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Abstract. We review the concept of a graded bundle as a natural generalisation of a vector
bundle. Such geometries are particularly nice examples of more general graded manifolds. With
hindsight there are many examples of graded bundles that appear in the existing literature. We
start with a discussion of graded spaces, passing through graded bundles and their linearisation
to end with weighted (graded) Lie groupoids/algebroids.
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1 Introduction

In recent years there has been an interest in various notions of ‘graded ge-
ometry’, largely this interest has been inspired by the BV-BRST and BFV for-
malisms of gauge field theory, as well as the related AKSZ method. From a pure
mathematical perspective, graded geometries have been useful in understanding
Lie algebroids, Courant algebroids, Lie bialgebroids and related structures.

Our general understanding of graded supergeometry is in the sense of
Voronov [16]. Loosely, a graded supermanifold is a supermanifold for which
the structure sheaf carries in addition to the Z2-grading of Grassmann parity
an independent weight from Z. That is, we can always find homogeneous lo-
cal coordinates that are assigned both a Grassmann parity and a weight, and
changes of coordinates respect these assignments.

Among the possible graded geometries, (super)manifolds that have a non-
negative grading seem to play a prominent rôle in both the general theory and
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applications of graded manifolds. In this review we will stick to a class of non-
negatively graded manifolds that have particularly nice properties: we refer to
these manifolds as graded bundles (cf. [8]).

The key concept in the theory of graded bundles is that of a homogeneity
structure. Under the assumption that our non-zero weight coordinates can take
on any real value, we see that a graded structure leads to an action of the
multiplicative monoid of reals: this is just a ‘dilation’ defined by the weight of
the coordinates. For example, the higher order tangent bundles of a manifold
TkM , i.e. the higher jets of curves in M , come with a canonical graded structure
of this kind. It is vital that we consider non-negative weights here, otherwise we
cannot think in terms of the action of the monoid of multiplicative reals.

Graded bundles, which we will define carefully in due course, are graded
manifolds for which the graded structure is inherited from the smooth action of
the multiplicative monoid of reals, which is known as a homogeneity structure
(cf. [8]). If the homogeneity structure is regular, then following [7] we know we
in fact have the structure of the total space of a vector bundle. In this precise
sense, graded bundles represent a natural generalisation of the notion of a vector
bundle. The example to always keep in mind here is the passing from a tangent
bundle to a higher order tangent bundle. There are many other natural examples
of graded bundles and some of these will be presented in this review.

Phrasing the theory in terms of a homogeneity structure is not only concep-
tually neat, but it also allows for a clear understanding of n-fold graded bundles
in terms of commuting actions. For example, the notion of a double vector bun-
dle is clear, we have a pair of regular homogeneity structures and their actions
commute. In other words, the homogeneity structures are compatible. As we
shall see, using homogeneity structures leads to very clear and concise notions
of weighted Lie groupoids and algebroids as the classical structures equipped
with a compatible homogeneity structure. The only thing to decide is a rea-
sonable notion of compatibility. We will see that the compatibility is simply a
natural condition that the action of the homogeneity structure be a morphism
in the appropriate category, for instance the category Lie groupoids or Lie al-
gebroids.

We will stick to pure mathematical aspects of the theory of graded bun-
dles throughout this review and we only remark that many of the concepts we
present here have already found applications in higher order mechanics, see [1].
It is certainly expected that further applications of graded bundles and related
structures will be found. There are many questions that are still open and it is
not completely clear how far we can push the philosophy that graded bundles
are ‘higher’ or ‘nonlinear’ vector bundles.

This review is based on the work of the third author in collaboration with
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the first two authors and Rotkiewicz: [1, 2, 4, 8]. Proofs of the various state-
ments made in this review will not be given, instead we direct the interested
reader to the original literature.

Arrangement: In Section 2 we introduce the notion of a graded space as a
natural generalisation of a vector space. Graded spaces are then used in Section
3 to define the notion of a graded bundle, which we view as a generalisation of
a vector bundle.

Double structures, which include the well-known double vector bundles, are
the subject of Section 4. These double structures appear in Section 5 where we
discuss the linearisation of a graded bundle.

