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Abstract. A trajectory-front for a surface magnetic field is formed by terminuses of
trajectory-segments of given arc-radius which are emanating from a given point. In order to
show how trajectories are spreaded we give estimates of their arc-lengths of trajectory-fronts.
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Introduction

A closed 2-form on a Riemannian manifold is said to be a magnetic field
because it can be regarded as a generalization of a static magnetic field on
a Euclidean 3-space R? (see [9, 12]). Typical examples of magnetic fields are
constant multiples of the Kéhler form on a Kéhler manifold (see [1]), constant
multiples of the canonical form on a real hypersurface in a Kahler manifold (see
[7]), and 2-forms on an orientable Riemann surface. Motions of charged particle
of unit mass and of unit speed under the influence of a magnetic field are said
to be trajectories for this magnetic field. It is needless to say that properties of
trajectories show the mixture of properties of a magnetic field and properties of
the underlying Riemannian manifold.

In this paper we study trajectory-fronts for surface magnetic fields. A traject-
ory-front of arc-radius r consists of terminuses of trajectory-segments of ar-
clength r which are emanating from a given point. It is also called a trajectory
sphere. It shows how trajectories are spreaded. In their paper ([6]) Bai-Adachi
gave estimates of areas of trajectory spheres for Kéhler magnetic fields on a
Kéahler manifold. We note that Kéhler magnetic fields are uniform magnetic
fields. This means that the Lorentz force of a Kéhler magnetic field does not
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depend on points. Hence trajectory spheres show essentially properties of un-
derlying manifolds. On contrary, surface magnetic fields are not uniform, and
are the simplest examples of non-uniform magnetic fields. We therefore study
lengths of trajectory-fronts by investigating the influence of properties of mag-
netic fields.

The author is grateful to Professor T. Adachi for his encouragements in
preparing this article.

1 Trajectory-fronts

Let M be an orientable Riemann surface. It is naturally regarded as a 1-
dimensional complex manifold with complex structure J. Given a smooth func-
tion A on M, we consider a 2-form B, = hdvoly;, where dvoly; denotes the
volume form on M. We call this a surface magnetic field on M. A smooth curve
~ parameterized by its arc-length is said to be a trajectory for B if it satisfies
the differential equation V4 = h(v)J¥, where V5 denotes the covariant dif-
ferentiation along + with respect to the Riemannian connection V. For a unit
tangent vector u € U,M at a point p € M, we denote by v, a trajectory for a
surface magnetic field B;, with initial vector v,(0) = u. We define a magnetic
exponential map Bpexp, : T,M — M of the tangent space at p by

w/llwl (Jw|), if w # 0y,
Bexp,(w) = {7 A (lol), if w # 0,
p’ lf w = Op'

For a trivial magnetic field By which is given as a surface magnetic field of
null function, it is an ordinary exponential map exp,, : T, M — M. By using
magnetic exponential maps, we define a trajectory-front Frh(p) of arc-radius r

centered at p as
Ff(p) = {Bhexpp(ru) ‘ u € UpM}.

Since M of real dimension 2, we call it a trajectory-front. For a magnetic field
on a Riemannian manifold of real dimension greater than 2, we can define such a
set and call it a trajectory-sphere (cf. [5, 6]). We note that for a trivial magnetic
field, its trajectory-sphere is nothing but a geodesic sphere. Also, we note that
a trajectory-front F(p) is contained in a geodesic ball B,.(p) = exp,, ({tu | 0 <
t<r, ue UpM}) of radius r centered at p.

We here recall trajectory-fronts on a real space form for a surface magnetic
field B, (k € R) of constant Lorentz force (see [5]). Here, a real space form
RM?(c) of constant sectional curvature c is either one of a standard sphere
S2(c), a Euclidean plane R? or a real hyperbolic space H?(c) depending on ¢ is
positive, zero or negative.
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Examples 1.1. On a Euclidean plane, the distance between two points (0)
and 7y(r) of a trajectory « for B, is given as d(’y(O),’y(r)) = (2/\/<;|) sin(|/<;|r/2)
when r satisfies 0 < r < 27/|k|. Therefore, a trajectory-front F(p) coincides
with a geodesic sphere S,(p) of radius p = (2/|x|) sin(|x|r/2).

Examples 1.2. On a standard sphere S%(c) of curvature ¢, when 0 < r <
27 /\/Kk? + ¢, the distance p between two points (0) and v(r) of a trajectory
for B, satisfies

V&% 4+ cesin(vep/2) = Ve sin(V k2 4+ cr/2).

Therefore, a trajectory-front F(p) coincides with a geodesic sphere S,(p).

