ ∧ σ = 0; this is a non-degenerate quadratic equation
in σ and defines the quadric Q in ��5 = �(

∧2
V ). Moreover, one may regard

the inclusion Q ⊂ �(
∧2

V ) as arising from Borel-Weil theory via the irreducible
representation

∧2
V .

The lower triangle of (7) gives rise to the well-known Klein correspondence
of projective geometry, whereby a point [σ] = [u∧ v] of 	r2(�4) is associated to
the line 〈u, v〉 in �(V ) = ��3, and a point [v] of �(V ) determines a (so-called α)
plane {[v ∧w] : w ∈ V } in 	r2(�4). A different family of (so-called β) planes in
	r2(�4) consists of those of the form �(

∧2
U) where �(U) is a projective plane

in �(V ), or equivalently a point in the dual space �(V )∗.
To sum up,

3 Lemma. In the Klein correspondence,
(i) Q = 	r2(�4) parametrizes ��1’s in ��3,
(ii) A point x ∈ ��3 determines a plane Πα

∼= ��2 in Q,
(iii) A point y ∈ (��3)∗ determines a plane Πβ

∼= ��2 in Q.

One of our aims is to re-interpret this lemma in terms of structures on �6,
and in turn Riemannian 6-manifolds.

Penrose studied the Klein quadric with SU(2, 2) in place of SU(4), and the
resulting field theory was generalized to arbitrary flag manifold in [4]. We should
also remark that F is an example of a 3-symmetric space, much used in the
theory of harmonic maps [17, 8].

3 Orthogonal geometries in six dimensions

The purpose of this section is to replace the Lie group SU(4) by its finite
quotient

SU(4)/�2
∼= SO(6), (8)

and use this to translate the theory of coadjoint orbits into statements about
2-forms on �6. This point of view is then perfectly tailored for a discussion of
geometrical structures on 6-dimensional Riemannian manifolds.

3.1 Orbits of 2-forms

We shall not need to make the isomorphism (8) explicit, though this can
easily be done without resorting to Clifford algebras (see, for example, [1]). It
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is convenient instead to start from the isomorphism

so(6) ∼= ∧2(�6)∗

that identifies (via the metric) skew-symmetric endomorphisms with 2-forms. A
coadjoint orbit for SO(6) then becomes an orbit for the natural action of SO(6)
on 2-forms. Given α ∈ ∧2(�6)∗, we can use our usual notation

Oα = {g∗(α) : g ∈ SO(6)} ∼= SO(6)
H

for the orbit containing α. Since we are using forms (rather than vectors) it is
customary to regard the group action as a contravariant one (hence the asterisk).
The type of the orbit is determined by the conjugacy class of the stabilizer H.

Fix an orthonormal basis (e1, . . . , e6) of (�6)∗. We shall indicate the 2-form
ei ∧ ej by eij .

4 Lemma. Any element ω ∈ ∧2(�6)∗ lies in the SO(n)-orbit of

ae12 + be34 + ce56

for suitable a, b, c ∈ �.

Proof. A parameter count already suggests that this is accurate. The
generic orbit SO(6) has 3-dimensional stabilizer T 3, and a, b, c provide the in-
variants that distinguish the orbits. As for the proof, this is a restatement of
a standard diagonalization theorem. Relative to the fixed metric, the form ω
defines a skew-symmetric matrix A. Let

e1 + ie2, e3 + ie4, e5 + ie6

be a unitary basis of eigenvectors of the Hermitian matrix iA (so that the ek

are real vectors belonging to �6). Then

iA(e1 + ie2) = λ(e1 + ie2), λ = λ1 ∈ �.

Thus Ae1 = λe2 and Ae2 = −λe1. In this way, one may identify A with

3∑
k=1

λke
2k−1 ∧ e2k ∈ ∧2(�6)∗.

We can now apply a suitable element of SO(6) to convert the orthonormal basis
(ek) obtained from the eigenvectors to the one that was pre-assigned. QED
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Referring to the lemma, we distinguish four separate cases:
(i) a, b, c are distinct, for example

ω1 = e12 + 2e34 + 3e56,

ω2 = e12 + 2e34.

(ii) exactly two of a, b, c coincide up to sign, and at most one is zero, for example

ω3 = e12 + e34 + 2e56,

ω4 = e12 + e34,

ω5 = 2e12 + 2e34 + e56.