The final part of this review, Section 6, is devoted to the notion of weighted
Lie groupoids and algebroids, which are examples of geometrical objects equip-
ped with a compatible homogeneity structure.

2 Graded spaces

According to textbook definition, a real vector space is a set E with a dis-
tinguished element 0E , equipped with two operations: an addition

+ : E × E → E , (u, v) 7→ u+ v ,

and a multiplication by scalars

h : R× E → E , h(t, v) = ht(v) = t · v = tv ,

satisfying a list of axioms. For instance, (E,+) is a commutative group with 0E

being the neutral element. The homotheties ht satisfy

ht ◦ hs = hts , and ∀v ∈ E h0(v) = 0E . (1)

Every finite-dimensional vector space is also a differential manifold, since
any basis provides it with global coordinates. Let us notice that to distinguish
real vector spaces among differentiable manifolds, a single operation of the above
two is enough.

If we know that the addition comes from a real vector space structure, we
get the multiplication by natural numbers in the obvious way: nv = v+ · · ·+ v,
and we easily extend it to integers by (−n)v = n(−v). The multiplication by
rational numbers, (m/n)v we obtain as the unique solution of the equation
nx = mv. Assuming differentiability (in fact, continuity) of h, we extend this
multiplication to all reals uniquely.
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If, in turn, we know the map h, i.e. multiplication by reals, we use a
consequence of Euler’s Homogeneous Function Theorem: any differentiable
f : Rn → R is homogeneous of degree 1, i.e. f(t · x) = t · f(x), if and only
if f is linear. Thus, from the multiplication by reals on E we get the dual
space E∗, where the addition is well defined, and consequently the addition on
E = (E∗)∗.

But how we can recognize that the map h satisfying (1) comes from a real
vector space structure? A simple answer to this question is given by the follow-
ing.

Theorem 1 (Grabowski-Rotkiewicz [7]). A smooth action h : R × E → E
of the monoid of multiplicative reals on a manifold E, satisfying h0(v) = 0E for
some 0E ∈ E and all v ∈ E, comes from a real vector space structure on E if
and only if h is regular, i.e.

∂h

∂t
(0, v) = 0 ⇔ v = 0E .

In this case, the real vector space structure is unique.

Vector spaces can be generalised by accepting wider class of maps h than
just the regular ones.

Consider now just a smooth action h : R × F → F of the monoid (R, ·)
on a manifold F and assume that h0(F ) = 0F for some element 0F ∈ F . Such
an action we will call a homogeneity structure. The set F with a homogeneity
structure will be called a graded space. The reason for the name is the following
theorem

Theorem 2 (Grabowski-Rotkiewicz [8]). Any graded space (F, h) is diffeo-
morphically equivalent to a dilation structure, i.e. to a certain (Rd, hd), where
d = (d1, . . . , dk), with positive integers di, and Rd = Rd1 × · · ·×Rdk is equipped
with the dilation action hd of multiplicative reals given by

hdt (y1, . . . , yk) = (t · y1, . . . , t
k · yk) , yi ∈ Rdi .

In other words, F can be equipped with a system of (global) coordinates (yji ),

i = 1 . . . , k, j = 1, . . . , di, such that yji is homogeneous of degree i with respect
to the homogeneity structure h:

yji ◦ ht = ti · yji .

Of course, in these coordinates 0F = (0, . . . , 0).

It is natural to call a morphism between graded spaces (Fa, h
a), a = 1, 2, a

smooth map Φ : F1 → F2 which intertwines the homogeneity structures:

Φ ◦ h1
t = h2

t ◦ Φ (2)
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The (R, ·)-action, restricted to positive reals, gives a one-parameter group of dif-
feomorphisms of F , thus is generated by a vector field∇F . It is called the weight
vector field as it completely determines the weights (degrees) of homogeneous
functions. In homogeneous local coordinates the weight vector field reads

∇F =
∑
w,j

w yjw∂yjw . (3)

We say that a function f on F is homogeneous of degree w (has weight w) if
∇F (f) = w · f . A smooth map Φ : F1 → F2 is a morphism of graded spaces if
and only if it relates the corresponding weight vector fields.

