
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 37 (2017) suppl. 1, 161–186. 10.1112/blms/23.4.372

Inequalities for algebraic Casorati

curvatures and their applications

Mukut Mani Tripathii

Department of Mathematics
Institute of Science
Banaras Hindu University
Email: mmtripathi66@yahoo.com

Received: 20-07-2016; accepted: 17-10-2016.

Abstract. The notion of different kind of algebraic Casorati curvatures are introduced. Some
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Introduction

Felice Casorati was one of the great Italian mathematicians best known for
the Casorati-Weierstrass theorem in complex analysis. He was born in Pavia on
December 17, 1835 and his soul departed on September 11, 1890 in Casteggio.
Before his departure, in 1889, Casorati [8] defined a curvature for a regular
surface in Euclidean 3-space which turns out to be the normalized sum of the
squared principal curvatures. In [9], the author says that he could not check
the paper [8] before printing, and advices readers to rather use a subsequent
paper [10]. This curvature is now well known as the Casorati curvature. Several
geometers believe that Casorati preferred this curvature over the traditional
Gaussian curvature because the Casorati curvature vanishes for a surface in
Euclidean 3-space if and only if both Euler normal curvatures (or principal
curvatures) of the surface vanish simultaneously and thus corresponds better
with the common intuition of curvature. For a hypersurface of a Riemannian
manifold the Casorati curvature is defined to be the normalized sum of the
squared principal normal curvatures of the hypersurface, and in general, the
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Casorati curvature of a submanifold of a Riemannian manifold is defined to be
the normalized squared length of the second fundamental form [22]. Geometrical
meaning and the importance of the Casorati curvature, discussed by several
geometers, can be visualized in several research/survey papers including [19],
[23], [24], [28], [30], [33], [34], [46], [56] and [57].

The paper is organized as follows. In section 1, some preliminaries regard-
ing curvature like tensors are presented. In section 2, given an n-dimensional
Riemannian manifold (M, g), a Riemannian vector bundle (B, gB) over M , a
B-valued symmetric (1, 2)-tensor field ζ and a (curvature-like) tensor field T
satisfying the algebraic Gauss equation, we introduce the notion of different
kind of algebraic Casorati curvatures δ̂CT,ζ (n − 1), δCT,ζ (n − 1), δCT,ζ (r;n − 1),
δ̂CT,ζ (r;n− 1), which in special cases of Riemannian submanifolds reduce to al-
ready known δ-Casorati curvatures. In section 3, first we prove a useful Lemma
regarding a constrained extremum problem. Then we present results expressing
basic Casorati inequalities for algebraic Casorati curvatures. Equality cases are
also discussed. After this, application parts begin. In section 4, we obtain basic
Casorati inequalities for Casorati curvatures δ(r;n − 1), δ̂(r;n − 1), δ(n − 1),
δ̂(n− 1) for Riemannian submanifolds. In section 5, we further apply these re-
sults to obtain Casorati inequalities for Riemannian submanifolds of real space
forms with very short proofs. Finally, in section 6, we present some problems
for further studies.

1 Curvature like tensor

In 1967, R.S. Kulkarni introduced the notion of a curvature structure (cf.
[35, §8 of Chapter 1], [36]), which is now widely known as a curvature-like
tensor (field). Let (M, g) be an n-dimensional Riemannian manifold. Let T be
a curvature-like tensor so that it satisfies the following properties

T (X,Y, Z,W ) = −T (Y,X,Z,W ), (1)

T (X,Y, Z,W ) = T (Z,W,X, Y ), (2)

T (X,Y, Z,W ) + T (Y, Z,X,W ) + T (Z,X, Y,W ) = 0 (3)

for all vector fields X, Y , Z and W on M . For a curvature-like tensor field
T , the T -sectional curvature associated with a 2-plane section Π2 spanned by
orthonormal vectors X and Y at p ∈M , is given by [6]

KT (Π2) = KT (X ∧ Y ) = T (X,Y, Y,X).



Inequalities for algebraic Casorati curvatures 163

Let {e1, e2, . . . , en} be any orthonormal basis of TpM . The T -Ricci tensor ST
is defined by

ST (X,Y ) =
n∑
j=1

T (ej , X, Y, ej) , X, Y ∈ TpM.

The T -Ricci curvature is given by

RicT (X) = ST (X,X), X ∈ TpM.

The T -scalar curvature is given by [6]

τT (p) =
∑

1≤i<j≤n
T (ei, ej , ej , ei) . (4)

Now, let Πk be a k-plane section of TpM and X a unit vector in Πk. If k = n
then Πn = TpM ; and if k = 2 then Π2 is a plane section of TpM . We choose an
orthonormal basis {e1, . . . , ek} of Πk. Then we define the T -k-Ricci curvature
of Πk at ei, i ∈ {1, . . . , k}, denoted (RicT )Πk(ei), by

(RicT )Πk(ei) =
k∑

j=1,j 6=i
KT (ei ∧ ej). (5)

We note that a T -n-Ricci curvature (RicT )TpM (ei) is the usual T -Ricci curvature
of ei, denoted RicT (ei). The T -k-scalar curvature τT (Πk) of the k-plane section
Πk is given by

τT (Πk) =
∑

1≤i<j≤k
KT (ei ∧ ej). (6)

We note that

τT (Πk) =
1

2

k∑
i=1

k∑
j=1,j 6=i

KT (ei ∧ ej) =
1

2

k∑
i=1

(RicT )Πk(ei). (7)

The T -scalar curvature of M at p is identical with the T -n-scalar curvature of
the tangent space TpM of M at p, that is, τT (p) = τT (TpM). If Π2 is a 2-plane
section, τT (Π2) is nothing but the T -sectional curvature KT (Π2) of Π2. The
T -k-normalized scalar curvature of a k-plane section Πk at p is defined as

(τT )Nor(Πk) =
2

k(k − 1)
τT (Πk).