(9)

(iii) all three of a, b, c coincide up to sign, for example

ω6 = e12 + e34 + e56

ω7 = e12 − e34 − e56.
(10)

(iv) two of a, b, c are zero, for example

ω8 = e56. (11)

These four cases give rise to the four types of coadjoint orbits corresponding
to (7). Irrespective of the choice of 2-form in each case, the respective stabilizers
and orbits are
(i) H ∼= SO(2) × SO(2)× SO(2), O ∼= SO(6)

T 3
;

(ii) H ∼= SO(2)× U(2), O ∼= SO(6)
U(2)× SO(2)

;

(iii) H ∼= U(3), O ∼= SO(6)
U(3)

= Z3;

(iv) H ∼= SO(2) × SO(4), O ∼= SO(6)
SO(2) × SO(4)

∼= 	r2(�6).

A comparison with (7) yields the isomorphism

Z3
∼= ��3 (12)

mentioned in the Introduction, as well as the equivalent descriptions

	r2(�6) ∼= 	r2(�4)

of the Klein quadric. An analogous isomorphism

	r2(�8) =
SO(8)

SO(2)×SO(6)
∼= SO(8)

U(4)
= Z4
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is worth recording, but is not relevant to the present discussion.
Let us justify the stabilizer in (ii), using ω4 = e12 + e34. This determines,

in the presence of the fixed metric, a linear transformation �6 → �6 with
kernel

〈
e5, e6

〉
. But ω4 also determines a complex structure on the subspace〈

e1, e2, e3, e4
〉
, and so an orientation on

〈
e5, e6

〉
. Hence ω4 determines simple

forms e56 and e1234, the stabilizer is SO(2) × U(2) and the resulting coadjoint
orbit has real dimension 10.

We can now replace (7) by the following diagram, which is more friendly for
the Riemannian geometer working in six dimensions. After displaying that, we
discuss the geometrical structures associated to these spaces.

SO(6)
T 3⏐�

SO(6)
SO(2)× U(2)

↙ ↘

SO(6)
U(3)

SO(6)
SO(2)× SO(4))

(13)

3.2 Almost-Hermitian and almost-product structures

Consider first the two spaces in the bottom line of (13). We know that (12)
parametrizes complex structures J on �6, orthogonal relative to the standard
inner product or metric g . Thus J2 = −1 and

g(Ju, Jv) = g(u, v), u, v ∈ �6. (14)

We shall call such a J an orthogonal complex structure (OCS), noting that in the
present context this is a purely algebraic concept. We shall address questions of
integrability later.

From a certain point of view, it is simpler to begin with the Grassmannian
	r2(�4) that parametrizes oriented 2-dimensional subspaces of �6. Denote such
a subspace by V and its orthogonal complement by H = V⊥. Then 	r2(�4)
effectively parametrizes orthogonal direct sums

�6 = V⊕H, dim V=2, dim H=4. (15)

We can characterise this splitting by means of the endomorphism P that acts as
1 on V and as −1 on H. Then P 2 = 1 and (14) is valid with P in place of J . We
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shall call the endomorphism P an orthogonal product structure (OPS), though
we have one extra input, namely each summand of (15) is oriented. The choice
of notation reflects the fact that (soon) the two summands will be regarded as
vertical and horizontal spaces respectively.

In practice, we prefer to specify our oriented OPS by means of the simple
form

α = e ∧ f,

formed from an oriented orthonormal basis (e, f) of the defining subspace V.
Note that changing the sign of α changes the orientation on V and so the
SO(2)× SO(4) structure.

3.3 The intermediate case

We now move upwards in (13) to consider the coadjoint orbit in (ii) that
we shall continue to denote by F . A point of F determines both an OCS
and an OPS by means of the projections in (13). The resulting endomorphisms
commute in the sense that JP = PJ , which amounts to saying that J preserves
the splitting (and so the summands in) (15). The restriction of J to H reduces
the associated structure group SO(4) to the unitary subgroup U(2).

For the purpose of this essay, let us say that a mixed structure on a smooth
6-manifold N is a reduction of structure group from GL(6,�) to SO(2)×U(2).
If we fix the Riemannian metric and overall orientation of N from the outset,
a mixed structure is determined by a section s of (1) in which R = F , or by a
rank 4 distribution H equipped with an almost-complex structure. We can then
obtain a pair (J, P ) and write

V = [[V1,0]], H = [[H1,0]]

in standard notation [23]. A mixed structure is closely related to the type of
structures studied by Blair in [6].