Note that automorphisms of (Rd, hd) need not to be linear, so the category of
graded spaces is different from that of vector spaces. For instance, if (y, z) ∈ R2

are coordinates of degrees 1, 2, respectively, then the map

R2 3 (y, z) 7→ (y, z + y2) ∈ R2

is an automorphism of the homogeneity structure, but is nonlinear.

3 Graded bundles

A vector bundle is a locally trivial fibration τ : E → M which, locally over
some open subsets U ⊂ M , reads τ−1(U) ' U × Rn and admits an atlas in
which local trivialisations transform linearly in fibers:

U ∩ V × Rn 3 (x, y) 7−→ (x,A(x)y) ∈ U ∩ V × Rn , A(x) ∈ GL(n,R). (4)

The latter property can also be expressed in the terms of the gradation in
which base coordinates x have degrees 0, and ‘linear coordinates’ y have degree
1. Linearity in y′s is now equivalent to the fact that changes of coordinates
respect the degrees. Morphisms in the category of vector bundles are represented
by commutative diagram of smooth maps

E1
Φ //

τ1
��

E2

τ2
��

M1
ϕ //M2

(5)

being linear (homogeneous) in fibres.
A straightforward generalisation is the concept of a graded bundle τ : F →M

of rank d, with a local trivialization by U → Rd, and with the difference that
the transition functions of local trivialisations:

U ∩ V × Rd 3 (x, y) 7−→ (x,A(x, y)) ∈ U ∩ V × Rd ,
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respect the weights of coordinates (y1, . . . , y|d|) in the fibres, i.e. A(x, ·) are
automorphisms of the graded space (Rd, hd). In other words, a graded bundle
of rank d is a locally trivial fibration with fibers modelled on the graded space
Rd.

Theorem 3 (Grabowski-Rotkiewicz [8]). A(x, y) must be polynomial in ho-
mogeneous fiber coordinates y’s, i.e. any graded bundle is a polynomial bundle.

As these polynomials need not to be linear, graded bundles do not have, in
general, a vector space structure on the fibers. If all wi ≤ r, we say that the
graded bundle is of degree r. In the above terminology, vector bundles are just
graded bundles of degree 1.

Example 1. Consider the second-order tangent bundle T2M , i.e. the bundle
of second jets of smooth maps (R, 0)→M . Writing Taylor expansions of curves
in local coordinates (xA) on M :

xA(t) = xA(0) + ẋA(0)t+ ẍA(0)
t2

2
+ o(t2) ,

we get local coordinates (xA, ẋB, ẍC) on T2M , which transform

x′A = x′A(x) ,

ẋ′A =
∂x′A

∂xB
(x) ẋB ,

ẍ′A =
∂x′A

∂xB
(x) ẍB +

∂2x′A

∂xB∂xC
(x) ẋBẋC .

This shows that associating with (xA, ẋB, ẍC) the weights 0, 1, 2, respectively,
will give us a graded bundle structure of degree 2 on T2M . Note that, due to the
quadratic terms above, this is not a vector bundle. All this can be generalised
to higher tangent bundles TkM .

Example 2 ([6]). If τ : E →M is a vector bundle, then ∧rTE is canonically
a graded bundle of degree r with respect to the projection

∧rTτ : ∧rTE → ∧rTM .

For r = 2, the adapted coordinates on ∧2E are (xρ, ya, ẋµν , yσb, zcd), ẋµν =
−ẋνµ, zcd = −zdc, coming from the decomposition of a bivector

∧2TE 3 u =
1

2
ẋµν

∂

∂xµ
∧ ∂

∂xν
+ yσb

∂

∂xσ
∧ ∂

∂yb
+

1

2
zcd

∂

∂yc
∧ ∂

∂yd
,

are of degrees 0, 1, 0, 1, 2, respectively.
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Note that objects similar to graded bundles have been used in supergeometry
by Ševera [15], Voronov [16], Roytenberg [13] et al. under the name N-manifolds.
However, we will work with classical, purely even manifolds only.