The T -normalized scalar curvature at p is defined as

(τT )Nor(p) = (τT )Nor(TpM) =
2

n(n− 1)
τT (p).
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If T is replaced by the Riemann curvature tensor R, then T -sectional
curvature KT , T -Ricci tensor ST , T -Ricci curvature RicT , T -scalar curvature
τT , T -normalized scalar curvature (τT )Nor, T -k-Ricci curvature (RicT )Πk , T -k-
scalar curvature τT (Πk), T -k-normalized scalar curvature (τT )Nor(Πk) and T -
normalized scalar curvature (τT )Nor become the sectional curvature K, the Ricci
tensor S, the Ricci curvature Ric, the scalar curvature τ , the normalized scalar
curvature τNor, k-Ricci curvature RicΠk , k-scalar curvature τ(Πk), k-normalized
scalar curvature τNor(Πk) and normalized scalar curvature τNor, respectively.

2 Algebraic Casorati curvatures

Let (M, g) be an n-dimensional submanifold of an m-dimensional Rieman-

nian manifold (M̃, g̃). The equation of Gauss is given by

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + g̃ (σ(Y, Z), σ(X,W ))

− g̃ (σ(X,Z), σ(Y,W )) (8)

for all X,Y, Z,W ∈ TM , where R̃ and R are the curvature tensors of M̃ and
M , respectively and σ is the second fundamental form of the immersion of M
in M̃ . The Ricci-Kühn equation is given by

R⊥(X,Y,N, V ) = R̃(X,Y,N, V ) + g ([AN , AV ]X,Y ) (9)

for all X,Y ∈ TM and for all N,V ∈ T⊥M , where

R⊥(X,Y )N = ∇⊥X∇⊥YN −∇⊥Y∇⊥XN −∇⊥[X,Y ]N,

[AN , AV ] = ANAV −AVAN ,

with ∇⊥ being the induced normal connection in the normal bundle T⊥M and
AN being the shape operator in the direction N .

Let M be an n-dimensional Riemannian submanifold of an m-dimensional
Riemannian manifold M̃ . A point p ∈ M is said to be an invariantly quasi-
umbilical point if there exist m − n mutually orthogonal unit normal vectors
Nn+1, . . . , Nm such that the shape operators with respect to all directions Nα

have an eigenvalue of multiplicity n− 1 and that for each Nα the distinguished
eigendirection is the same. The submanifold is said to be an invariantly quasi-
umbilical submanifold if each of its points is an invariantly quasi-umbilical point.
For details, we refer to [4].

Let (M, g) be an n-dimensional Riemannian submanifold of anm-dimensional

Riemannian manifold (M̃, g̃). Let {e1, . . . , en} be an orthonormal basis of the
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tangent space TpM and eα belongs to an orthonormal basis {en+1, . . . , em} of
the normal space T⊥p M . We let

σαij = g̃ (σ (ei, ej) , eα) , i, j ∈ {1, . . . , n}, α ∈ {n+ 1, . . . ,m}.

Then, the squared mean curvature of the submanifold M in M̃ is defined by

‖H‖2 =
1

n2

m∑
α=n+1

(
n∑
i=1

σαii

)2

,

and the squared norm of second fundamental form σ is

‖σ‖2 =

n∑
i,j=1

g̃ (σ (ei, ej) , σ (ei, ej)) .

LetKij and K̃ij denote the sectional curvature of the plane section spanned by ei
and ej at p in the submanifold M and in the ambient manifold M̃ , respectively.
In view of (8), we have

Kij = K̃ij +

m∑
α=n+1

(
σαiiσ

α
jj − (σαij)

2
)
. (10)

From (10) it follows that

2τ(p) = 2τ̃ (TpM) + n2 ‖H‖2 − ‖σ‖2 , (11)

where
τ̃ (TpM) =

∑
1≤i<j≤n

K̃ij

denotes the scalar curvature of the n-plane section TpM in the ambient manifold

M̃ . From (11), it immediately follows that

τNor(p) = τ̃Nor (TpM) +
n

n− 1
‖H‖2 − 1

n(n− 1)
‖σ‖2 , (12)

where

τNor(p) =
2τ(p)

n(n− 1)
, τ̃Nor (TpM) =

2τ̃ (TpM)

n(n− 1)
. (13)

The Casorati curvature C [22] of the Riemannian submanifold M is defined
to be the normalized squared length of the second fundamental form σ, that is,

C =
1

n
‖σ‖2 =

1

n

m∑
α=n+1

n∑
i,j=1

(
σαij
)2
. (14)
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For a k-dimensional subspace Πk of TpM , k ≥ 2 spanned by {e1, . . . , ek}, the
Casorati curvature C (Πk) of the subspace Πk is defined to be [21]

C (Πk) =
1

k

m∑
α=n+1

k∑
i,j=1

(
σαij
)2
.

