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Abstract. In [1], J. Eells and L. Lemaire introduced the notion of a k-harmonic map. In
this paper we study the case k = 2, derive the first and second variational formulas of the
2-harmonic maps, give nontrivial examples of 2-harmonic maps and give proofs of nonexistence
theorems of stable 2-harmonic maps.
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Introduction

As well known, harmonic maps between Riemannian manifolds f : M → N ,
where M is compact, can be considered as critical maps of the energy functional
E(f) =

∫
M ‖df‖2 ∗1. Considering the similar ideas, in 1981, J. Eells and L.

Lemaire [1], proposed the problem to consider the k-harmonic maps: critical
maps of the functional

Ek(f) =
∫
M
‖(d + d∗)kf‖2 ∗1.

In this paper, we consider the case k = 2 and show the preliminary results.
We use mainly vector bundle valued differential forms and Riemannian met-

rics. In §1, we prepare the notation and fundamental formulas needed in the
sequel.

In §2, given a compact manifold M , we derive the first variation formula of
E2(f) =

∫
M ‖(d+ d∗)2f‖2 ∗1 (Theorem 1) and give the definition of 2-harmonic

maps f : M → N whose tension field τ(f) satisfies

−∇∗∇τ(f) + RN (df(ek), τ(f))df(ek) = 0,

namely τ(f) is a solution of the Jacobi type equation.

iReprinted from Chinese Ann. Math., Ser. A, 7(1986), 389-402, upon formal consent
by Li Ta-Tsien (Editor-in-Chief of Chinese Ann. Math.). Translated into English by Hajime
Urakawa.
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210 J. Guoying

Constant maps and harmonic maps are trivial examples of 2-harmonic maps.
The main results of §3 are to give nontrivial examples of 2-harmonic maps.
We consider Riemannian isometric immersions. For the isometric immersions
with parallel mean curvature tensor field, we give the decomposition formula
(Lemma 4) of the Laplacian of the tension field τ(f) with its proof: for the
hypersurfaces M with non-zero parallel mean curvature tensor field in the unit
sphere Sm+1, a necessary and sufficient condition for such isometric immersions
to be 2-harmonic is that the square of the length of the second fundamental form
B(f) satisfies ‖B(f)‖2 = m. Using this, special Clifford tori in the unit sphere
whose Gauss maps are studied by Y.L. Xin and Q. Chen [2], give non-trivial
2-harmonic maps which are isometric immersions in the unit sphere.

In §4, using formulas in §2, we derive the second variation formula of 2-
harmonic maps (Theorem 3) and give the definition of stability of 2-harmonic
maps (the second variation is nonnegative) and give a proof of the following
(Theorem 4): if M is compact, and N has positive constant sectional curvature,
there are no nontrivial 2-harmonic maps from M into N satisfying the conser-
vation law. Last, when N = �Pn we establish nonexistence results of stable
2-harmonic maps (Lemma 8, Theorem 5, etc.). Furthermore, we give a nonex-
istence theorem establishing sufficient conditions that stable 2-harmonic maps
be harmonic.

Acknowledgements. We would like to express our gratitude to Professors
Su Bu-Chin and Hu He-Shen who introduced and helped to accomplish this
paper. We also would like to express our thanks to Professors Shen Chun-Li,
Xin Yuan-Long and Pan Yang-Lian who helped us during the period of our
study.

1 Notation, and fundamental notions

We prepare the main materials using vector bundle valued differential forms
and Riemannian metrics on bundles which are in [1, 3].

Assume that (M,g) is a m-dimensional Riemannian manifold, (N,h) a n-
dimensional one, and f : M → N a C∞ map. Given points p ∈M and f(p) ∈ N ,
under (xi), (yα) local coordinates around them, f can be expressed as

yα = fα(xi), (1)

where the indices we use run as follows

i, j, k, · · · = 1, · · · ,m; α, β, γ, · · · = 1, · · · , n.
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2-harmonic maps 211

We use the following definition: the differential df of f can be regarded as
the induced bundle f−1TN -valued 1-form

df(X) = f∗X, ∀X ∈ Γ(TM). (2)

We denote by f∗h the first fundamental form of f , which is a section of
the symmetric bilinear tensor bundle

⊙2 T ∗M ; the second fundamental form
B(f) of f is the covariant derivative ∇̃df of the 1-form df , which is a section of⊙2 T ∗M ⊗ f−1TN :

∀X,Y ∈ Γ(TM) :

B(f)(X,Y ) = (∇̃df)(X,Y ) = (∇̃Xdf)(Y ) =

= ∇Xdf(Y )− df(∇XY ) =

= ∇′
df(X)df(Y )− df(∇XY ). (3)

Here ∇, ∇′, ∇, ∇̃ are the Riemannian connections on the bundles TM , TN ,
f−1TN and T ∗M ⊗ f−1TN , respectively. From ∇̃df , by using a local orthonor-
mal frame field {ei} on M , one obtains the tension field τ(f) of f

τ(f) = (∇̃df)(ei , ei) = (∇̃eidf)(ei). (4)

In the following, we use the above notations without comments, and we assume
the reader is familiar with the above notation.

We say f is a harmonic map if τ(f) = 0. If M is compact, we consider
critical maps of the energy functional

E(f) =
∫
M
‖df‖2 ∗ 1, (5)

where 1
2‖df‖2 = 1

2〈df(ei), df(ei)〉N = e(f) which is called the energy density of f ,
and the inner product 〈 , 〉N is a Riemannian metric h, and we omit the subscript
N if there is no confusion. When f is an isometric immersion, 1

mτ(f) is the mean
curvature normal vector field and harmonic maps are minimal immersions.

The curvature tensor field R̃( , ) of the Riemannian metric on the bundle
T ∗M ⊗ f−1TN is defined as follows

∀X,Y ∈ Γ(TM) :

R̃(X,Y ) = −∇̃X∇̃Y + ∇̃Y ∇̃X + ∇̃[X,Y ]. (6)

Furthermore, for any Z ∈ Γ(TM), we define

(R̃(X,Y )df)(Z) = Rf−1TN (X,Y )df(Z)− df(RM (X,Y )Z) =
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212 J. Guoying

= RN (df(X), df(Y ))df(Z)− df(RM (X,Y )Z), (7)

where RM , RN , and Rf−1TN are the Riemannian curvature tensor fields on TM ,
TN , f−1TN , respectively.