Mimicking the definition of a vector bundle morphism, we get the following.

Definition 1. Morphisms in the category of graded bundles are represented
by commutative diagrams of smooth maps

F 1 Φ //

τ1
��

F 2

τ2
��

M1
ϕ //M2

which are morphisms of graded spaces in fibers, i.e. which locally preserve the
weight of homogeneous coordinates.

Example 3. Any smooth map φ : M1 →M2 induces a canonical morphism
of graded bundles Tkφ : TkM1 → TkM2.

One can pick an atlas of F consisting of charts for which the degrees of
homogeneous local coordinates (xA, yaw) are deg(xA) = 0 and deg(yaw) = w,
1 ≤ w ≤ k, where k is the degree of the graded bundle. The local changes of
coordinates are of the form

x′A = x′A(x), (6)

y′aw = ybwT
a
b (x) +

∑
1<n

w1+···+wn=w

1

n!
y′b1w1
· · · y′bnwnT

a
bn···b1(x),

where T a
b are invertible and T a

bn···b1 are symmetric in indices b1, . . . , bn.
Note that the homogeneity structure in the typical fiber of a graded bundle

F , i.e. the action h : R×Rd → Rd, is preserved under the transition functions,
that defines a globally defined homogeneity structure h : R × F → F . In local
homogeneous coordinates it reads

ht(x
A, yaw) = (xA, twyaw) .

We call a function f : F → R homogeneous of degree (weight) w if

f ◦ ht = tw · f .

The whole information about the degree of homogeneity is contained in the
weight vector field (for vector bundles called the Euler vector field)

∇F =
∑
s

wyaw∂yaw ,
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so f : F → R is homogeneous of degree w if and only if ∇F (f) = w · f . Clearly,
the fiber bundle morphism Φ is a smooth map which relates the weight vector
fields ∇F 1 and ∇F 2 .

Since, according to (6), in the transition functions for a graded bundle,
coordinates of weights not greater than j depend only on coordinates of weights
not greater than j, we can “forget” coordinates of higher weights, reducing a
graded bundle F to its part Fj of degree j. The coordinate transformations for
the canonical projection Fj → Fj−1 are linear modulo a shift by a polynomial in
variables not greater than j − 1, so the fibrations Fj → Fj−1 are affine. In this
way we get for any graded bundle F of degree k, like for jet bundles, a tower of
affine fibrations

F = Fk
τk−→ Fk−1

τk−1

−→ · · · τ3−→ F2
τ2−→ F1

τ1−→ F0 = M . (7)

In the case of the canonical graded bundle F = TkM , we get exactly the tower
of projections of jet bundles:

TkM
τk−→ T k−1M

τk−1

−→ · · · τ3−→ T2M
τ2−→ TM

τ1−→ F0 = M . (8)

The fundamental fact is that graded bundles and homogeneity structures
are actually equivalent concepts.

Theorem 4 (Grabowski-Rotkiewicz [8]). For any homogeneity structure h
on a manifold F , there is a smooth submanifold M of F , a non-negative integer
k ∈ N, and an R-equivariant map Φk

h : F → TkF|M which identifies F with a

graded submanifold of the graded bundle TkF . In particular, there is an atlas on
F consisting of local homogeneous coordinates.

Since morphisms of two homogeneity structures are defined as smooth maps
Φ : F1 → F2 intertwining the R-actions: Φ ◦ h1

t = h2
t ◦ Φ, this describes also

morphism of graded bundles. Consequently, a graded subbundle of a graded
bundle F is a smooth submanifold S of F which is invariant with respect to
homotheties, ht(S) ⊂ S for all t ∈ R.

The principle that says multiplication by reals is enough has now the follow-
ing consequences for vector bundles.

Corollary 1. A smooth map Φ : E1 → E2 between the total spaces of two
vector bundles πi : Ei → Mi, i = 1, 2, is a morphism of vector bundles if and
only if it intertwines the multiplications by reals:

Φ(t · v) = t · Φ(v) .