We are now in a position to reinterpret the Klein correspondence.
One expects a point of 	r2(�6), i.e. a splitting (15), to define a ��1 family

of OCS’s on �6. An element J in this family is constructed as follows. The
induced metric and orientation of V determines the restriction J |V, but a choice
is needed to extend J to the oriented vector space H ∼= �4. An OCS on the
latter is an element of the space

Z2
∼= SO(4)

U(2)
∼= ��1,

that can also be identified with the 2-sphere

S2 ⊂ Λ2
+H

____________________________________________________________________________



Intrinsic torsion varieties 361

of unit self-dual 2-forms on H. Having made the choice, the resulting pair (J, P )
is effectively an element of F .

Working backwards, a point J ∈ Z3 determines a complex projective plane
consisting of all complex lines in the complex 3-dimensional vector space (�6, J).
Given any such complex line, we let V denote the underlying oriented real 2-
dimensional subspace and H its orthogonal complement; in this way we recover
(15). But actually we could have also chosen the space V, namely V with its
opposite orientation, and this procedure defines a different plane ��2.

To sum up,

5 Lemma. Under the Klein correspondence,
(i) Given an oriented splitting (15), there is a 2-sphere of compatible OCS’s,
parametrized by S2 ⊂ Λ2

+H,
(ii) Given an OCS J , we have the J-invariant 2-planes 〈v, Jv〉,
(iii) Given J , we also have the oppositely-oriented 2-planes 〈v,−Jv〉.

In Section 4, we shall see how these correspondences translate into ones
between intrinsic torsion tensors.

3.4 Integrability

Having defined various Lie subgroups of SO(6) and orbits SO(6)/H, it is
easy to cook up corresponding 6-manifolds endowed with such H-structures.
The case of almost-Hermitian manifolds and metric almost-product manifolds
is well understood. In preparation for the next section, we shall instead say
something about the mixed structures à la Blair defined by the intermediate
flag manifold F .

To show that the concept of a mixed structure is useful, and to motivate the
next section, we propose the

6 Definition. Let us say that a mixed structure on a 6-manifold N is doubly
integrable if (N,J) is a complex manifold and the rank 2 ‘vertical’ distribution
V is integrable.

Equivalently, (by the Newlander-Nirenberg theorem) the Nijenhius tensor
of J is everywhere zero, and (by the Frobenius theorem) [X,Y ] ∈ V whenever
X,Y are themselves sections of V. The local model is then a fibration

N⏐⏐� π

M

(16)
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with a 4-dimensional base manifold M , which may or may not be a complex
manifold (whereas N is complex, by hypothesis).

This situation captures two very different classes of examples:
(i) N is a holomorphic bundle over a complex surface, including elliptic fibrations
(fibre T 2) of importance in deformation theory. A key example is the Iwasawa
manifold N = Hc/Γ over M = T 4 as base, Hc being the complex Heisenberg
group.
(ii) M4 has an anti-self-dual conformal structure (so the half Weyl+ of the Weyl
tensor vanishes), and N ⊂ Λ2

+T ∗M is its twistor space [3]. Each S2 fibre is a
rational curve with normal bundle O(1)⊕O(1). There are two model examples:

��3 =
SO(5)
U(2)

� =
SU(3)

T 2

↓ ↓

S4 =
SO(5)
SO(4)

��2.

We can state two important theorems relating to these two classes. The
following stability result was proved in [14] and generalized in [21].

7 Theorem. Any invariant complex structure � on the Iwasawa manifold
N arises from one, say J , on T 4 and an induced complex structure j on the T 2

fibre that is determined by J .

This and similar examples typically possess bi hermitian structures [2].
Concerning (ii), the following theorem was proved by Hitchin [13].

8 Theorem. Any Kähler twistor space is either ��3 or �.

This result has many generalizations based on the characterization of differ-
ent types of twistor spaces.

4 Intrinsic torsion

Let H be one of the four isotropy groups considered in (13). In this section,
we give an overview of the classification of Riemannian 6-manifolds with an
H-structure by means of intrinsic torsion. This leads to the established tactic of
classifying H-structures for which one or more of the irreducible components of
ξ vanish. The classification of such ‘null-torsion’ structures on a fixed paralleliz-
able manifold is described by subsets of R = SO(6)/H, which are the intended
varieties of the essay’s title.
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4.1 Mixed torsion

To start the ball rolling, we shall explain how to compute the intrinsic torsion
for the subgroup H = SO(2)× SO(4). Relative to this, and (15), we have

so(6) ∼= ∧2(V⊕H) =
∧2

V⊕ (V ∧H) ⊕∧2
H

∼= so(2)⊕ so(4)⊕ (V⊗H).

As expected, the last summand can be identified with the tangent space of the
coadjoint orbit R = 	r2(�6).