For 1-forms df the Weitzenböck formula is given by

∆df = ∇̃∗∇̃df + S, (8)

where ∆ = dd∗+d∗d is the Hodge-Laplace operator, −∇̃∗∇̃ = ∇̃ek
∇̃ek

−∇̃∇ek
ek

is the rough Laplacian, and the operator S is defined as follows

∀X ∈ Γ(TM) :

S(X) = −(R̃(ek,X)df)(ek), (9)

where {ek} is a locally defined orthonormal frame field on M .
A section of

⊙2 T ∗M defined by Sf = e(f)g−f∗h is called the stress-energy
tensor field, and f is said to satisfy the conservation law if divSf = 0. As in [1],
∀X ∈ Γ(TM), it holds that

(divSf )(X) = −〈τ(f), df(X)〉. (10)

Maps satisfying the conservation law are said to be relatively harmonic ([6]).

2 The first variation formula of 2-harmonic maps

Assume that f : M → N is a C∞ map, M is a compact Riemannian mani-
fold, and N is an arbitrary Riemannian manifold. As in [1], a 2-harmonic map
is a critical map of the functional

E2(f) =
∫
M
‖(d + d∗)2f‖2 ∗ 1. (11)

Here, d and d∗ are the exterior differentiation and the codifferentiation on vector
bundle, and ∗1 is the volume form on M .

In order to derive the analytic condition of the 2-harmonic maps, we have
to calculate the first variation of E2(f) defined by (11). To start with let

ft : M → N, t ∈ Iε = (−ε, ε), ε > 0, (12)

be a smooth 1-parameter variation of f which yields a vector field V ∈ Γ(f−1TN)
along f in N by

f0 = f,
∂ft
∂t

∣∣∣∣
t=0

= V. (13)
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2-harmonic maps 213

Variation {ft} yields a C∞ map

F : M × Iε → N,

F (p, t) = ft(p), ∀p ∈M, t ∈ Iε. (14)

If we take the local coordinates around p ∈M , ft(p) ∈ N , respectively, we have

yα = Fα(xi, t) = fαt (xi). (15)

Taking the usual Euclidean metric on Iε, with respect to the product Rie-
mannian metric on M × Iε, we denote by ∇, ∇, ∇̃, the induced Riemann
connections on T (M × Iε), F−1TN , T ∗(M × Iε)⊗F−1TN , respectively. If {ei}
is an orthonormal frame field defined on a neighborhood U of p,

{
ei,

∂
∂t

}
is also

an orthonormal frame field on a coordinate neighborhood U × Iε in M × Iε, and
it holds that

∇ ∂
∂t

∂

∂t
= 0, ∇eiej = ∇eiej , ∇ ∂

∂t
ei = ∇ei

∂

∂t
= 0. (16)

It also holds that
∂ft
∂t

=
∂Fα

∂t

∂

∂yα
= dF

(
∂

∂t

)
, dft(ei) = dF (ei), (17)

and

(∇̃eidft)(ej) =∇′
dft(ei)

dft(ej)− dft(∇eiej) = (∇̃eidF )(ej)

(∇̃ek
∇̃eidft)(ej) = ∇′

dft(ek)((∇̃eidft)(ej))− (∇̃eidft)(∇ek
ej)

= (∇̃ek
∇̃eidF )(ej)

· · · · · · · · · · · · · · · (18)

etc. Here, we used the abbreviated symbol ∇̃ on T ∗M ⊗ f−1
t TN in which we

omitted t.
In the following, we need two lemmas to calculate the first variation

d

dt
E2(ft)|t=0

of E2(f).
1 Lemma. Under the above notation, for any C∞ variation {ft} of f , it

holds that
d

dt
E2(ft) =

2
∫
M

〈
(∇̃ei∇̃eidF )

(
∂

∂t

)
− (∇̃∇eieidF )

(
∂

∂t

)
, (∇̃ejdF )(ej)

〉
∗ 1

+ 2
∫
M

〈
RN

(
dF (ei), dF

(
∂

∂t

))
dF (ei), (∇̃ejdF )(ej)

〉
∗ 1. (19)
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214 J. Guoying

Proof. By using d, d∗, and definition of τ(f), (11) can be written as

E2(f) =
∫
M
‖d∗df‖2 ∗ 1 =

∫
M
‖τ(f)‖2 ∗ 1

=
∫
M
〈(∇̃eidf)(ei), ∇̃eidf)(ei)〉 ∗ 1. (20)

By noting (18), for variation ft of f , it holds that

d

dt
E2(ft) =

d

dt

∫
M
〈∇̃eidF )(ei), (∇̃ejdF )(ej) 〉 ∗ 1

= 2
∫
M
〈∇̃ ∂

∂t
((∇̃eidF )(ei)), (∇̃ejdF )(ej)〉 ∗ 1. (21)

By (16), and using the curvature tensor on T ∗(M × Iε)⊗ F−1TN ,(
R̃

(
X,

∂

∂t

)
dF

)
(Y ) = RN

(
dF (X), dF

(
∂

∂t

))
dF (Y )

− dF

(
RM×Iε

(
X,

∂

∂t

)
Y

)
= RN

(
dF (X), dF

(
∂

∂t

))
dF (Y ), (22)

for all X, Y ∈ Γ(TM). In (21), interchanging the order of differentiations in
∇ ∂

∂t
((∇̃eidF )(ei), we have

∇ ∂
∂t

((∇̃eidF )(ei)) = (∇̃ ∂
∂t

∇̃eidF )(ei)

=
(

∇̃ei∇̃ ∂
∂t

dF − ∇̃[ei,
∂
∂t

]dF + R̃

(
ei,

∂

∂t

)
dF

)
(ei)

= ∇̃ei((∇̃ ∂
∂t

dF )(ei))− (∇̃ ∂
∂t

dF )(∇eiei)

+ RN

(
dF (ei), dF

(
∂

∂t

))
dF (ei)

= (∇̃ei∇̃eidF )
(

∂

∂t

)
− (∇̃∇eieidF )

(
∂

∂t

)
+ RN

(
dF (ei), dF

(
∂

∂t

))
dF (ei). (23)

In the last of the above, we used the symmetry of the second fundamental form.
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2-harmonic maps 215

By substituting (23)1 into (21) we obtain (19). QED

2 Lemma.∫
M

〈
(∇̃ei∇̃eidF )

(
∂

∂t

)
− (∇̃∇eieidF )

(
∂

∂t

)
, (∇̃ejdF )(ej)