In this case, the map φ = Φ|M1
is a smooth map between the base manifolds

covered by Φ.
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Corollary 2. A submanifold S of a vector bundle π : E → M is a vector
subbundle if and only if it is invariant with respect to homotheties (multiplication
by reals):

ht(S) ⊂ S .

In this case, π(S) is a submanifold of M which is the support of the vector
subbundle S.

4 Double structures

In geometry and applications one often encounters double vector bundles, i.e.
manifolds equipped with two vector bundle structures which are compatible in a
categorical sense. They were defined by Pradines [12] and studied by Mackenzie
[10], Konieczna(Grabowska), and Urbański [9] as vector bundles in the category
of vector bundles. More precisely:

Definition 2. A double vector bundle (D;A,B;M) is a system of four vector
bundle structures

D

qDA
��

qDB // B

qB
��

A
qA //M

in which D has two vector bundles structures, on bases A and B. The latter are
themselves vector bundles on M , such that each of the four structure maps of
each vector bundle structure on D (namely the bundle projection, zero section,
addition and scalar multiplication) is a morphism of vector bundles with respect
to the other structures.

In the above figure, we refer to A and B as the side bundles of D, and to
M as the double base. In the two side bundles, the addition and scalar multi-
plication are denoted by the usual symbols + and juxtaposition, respectively.
We distinguish the two zero-sections, writing 0A : M → A, m 7→ 0Am, and
0B : M → B, m 7→ 0Bm.

In the vertical bundle structure on D with base A, the vector bundle op-
erations are denoted by +A and ·A , with 0̃A : A → D, a 7→ 0̃Aa , for the
zero-section. Similarly, in the horizontal bundle structure on D with base B we
write +B and ·B , with 0̃B : B → D, b 7→ 0̃Bb , for the zero-section.

The condition that each vector bundle operation in D is a morphism with
respect to the other is equivalent to the following conditions, known as the
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interchange laws:

(d1 +B d2) +A (d3 +B d4) = (d1 +A d3) +B (d2 +A d4),

t ·A (d1 +B d2) = t ·A d1 +B t ·A d2,

t ·B (d1 +A d2) = t ·B d1 +A t ·B d2,

t ·A (s ·B d) = s ·B (t ·A d),

0̃Aa1+a2 = 0̃Aa1 +B 0̃Aa2 ,

0̃Ata = t ·B 0̃Aa ,

0̃Bb1+b2 = 0̃Bb1 +A 0̃Ab2 ,

0̃Btb = t ·A 0̃Bb .

We can extend the concept of a double vector bundle of Pradines to dou-
ble graded bundles. However, thanks to our simple description in terms of a
homogeneity structure, the ‘diagrammatic’ definition of Pradines can be sub-
stantially simplified. As two graded bundle structure on the same manifold are
just two homogeneity structures, the obvious concept of compatibility leads to
the following:

Definition 3. A double graded bundle is a manifold equipped with two
homogeneity structures h1, h2 which are compatible in the sense that

h1
t ◦ h2

s = h2
s ◦ h1

t for all s, t ∈ R .

The above condition can also be formulated as commutation of the corre-
sponding weight vector fields, [∇1,∇2] = 0. For vector bundles this is equivalent
to the concept of a double vector bundle in the sense of Pradines.

Theorem 5 (Grabowski-Rotkiewicz [7]). The concept of a double vector
bundle, understood as a particular double graded bundle in the above sense,
coincides with that of Pradines.

All this can be extended to n-fold graded bundles in the obvious way:

Definition 4. A n-fold graded bundle is a manifold equipped with n ho-
mogeneity structures h1, . . . , hn which are compatible in the sense that

hit ◦ hjs = hjs ◦ hit for all s, t ∈ R and i, j = 1, . . . , n .

Example 4. If τ : F → M is a graded bundle of degree k, then there
are canonical lifts of the graded structure to the tangent and to the cotangent
bundle. In this way TF and T∗F carry canonical double graded bundle structure:
one is the obvious vector bundle, the other is the lifted one (of degree k). There
are also lifts of graded structures on F to TrF .