The intrinsic torsion tensor ξ lies in

�6 ⊗ h⊥ ∼= (V⊕H)VH

∼= VVH ⊕ HHV

∼= V⊕H ⊕H ⊕H S2
oV⊕ VS2

oH ⊕ VΛ2
+H ⊕ VΛ2−H,

(17)

omitting some tensor product symbols. We have seven irreducible components,
of respective dimensions 2, 4, 4, 8, 18, 6, 6, and two are isotypic. This decompo-
sition was essentially carried out by Naveira in his classification of O(p)×O(q)
structures [20]. He lists a total of 36 classes for a general pair (p, q).

The situation for U(3) structures is perhaps better known, and produces
the celebrated 16 classes in the Gray-Hervella classification of almost-Hermitian
structures [11]. For this case, h⊥ is isomorphic to the space m mentioned at the
end of Section 1, and we obtain the well-known isomorphism

�6 ⊗ h⊥ ∼= [[Λ1,0]]⊗ [[Λ2,0]]

∼= [[Λ1,0⊗Λ1,0]] ⊕ [[Λ1,0⊗Λ0,2]]

∼= W1 ⊕W2 ⊕ W3 ⊕W4,

(18)

in which the intrinsic torsion space has four irreducible components (of respec-
tive real dimensions 2, 16, 12, 6).

One can carry out the same operation for each stabilizing group H in (13),
and come up with the table in which the third column represents the decompo-
sition of the tangent space of our 6-manifold, and ‘#’ stands for the number of
H-irreducible summands in �6 ⊗ h⊥.
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H dimR �6 #

U(3) 6 [[Λ1,0]] 4

SO(2)×SO(4) 8 [[V1,0]]⊕H 7

SO(2)×U(2) 10 [[V1,0]]⊕ [[H1,0]] 16

T 3 12 [[V1,0
1 ]]⊕ [[V1,0

2 ]]⊕ [[V1,0
3 ]] 36

This uniform approach allows one to interrelate intrinsic torsions for the
various structures, and interpret the results geometrically. In particular,

9 Proposition. The intrinsic torsion tensor of a mixed structure is deter-
mined by (knowledge of both) the intrinsic torsion tensors of the associated OCS
and OPS.

Proof. The idea is very simple. The mixed structure is completely deter-
mined by the endomorphism J +P , acting with eigenvalues i + 1, i− 1, −i + 1,
−i− 1 on the complexified tangent space. Its intrinsic torsion is then computed
as ∇(J + P ) = ∇J +∇P , and the result follows. QED

We can understand the distribution of the various torsion components in
terms of the double fibration in (13). Each of the three intrinsic torsion tensors
in question lies in the space �6 ⊗ h⊥, where h is to all intents and purposes the
tangent space to (respectively) ��3, 	r2(�6), F . But the double fibration in
(13) tells us that, at a mixed structure (J, P ) ∈F , we have

T(J,P )F = TJ��
3 + TP	r2(�6),

whilst the real 4-dimensional space

TJ��
3 ∩ TP	r2(�6) ∼= [[V1,0⊗H1,0]]

reflects a redundancy in the joint torsion tensors.

4.2 Tensors on the Iwasawa manifold

Following the convention of [1], we may choose a left-invariant basis (ei) of
real vector fields on the complex Heisenberg group Hc so that the dual basis
(ei) of 1-forms satisfies

dei =

⎧⎪⎨⎪⎩
0 i = 1, 2, 3, 4,
e13 + e42 i = 5,
e14 + e23 i = 6.

(19)
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These forms pass to the Iwasawa manifold N = Hc/Γ. The standard bi-invariant
complex structure J0 on Hc or N is given by

J0e1 = e2, J0e3 = e4, J0e5 = e6,

and we adopt the convention that the dual action is given by J0e
1 = −e2 etc.

Extend the action of J0 to 2-forms by setting

J0(eij) = (J0e
i) ∧ (J0e

j),

regarding it as an automorphism rather than an endomorphism. The fact that

d(e5 + ie6) = de5 + ide6 = (e1 + ie2) ∧ (e3 + ie4)

has type (2, 0) with respect to J0 tells us that de5 and de6 lie in the−1 eigenspace
of J0. Moreover, from (19), we see that

d(J0α) = dα, for all α ∈ ∧2(�6)∗; (20)

for example d(J0e
15) = d(e26) = e124 = de15, whilst J0e

56 = e56.
We next fix the Riemannian metric for which (ei) forms an orthonormal

basis; justification for this choice can be found in the work of Lauret [18]. Fixing
too the orientation, we have a global action of SO(6). Let T 3 denote the maximal
torus of SO(6) that preserves the splitting

�6 = 〈e1, e2〉 ⊕ 〈e3, e4〉 ⊕ 〈e5, e6〉 , (21)

consistent with the action of J0.
According to the fundamental theorem of Riemannian geometry, the asso-

ciated Levi Civita connection is completely determined by the tensor

6∑
i=1

ei ⊗ dei = e5 ⊗ (e13 + e42) + e6 ⊗ (e14 + e23)

= Re
[
(e5 − ie6)⊗ (e1 + ie2) ∧ (e3 + ie4)

]
.