The normalized δ-Casorati curvatures δ̂C(n − 1), δ′C(n − 1) of a Riemannian
submanifold M are given by [21]

[δ̂C(n− 1)]p = 2 Cp −
2n− 1

2n
sup {C(Πn−1) : Πn−1 is a hyperplane of TpM} ,

(15)

[δ′C(n− 1)]p =
1

2
Cp +

n+ 1

2n(n− 1)
inf {C(Πn−1) : Πn−1 is a hyperplane of TpM} .

(16)
In [21], the authors denoted δ′C(n− 1) by δC(n− 1). The (modified) normalized
δ-Casorati curvatures δC(n − 1) of the Riemannian submanifold M is given by
([39], [63])

[δC(n−1)]p =
1

2
Cp+

n+ 1

2n
inf {C(Πn−1) : Πn−1 is a hyperplane of TpM} . (17)

It should be noted that the normalized δ-Casorati curvatures δ̂C(n−1), δ′C(n−1)
and δC(n − 1) vanish trivially for n = 2 [63]. In [39], the authors pointed out
that the coefficient n+1

2n(n−1) in (16) was inappropriate and therefore they modified

the coefficient from n+1
2n(n−1) to n+1

2n in the definition of δ′C(n − 1) to obtain the

definition of δC(n− 1) (see also [40]). For a positive real number r 6= n(n− 1),
letting

a(r) =
1

nr
(n− 1) (n+ r)

(
n2 − n− r

)
,

the normalized δ-Casorati curvatures δC(r;n−1) and δ̂C(r;n−1) of a Riemannian
submanifold M are given by [22]

[δC(r;n−1)]p = r Cp+a(r) inf {C(Πn−1) : Πn−1 is a hyperplane of TpM} , (18)

if 0 < r < n(n− 1), and

[δ̂C(r;n−1)]p = r Cp+a(r) sup {C(Πn−1) : Πn−1 is a hyperplane of TpM} , (19)

if n(n− 1) < r, respectively.
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In [39] the normalized δ-Casorati curvatures δ̂C(r;n − 1) and δC(r;n − 1)
are called as the generalized normalized δ-Casorati curvatures δ̂C(r;n− 1) and
δC(r;n− 1), respectively. We see that [40]

[δC(n− 1)]p =
1

n(n− 1)

[
δC

(
n(n− 1)

2
;n− 1

)]
p

, (20)

[
δ̂C(n− 1)

]
p

=
1

n(n− 1)

[
δ̂C (2n(n− 1);n− 1)

]
p

(21)

for all p ∈M .

Let (M, g) be an n-dimensional Riemannian manifold and (B, gB) a Rie-
mannian vector bundle over M . If ζ is a B-valued symmetric (1, 2)-tensor field
and T a (0, 4)-tensor field on M such that

T (X,Y, Z,W ) = gB(ζ(X,W ), ζ(Y,Z))− gB(ζ(X,Z), ζ(Y,W )) (22)

for all vector fields X,Y ,Z,W on M , then the equation (22) is said to be an
algebraic Gauss equation [15]. Every (0, 4)-tensor field T on M , which satisfies
(22), becomes a curvature-like tensor.

A typical example of an algebraic Gauss equation is given for a submanifold
M of an Euclidean space, if B is the normal bundle, ζ the second fundamental
form and T the curvature tensor. Some nice situations, in which such T and
ζ satisfying an algebraic Gauss equation exist, are Lagrangian and Kaehlerian
slant submanifolds of complex space forms and C-totally real submanifolds of
Sasakian space forms.

Now, let {e1, . . . , en} be an orthonormal basis of the tangent space TpM
and eα belong to an orthonormal basis {en+1, . . . , em} of the Riemannian vector
bundle (B, gB) over M at p. We put

ζαij = gB (ζ (ei, ej) , eα) , ‖ζ‖2 =
n∑

i,j=1

gB (ζ (ei, ej) , ζ (ei, ej)) ,

trace ζ =

n∑
i=1

ζ (ei, ei) , ‖trace ζ‖2 = gB(trace ζ, trace ζ).

Motivated by the definitions given in [21], [22] and [39] we give the following
definitions.

Definition 1. Let (M, g) be an n-dimensional Riemannian manifold, (B, gB)
a Riemannian vector bundle over M , ζ a B-valued symmetric (1, 2)-tensor field
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on M , and T a curvature-like tensor field satisfying the algebraic Gauss equa-
tion (22). Then the algebraic Casorati curvature CT,ζ with respect to T and the
Riemannian vector bundle (B, gB) over M is defined to be

CT,ζ =
1

n
‖ζ‖2 =

1

n

m∑
α=n+1

n∑
i,j=1

(
ζαij
)2
. (23)

For a k-dimensional subspace Πk of TpM , k ≥ 2, spanned by {e1, . . . , ek}, the
algebraic Casorati curvature CT,ζ(Πk) of the subspace Πk is defined to be

CT,ζ(Πk) =
1

k

m∑
α=n+1

k∑
i,j=1

(
ζαij
)2
. (24)

We note that

CT,ζp = CT,ζ(TpM), p ∈M.

Definition 2. Let (M, g) be an n-dimensional Riemannian manifold, (B, gB)
a Riemannian vector bundle over M , ζ a B-valued symmetric (1, 2)-tensor field
on M , and T a curvature-like tensor field satisfying the algebraic Gauss equa-
tion (22). Then we define the following algebraic Casorati curvatures δCT,ζ (n−1)
and δ̂CT,ζ (n− 1) by

[δCT,ζ (n− 1)]p

=
1

2
CT,ζp +

n+ 1

2n
inf
{
CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM

}
,

(25)

[δ̂CT,ζ (n− 1)]p

= 2 CT,ζp − 2n− 1

2n
sup{CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM}.