〉
∗ 1

=
∫
M

〈
dF

(
∂

∂t

)
,∇ek

∇ek
((∇̃ejdF )(ej))−∇∇ek

ek
((∇̃ejdF )(ej))

〉
∗ 1. (24)

Proof. For each t ∈ Iε, let us define a C∞ vector field on M by

X =
〈

(∇̃eidF )
(

∂

∂t

)
, (∇̃ejdF )(ej)

〉
ei, (25)

which is well defined because of the independence on a choice of {ei}. The
divergence of X is given by

divX = 〈∇ek
X, ek〉M = ∇ei

〈
(∇̃eidF )

(
∂

∂t

)
, (∇̃ejdF )(ej)

〉
+
〈

(∇̃eidF )
(

∂

∂t

)
, (∇̃ejdF )(ej)

〉
〈∇ek

ei, ek〉M . (26)

1Translator’s comments: to get the last equation of (23), we have to see that

( e∇eidF )

„
∂

∂t

«
= ∇ei

„
dF

„
∂

∂t

««
− dF

„
∇ei

∂

∂t

«

= ∇dF (ei)dF

„
∂

∂t

«
= ∇dF ( ∂

∂t
)dF (ei) − ∇[dF (ei),dF ( ∂

∂t
)]

= ( e∇ ∂
∂t

dF )(ei),

and by a similar way,

( e∇ ∂
∂t

dF ) (∇eiei) = ( e∇∇ei
eidF )

„
∂

∂t

«
.

Thus, e∇ei((
e∇ ∂

∂t
dF )(ei))) − ( e∇ ∂

∂t
dF )(∇eiei)

coincides with

∇ei

„
( e∇eidF )

„
∂

∂t

« «
− ( e∇∇ei

eidF )

„
∂

∂t

«

= ( e∇ei
e∇eidF )

„
∂

∂t

«
+ ( e∇eidF )

„
∇ei

∂

∂t

«
− ( e∇∇ei

eidF )

„
∂

∂t

«

= ( e∇ei
e∇eidF )

„
∂

∂t

«
− ( e∇∇ei

eidF )

„
∂

∂t

«
,

which implies (23).
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216 J. Guoying

Noticing (16) and
〈∇ek

ei, ek〉M + 〈ei,∇ek
ek〉M = 0, (27)

we have (28)2:

div(X) = 〈(∇̃ei∇̃eidF )
(

∂

∂t

)
, (∇̃ejdF )(ej)〉

+ 〈(∇̃eidF )
(

∂

∂t

)
,∇ei((∇̃ejdF )(ej))〉

− 〈
(
∇̃∇ek

ek
dF
)( ∂

∂t

)
, (∇̃ejdF )(ej)〉. (28)

Furthermore, let us define a C∞ vector field Y on M by

Y =
〈
dF

(
∂

∂t

)
,∇ei((∇̃ejdF )(ej))

〉
ei, (29)

which is also well defined. Then, by a similar way, we have

divY = 〈∇ek
Y, ek〉M

=
〈

(∇̃ek
dF )

(
∂

∂t

)
,∇ek

((∇̃ejdF )(ej))
〉

2Translator’s comments: the first term of (26) coincides with

〈∇ei(
e∇eidF )(

∂

∂t
), ( e∇ej dF )(ej)〉

+ 〈( e∇eidF )(
∂

∂t
), ∇ei((

e∇ej dF )(ej))〉

= 〈 e∇ei
e∇eidF (

∂

∂t
) + ( e∇eidF )(∇ei

∂

∂t
), ( e∇ej dF )(ej)〉

+ 〈( e∇eidF )(
∂

∂t
), ∇ei((

e∇dF )(ej))〉

= 〈 e∇ei
e∇eidF (

∂

∂t
), ( e∇ej dF )(ej)〉

+ 〈( e∇eidF )(
∂

∂t
), ∇ei((

e∇dF )(ej))〉,

and the second term of (26) coincides with

〈( e∇eidF )(
∂

∂t
), ( e∇ej dF )(ej)〉〈∇ekei, ek〉M

= −〈( e∇eidF )(
∂

∂t
), ( e∇ej dF )(ej)〉〈ei,∇ekek〉M

= −〈( e∇∇ek
ekdF )(

∂

∂t
), ( e∇ej dF )(ej)〉.

Thus, we have (28).
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2-harmonic maps 217

+
〈
dF

(
∂

∂t

)
,∇ek

∇ek
((∇̃ejdF )(ej))

〉
−
〈
dF

(
∂

∂t

)
,∇∇ek

ek
((∇̃ejdF )(ej))

〉
. (30)

By the Green’s theorem, we have∫
M

div(X − Y ) ∗ 1 = 0, (31)

and together with (28) and (30), we have (24). QED

3 Theorem. Assume that f : M → N is a C∞ map from a compact
Riemannian manifold M into an arbitrary Riemannian manifold N , {ft} is an
arbitrary C∞ variation generating V . Then,

d

dt
E2(ft)

∣∣∣∣
t=0

=

= 2
∫
M
〈V,−∇∗∇τ(f) + RN (df(ei), τ(f))df(ei)〉 ∗ 1. (32)

Proof. Substituting (24) into (19), we have

d

dt
E2(ft) = 2

∫
M

〈
dF

(
∂

∂t

)
,∇ek

∇ek
((∇̃ejdF )(ej))

−∇∇ek
ek

((∇̃ejdF )(ej))
〉
∗ 1

+ 2
∫
M
〈RN

(
dF (ei), dF

(
∂

∂t

))
dF (ei), (∇̃ejdF )(ej)〉 ∗ 1, (33)

where putting t = 0, noticing (13), (17), (18), and the symmetry of the curvature
tensor, we have (32). Here, we used the explicit formula of the rough Laplacian
on f−1TN , that is −∇∗∇ = ∇ek

∇ek
−∇∇ek

ek
. QED

4 Remark. In the above arguments, we assumed M is a compact Rieman-
nian manifold without boundary. For a general Riemannian manifold M , let
D ⊂ M be an arbitrarily bounded domain with smooth boundary, and take a
variation {ft} of f satisfying that

∂ft
∂t

∣∣∣∣
∂D

= 0,
(
∇ei

∂ft
∂t

) ∣∣∣∣
∂D

= 0,

then, in Lemma 2, we obtain (24) by applying the Green’s divergence theorem
to X and Y . Then, we have the first variational formula on D as

d

dt
E2(ft,D)

∣∣∣∣
t=0

= 2
∫

D
〈V,−∇∗∇τ(f) + RN (df(ei), τ(f))df(ei)〉 ∗ 1,

where E2(ft,D) is the corresponding functional relative to D.
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218 J. Guoying

5 Definition. For a C∞ map f : M → N between two Riemannian mani-
folds, let us define the 2-tension field τ2(f) of f by

τ2(f) = −∇∗∇τ(f) + RN (df(ei), τ(f))df(ei). (34)

f is said to be a 2-harmonic map is if τ2(f) = 0.
The C∞ function

e2(f) =
1
2
‖(d + d∗)2f‖2 =

1
2
‖τ(f)‖2, (35)

is called the 2-energy density, and

1
2
E2(f) =

∫
M

e2(f) ∗ 1 < +∞,

is the 2-energy of f . If M is compact, by the first variational formula, a 2-
harmonic map f is a critical point of the 2-energy.