Graded bundles 69

For local homogeneous coordinates (xA, yaw) on F , the adopted coordinates
(xA, yaw, ẋ

B, ẏbw′) on TF have degrees 0, w, 0, w′, respectively. The coordinates in
fibers of T∗F , dual to ẋB, ẏbw′ have degrees k and k − w′.

In particular, if τ : E →M is a vector bundle, then TE and T∗E are double
vector bundles. There is a canonical isomorphism of double vector bundles

T∗E∗ ' T∗E .

Definition 5. A double graded bundle whose one structure is linear we will
call a GrL-bundle.

Canonical examples of GrL-bundles are TF and T∗F with their lifted and
linear structures. Another canonical examples are tensor bundles.

Example 5. if τ : E → M is a vector bundle, then ∧kTE is canonically a
GrL-bundle:

∧kTE
vv ))

E
((

∧kTM
uu

M

.

5 Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the
following generalisation of the embedding TkQ ↪→ TTk−1Q introduced in [1].
However, we will not discuss the applications of graded bundles in geometric
mechanics and stick to pure mathematical aspects.

Theorem 6 (Bruce-Grabowska-Grabowski [3]). There is a canonical lin-
earisation functor l : GrB → GrL from the category of graded bundles into
the category of GrL-bundles which assigns, for an arbitrary graded bundle Fk
of degree k, a canonical GrL-bundle l(Fk) of bi-degree (k − 1, 1) which is lin-
ear over Fk−1, called the linearisation of Fk, together with a graded embedding
ι : Fk ↪→ l(Fk) of Fk as an affine subbundle of the vector bundle l(Fk)→ Fk−1.

Elements of Fk ⊂ l(Fk) may be viewed as ‘holonomic vectors’ in the linear-
graded bundle l(Fk). We have l(TkM) ' TTk−1M and

ι : TkM ↪→ l(TkM) ' TTk−1M (9)

is the canonical embedding of TkM as holonomic vectors in TTk−1M .
For instance, if (xa, yA, zj) are coordinates on a graded bundle F2 of degrees

0, 1, 2, respectively, then, the induced coordinate system on l(F2) is

(xa, yA, ẏB, żj) ,
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where xa, yA, ẏB, and żj are of bi-degree (0, 0), (1, 0), (0, 1), and (1, 1), respec-
tively.

The transformation laws for the extra coordinates are obtained by differen-
tiation;

ẏA = ẏBTAB (x),

żi = żjT i
j (x) + ẏByAT iAB(x) .

Thus,

(xa, yA, ẏB, żj) 7→ (xa, yA)

is a linear fibration over F1. The embedding ι : F2 ↪→ l(F2) reads

ι(xa, yA, zj) = (xa, yA, yA, 2zj) .

Example 6. For a Lie groupoid G ⇒ M , consider the subbundle TkGs ⊂
TkG consisting of all higher order velocities tangent to source-leaves. The bundle

Fk = Ak(G) := TkGs
∣∣∣
M
,

inherits graded bundle structure of degree k as a graded subbundle of TkG. Of
course, A = A1(G) can be identified with the Lie algebroid of G.

Theorem 7 (Bruce-Grabowska-Grabowski [3]). The linearisation of Ak(G)
is given as

l(Ak(G)) ' {(Y, Z) ∈ A(G)× TAk−1(G)| ρ(Y ) = Tτ(Z)} ,

viewed as a vector bundle over Ak−1(G) with respect to the obvious projection
of part Z onto Ak−1(G), where ρ : A(G) → TM is the standard anchor of the
Lie algebroid and τ : Ak−1(G)→M is the obvious projection.

Let us remark that the above linearisation is canonically a weighted Lie
algebroid, a Lie algebroid prolongation in the sense of Cariñena & Mart́ınez [5]
and Popescu & Popescu [11]. The corresponding groupoid prolongations have
been described by Saunders [14].