(26)

Definition 3. Let (M, g) be an n-dimensional Riemannian manifold, (B, gB)
a Riemannian vector bundle over M , ζ a B-valued symmetric (1, 2)-tensor field
on M , and T a curvature-like tensor field satisfying the algebraic Gauss equation
(22). For a positive real number r 6= n(n− 1), let

a(r) =
1

nr
(n− 1) (n+ r)

(
n2 − n− r

)
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and define the algebraic Casorati curvatures δCT,ζ (r;n − 1) and δ̂CT,ζ (r;n − 1)
by

[δCT,ζ (r;n− 1)]p

= r CT,ζp + a(r) inf
{
CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM

}
(27)

if 0 < r < n(n− 1), and

[δ̂CT,ζ (r;n− 1)]p

= r CT,ζp + a(r) sup
{
CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM

}
(28)

if n(n− 1) < r.

Remark 1. Let (M, g) be an n-dimensional Riemannian submanifold of an

m-dimensional Riemannian manifold (M̃, g̃). Let the Riemannian vector bun-
dle (B, gB) over M be replaced by the normal bundle T⊥M , and the B-valued
symmetric (1, 2)-tensor field ζ be replaced by the second fundamental form of
immersion σ. Then the algebraic Casorati curvature CT,ζ becomes the Casorati
curvature C of the Riemannian submanifold M given by (14). The algebraic
Casorati curvatures δCT,ζ (n− 1) and δ̂CT,ζ (n− 1) become normalized δ-Casorati
curvatures δC(n− 1) and δ̂C(n− 1) of the Riemannian submanifold M given by
(17) and (15), respectively. Finally, algebraic Casorati curvatures δCT,ζ (r;n− 1)
and δ̂CT,ζ (r;n− 1) become normalized δ-Casorati curvatures δC(r;n − 1) and
δ̂C(r;n− 1) of the Riemannian submanifold M given by (18) and (19), respec-
tively.

Now, we present the following useful Lemma.

Lemma 1. Let (M, g) be an n-dimensional Riemannian manifold, (B, gB)
a Riemannian vector bundle over M and ζ a B-valued symmetric (1, 2)-tensor
field. Let T be a curvature-like tensor field satisfying the algebraic Gauss equa-
tion (22). Then

nCT,ζ − ‖trace ζ‖2 = − 2τT . (29)

Proof. Let p ∈ M , the set {e1, . . . , en} be an orthonormal basis of the tan-
gent space TpM and eα belong to an orthonormal basis {en+1, . . . , em} of the
Riemannian vector bundle (B, gB) over M at p. From (22), we get

(KT )ij = T (ei, ej , ej , ei) =
m∑

α=n+1

(
ζαiiζ

α
jj − (ζαij)

2
)
, (30)
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which implies that

2τT = ‖trace ζ‖2 − ‖ζ‖2 = ‖trace ζ‖2 − nCT,ζ . (31)

This gives (29). �

3 Basic Casorati inequalities

We begin with the following two Lemmas:

Lemma 2. ([18, Theorem 21.4, p. 425]) Let Υ ⊂ Rn be an open convex set
in Rn. Then a C2 function f : Υ→ R is a convex function on the open convex
set Υ if and only if for each x ∈ Υ, the Hessian of f at x, denoted (Hessf)x, is
a positive semidefinite matrix.

Lemma 3. ([18, Corollary 21.2, p. 429]) Let Υ ⊂ Rn be an open convex set
in Rn. Let f : Υ → R be a C1 convex function with a point x0 ∈ Υ such that
gradf (x0) = 0, then the point x0 is a global minimizer of f over Υ.

For application purposes, we prove the following

Lemma 4. Let

Υ =
{(
x1, . . . , xn

)
∈ Rn : x1 + · · ·+ xn = k

}
be a hyperplane of Rn, and f : Rn → R a quadratic form given by

f
(
x1, . . . , xn

)
= a

n−1∑
i=1

(
xi
)2

+ b (xn)2 − 2
∑

1≤i<j≤n
xixj , a > 0, b > 0. (32)

Then the constrained extremum problem

min
(x1,...,xn)∈Υ

f (33)

has a global solution given by
x1 = x2 = · · · = xn−1 =

k

a+ 1
,

xn =
k

b+ 1
=
n− 1

b

(
k

a+ 1

)
= (a− n+ 2)

k

a+ 1
,

(34)

provided that

b =
n− 1

a− n+ 2
. (35)
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Proof. First we note that the set Υ is an open convex set in Rn and the function
f is a C∞ function (and hence a C2 function). Now we compute the matrix for
the Hessian Hessf of the function f . The partial derivatives of the function f
are 

∂f

∂xi
= 2 (a+ 1)xi − 2

n∑
`=1

x`, i ∈ {1, . . . , n− 1},

∂f

∂xn
= 2 (b+ 1)xn − 2

n∑
`=1

x`.

(36)

From (36), we have

∂2f

∂ (xi)2 = 2a, i ∈ {1, . . . , n− 1},

∂2f

∂xi∂xj
= − 2, i, j ∈ {1, . . . , n− 1},

∂2f

∂xi∂xn
= − 2, i ∈ {1, . . . , n− 1},

∂2f

∂ (xn)2 = 2b.

(37)

Thus, in the standard frame of Rn, the Hessf has the matrix given by

2


a − 1 · · · − 1 − 1
− 1 a · · · − 1 − 1

...
...

. . .
...