(22)

This is the real part of an eigenvector for T 3 whereby (eiθ1 , eiθ2 , eiθ3) acts as
ei(θ1+θ2+θ3). In particular it is unchanged with respect to a standard maximal
torus T 2 in SU(3) ⊂ SO(6). This fact is used in the proof of the

10 Theorem. Each of the 16 Gray-Hervella subsets of ��3 is invariant by
the action of T 3 induced by (21).
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Proof. The remark above already shows us that the torsion is invariant by
a suitable 2-torus. What the theorem asserts is that the vanishing of any subset
of the four classes (18) is also invariant by the remaining circle action. The latter
is generated by the complex structure J0 that acts on (21) as (eiπ/2, eiπ/2, eiπ/2),
and separate arguments can be used to show that the vanishing of each class
is invariant by the induced action of J0 on 2-forms. Although a case-by-case
account of these arguments can be extracted from [1], they all boil down to the
single relation (20). QED

The most natural choice of 2-form on the Iwasawa manifold is

α = ω8 = e56

(see (11)). Its stabilizer in SO(6) is obviously SO(4) × SO(4), and defines an
almost product structure whose 2-dimensional distribution is tangent to the
fibres of (16) with M = T 4. We shall denote the resulting almost product
structure by P0.

We can test the theory by computing∇α, that represents the intrinsic torson
of the associated OPS. Since e5 is a 1-form dual to a Killing vector field, its
covariant derivative ∇e5 is totally skew and determined by de5. It follows that

∇e5 = e1e3 − e3e1 + e4e2 − e2e4,

in which juxtaposition means tensor product. Similarly for ∇e6, and so

∇α = (e1e3 − e3e1 + e4e2 − e2e4)e6 + ė5(e1e4 − e4e1 + e2e3 − e3e2),

in which the dot indicates that e5 needs to be moved into the ‘middle’. Strictly
speaking, the last two factors then define an element of V ∧ H, but this is
isomorphic to both V ⊗H and H ⊗ V, so we can put V =

〈
e5, e6

〉
last with a

sign change. Thus

∇α = (e13 + e42)⊗ e6 − (e14 + e23)⊗ e5.

This evidently belongs to the subspace VΛ2
+H in (17), and J0(∇α) can be

identified with the tensor (22).
Observe that∧3

T ∗ =
∧3(V⊕H) ∼= ∧2

VH ⊕ V
∧2

H ⊕∧3
H

∼= H ⊕H ⊕ VΛ2
+H ⊕ VΛ2−H.

(23)

In the above example, the ‘complementary’ simple 4-form β = e1234 is closed.
For a general OPS,

dβ ∈ ∧5
T ∗ ∼= V⊕H,
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so that between them, dα and dβ determine five of the seven irreducible com-
ponents of intrinsic torsion. In our example, dβ = 0 confirms that there is no V

component, though ∇ is needed to be certain that there are no components in
VS2

0H or S2
0VH.

We can refine the structure determined by α or β by throwing in the standard
complex structure J0 that preserves the rank 2 and rank 4 distributions. The
resulting mixed structure (J0, P0) on N is determined by the 2-form e12 + e34.
It is well known that the almost-Hermitian manifold (N, g, J0) belongs to the
class W3, so the previous proposition yields the

11 Corollary. The intrinsic torsion of the mixed structure (J0, P0) belongs
to the space W3 ∩ VΛ2

+H.
This result is significant because it can be shown that the space in question

is a single irreducible component for SO(2)× U(2) of real dimension 2.

5 Moment mappings

Let O be a coadjoint orbit for SO(6). It is inherent in the KKS construction
mentioned in Section 2 that the inclusion

µ : O → so(6)∗

can be identified with the moment mapping defined by the induced symplectic
form on O.

Fix an orthonormal basis (e1, . . . , e6) of �6, and let (ei) be the dual basis
of (�6)∗. Adopting the notation of (21), we can identify the natural surjection
from so(6) to the Lie algebra of T 3 with the orthogonal projection

π :
∧2(�6)∗ −→ �3 =

〈
e12, e34, e56

〉
. (24)

It follows that τ = π ◦ µ is the moment mapping for the action of T 3 on the
orbit O. We shall investigate it in more detail.

