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Introduction

The topic of geodesics with respect to a linear connection on a manifold is
interesting for differential equations, differential geometry, theory of relativity
and other fields. In classical mechanics, geodesics are seen as trajectories of free
particles in a manifold. Magnetic curves, which generalize geodesics, represent
the trajectories around which a charged particle spirals under the action of a
magnetic field F.

A new notion, introduced in [3], generalizes both the geodesics and the
magnetic curves. These curves, called F-geodesics, are defined on a manifold
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endowed with a linear connection and an arbitrary (1,1)-tensor field (which can
be in particular the electro-magnetic field or the Lorentz force).

The notion of F-geodesic is slightly different from that of F-planar curve
(see [4], [5]). In [3], several examples and characterizations are given, and the
F-geodesics with respect to Vranceanu connections or adapted connections on
almost contact manifolds are studied. Also, the classical projective transforma-
tion, holomorphic-projective transformation and C-projective transformation
are generalized by considering a pair of symmetric connections which have the
same F-geodesics and then the transformations between such two connections,
namely F-planar diffeomorphisms (see [6, 7]), are studied.

In the present paper, we go further and consider a manifold M, endowed
with a linear connection as well as two given forces described by two (1,1)-tensor
fields. We define here (F, H)-geodesics, give some examples and establish the
relation between two symmetric connections having the same system of (F, H)-
geodesics.

1 (F, H)-geodesics

The main geometric objects used in the present note are provided by the
following:

Notations 1.1. By (M, F, H, V) we mean a manifold M endowed with the
(1,1)-tensor fields F' and H, as well as with the linear connection V.

The following notion generalizes the classical geodesics and it is followed by
some examples.

Definition 1.2. We say that a smooth curve v : I — M on a manifold
(M, F,H,V) is an (F, H)-geodesic if the acceleration V,)¥(u) belongs to the
space generated by F¥(u) and H4(u). That is, there exist some smooth functions
a, B : I — R, such that

Vi ¥(u) = a(u) Fy(u) + B(u) HY(u), (1)

where [ is a real interval.

A physical interpretation for the particle v(u) which satisfies (1) is that it
is moving in a space under the action of the external forces F' and H.

By using local coordinates (z!,...,2™) on the m-dimensional manifold M,
we can write the ordinary differential equation (1) by using the summation
convention as:
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where 7' = 2% o y(u), and Fé i are the Christoffel symbols of the connection V.
The mathematical meaning of (2) is that the covariant derivative with re-
spect to V of the velocity field 4 (u) = Z—Z along ~y(u) remains in span { Fy(u),
H#(u)} and we note that this space may be of dimension 2,1 or 0.
Remark 1.3. (a) If ¢ is another parameter for the same curve ~y(u), then
the relation (1) becomes:

Vi ¥(t) = u(t)y(t) + v(t) Fy(t) + w(t) HY(?), 3)

where u, v and w are some smooth functions along the curve ~(t).

(b) A curve v(t) satisfying the relation (3) describes an (F, H)-geodesic up
to a reparametrization.

(c) From geometrical point of view, an (F, H)-geodesic up to a reparametriza-
tion is defined as a curve «y(t) such that the parallel transport along the curve
preserves the linear subspace of dimension 1,2 or 3 spanned by (t), F¥(t) and
HA(t).

Examples of (F, H)-geodesics

(i) When F is the identity endomorphism up to a multiplicative function, and
H isidentically zero, then an (F, H)-geodesic is a geodesic up to a reparametriza-
tion.

(ii) If both F' and H are identically zero, then an (F, H)-geodesic becomes
a classical geodesic and moreover an (F, H)-geodesic up to a reparametrization
becomes a geodesic up to a reparametrization.

(iii) Another example of an (F, H)-geodesic can be taken from the La-
grangian mechanics, where the trajectory of a particle is described by the Euler-
Lagrange equations, with a particular Lagrangian function.

(iv) We provide now another example of (F, H)-geodesic, by using Lorentz
force defined on a (semi-)Riemannian manifold of arbitrary dimension.

For this purpose, we recall now the following notions for which we refer to
[1].

Definition 1.4. On a (semi-)Riemannian manifold (M, g), a closed 2-form
Q) is called a magnetic field if it is associated by the following relation to the
Lorentz force ®, defined as a skew-symmetric (with respect to g) endomorphism
field on M :

9(®(X),Y)=Q(X,Y), VXY e (T M).

The Lorentz force @ is a divergence-free (1,1)-tensor field (i.e. div® = 0).

Let V be the Levi-Civita connection of g and let ¢ be the charge of a particle,
describing a smooth trajectory v on M. Then the curve «(t) where the speed
4(t) satisfies the Lorentz equation

Vi ¥(t) = q@4(1),
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is known in literature as a magnetic curve.
According to Definition 1.4, the above Lorentz equation describes an (F, H)-
geodesic on M, where F' is defined by

FX = q®(X), VX € I(TM),

and H vanishes identically.
Therefore, any magnetic curve is a particular case of an (F, H)-geodesic.
Moreover, if on a (semi-)Riemannian manifold (M, g) one has a pair of mag-
netic fields 1,y having the associated Lorentz forces ®; and ®5 defined as
above, then according to Definition 1.4, a curve «y(t) which satisfies the bi-
Lorentz equation

Vi () = a1 ®1(7(t)) + q2P2(5(1)),
is an (F, H)-geodesic on M, where q1,q2 € R,
F(X)=q®1(X)and H(X) = ¢2P2(X), VX € T(TM).