3 Examples of 2-harmonic maps

By Definition 1, we have immediately
6 Proposition. (1) Any harmonic map is 2-harmonic.
(2) Any doubly harmonic function f : M → � on a Riemannian manifold

M is also 2-harmonic.
7 Proposition. Assume that M is compact and N has non positive curva-

ture, i.e. RiemN ≤ 0. Then every 2-harmonic map f : M → N is harmonic.
Proof. Computing the Laplacian of the 2-energy density e2(f) we have

∆e2(f) =
1
2
∆‖τ(f)‖2

= 〈∇ek
τ(f),∇ek

τ(f)〉+ 〈−∇∗∇τ(f), τ(f)〉. (36)

Taking
τ2(f) = −∇∗∇τ(f) + RN (df(ei), τ(f))df(ei) = 0,

and noticing RiemN ≤ 0, we have

∆e2(f) = 〈∇ek
τ(f),∇ek

τ(f)〉 −RN (df(ei), τ(f))df(ei), τ(f)〉
≥ 0. (37)

By the Green’s theorem
∫
M ∆e2(f)vg = 0, and (37), we have ∆e2(f) = 0, so

that e2(f) = 1
2‖τ(f)‖2 is constant. Again, by (37), we have

∇ek
τ(f) = 0, ∀ k = 1, · · · ,m.
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Therefore, by [1], we have3 τ(f) = 0. QED

8 Remark. As we know nonexistence of compact minimal submanifolds in
the Euclidean space, Proposition 2 shows nonexistence of 2-harmonic isometric
immersions from compact Riemannian manifolds.

By Proposition 1 harmonic maps are trivial examples of 2-harmonic ones,
and in Proposition 2 in the case that M is compact and the sectional curvature
of N does not have nonpositive curvature, one may ask examples of nontrivial
2-harmonic maps. To do it, the following lemmas complete this.

9 Lemma. Assume that f : M → N is a Riemannian isometric immer-
sion whose mean curvature vector field is parallel. Then, for a locally defined
orthonormal frame field {ei}, we have

−∇∗∇τ(f) = 〈−∇∗∇τ(f), df(ei)〉df(ei)

+ 〈∇eiτ(f), df(ej)〉 (∇̃eidf)(ej). (38)

Proof. Since f is an isometric immersion, df(ei) span the tangent space of
f(M) ⊂ N . Since4 the mean curvature tensor is parallel, for all i = 1, · · · ,m,
∇eiτ(f) ∈ Γ(f∗TM). Thus

∇eiτ(f) = 〈∇eiτ(f), df(ej)〉df(ej). (39)

3Translator’s comments: since ∆e2(f) = 0, both terms of (37) are non negative, we have
〈∇ekτ (f),∇ekτ (f)〉 = 0, i.e., ∇ekτ (f) = 0 for all k = 1, · · · , m. We can define a global vector
field Xf = 〈df(ei), τ (f)〉ei ∈ X(M), whose divergence is given as

div(Xf ) = 〈τ (f), τ (f)〉 + 〈df(ei),∇eiτ (f)〉 = 〈τ (f), τ (f)〉.

Integrating this over M , we have

0 =

Z
M

div(Xf )vg =

Z
M

〈τ (f), τ (f)〉vg,

which implies τ (f) = 0.
4Translator’s comments: for all ξ ∈ Γ(T⊥N),

∇Xξ = ∇′
f∗Xξ = ∇T

f∗Xξ + ∇⊥
f∗Xξ ∈ TM + T⊥M,

respectively. The condition that the mean curvature tensor is parallel means that

∇⊥
f∗Xτ (f) = 0, ∀X ∈ X(M),

which is equivalent to the condition that

∇Xτ (f) = ∇T
f∗Xτ (f) ∈ Γ(f∗TM).
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Calculating this, we have

−∇∗∇τ(f) = 〈−∇∗∇τ(f), df(ej)〉df(ej)

+ 〈∇eiτ(f),∇eidf(ej)〉df(ej)

+ 〈∇eiτ(f), df(ej)〉∇eidf(ej). (40)

Here, if we denote ∇eiej = Γkijek, we have Γjki + Γikj = ek〈ei, ej〉 = 0. Since

(∇̃eidf)(ej) = ∇ei(df(ej))− df(∇eiej) ∈ T⊥M ⊂ TN,

and ∇eiτ(f) ∈ f∗(TM), the second term of (40) is

〈∇eiτ(f),∇eidf(ej)〉df(ej) = 〈∇eiτ(f), (∇̃eidf)(ej) + df(∇eiej)〉df(ej)

= 〈∇eiτ(f), df(∇eiej)〉df(ej)

= 〈∇eiτ(f), df(ek)〉 df(Γkijej)

= 〈∇eiτ(f), df(ek)〉 df(−Γjikej)

= −〈∇eiτ(f), df(ek)〉 df(∇eiek). (41)

Substituting (41) into (40), we have (38)5. QED

10 Lemma. For an isometric immersion f : M → N with parallel mean
curvature vector field, the Laplacian of τ(f) is decomposed into:

−∇∗∇τ(f) = 〈τ(f), RN (df(ek), df(ej))df(ek)〉df(ej)

− 〈τ(f), (∇̃eidf)(ej)〉(∇̃eidf)(ej). (42)

Proof. Calculate the right hand side of (38). By differentiating by

ei〈τ(f), df(ej)〉 = 0 ,

we have

〈∇eiτ(f), df(ej)〉+ 〈τ(f),∇eidf(ej)〉 = ei〈τ(f), df(ej)〉 = 0. (43)