...
− 1 − 1 · · · a − 1
− 1 − 1 · · · − 1 b

 .

We note that for any X =
(
X1, . . . , Xn

)
∈ TxΥ, x ∈ Υ, it follows that

n∑
`=1

X` =

0. Consequently, for any X =
(
X1, . . . , Xn

)
∈ TxΥ, x ∈ Υ we have

Hessf (X,X) ≥ 0.

Thus, for each x ∈ Υ, the Hessian (Hessf)x of f at x is positive semidefinite. In
view of Lemma 2, this implies that the C2 function f is a convex function on
the open convex set Υ.

For an optimal solution
(
x1, . . . , xn

)
of the problem (33), the vector gradf

is normal to Υ, equivalently, it is collinear with the vector (1, 1, . . . , 1). From
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(36), for a critical point x =
(
x1, . . . , xn

)
of the function f we have{

(a+ 1)xi −
∑n

`=1 x
` = 0, i ∈ {1, . . . , n− 1},

(b+ 1)xn −
∑n

`=1 x
` = 0.

(38)

From (38), it follows that a critical point
(
x1, . . . , xn−1, xn

)
of the function f

has the form

x1 = · · · = xn−1 = t, xn =
n− 1

b
t. (39)

Since
x1 + x2 + · · ·+ xn = k,

in view of (39), a critical point
(
x1, . . . , xn

)
of the considered problem is given

by (34). Solving one of the following three relations appearing in (34)

k

b+ 1
=
n− 1

b

(
k

a+ 1

)
= (a− n+ 2)

k

a+ 1
,

we get the equivalent relation given by (35). Consequently, in view of Lemma 3,
the point

(
x1, . . . , xn

)
given by (34) is a global minimum point. Inserting (34)

into (32) we have f
(
x1, . . . , xn

)
= 0. �

Now, we present the following Theorem, involving the Casorati inequalities
for algebraic Casorati curvatures δCT,ζ (r;n− 1) and δ̂CT,ζ (r;n− 1).

Theorem 1. Let (M, g) be an n-dimensional Riemannian manifold, (B, gB)
a Riemannian vector bundle over M and ζ a B-valued symmetric (1, 2)-tensor
field. Let T be a curvature-like tensor field satisfying the algebraic Gauss equa-
tion (22). Then

(τT )Nor (p) ≤ 1

n(n− 1)
[δCT,ζ (r;n− 1)]p , 0 < r < n (n− 1) , (40)

(τT )Nor (p) ≤ 1

n(n− 1)
[δ̂CT,ζ (r;n− 1)]p, n(n− 1) < r. (41)

If

inf{CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM}(
resp. sup{CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM}

)
is attained by a hyperplane Πn−1 of TpM , p ∈ M , then the equality sign holds
in (40) (resp. (41)) if and only if with respect to a suitable orthonormal tan-
gent frame {e1, ..., en} and a suitable orthonormal frame {en+1, ..., em} of the
Riemann vector bundle (B, gB), the components of ζ satisfy

ζαij = 0 i, j ∈ {1, . . . , n}, i 6= j α ∈ {n+ 1, . . . ,m}, (42)

ζα11 = ζα22 = · · · = ζαn−1n−1 =
r

n(n− 1)
ζαnn α ∈ {n+ 1, . . . ,m}. (43)
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Proof. Let p ∈ M and the set {e1, . . . , en} be an orthonormal basis of the
tangent space TpM and eα belong to an orthonormal basis {en+1, . . . , em} of
the Riemannian vector bundle (B, gB) over M at p. We consider the following
function

P = rCT,ζ + a(r)CT,ζ(Πn−1)− 2τT (p), (44)

where Πn−1 is a hyperplane of TpM . In view of (29), the relation (44) becomes

P = (n+ r) CT,ζ + a(r)CT,ζ(Πn−1)− ‖trace ζ‖2 . (45)

Without loss of generality, assume that the hyperplane Πn−1 is spanned by
e1, . . . , en−1. Then from (45) it follows that

P =
n+ r

n

m∑
α=n+1

n∑
i,j=1

(
ζαij
)2

+
a(r)

n− 1

m∑
α=n+1

n−1∑
i,j=1

(
ζαij
)2− m∑

α=n+1

(
n∑
i=1

ζαii

)2

. (46)

The function P is a quadratic polynomial in the components of the tensor ζ and
can be written as

P =
m∑

α=n+1

2

(
r

n
+

a(r)

n− 1
+ 1

) ∑
1≤i<j≤n−1

(
ζαij
)2

+ 2
( r
n

+ 1
) n−1∑
i=1

(ζαin)2

+

(
r

n
+

a(r)

n− 1

) n−1∑
i=1

(ζαii)
2 +

r

n
(ζαnn)2 − 2

∑
1≤i<j≤n

ζαiiζ
α
jj


≥

m∑
α=n+1


(
r

n
+

a(r)

n− 1

) n−1∑
i=1

(ζαii)
2 +

r

n
(ζαnn)2 − 2

∑
1≤i<j≤n

ζαiiζ
α
jj

 . (47)