5.1 Examples

It is well known that if we consider one of the ‘minimal’ orbits isomorphic
to ��3, the image of τ is a solid tetrahedron in �3. To clarify this, consider the
orbit of the 2-form ω6 in (10). There are four points in the intersection of the
orbit with �3, namely

±e12 ± e34 ± e56, (25)

with the product of the signs positive (to preserve the orientation of the associ-
ated OCS). These are the four vertices of the tetrahedron.
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This interpretation underlies the use of such a tetrahedron in [1] in describing
the torsion of certain nilmanifolds. For each v ∈ Im(τ),

τ−1(v) ∼= T k,

where k is one of 0, 1, 2, 3. Vertices, edges and faces correspond to k = 0, 1, 2
respectively. In all cases, τ−1(v) is a single T 3-orbit.

Next consider the Grassmannian 	r2(�6), and the orbit O containing ω8 in
(11). This equals the subset

{e ∧ f : ‖e‖ = 1 = ‖f‖, e · f = 0} ⊂ ∧2(�6)∗.

The question is to find its image after composing the moment mapping with
(24). This time, there are six points in the intersection O ∩ �3, namely ±e12,
±e34, ±e56, and these are the vertices in the following description.

12 Proposition. The image τ(O) is a solid octahedron O.

Proof. If we take

e =
∑

aie
i, f =

∑
bie

i,
∑

a2
i = 1 =

∑
b2
i ,

∑
aibi = 0,

then π(e ∧ f) = (x, y, z), where

x = a1b2 − a2b1, y = a3b4 − a4b3, z = a5b6 − a6b5.

The Cauchy-Schwartz inequality implies that

|x|+ |y|+ |z| � 1, (26)

which defines O. It is easy to check that each point satisfying (26) is realized
by the above construction. QED

Equality in (26) occurs if and only if f = Je where J is one of the eight
almost complex structures associated to a 2-form in (25) (without the previous
sign restriction). It follows that the external triangular faces of the octahedron
represent ��2’s that parametrize J-invariant 2-planes in 	r2(�6).
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Figure 1: The image of τ(O) with e56 ∈ O

One can also identify squares, like that arising from the 2-torus

{(e1 cos θ + e3 sin θ) ∧ (e2 cosφ + e4 sinφ) : θ, φ ∈ [0, 2π)},
whose image in �3 is

, =
{
xe12 + ye34 : x = cos θ cosφ, y = sin θ sinφ

}
. (27)

Note that x + y = cos(θ − φ) � 1, and that the boundary x + y = 1 is achieved
by setting θ = φ. Modifying this observation with other signs shows that , is
a square or diamond in the coordinate plane �2 =

〈
e12, e34

〉
. Like the external

faces, this plane represents images of points where τ is singular. If we consider
the rank 4 distribution

H0 = 〈e1, e2, e3, e4〉 (28)

defined by P0, then , is also the image of the complex submanifold

	r2(�4) ∼= ��1 × ��1 ∼= S2 × S2 ⊂ Λ2
+H0 ⊕ Λ2

−H0, (29)

of 	r2(�6) arising from the moment mapping for SO(4).
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Next consider F . In this case, the image of τ depends crucially on the orbit
chosen. If we use the form ω4 in (9), the image is a symmetrically-truncated
cube, as illustrated in Figure 2. However, ω3 and ω5 gives rise to two inequivalent
polytopes [19]. These polytopes, and the image of the full flag manifold are all
illustrated in [12].

Figure 2: The image of τ(O) with e12 + e34 ∈ O

5.2 Symplectic reduction

We now return to the orbit O containing e56, isomorphic to the Grassman-
nian 	r2(�6). Since this has real dimension 8, it is no longer possible for T 3 to
act transitively on a generic inverse image τ−1(v) with v = (v1, v2, v3) ∈ O.
Indeed, this observation forces one to consider the symplectic quotient

τ−1(v)
T 3

. (30)

Provided v is a regular value of τ , we can assert that τ−1(v) is a smooth manifold
of dimension 8−3 = 5. Assuming that T 3 acts freely on this inverse image, (30)
will be a symplectic manifold of real dimension 5− 3 = 2.

General methods relate symplectic quotients to Geometric Invariant Theory
and can be used to compute their cohomology [15]. In our simple case, we appeal
to methods outlined by R. Thomas [24].
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13 Theorem. Given a generic point v in the octahedron τ(	r2(�6)), the
quotient (30) is homeomorphic to a 2-sphere.