5Translator’s comments: for (38), we only have to see

−∇∗∇τ (f) = 〈−∇∗∇τ (f), df(ei)〉df(ei)

+ 〈∇eiτ (f), df(ej)〉{∇eidf(ej) − df(∇eiej)}
= 〈−∇∗∇τ (f), df(ei)〉df(ei)

+ 〈∇eiτ (f), df(ej)〉( e∇eidf)(ej)

by (3), which is (38).
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Then, we have

〈∇eiτ(f), df(ej)〉 = −〈τ(f),∇eidf(ej)〉
= −〈τ(f),∇eidf(ej)− df(∇eiej)〉
= −〈τ(f), (∇̃eidf)(ej)〉. (44)

For the first term of the RHS of (38), by differentiating (43) by ei, we have

〈∇ei∇eiτ(f),df(ej)〉+ 2〈∇eiτ(f),∇eidf(ej)〉
+ 〈τ(f),∇ei∇eidf(ej)〉 = 0. (45)

We also have

〈∇∇eieiτ(f), df(ej)〉+ 〈τ(f),∇∇eieidf(ej)〉 = ∇eiei〈τ(f), df(ej)〉 = 0. (46)

Together with (45) and (46), we have

〈−∇∗∇τ(f), df(ej)〉+ 2〈∇eiτ(f),∇eidf(ej)〉
+ 〈τ(f),−∇∗∇df(ej)〉 = 0. (47)

For the second term of (47), by making use of the fact that ∇eiτ(f) ∈ Γ(f∗TM)
from the assumption that the mean curvature tensor is parallel, and (44), we
have

〈∇eiτ(f),∇eidf(ej)〉 = 〈∇eiτ(f), (∇̃eidf)(ej) + df(∇eiej)〉
= 〈∇eiτ(f), df(∇eiej)〉
= −〈τ(f), (∇̃eidf)(∇eiej)〉. (48)

For the third term of (47), we have

〈τ(f),−∇∗∇df(ej)〉 = 〈τ(f),∇ek
∇ek

df(ej)−∇ek
df(ej)〉

= 〈τ(f),∇ek
((∇̃ek

df)(ej) + df(∇ek
ej))

− (∇̃∇ek
ek

df)(ej)− df(∇∇ek
ek

ej)〉
= 〈τ(f), (∇̃ek

∇̃ek
df)(ej)

+ 2(∇̃ek
df)(∇ek

ej)− (∇̃∇ek
ek

ej)〉
= 〈τ(f), (−∇̃∗∇̃df)(ej)〉

+ 2〈τ(f), (∇̃ek
df)(∇ek

ej)〉
= 〈τ(f),−∆df(ej) + S(ej)〉

+ 2〈τ(f), (∇̃ek
df)(∇ek

ej)〉

____________________________________________________________________________________



222 J. Guoying

since 〈τ(f), df(X)〉 = 0 for all X ∈ X(M) and Weitzenböck formula (8). Here,
we have

−∆df(ej) = −dd∗df(ej) = dτ(f)(ej) = ∇ejdf,

and by (9) and (7),

S(ej) = −
m∑
k=1

(R̃(ek, ej)df)(ek)

= −
m∑
k=1

{RN (df(ek), df(ej))df(ek)− df(RM(ek, ej)ek))}.

Thus, we have

〈τ(f),∇∗∇df(ej)〉 = 2〈τ(f), (∇̃ek
df)(∇ek

ej)〉
+ 〈τ(f),∇ejτ(f)−RN (df(ek), df(ej))df(ek) + df(RM(ek, ej)ek)〉
= 2〈τ(f), (∇̃ek

df)(∇ek
ej)〉

− 〈τ(f), RN (df(ek), df(ej))df(ek) (49)

since ∇ejτ(f) ∈ Γ(f∗TM). Substituting (48) and (49) into (47), we have

〈−∇∗∇τ(f), df(ej)〉 = 〈τ(f), RN (df(ek), df(ej))df(ek)〉. (50)

Finally, substituting (44) and (50) into (38), we have (42). QED

Taking for M to be a hypersurface in the unit sphere N = Sm+1 with
n = m + 1, we have

11 Theorem. Let f : M → Sm+1 be an isometric immersion having
parallel mean curvature vector field with non-zero mean curvature. Then, the
necessary and sufficient condition for f to be 2-harmonic is ‖B(f)‖2 = m =
dimM .

Proof. Since Sm has constant sectional curvature, the normal component
of RN (df(ek), df(ej))df(ek) is zero, (42) in Lemma 4 becomes

∇∗∇τ(f) = −〈τ(f), (∇̃eidf)(ej)〉(∇̃eidf)(ej).

Noticing RN (df(ek), τ(f))df(ek) = mτ(f), the condition for f to be 2-harmonic
becomes

−〈τ(f), (∇̃eidf)(ej)〉(∇̃eidf)(ej) + mτ(f) = 0. (51)

Denoting by ξ, the unit normal vector field on f(M), and

(∇̃eidf)(ej) = B(f)(ei, ej) = Hijξ
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in (3), we have τ(f) = Hiiξ which implies

‖τ(f)‖2 = HiiHjj, ‖B(f)‖2 = B(f)(ei, ej) = HijHij.

Substituting these into (51), we have

(mHkk −HkkHijHij)ξ = 0,

which is equivalent to

(m− ‖B(f)‖2)‖τ(f)‖ = 0. (52)

Since ‖τ(f)‖ 	= 0, the condition ‖B(f)‖2 = m is equivalent to 2-harmonicity.
QED

12 Example. Due to Theorem 2, we can obtain non-trivial examples of
2-harmonic maps. Consider the Clifford torus in the unit sphere Sm+1:

Mm
k (1) = Sk

(√
1
2

)
× Sm−k

(√
1
2

)
,

where the integer k satisfies 0 ≤ k ≤ m ([2]). The isometric embeddings f :
Mm
k (1) → Sm+1 with k 	= m

2 are non-trivial 2-harmonic maps. Indeed, f has
the parallel second fundamental form, and parallel mean curvature vector field,
and by direct computation, we have ‖B(f)‖2 = k + m − k = m, ‖τ(f)‖ =
|k − (m − k)| = |2k −m| 	= 0, so by Theorem 2, f is a nontrivial 2-harmonic
map.