Examples 1.3. On a real hyperbolic space H?(c) of curvature c, the dis-
tance p between two points v(0) and (r) of a trajectory v for B, satisfies

Vel = &2 sinh(y/[e] p/2) = V/]c| sinh(y/]e] — k27/2), when [x] < /|c],
2sinh(\/ﬂp/2) = /Il when r = +/|c|,
VK2 + ¢ sinh(y/]e] p/2) = /|| sin(V&Z + c1/2), when |k| > +/|c],

where 0 < 7 < 27/vk2 + ¢ when k2 + ¢ > 0.

2 Magnetic Jacobi fields

In order to study trajectory-fronts, we need to investigate magnetic exponen-
tial maps and so, variations of trajectories. A vector field Y along a trajectory
~ for By, is said to be a magnetic Jacobi field if it satisfies

{ Vi V5Y + R(Y, 4 — (YR)J5 — h(7)JV5Y =0, O

(V5Y,4) =0.

We call a smooth map « : I x (—e€,¢) — M a variation of trajectory for By
if for each s € (—e¢,€) the map as = a( ,s) : I — M is a trajectory for By,.
Since «y is parameterized by its arc-length, we have <V%? %—?S‘,%—? = 0. By
differentiating both sides of the equation V 2a %—? = h(a)J %‘z‘ by s, we find that
a vector field g—‘;(-, s) along a trajectory ay satisfies the equations (1). Thus, a
variation of trajectories gives a magnetic Jacobi field. One can easily check that
the converse holds (see [2, 11]). Since M of real dimension 2, we decompose a

vector field Y along « into two components and denotes as Y = fy¥ + gy J*¥
with smooth functions fy, gy along ~. Then (1) turns to

{ 9 + gy {K(y) + h(7)? = (JH)h} =0,

fy = h(¥)gy, @)
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where K (7(t)) denotes the sectional curvature of the tangent plane at y(t). A
point y(tp) with ¢y # 0 is said to be a spherical magnetic conjugate point of
~(0) along -y if there is a non-trivial magnetic Jacobi field Y for By, along v with
Y (0) = 0 and Y (t9) = 0. In this case we call ¢y a spherical magnetic conjugate
value of 7(0) along . Putting p = (0) we denote by t?(p;~) the minimal
positive spherical magnetic conjugate value of p along . When there are no
spherical magnetic conjugate points of p on the trajectory half-line (0, cc), we
set t"(p;y) = co. By definition the differential of the map

IB%hepr‘TUPM: rUpM ={ru|uve UM} - M

is singular at ru if and only if r is a spherical magnetic conjugate value along a
trajectory vy.

Similarly, we say a point y(t.) with ¢, # 0 to be a magnetic conjugate point
of p = v(0) along = if there is a non-trivial magnetic Jacobi field Y = fy5+gy J%
for By, along v with Y (0) = 0 and gy (t.) = 0. In this case we call to a spherical
magnetic conjugate value of (0) along . We denote by t"(p;v) the minimal
positive magnetic conjugate value of p along . When there are no magnetic
conjugate points of p on the trajectory half-line (0, 00), we set t*(p;~y) = co.
Clearly we have 0 < tP(p;7y) < t0(p;7). We set t"(p) = min{t"(p; ) | u e
U,M}.

We here make mention of magnetic Jacobi fields for uniform magnetic fields
on a real space form RM?(c). For constants x and ¢, we define functions s (; ¢),

u.(t;¢) : [0,2n/VK2 +¢] — R by
(2/VK?+¢) sin(Vk?+ct/2), if K2 +¢ >0,

se(t;e) =%t if K24+ c=0,

(2/+/]c| = K?) sinh(y/|c] — K2t/2), if K2+ ¢ <0,

(4/(k* +¢)) {1 — cos(VK2 + ct/2) }, if K2+ ¢ >0,
ug(t;e) = ¢ t2/2, if K2 +c¢=0,

(4/(lc| = ) {cosh(y/|c| — K2t/2) =1}, if K2 +c<O.