Proof. An element of 	r2(�6) ∼= 	r2(�4) can be regarded as a complex
2-dimensional subspace of �4 and so the null space of a 2×4 matrix A ∈ �2,4 of
rank 2. Two such matrices A,B have the same null space if and only if GA = B
for some G ∈ GL(2,�). Scalar multiplication by �∗ extends to an action of
the group (�∗)4 by rescaling the individual columns of A. By the Kempf-Ness
theorem, the GIT quotient

	r2(�4)
(�∗)4

(31)

can be identified with (30) provided v is generic.
To compute (31), we ignore matrices A with one or two zero columns, as these

have lower-dimensional orbits. The GIT quotient is now represented by the set
of projectivized columns [A1], . . . , [A4] ∈ ��1 modulo SL(2,�). This is precisely
the set of four distinct points in ��1 modulo the action of the projective group.
Such elements are faithfully parametrized by the cross-ratio, and our quotient
can therefore be identified with � ∪ {∞} = ��1. QED

In conclusion, 	r2(�6)/T 3 is formed from an S2-bundle over O with degen-
erations on faces, edges and vertices, although we shall see in the remainder of
this subsection that an explicit presentation is far from straightforward.

Whilst τ is the composition of the moment mapping and a linear map on
so(6), we are at liberty to consider quadratic invariants under the action of T 3.
We shall exploit these to parametrize the set (30) of T 3 orbits in τ−1(v) up to
finite ambiguity.

The decomposition of the second symmetric power of so(6)∗ ∼= ∧2(�6)∗ is
known from the theory of curvature tensors Rijkl in Riemannian geometry.
There are two contractions

b : S2(
∧2(�6)∗) −→ ∧4(�6)∗

r : S2(
∧2(�6)∗) −→ S2(�6)∗.

The first is defined by wedging and (if we already take for granted the symmetry
Rijkl = Rklij) its kernel defines those tensors satisfying the first Bianchi identity
Rijkl + Riklj + Riljk = 0. The second, when applied to Rijkl, defines the Ricci
tensor

Rik =
∑
j,l

gjlRijkl,

whose trace is the scalar curvature.
If we consider a 2-form in the SO(6)-orbit of ω6 in (10), then b(α ∧ α) can

be identified with the image ∗α under the Hodge star operator. The latter is
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independent of the choice of α, and gives us an SO(6) isomorphism∧4(�6)∗ ∼= ∧2(�6)∗.

Therefore, use of b will only duplicate the moment mapping τ , and not give us
anything new. What is worse, in the case of the Grassmannian, α is a simple
2-form and b(α ∧ α) = 0. Accordingly, we turn our attention to r.

Now
S2(�6)∗ ⊃ S2〈e1, e2〉 ⊕ S2〈e3, e4〉 ⊕ S2〈e5, e6〉,

and each of the right-hand summands contains a 1-dimensional subspace invari-
ant by T 3. Putting them together gives a T 3-equivariant linear mapping

σ : S2(
∧2(�6)∗) −→ �3,

that refines the induced inner product. If we set

σ(α⊗ α) = (s1, s2, s3), (32)

then s1 (for example) represents the Hermitian norm squared of the projection
of the isotropic vector e + if to the 2-dimensional subspace 〈e1, e2〉. With ap-
propriate constants in the definition of r, we can assert that the orbit 	r2(�6)
is mapped onto a filled triangle

{(s1, s2, s3) ∈ �3 : s1 + s2 + s3 = 2, si � 0}. (33)

We shall make this mapping explicit in the following proof.

14 Theorem. Let O = 	r2(�6) be the SO(6)-orbit of e56. Let u,v be
generic points of σ(O) and τ(O) respectively. Then σ−1(u) ∩ τ−1(v) consists
of at most finitely many T 3 orbits.

Proof. Let e ∧ f ∈ O with ‖e‖ = 1 = ‖f‖ and 〈e, f〉 = 0. We are only
interested in the T 3 orbit containing e∧f . Using the T 3 action, we may suppose
that

e = (a1, 0, a2, 0, a3, 0), ai > 0,
∑

a2
i = 1,

and that

f = (b1, c1, b2, c2, b3, c3),
∑

(b2
i + c2

i ) = 1,
∑

aibi = 0.