4 The second variation of 2-harmonic maps

Assume that M is compact, f : M → N is a 2-harmonic map. We will
compute the second variation formula. By using the variation formula in §2 and
notation, we continue to calculate (33):

1
2

d

dt
E2(ft) =

∫
M

〈
dF

(
∂

∂t

)
,∇ek

∇ek
((∇̃ejdF )(ej))

−∇∇ek
ek

((∇̃ejdF )(ej))

+ RN (dF (ei), (∇̃ejdF )(ej)dF (ei)
〉 ∗ 1. (53)
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Differentiating (53) by t, we have

1
2

d2

dt2
E2(ft) =

∫
M

〈
∇ ∂

∂t
dF

(
∂

∂t

)
,∇ek

∇ek
((∇̃ejdF )(ej))

−∇∇ek
ek

((∇̃ejdF )(ej))

+ RN (dF (ei), (∇̃ejdF )(ej)dF (ei)
〉 ∗ 1

+
∫
M

〈
dF

(
∂

∂t

)
,∇ ∂

∂t

[
∇ek

∇ek
((∇̃ejdF )(ej))

−∇∇ek
ek

((∇̃ejdF )(ej))

+ RN (dF (ei), (∇̃ejdF )(ej)dF (ei)
]〉 ∗ 1. (54)

We need two Lemmas to calculate the covariant differentiation with respect to
∂
∂t the second term of RHS of (54).

13 Lemma.

∇ ∂
∂t

∇ek
∇ek

((∇̃ejdF )(ej)) = ∇ek
∇ek

[
(∇̃ei∇̃eidF )

(
∂

∂t

)
− (∇̃∇eieidF )

(
∂

∂t

)
+ RN

(
dF (ej), dF

(
∂

∂t

))
dF (ej)

]
+ ∇ek

[
RN

(
dF (ek), dF

(
∂

∂t

))
((∇̃ejdF )(ej))

]
+ RN

(
dF (ek), dF

(
∂

∂t

))
∇((∇̃dF )(ej)). (55)

Proof. Let us make use of the curvature formula in F−1TN changing vari-
ables:

∇ ∂
∂t

∇ek
= ∇ek

∇ ∂
∂t

+ RN

(
dF (ek), dF

(
∂

∂t

))
. (56)

Using twice this formula, we have

∇ ∂
∂t

∇ek
∇ek

((∇̃ejdF )(ej)) = ∇ek
∇ ∂

∂t
∇ek

((∇̃ejdF )(ej))

+ RN

(
dF (ek), dF

(
∂

∂t

))
∇ek

((∇̃ejdF )(ej))

= ∇ek

[
∇ek

∇ ∂
∂t

((∇̃ejdF )(ej))

+ RN

(
dF (ek), dF

(
∂

∂t

))
((∇̃ejdF )(ej))

]
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+ RN

(
dF (ek), dF

(
∂

∂t

))
∇ek

((∇̃ejdF )(ej)).

Here, substituting (23) into ∇ ∂
∂t

((∇̃ejdF )(ej)) in the first term of the RHS, we
have (55). QED

14 Lemma.

∇ ∂
∂t

∇∇ek
ek

((∇̃ejdF )(ej)) = ∇∇ek
ek

[
(∇̃ei∇̃eidF )

(
∂

∂t

)
− (∇̃∇ei

eidF )
(

∂

∂t

)
+ RN

(
dF (ej), dF

(
∂

∂t

))
dF (ej)

]
+ RN

(
dF (∇ek

ek), dF
(

∂

∂t

))
((∇̃ejdF )(ej)). (57)

Proof. In a similar way as Lemma 5, since [∇ek
ek,

∂
∂t ] = 0, we have

∇ ∂
∂t

∇∇ek
ek

= ∇∇ek
ek

∇ ∂
∂t

+ RN

(
dF (∇ek

ek), dF
(

∂

∂t

))
.

Changing variables, and substituting again (23), we have (57). QED

15 Lemma.

∇ ∂
∂t

[
RN (dF (ei), (∇̃dF )(ej))dF (ei)

]
= (∇′

dF (ei)
RN )

(
dF

(
∂

∂t

)
, (∇̃ejdF )(ej)

)
dF (ei)

+ (∇′
(∇ej dF )(ej)

RN )
(
dF (ei), dF

(
∂

∂t

))
dF (ei)

+ RN

(
(∇̃eidF )

(
∂

∂t

)
, (∇̃ejdF )(ej)

)
dF (ei)

+ RN (dF (ei), (∇̃ejdF )(ej))
(

(∇̃eidF )
(

∂

∂t

))
+ RN

(
dF (ei), (∇̃ek

∇̃ek
dF )

(
∂

∂t

)
− (∇̃∇ek

ek
dF )

(
∂

∂t

)
+ RN (dF (ek), dF

(
∂

∂t

)
)dF (ek)

)
dF (ei). (58)
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Proof. We directly compute the LHS of (58). By definition of ∇′
dF ( ∂

∂t
)
R,

and then by using the second Bianchi identity, (23) and ∇ ∂
∂t

dF (ei) = ∇eidF ( ∂∂t),
we have

∇ ∂
∂t

[
RN (dF (ei), (∇̃dF )(ej))dF (ei)

]
= (∇′

dF ( ∂
∂t

)
RN )

(
dF (ei), (∇̃ejdF )(ej)

)
dF (ei)

+ RN
(
∇ ∂

∂t
dF (ei), (∇̃ejdF )(ej)

)
dF (ei)

+ RN
(
dF (ei),∇ ∂

∂t
((∇̃ejdF )(ej))

)
dF (ei)

+ RN
(
dF (ei), (∇̃ejdF )(ej)

)
∇ ∂

∂t
dF (ei)

= (∇′
dF (ei)

RN )
(
dF

(
∂

∂t

)
, (∇̃ejdF )(ej)

)
dF (ei)

+ (∇′
(∇ej dF )(ej)

RN )
(
dF (ei), dF

(
∂

∂t

))
dF (ei)

+ RN

(
(∇̃eidF )

(
∂

∂t

)
, (∇̃ejdF )(ej)

)
dF (ei)

+ RN
(
dF (ei), (∇̃ejdF )(ej)

)(
(∇̃eidF )

(
∂

∂t

))
+ RN

(
dF (ei), (∇̃ek

∇̃ek
dF )

(
∂

∂t

)
− (∇̃∇ek

ek
dF )

(
∂

∂t

)
+ RN (dF (ek), dF

(
∂

∂t

)
)dF (ek)

)
dF (ei).