For α = n+ 1, . . . ,m, we consider a quadratic form

fα : Rn → R

given by

fα (ζα11, . . . , ζ
α
nn) =

(
r

n
+

a(r)

n− 1

) n−1∑
i=1

(ζαii)
2 +

r

n
(ζαnn)2 − 2

∑
1≤i<j≤n

ζαiiζ
α
jj (48)

and the constrained extremum problem

min fα,

subject to the condition
ζα11 + · · ·+ ζαnn = kα,
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where kα is a real constant. Comparing (48) with (32), we see that

a =

(
r

n
+

a(r)

n− 1

)
, b =

r

n
,

which verifies the relation

b =
n− 1

a− n+ 2

of (35). Thus applying Lemma 4, we see that the critical point

ζc =
(
ζα11, ζ

α
22, . . . , ζ

α
n−1n−1, ζ

α
nn

)
given by

ζα11 = ζα22 = · · · = ζαn−1n−1 =
r

(n− 1) (n+ r)
kα, ζαnn =

n

n+ r
kα (49)

is a global minimum point. Inserting (49) into (48) we have fα(ζc) = 0. Hence
we have

P ≥ 0, (50)

which in view of (44) gives

2τT (p)

n(n− 1)
≤ r

n(n− 1)
CT,ζp +

a(r)

n(n− 1)
CT,ζ(Πn−1) (51)

for every tangent hyperplane Πn−1 of TpM .

If 0 < r < n(n − 1), then a(r) > 0 and taking the infimum over all the
tangent hyperplanes Πn−1 of TpM , the relation (51) gives the inequality (40).
If n(n − 1) < r, then a(r) < 0, and taking the supremum over all the tangent
hyperplanes Πn−1 of TpM , the relation (51) gives the inequality (41).

Suppose that

inf{CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM}(
resp. sup{CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM}

)
is attained by a hyperplane Πn−1 spanned by e1, . . . , en−1. Then the equality
sign holds in (40) (resp. (41)) if and only if we have the equality in all the
previous inequalities. Thus the equality sign is true in the inequality (40) (resp.
(41)) if and only if the relations (42) and (43) are true. �

Now, we have the following two results.
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Theorem 2. Let (M, g) be an n-dimensional Riemannian manifold, (B, gB)
a Riemannian vector bundle over M and ζ a B-valued symmetric (1, 2)-tensor
field. Let T be a curvature-like tensor field satisfying the algebraic Gauss equa-
tion (22). Then the T -normalized scalar curvature (τT )Nor is bounded above by
the algebraic Casorati curvature δCT,ζ (n− 1) given by (25), that is,

(τT )Nor(p) ≤ [δCT,ζ (n− 1)]p . (52)

If
inf{CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM}

is attained by a hyperplane Πn−1 of TpM , then the equality sign holds in (52) if
and only if with respect to suitable orthonormal tangent frame {e1, ..., en} and
orthonormal frame {en+1, ..., em}, the components of ζ satisfy

ζαij = 0 i, j ∈ {1, . . . , n}, i 6= j α ∈ {n+ 1, . . . ,m}, (53)

ζα11 = ζα22 = · · · = ζαn−1n−1 =
1

2
ζαnn , α ∈ {n+ 1, . . . ,m}. (54)

Proof. Using

[δCT,ζ (n− 1)]p =
1

n(n− 1)

[
δCT,ζ

(
n(n− 1)

2
;n− 1

)]
p

(55)

in (40), we get (52). Taking 2r = n(n− 1) in (43) we get (54). �

Theorem 3. Let (M, g) be an n-dimensional Riemannian manifold, (B, gB)
a Riemannian vector bundle over M and ζ a B-valued symmetric (1, 2)-tensor
field. Let T be a curvature-like tensor field satisfying the algebraic Gauss equa-
tion (22). Then the T -normalized scalar curvature (τT )Nor is bounded above by
the algebraic Casorati curvature δ̂CT,ζ (n− 1), that is,

(τT )Nor(p) ≤ [δ̂CT,ζ (n− 1)]p. (56)

If
sup{CT,ζ(Πn−1) : Πn−1 is a hyperplane of TpM}

is attained by a hyperplane Πn−1 of TpM , then the equality sign in (56) is true
if and only if with respect to a suitable orthonormal tangent frame {e1, ..., en}
and a suitable orthonormal frame {en+1, ..., em} of the Riemann vector bundle
(B, gB), the components of ζ satisfy

ζαij = 0, i, j ∈ {1, . . . , n}, i 6= j, α ∈ {n+ 1, . . . ,m}, (57)

ζα11 = ζα22 = · · · = ζαn−1n−1 = 2 ζαnn , α ∈ {n+ 1, . . . ,m}. (58)
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Proof. Using[
δ̂CT,ζ (n− 1)

]
p

=
1

n(n− 1)

[
δ̂CT,ζ (2n(n− 1);n− 1)

]
p

(59)

in (41), we get (56). Taking r = 2n(n− 1) in (43) we get (58). �

4 Casorati inequalities for Riemannian submanifolds

Theorem 4. Let (M, g) be an n-dimensional Riemannian submanifold of

m-dimensional Riemannian manifold (M̃, g̃). Then the generalized normalized
δ-Casorati curvatures δC(r;n− 1) and δ̂C(r;n− 1) satisfy

τNor(p) ≤
1

n(n− 1)
[δC (r;n− 1)]p + τ̃Nor (TpM) , 0 < r < n(n− 1), (60)

τNor(p) ≤
1

n(n− 1)
[δ̂C(r;n− 1)]p + τ̃Nor (TpM) , n(n− 1) < r. (61)

If
inf{C(Πn−1) : Πn−1 is a hyperplane of TpM}

(resp. sup{C(Πn−1) : Πn−1 is a hyperplane of TpM})

is attained by a hyperplane Πn−1 of TpM , p ∈ M , then the equality sign holds
in (60) (resp. (61)) for all p ∈ M if and only if (M, g) is an invariantly quasi-

umbilical submanifold with trivial normal connection in (M̃, g̃), such that with
respect to suitable tangent orthonormal frame {e1, ..., en} and normal orthonor-
mal frame {en+1, ..., em}, the shape operators Aα ≡ Aeα, α ∈ {n+1, ...,m}, take
the following forms:

An+1 =



a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
...