Here, we regard 27/v/k2 + ¢ as infinity when 2 + ¢ < 0 (see [3]). We use such
a convention throughout of this paper. We note that if £2 + ¢ < K2 + co we see
5., (t;¢1) > 84, (t; c2). For a trajectory v on a real space form RM?(c), by solving
the equations (2) under the condition that Y (0) = 0 (i.e. fy(0) = gy (0) = 0),
we obtain that a magnetic Jacobi field YV along v with Y (0) = 0 is given as

Y (t) = gy (0){ku(t; 0)¥(t) + s(t; &, c) J7(t) }.
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In particular, for an arbitrary trajectory v for B, have t" (y(0); v) = 27 /Vk? + c.
Since a trajectory-front is given as F*(p) = Byexp,(rU, M), its arclength is given
as 2760, (r; ¢), where

Ox(ric) = \V/K2ug(r;¢)2 + 5, (r; ¢)2

. sin\/1€2+cr/2\//£2+ccos2%\/m2+cr, if K2 +¢>0,
K2+ ¢

— {rVEE2 42, if K2 +c¢=0,

2

—= _sinh /|c] — k2r/24/|¢| cosh? \/|c| — K2r/2 — k2, if K2+ ¢ < 0.
e — &2
¢l —k

when M = RM?(c) and r < 27/vV/k2 + c.

We now give estimate of arclengths of trajectory-fronts for surface magnetic
fields on a general Riemann surface. For positive constants a,b we define a
function ©(r;a,b, c) by

O(r;a,b,c)
=/ a2uy(r;¢)2 + 5p(r; ¢)2
bj—c a%(1 — cos vb+cr)? + (b+c)sin® Vb+cr, ifb+c>0,
= {rVbr2 +4/2, ifb+c=0,

1

Hb\/cﬂ(cosh«/d—br — 12+ (|| —b)sinh? /] —br, ifb+c <O,
C —

Clearly it satisfies O(t; |k|, k2, ¢) = O(t; ¢). Our results are the following.

Theorem 2.1. Let B, be a surface magnetic field on a complete orientable
Riemannian surface M whose sectional curvatures satisfy Riem™ < ¢ with some
constant ¢. For an arbitrary point p € M, we take a positive r with r < t#(p).
If we set a = max,ep, () [h(x)| and b := mingep, () (h(2)* — |[Vh(z)]|), then the
arclength of the curve of the trajectory-front F*(p) is estimated from above as
length (F(p)) < 27O(r;a,0,b + c).

Theorem 2.2. Let By, be a surface magnetic field on a complete orientable
Riemannian surface M whose sectional curvatures satisfy Riem™ > ¢ with some
constant c. For an arbitrary point p € M, we take a positive r with r < ¢#(p).
Suppose @ := mingepg, () |A(x)] > 0. If we set b= max,ep, p) (h(x)? + || Vh(z)]),
then the arclength of the curve of the trajectory-front F"(p) is estimated from
below as length(E"(p)) > 27O(r; a, b,c).
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3 Proofs of Theorems

Let dS denote the ordinary area element of a standard circle S* =UpM C
R2. When 7 < t8(p) = min{t}(p;y») | v € U,M}, we have

length(F(p)) = / H(dIBhexpp)mH dS(v)
UpM
Therefore, in order to show our theorems it is enough to give estimates of norms
of magnetic Jacobi fields. In the preceding paper ([11]), we give comparison
theorems on magnetic Jacobi fields for surface magnetic fields (see [2, 4]). We
here partially extend one of them by comparing magnetic Jacobi fields with
ordinary Jacobi fields along geodesics.

Proposition 3.1. Let M a complete orientable Riemann surfaces whose
sectional curvatures satisfy Riem™ > ¢ with some constant ¢. We take a non-
trivial magnetic Jacobi field Y along a trajectory  for a surface magnetic field
B, which satisfies gy(O) = 0. For a positive T with T < t}(7(0);7), we set
bz = ming<;<7{h(¥(t))? — [|[(VR)(¥(t))||}. For 0 <t < T, We then have

(1) |gy (t)|/s0(t;c+ b;p) is monotone decreasing.
(2) g'(t)/g(t) < sp(t; e+ b)) /s0(t; ¢ + 7).
(3) lgv (O] < 195 (0)] so(t; e+ b).

In particular, we have T' < m/,/c+ bL.

We study magnetic Jacobi fields along the same lines as for ordinary Jacobi
fields (see [8, 10]). To show Proposition 1 we introduce a function of the set of
vector fields along a trajectory which are orthogonal to the velocity vectors. Let
~ be a trajectory for By, on M and S be a positive number. For a vector field
X = gxJ?Y we set

S
Ind§(X) = /O {5 ®? + ox O{ (TR @) = K (1) = h(v(1)°}} dt.

When Y = fy¥ + gyJ? is a magnetic Jacobi field along -, its component
Y+ = gy J¥ orthogonal to + satisfies

9y (S) — 9y (0)gy (0)
/{gy gy ()} dt = /{g gy ()2} dt = Ind§ (Y1)

by (2). Moreover we have the following:
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Lemma 3.2 ([11]). Let Y be a magnetic Jacobi field along ~ satisfying
Y (0) =0.1f0 < S < #(v(0); ) and a vector field X = gx J¥ satisfies X (0) = 0
and X (S) = Y1(S), then we have Ind;(X) > Inds(Y').