We have (58). QED

16 Theorem. Let f : M → N be a 2-harmonic map from a compact
Riemannian manifold M into an arbitrary Riemannian manifold N , and {ft} an
arbitrary C∞ variation of f satisfying (12) and (13). Then, the second variation
formula of 1

2E2(ft) is given as follows.

1
2

∂2

dt2
E2(ft)

∣∣∣∣
t=0

=
∫
M
〈−∇∗∇V + RN (df(ei), V )df(ei),

−∇∗∇V + RN (df(ei), V )df(ei)〉 ∗ 1

+
∫
M
〈V, (∇′

df(ei)
RN )(df(ei), τ(f))V
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+ (∇′
τ(f)R

N )(df(ei), V )df(ei)

+ RN (τ(f), V )τ(f)

+ 2RN (df(ek), V )∇ek
τ(f)

+ 2RN (df(ei), τ(f))∇eiV 〉 ∗ 1. (59)

Proof. Putting t = 0 in (54), the first term of RHS vanishes since f is
2-harmonic. It suffices to substitute (55), (56) and (55) in Lemmas 5, 6, and 7
into the second term. Then, we have

1
2

d2

dt2
E2(ft)

∣∣∣∣
t=0

=
∫
M
〈V,−∇∗∇(−∇∗∇V + RN (df(ei), V )df(ei))

+∇ek
(RN (df(ek), V )τ(f))

+ RN (df(ek), V )∇ek
τ(f)

−RN (df(∇ek
ek), V )τ(f)

+ (∇′
df(ei)

RN )(V, τ(f))df(ei)

+ (∇′
τ(f)R

N )(df(ei), V )df(ei)

+ RN (∇eiV, τ(f))df(ei)

+ RN (df(ei), τ(f))∇eiV

+ RN (df(ei),−∇∗∇V

+ RN (df(ej), V )df(ej))df(ei)〉 ∗ 1. (60)

In the first term of (60), we have by Green’s theorem,∫
M
〈V,−∇∗∇(−∇∗∇V + RN (df(ei), V )df(ei)〉 ∗ 1

=
∫
M
〈−∇∗∇V,−∇∗∇V + RN (df(ei), V )df(ei)〉 ∗ 1. (61)

For the last term of the RHS of (60), by the symmetric property of the curvature∫
M
〈V,RN (df(ei),W )df(ei)〉 ∗ 1 =

∫
M
〈W,RN (df(ei), V )df(ei)〉 ∗ 1,

we have ∫
M
〈V,RN (df(ei),−∇∗∇V + RN (df(ej), V )df(ej)df(ei)〉 ∗ 1

=
∫
M
〈RN (df(ei), V )df(ei),

−∇∗∇V + RN (df(ej), V )df(ej)〉 ∗ 1. (62)
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For the second term of the RHS of (60), we have

∇ek
(RN (df(ek), V )τ(f)) = (∇′

df(ek)R
N )(df(ek), V )τ(f)

+ RN (∇ek
df(ek), V )τ(f)

+ RN (df(ek),∇ek
V )τ(f)

+ RN (df(ek), V )∇ek
τ(f). (63)

Substituting (61), (62) and (63) into (60), we have

1
2

∂2

dt2
E2(ft)

∣∣∣∣
t=0

=
∫
M
〈−∇∗∇V + RN (df(ei), V )df(ei),

−∇∗∇V + RN (df(ei), V )df(ei)〉 ∗ 1

+
∫
M
〈V, (∇′

df(ei)
RN )(df(ei), τ(f))V

+ RN (τ(f), V )τ(f) + RN (df(ek),∇ek
V )τ(f)

+ 2RN (df(ek), V )∇ek
τ(f)

+ (∇′
df(ei)

RN )(V, τ(f))df(ei)

+ (∇′
τ(f)R

N )(df(ei), V )df(ei)

+ RN (∇eiV, τ(f))df(ei)

+ RN (df(ei), τ(f))∇eiV 〉 ∗ 1. (64)

By the first Bianchi identity, we have

RN (df(ek),∇ek
V )τ(f) + RN (∇eiV, τ(f)df(ei)

= RN (df(ei), τ(f))∇eiV,

(∇′
df(ek)R

N )(df(ek), V )τ(f) + (∇′
df(ek)R

N)(V, τ(f))df(ek)

= (∇′
df(ek)R

N )(df(ek), τ(f))V.

Substituting these into (64), we have (59). QED

By the second variation formula, we derive the notion of stable 2-harmonic
maps.

17 Definition. Let f : M → N be a 2-harmonic map of a compact Rie-
mannian manifold M into any Riemannian manifold N . If the second variation
of 2-energy is non-negative for every variation {ft} of f , i.e., the RHS of (59) is
non-negative for every vector field V along f , f is said to be a stable 2-harmonic
map.

___________________________________________________________________________



2-harmonic maps 229

By definition of 2-energy, any harmonic maps are stable 2-harmonic maps.
This may also be seen as follows: since τ(f) = 0, for a vector field V of any
variation {ft} we have

1
2

d2

dt2
E2(ft)

∣∣∣∣
t=0

=
∫
M
‖ − ∇∗∇V + RN (df(ei), V )df(ei)‖2 ∗ 1 ≥ 0.

18 Theorem. Assume that M is a compact Riemannian manifold, and N
is a Riemannian manifold with a positive constant sectional curvature K > 0.
Then, there is no non-trivial stable 2-harmonic map satisfying the conservation
law.

Proof. Since N has constant curvature, ∇′RN = 0, so that (59) becomes

1
2

d2

dt2

∣∣∣∣
t=0

E2(ft) =
∫
M
‖ − ∇∗∇V + RN (df(ei), V )df(ei)‖2 ∗ 1

+
∫
M
〈V,RN (τ(f), V )τ(f) + 2RN (df(ei), V )∇ek

τ(f)

+ 2RN (df(ei), τ(f))∇eiV 〉 ∗ 1. (65)

Especially, if we take V = τ(f), then, the first term of the RHS of (65) and the
first integrand of the second term vanish, so we have

1
2

d2

dt2

∣∣∣∣
t=0

E2(ft) = 4
∫
M
〈RN (df(ek), τ(f))∇ek

τ(f), τ(f)〉 ∗ 1

= 4K
∫
M

[〈df(ek),∇ek
τ(f)〉‖τ(f)‖2

− 〈df(ek), τ(f)〉〈τ(f),∇ek
τ(f)〉] ∗ 1. (66)