. . .
...

...
0 0 0 ... a 0

0 0 0 ... 0
n(n− 1)

r
a


, An+2 = · · · = Am = 0. (62)

Proof. Let (M, g) be an n-dimensional Riemannian submanifold of an m-

dimensional Riemannian manifold (M̃, g̃). Let the Riemannian vector bundle
(B, gB) over M be replaced by the normal bundle T⊥M , and the B-valued
symmetric (1, 2)-tensor field ζ be replaced by the second fundamental form of
immersion σ. In (22), we set

T (X,Y, Z,W ) = R(X,Y, Z,W )− R̃(X,Y, Z,W )
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with R the Riemann curvature tensor on M and ζ = σ. Then we see that

(τT )Nor(p) = τNor(p)− τ̃Nor (TpM) ,

δCT,ζ (r;n− 1) = δC (r;n− 1) ,

δ̂CT,ζ (r;n− 1) = δ̂C(r;n− 1).

Using these facts in (40) and (41), we get (60) and (61), respectively.

The conditions of equality cases (42) and (43) become

σαij = 0 i, j ∈ {1, . . . , n}, i 6= j α ∈ {n+ 1, . . . ,m} (63)

and

σα11 = σα22 = · · · = σαn−1n−1 =
r

n(n− 1)
σαnn, α ∈ {n+ 1, . . . ,m}, (64)

respectively. Thus the equality sign holds in both the inequalities (60) and (61)
if and only if (63) and (64) are true.

The interpretation of the relations (63) is that the shape operators with
respect to all normal directions eα commute, or equivalently, that the normal
connection ∇⊥ is flat, or still, that the normal curvature tensor R⊥, that is, the
curvature tensor of the normal connection, is trivial. Furthermore, the interpre-
tation of the relations (64) is that there exist m − n mutually orthogonal unit
normal vectors {en+1, ..., em} such that the shape operators with respect to all
directions eα (α ∈ {en+1, ..., em}) have an eigenvalue of multiplicity n − 1 and
that for each eα the distinguished eigendirection is the same (namely en), that
is, the submanifold is invariantly quasi-umbilical [4].

Thus from the relations (63) and (64), we conclude that the equality holds in
(60) and/or (61) for all p ∈M if and only if the Riemannian submanifold M is

invariantly quasi-umbilical with trivial normal connection ∇⊥ in M̃ , such that
with respect to suitable orthonormal tangent and normal orthonormal frames,
the shape operators take the form given by (62). �

Theorem 5. Let (M, g) be an n-dimensional Riemannian submanifold of

m-dimensional Riemannian manifold (M̃, g̃). Then the normalized δ-Casorati
curvature δC(n− 1) satisfies

τNor(p) ≤ [δC(n− 1)]p + τ̃Nor (TpM) . (65)

If inf{C(Πn−1) : Πn−1 is a hyperplane of TpM}

is attained by a hyperplane Πn−1 of TpM , p ∈M , then the equality sign holds if
and only if M is an invariantly quasi-umbilical submanifold with trivial normal
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connection in M̃ , such that with respect to suitable orthonormal tangent frame
{e1, ..., en} and normal orthonormal frame {en+1, ..., em}, the shape operators
Aα ≡ Aeα, α ∈ {n+ 1, ...,m}, take the following forms

An+1 =



a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
...

. . .
...

...
0 0 0 ... a 0
0 0 0 ... 0 2a


, An+2 = · · · = Am = 0. (66)

Proof. Using (20) in (60), we get (65). Putting 2r = n(n − 1) in (62) we get
(66). �

Theorem 6. Let (M, g) be an n-dimensional Riemannian submanifold of

m-dimensional Riemannian manifold (M̃, g̃). Then the normalized δ-Casorati
curvature δ̂C(n− 1) satisfies

τNor(p) ≤ [δ̂C(n− 1)]p + τ̃Nor (TpM) . (67)

If sup{C(Πn−1) : Πn−1 is a hyperplane of TpM}
is attained by a hyperplane Πn−1 of TpM , p ∈ M , then the equality sign holds
if and only if (M, g) is an invariantly quasi-umbilical submanifold with trivial

normal connection in (M̃, g̃), such that with respect to suitable orthonormal tan-
gent frame {e1, ..., en} and normal orthonormal frame {en+1, ..., em}, the shape
operators Aα ≡ Aeα, α ∈ {n+ 1, ...,m}, take the following forms:

An+1 =



a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
...

. . .
...