Proof. Since gy (t) # 0 for 0 < t < t#((0);~), we can choose a smooth function
¢ along v so that gx(t) = ¢(t)gy(t) holds on the interval [0,t"(v(0);7)]. As
©(S) =1 and gy (0) = 0, by direct calculation we obtain

S
Im&m=A{w@wwwf+wﬁﬂwm—Km—mw%Lu
o 2
- /0 o + G {(T)h = K(9) = h(2)?} } at
S
+ /0 {gvav (™) + ¢ gy} dt
S a2, o 2
= [+ {onh - K - h 2}
s 2 2 s 2 2
+ 9y (S)gv (5) —/0 e {gy” +9vov} dt+/0 ¢ Tgy? dt
S
= Ind3(Y™) +/ gy dt > Ind3 (Y1),
0
by making use of (2). QED
Proof of Proposition 3.1. We take a geodesic 4 on a real space form M =
RM?(c+ bz) and take a Jacobi field §J4 along this geodesic satisfying g(0) =0
and §'(0) = [g4-(0)|. That is, we put §(t) = |g4 (0)] so(t; ¢+ b). We here study

the function F(t) = §(t)?/g(t)?. By de ’'Hospital’s rule, we have

e 0a0) 3030 + ()
I EO =1 5090 ~ W 09 + 902

As we have

in order to show our assertion, it is enough to show that §'(¢)/g(t) > ¢'(t)/g(t)
holds for an arbitrary ¢ with 0 <t <T.

For an arbitrary positive S with S < min{T, w/y\/c+ bg}, we set a function
Gs(t) == g(t)/g(S). Since Gg(t)J4(t) is a Jacobi field along 4 and X = GgJ4
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is a vector field along v, we have

g'(5)

55 = Cs(5)Cs(8)

S . S
:/ {G’S(t)GS(t)}'dt:/ {G's(t)* — (c+0]) Gs(t)?} dt

0 0

o !
> /0 {Gls(1)? ~ {Riem (5() + h(3(6))? ~ I(VA) (v (1) |} Gs (1)? }
= Ind; (X).

If we set a vector field Yg by Yg(t) = Y (t)/gy (S), we have gy, (S) =1 = gx (),
hence obtain

/
S
Ind§(X) > Ind§(V§) = g (S)avs (5) = 242
gv(9)
by using Lemma 3.2. Thus we get the conclusion. QED

Remark 3.3. Since s¢(t; C1) > so(t; Cy) if C1 < Co, when bg’ > b we have
lgy (t)] < |95-(0)]so(t; ¢ +b) for 0 < ¢t < T in Proposition 3.1. In particular, if we
set b = inf,enr{h(p)? — ||(Vh)(p)|/}, this estimate holds for 0 < ¢ < " (7(0);7).

We are now in the position to prove Theorem 2.1. For v € U, M, we denote
by Y, the magnetic Jacobi ﬁeld along Vv satisfying Y;,(0) = 0, ||(V5,Yy)(0)|| = 1.
Since H dIB%hexpp H = fy,(r)? + gy, (r)?, we apply Proposition 3.1 by noticing
\gYU( ) =1.Asr < tc(p,%) we have

()] < /0 ()] o, ()] dt < a /0 "so(tie+b) dt = aug(ric + b).

We hence get the conclusion of Theorem 2.1.
Next we obtain Theorem 2.2. Corresponding to Proposition 3.1 we have the
following.

Proposition 3.4. Let M a complete orientable Riemann surfaces whose
sectional curvatures satisfy Riem™ < ¢ with some constant ¢. We take a
magnetic Jacobi field Y along a trajectory + for a surface magnetic field
Bj, which satisfy gy (0) = 0. For a positive T with T < th (fy(O);fy), we set
lA)%F := maxo<i<r{ h(7(t))* + | (VR)(7(t))| }. We then have

gy (t)] = 9y (0))| spltie)  for0<t<T.

5
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Proof of Theorem 2.2. We use the same notations as in the above proof of The-
orem 2.1. We apply Proposition 3.4. Since a > 0, we see that h(v(t)) does not
vanish. Therefore

fv, (r —/ h(v(®))| lgv, (t dtzd/sA t;c) dt = au —=(r;c).
[fy, (r)] 0!(())\\ (@) 0\/@( ) \/E( )
Thus we get the conclusion. QED

Remark 3.5. In Theorem 2.2, if we drop the assumption that a > 0, we
: h .
can only estimate the arclength as length(FT (p)) > 2%%(T, c).
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