Since f satisfies the conservation law, i.e., −〈τ(f), df(X)〉 = (divSf )(X) = 0 for
all X ∈ X(M), we have

〈df(ek), τ(f)〉 = 0,

and

〈df(ek),∇ek
τ(f)〉 = −〈∇ek

df(ek), τ(f)〉 + ek〈df(ek), τ(f)〉
= −‖τ(f)‖2 − 〈df(∇ek

ek), τ(f)〉
= −‖τ(f)‖2. (67)

Substituting (67) into (66), we have

0 ≤ 1
2

d2

dt2

∣∣∣∣
t=0

E2(ft) = −4K
∫
M
‖τ(f)‖4 ∗ 1 ≤ 0,

which implies that τ(f) ≡ 0. QED
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In order to apply the second variation formula, we take N = �Pn.
19 Lemma. Assume that f : M → �Pn is a stable 2-harmonic map

of a compact Riemannian manifold which satisfies the conservation law and
‖τ(f)‖2 > 3

√
2e(f) ‖∇τ(f)‖ pointwisely on M . Then, f is harmonic. Here, we

denote ‖∇τ(f)‖2 = 〈∇ek
τ(f),∇ek

τ(f)〉.
Proof. Assume that f satisfies all the assumption, but not harmonic. Since

∇′RN = 0, if we take V = τ(f), both the first term and the integrand of the
second term of (65) vanish, and we use the explicit formula of the curvature
tensor of �Pn, (65) becomes as follows.

1
2

d2

dt2

∣∣∣∣E2(ft) = 4
∫
M
〈RN (df(ek), τ(f))∇ek

τ(f), τ(f)〉 ∗ 1

= C

∫
M
〈〈df(ek),∇ek

τ(f)〉τ(f)− 〈τ(f),∇ek
τ(f)〉df(ek)

+ 〈Jdf(ek),∇ek
τ(f)〉Jτ(f)− 〈Jτ(f),∇ek

τ(f)〉Jdf(ek)

+ 2〈Jdf(ek), τ(f)〉J∇ek
τ(f), τ(f)〉 ∗ 1, (68)

where C is a positive constant depending only on �Pn. By (67) and 〈Jτ(f), τ(f)〉
= 0, we have

1
2

d2

dt2

∣∣∣∣E2(ft) = C

∫
M

[−‖τ(f)‖4

+ 3〈Jdf(ek), τ(f)〉〈J∇ek
τ(f), τ(f)〉] ∗ 1. (69)

For each k, by Schwarz inequality twice, we have

〈Jdf(ek), τ(f)〉〈J∇ek
τ(f), τ(f)〉

≤
√
〈Jdf(ek), Jdf(ek)〉‖τ(f)‖

√
〈J∇ek

τ(f), J∇ek
τ(f)〉‖τ(f)‖

= ‖τ(f)‖2
√
〈df(ek, df(ek)〉〈∇ek

τ(f),∇ek
τ(f)〉.

By taking the sum over k, and by Schwarz inequality, we have

〈Jdf(ek), τ(f)〉〈J∇ek
τ(f), τ(f)〉

≤ ‖τ(f)‖2
√
〈df(ei), df(ei)〉〈∇ejτ(f),∇ejτ(f)〉

=
√

2e(f)‖τ(f)‖2‖∇τ(f)‖. (70)

Substituting this into (69), we have

0 ≤ 1
2

d2

dt2

∣∣∣∣E2(ft) ≤ C

∫
M
‖τ(f)‖2

(
3
√

2e(f)‖∇‖ − ‖τ(f)‖2
)
∗ 1

which is impossible if ‖τ(f)‖2 > 3
√

2e(f)‖∇τ(f)‖. QED
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20 Lemma. Assume that f : M → N = �Pn a 2-harmonic map from a
compact Riemannian manifold into �Pn with constant holomorphic sectional
curvature C > 0 which satisfies the conservation law and ‖τ(f)‖2 = constant.
Then, it holds that

C

2
e(f)‖τ(f)‖2 ≤ ‖∇τ(f)‖2 ≤ 2Ce(f)‖τ(f)‖2. (71)

Proof. Since f is 2-harmonic, we can still use the equality in (37), so that

0 =
1
2
∆‖τ(f)‖2 = ‖∇τ(f)‖2 − 〈RN (df(ei), τ(f))df(ei), τ(f)〉. (72)

We denote by RiemN (df(ei)∧ τ(f)), the sectional curvature through df(ei) and
τ(f). Since this plane does not degenerate, and f satisfies the conservation law,
for each i,

〈RN (df(ei), τ(f))df(ei), τ(f)〉
= RiemN (df(ei) ∧ τ(f)) · 〈df(ei), df(ei)〉 ‖τ(f)‖2. (73)

Recall that the sectional curvature of �Pn satisfies

C

4
≤ RiemN ≤ C, (74)

so that by (73), (74), we have

C

2
e(f)‖τ(f)‖2 ≤ 〈RN (df(ei), τ(f))df(ei), τ(f)〉

≤ 2Ce(f)‖τ(f)‖2. (75)

Thus, we have (71). QED

21 Theorem. Let f : M → �Pn a stable 2-harmonic map from a compact
Riemannian manifolds M into �Pn with constant holomorphic sectional curva-
ture C > 0, which satisfies the conservation law, and ‖τ(f)‖2 = constant. If the
density function of f satisfies

e(f) <
‖τ(f)‖
6
√

C
, (76)

then f is harmonic.
Proof. Assume that there exists such a stable 2-harmonic map but not

harmonic. By Lemma 9, there exists a point p ∈M at which

0 < ‖τ(f)‖2 ≤ 3
√

2e(f)‖∇τ(f)‖.
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By Lemma 9, it holds that, at this point,

‖τ(f)‖2 ≤ 3
√

2e(f)‖∇τ(f)‖ ≤ 6
√

Ce(f)‖τ(f)‖.

Then, at this point,

0 ≤ ‖τ(f)‖(6
√

Ce(f)− ‖τ(f)‖).

Since ‖τ(f)‖ > 0 at p, we have 6
√

Ce(f) − ‖τ(f)‖ ≥ 0 at p which contradicts
the assumption (76). QED

22 Corollary. Assume that f : M → �Pn is a 2-harmonic isometric im-
mersion from a m-dimensional compact Riemannian manifold M into �Pn with
constant holomorphic sectional curvature C > 0 whose ‖τ(f)‖ is constant and
satisfies ‖τ(f)‖ > 3

√
Cm. Then f can not be stable.
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