...
0 0 0 ... a 0

0 0 0 ... 0
1

2
a


, An+2 = · · · = Am = 0. (68)

Proof. Using (21) in (61), we get (67). Putting r = 2n(n − 1) in (62) we get
(68). �

5 Casorati inequalities for submanifolds of real space
forms

An m-dimensional Riemannian manifold (M̃, g̃) with constant sectional cur-

vature c, denoted M̃(c), is called a real space form, and its Riemann curvature
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tensor R̃ is then given by

R̃(X,Y, Z,W ) = c {g̃ (Y,Z) g̃ (X,W )− g̃ (X,Z) g̃ (Y,W )} (69)

for all vector fields X,Y, Z,W on M̃ . The model spaces for real space forms are
the Euclidean spaces (c = 0), the spheres (c > 0), and the hyperbolic spaces
(c < 0). For an n-dimensional Riemannian submanifold (M, g) of a real space

form M̃(c) it is easy to see that

τ̃Nor (TpM) = c. (70)

Theorem 7. [22, Theorem 2.1 and Corollary 3.1] Let (M, g) be an n-

dimensional Riemannian submanifold of m-dimensional real space form M̃(c).
Then

τNor(p) ≤
1

n(n− 1)
[δC(r;n− 1)]p + c, 0 < r < n(n− 1), (71)

τNor(p) ≤
1

n(n− 1)
[δ̂C(r;n− 1)]p + c, n(n− 1) < r. (72)

The equality sign holds in (71) (resp. (72)) for all p ∈ M if and only if (M, g)
is an invariantly quasi-umbilical submanifold with trivial normal connection in
M̃(c), such that with respect to suitable tangent orthonormal frame {e1, ..., en}
and normal orthonormal frame {en+1, ..., em}, the shape operators Aα ≡ Aeα,
α ∈ {n+ 1, ...,m}, take the forms given by (62).

Proof. Using (70) in (60) and (61) we get (71) and (72), respectively. �

Theorem 8. (Theorem 4.1, [63]) Let (M, g) be an n-dimensional Rieman-

nian submanifold of m-dimensional real space form M̃(c). Then the normalized
δ-Casorati curvature δC(n− 1) satisfies

τNor(p) ≤ [δC(n− 1)]p + c. (73)

Moreover, the equality sign holds for all p ∈ M if and only if (M, g) is
an invariantly quasi-umbilical submanifold with trivial normal connection in
(M̃, g̃), such that with respect to suitable orthonormal tangent frame {e1, ..., en}
and normal orthonormal frame {en+1, ..., em}, the shape operators Aα ≡ Aeα,
α ∈ {n+ 1, ...,m}, take the forms given by (66).

Proof. Using (20) in (71), we get (73). �

Theorem 9. (Theorem 1 and Corollary 3, [21]) Let (M, g) be an n-dimen-

sional Riemannian submanifold of m-dimensional real space form M̃(c). Then
the normalized δ-Casorati curvature δ̂C(n− 1) satisfies

τNor(p) ≤ [δ̂C(n− 1)]p + c. (74)
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Moreover, the equality sign holds for all p ∈ M if and only if (M, g) is
an invariantly quasi-umbilical submanifold with trivial normal connection in
(M̃, g̃), such that with respect to suitable orthonormal tangent frame {e1, ..., en}
and normal orthonormal frame {en+1, ..., em}, the shape operators Aα ≡ Aeα,
α ∈ {n+ 1, ...,m}, take the forms given by (68).

Proof. Using (21) in (72), we get (74). �

6 Further studies

In this section, we present some problems. Similar problems can be for-
mulated in those situations, where Riemman curvature tensor of the ambient
manifold has some nice well known form.

Problem 6.1. Like in [14], to obtain Casorati inequalities for conformally
flat submanifolds of a real space form.

Problem 6.2. Riemannian manifolds of quasi-constant curvature (cf. [5],
[16], [26], [42], [58]) represent a good generalization of real space forms. To obtain
Casorati inequalities for submanifolds of quasi-constant curvature manifolds. To
study Casorati ideal submanifolds of quasi-constant curvature manifolds.

Problem 6.3. To obtain Casorati inequalities for submanifolds of general-
ized complex space forms (cf. [32], [45], [55], [51]).

Problem 6.4. Like the improved Chen-Ricci inequalities [53], to improve
Casorati inequalities for Lagrangian [13] and Kaehlerian slant submanifolds [12]
of a complex space form, if possible.

Problem 6.5. To obtain Casorati inequalities for different kind of subman-
ifolds of locally conformal Kaehler space forms (cf. [25], [54]).

Problem 6.6. Like the improved Chen-Ricci inequalities [53], to improve
Casorati inequalities for Lagrangian submanifolds of a locally conformal Kaehler
space form (under some conditions), if possible.

Problem 6.7. To obtain Casorati inequalities for submanifolds of Kaehler
manifolds of quasi constant holomorphic sectional curvatures (cf. [27], [2]).

Problem 6.8. To obtain Casorati inequalities for different kind of subman-
ifolds of Bochner-Kaehler manifolds [17].

Problem 6.9. Like the improved Chen-Ricci inequalities [53], to improve
Casorati inequalities for Lagrangian submanifolds of Bochner-Kaehler mani-
folds, if possible.

Problem 6.10. Like the improved Chen-Ricci inequalities [53], to improve
Casorati inequalities for Lagrangian submanifolds of a quaternionic space form
[31], if possible.
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Problem 6.11. To obtain Casorati inequalities for different kind of sub-
manifolds [52] of generalized (κ, µ) space forms [7] and in particular generalized
Sasakian space forms [1] and Sasakian space forms.

Problem 6.12. Like the improved Chen-Ricci inequalities [53], to improve
Casorati inequalities for Legendrian submanifolds of a Sasakian space form (cf.
[50], [3]).

Problem 6.13. To obtain Casorati inequalities for different kind of sub-
manifolds of different kind of manifolds equipped with a semi-symmetric metric
connection (cf. [47], [59], [43]).

Problem 6.14. To obtain Casorati inequalities for centroaffine hypersur-
faces [44].
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