To some extent, the orbit is parametrized by the coefficients ai, cj , bk, though
we were at liberty to replace our original choice of e by any unit 1-form inside
〈e, f〉, and this already gives rise to an S1 ambiguity.
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If v = (v1, v2, v3) then aici = vi, so that ci = vi/ai is determined by ai,
assuming that v is fixed. Define σ explicitly by setting

σ(e ∧ f) = (s1, s2, s3), si = a2
i + b2

i + c2
i ,

which is consistent with (32) and (33). Now set

xi = (aibi)2 = −a4
i + sia

2
i − v2

i . (34)

Since
∑

aibi = 0, we can use elementary symmetric functions to deduce that∑
x2
i − 2(x2x3 + x3x1 + x1x2) = 0. (35)

The quadric (35) is a circular cone, half of which lies symmetrically in the first
octant of �3, touching each of the three coordinate planes in a diagonal line.

Now rearrange (34) as

(a2
i − 1

2si)
2 = λi − xi, (36)

where λi = 1
4s

2
i − v2

i � 0. Because
∑

(a2
i − 1

2si) = 0, the identity (35) remains
valid when we replace the coordinates xi by xi − λi, and we obtain a plane

2
3∑
i=1

κixi +
∑

λ2
i − 2(λ2λ3 + λ3λ2 + λ1λ2) = 0,

where κi = 2λi−
∑

λj. This will intersect the cone in a conic that (if non-empty)
represents the expected S1 ambiguity. Having chosen a point of this conic, the
2-form e ∧ f is determined by a consistent choice of square roots in (34), (36)
and values for ai, bj . QED

5.3 Interpreting null-torsion classes

Let N again be the Iwasawa manifold with the standard metric for which
the 1-forms in (19) are orthonormal. Each point p ∈ 	r2(�6) defines an SO(2)×
SO(4)-structure on N , and we may compute its intrinsic torion. The associated
OPS is given by a splitting

n = V⊕H, dim V = 2 (37)

of the real Lie algebra n underlying Hc. Integrability can be interpreted purely
in terms of the Lie algebra structure (i.e. bracket).

Consider a generic simple unit 2-form

α = e ∧ f = f12 + f3 ∧ e5 + f4 ∧ e6 + ae56,
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where f i ∈ H0 (see (28)). We are assuming that α ∧ α = 0, so

e56 ∧ (af12 − f34) + f123 ∧ e5 + f124 ∧ e6 = 0,

which forces
f34 = af12, f123 = 0 = f124.

The second equation follows from the first if a 	= 0, and implies that f3, f4 are
each a linear combination of f1, f2.

If a 	= 0, we may re-name the f i’s so that

α = a(f12 + f1 ∧ e5 + f2 ∧ e6 + e56) = a(f1 − e6) ∧ (f2 + e5). (38)

If a = 0, we may re-name f1, f2 so that

α = f12 + f1 ∧ e = f1 ∧ (f2 + e), (39)

where e ∈ 〈e5, e6
〉
. We can use these equations to establish

15 Theorem. The SO(2)× SO(4) structures on N satisfying

[H,H] ⊆ H (40)

form the submanifold (29) of 	r2(�6) whose image in O is (27).

Proof. Since H is the annihilator of 〈e, f〉, the horizontal integrability con-
dition (40) is satisfied if and only if dα = α ∧ γ for some 1-form γ. Given (38),

−1
a
dα = (f1 − e6) ∧ (e13 + e42) + (f2 + e5) ∧ (e14 + e23),

It follows that γ ∈ 〈e5, e6
〉
, but this forces a contradiction anyway. We may now

assume (39) with de = 0 and so e = 0. Hence α = f12 belongs to (29), whose
image in O we have already identified. QED

By contrast to (40), one can show that the set of OPS’s on the Iwasawa
manifold N satisfying

[V,V] ⊆ V (41)

forms a 6-dimensional T 3-invariant subset of 	r2(�6), characterized by those
2-forms in (38) and (39) for which the real 2-plane

〈
f1, f2

〉
is J0-invariant. This

is a ‘big’ intrinsic torsion variety, in the sense that its image by τ is the entire
octahedron.

Although SO(2) × SO(4) cannot be a holonomy group on N , there do ex-
ist points of 	r2(�6) for which both (40) and (41) are satisfied, giving rise to
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transverse foliations. The set of such points consists of J0-invariant 2-planes in
H0 represented by the 2-forms

α = ±f1∧ (J0f
1);

in other words, J0-holomorphic or anti-holomorphic planes in 	r2(�4). It is the
disjoint union of two 2-spheres that map to opposite edges of the octahedron.
This description emphasizes once again the importance of J0 and the fact that
the Iwasawa manifold N is the quotient of a complex Lie group, but calls for a
more detailed investigation.
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