Applying the linearisation functor consecutively to a graded bundle of degree
k, we arrive at a k-fold graded bundle of degree (1, . . . , 1), i.e. at a k-fold vector
bundle. This functor from GrB[k] to VB[k] we call a total linearisation. Its range
consists of k-fold vector bundles equipped with an action of the symmetry group
Sk permuting the order of vector bundle structures (symmetric k-fold vector
bundles).
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Theorem 8 (Bruce-Grabowski-Rotkiewicz [4]). There is a canonical func-
tor L[k] : GrB[k]→ VB[k] from the category of graded bundles of degree k into
the category of k-fold vector bundles. It gives an equivalence of GrB[k] with the
subcategory (not full) SymmVB[k] of symmetric k-fold vector bundles. There
is a canonical graded embedding ι[k] : Fk ↪→ L(Fk) of Fk as a subbundle of
symmetric (holonomic) vectors.

Example 7. We have L(TkM) ' T(k)M , where T(k)M = TT · · ·TM is the
iterated tangent bundle. The action of Sk comes from iterations of the canonical
“flips” κ : TTM → TTM .

Example 8. Continuing Example 6 and using Theorem 7, we get that
L(A3(G)) equals

{
(X,Y, Z) ∈ A(G)× TA(G)× T(2)A(G) | ρ(X) = Tπ(Y ) ,

Tρ(Y ) = T(2)π(Z)
}
,

where T(l) = TT · · ·T (l-times), π : A(G)→ M is the standard projection, and
ρ : A(G)→ TM is the anchor of the Lie algebroid. To see this we note that the
linearisation functor as a subfunctor of the tangent functor respects products
and commutes with the tangent functor. In particular, we have

l(2)(A3(G)) ⊂ l(A(G)× TA2(G)) = A(G)× T l(A2(G)),

thus

L(A3(G)) ⊂ A(G)× TA(G)× T(2)A(G).

Then, applying the tangent functor to the condition given in Theorem 7, we
arrive at the desired result.

The previous example generalises directly to the higher order case just by
iteration. We thus have the following theorem.

Theorem 9. The full linearisation of Ak(G) is given as

L(Ak(G)) =
{

(X1, · · · , Xk) ∈ A(G)× TA(G)× T(2)A(G)× · · · × T(k−1)A(G)|

ρ(X1) = Tπ(X2),Tρ(X2) = T(2)π(X3), · · · , T(k−2)ρ(Xk−1) = T(k−1)π(Xk)
}
,

where T(l) = TT · · ·T (l-times), π : A(G) → M is the standard projection, and
ρ : A(G)→ TM is the anchor of the Lie algebroid.
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6 Weighted Lie groupoids and algebroids

Besides the compatibility of graded bundle structures, we can consider a
compatibility of a graded bundle structure with some other geometric structures,
e.g. a Lie algebroid or a Lie groupoid structure. Thanks to the fact that a graded
bundle structure can be expressed in terms of an (R, ·)-action, there is an obvious
natural concept of such a compatibility.

Definition 6. A weighted Lie groupoid (resp., a weighted Lie algebroid) of
degree k is a Lie groupoid (resp., Lie algebroid) equipped with a homogeneity
structure h of degree k such that homotheties ht act as Lie groupoid (resp., Lie
algebroid) morphisms.

We use the name ‘weighted’, as the term graded Lie algebroids is already
used in various meanings. Note that weighted Lie groupoids (algebroids) of
degree 1 have already appeared in the literature under the name VB-groupoids
(VB-algebroids).

Example 9. If G is a Lie groupoid (algebroid), then TkG is canonically a
weighted Lie groupoid (algebroid) of degree k.

Note that the compatibility condition between the extra homogeneity struc-
ture on G and its Lie algebroid structure we use in applications for mechanics
is that the double vector bundle morphism associated with the Lie algebroid
structure ε : T∗G ' T∗G∗ → TG∗ is a morphisms of triple graded bundles.

Theorem 10 (Bruce-Grabowska-Grabowski [2]). There is a one-to-one cor-
respondence between weighted Lie groupoids of degree k with simple-connected
source fibers and integrable weighted Lie algebroids of degree k. In other words,
homogeneity structures compatible with Lie structures can be differentiated and
integrated.

Example 10. Let G be a Lie groupoid with the Lie algebroid G. The
weighted Lie algebroid for TkG is TkG.
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