(v) In [3], the first author and Druta-Romaniuc introduced and studied F-
geodesics, which are examples of (F, H)-geodesics, when H vanishes identically.

From the Riemannian context, we recall the existence and uniqueness of the
solution of a second order differential equation with initial data, which gives
the existence and uniqueness of a geodesic passing through a given point p,
having a given velocity X,, € T, M. The above properties were extended in [2] to
magnetic curves corresponding to an arbitrary magnetic field and then in [3] to
F-geodesics. One question arising on a triple (M, F, H, V) is about the existence
of the (F, H)-geodesics. The answer is given by the theory of differential systems
with Cauchy condition, which leads to the following generalization of the above
result.

Proposition 1.5. Let (M, F, H, V) be a manifold considered as in Notation
1.1. Then for any point p € M and any vector X,, € T, M, there exists a unique
maximal (F, H)-geodesic passing through p and having the velocity X,.

2 (F, H)-projective transformation

Another question which naturally occurs on a manifold (M, F, H) endowed
with a couple of (1,1)-tensor fields, would be how are related two linear con-
nections having the same (F, H)-geodesics. For this purpose we introduce the
following;:
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Definition 2.1. Let (M, F, H) be a manifold with a couple of forces given
by the (1,1)-tensor fields F and H. Then two linear connection V and V are
called (F, H)-projectively related to each other, if they have the same system of
(F, H)-geodesics up to a reparametrization.

Notations 2.2. (i) If V and V are two torsion-free linear connections on
a manifold M, then we define the deformation tensor field S as the symmetric
(1,2)-tensor field given by

S(X,Y)=VxY - VY, VXY € I'(TM).

Obviously, for any common (F, H)-geodesic up to a reparametrization (t)
of V and V, one has:

— a(t)3(t) + b FH(t) + () HA(D), (4)

where a, b, ¢ are some smooth functions along the curve v(t).

(ii) We say that the deformation tensor field S satisfies the coefficients lin-
earity (CL) condition, if for any common (F, H)-geodesic in the last relation,
the coefficients a,b and ¢ depend linearly on the speed of the curve. Precisely,
S satisfies the (C'L)-condition, if there exist three 1-forms A, B,C € I'(T*M),
such that

a(t) = A(§(1)),0(t) = B(¥(1)), c(t) = C(3(1)), ()
for each common (F, H)-geodesic of V and V.

Definition 2.3. We say that two symmetric linear connections V and V
on M are related by an (F, H)-planar diffeomorphism if

VxY =VxY +w(Y)X +w(X)Y +0(X)FY +
+0YV)FX +n(X)HY +n(Y)HX,VX,Y € I(TM), (6)

for some 1-forms w,d and n on M.

Two symmetric linear connections related by an (F, H)-planar diffeomorfism
are (F, H)-projectively related. More precisely, we have:

Theorem 2.4. Let (M, F, H) be a manifold endowed with two (1, 1)-tensor
fields F' and H. Then any two symmetric linear connections are (F, H )-projectiv-
ely related to each other and their deformation tensor field S satisfies (C'L)
condition, provided they are related by an (F, H)-planar diffeomorphism.

Proof. Let V and V be two symmetric linear connections on M related by
an (F, H)-planar diffeomorphism, i.e. (6) is satisfied. If we take ~(¢) to be a
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geodesic up to a reparametrization of V, then from (3) we obtain:

Vi ¥(t) = u(t)(t) + v(t) Fy(t) + w(t) H(t)
+2w(§(8))7(8) + 2005 (8)) Fy(t)+
+2n(y(0) HA(1),

where we have used two notations of (6) and (3).

Hence Vi )y(t) = w(t)y(t) + () FA(t) + w(t)HA(t), where T = u 4 2w o %,
T =uv+200%, W=w+ 2no+, which shows that v is an (F, H)-geodesic up to
a reparametrization of V. In the same way, it follows that any geodesic up to
a reparametrization of V is an (F, H)-geodesic up to a reparametrization of V
and therefore V and V are (F, H)-projectively related to each other.

Any common (F, H)-geodesic up to a reparametrization v(¢) of V and V
satisfies (4). From (6) one has

S (@), ﬁ(t)) Vi ¥(t) = Vi 3(t) = 20(5()7(t)+
20((0) Fy(t) + 20 (5 (1)) HA(2),

which shows that (CL) condition (5) is satisfied with A = 2w, B = 260 and
C = 2n, which complete the proof.
We recall the following

Definition 2.5. On a manifold M, let F, H, L be three (1,1)-tensor fields
such that L = F o H = —H o F. Then the structure (F, H, L) is called

(a) quaternionic (or almost hypercomplex), if F? = H 2 _ =1?=—-1I;

(b) almost hyper-para-complex if F?2 = —H? = —L%2 = —1I,
where [ is the identity.

The converse of Theorem 2.4 is not true even in very special cases, such as
quaternionic (almost hypercomplex) and almost hyper-para-complex structures,
where the deformation tensor takes a slightly generalized form with additional
terms depending on F o H.

Theorem 2.6. If (F, H, L) is a quaternionic (resp. almost hyper-para-com-
plex) structure on M, parallel w.r.t. two symmetric connections V,V which
are (F, H)-projectively related to each other and the (CL)-condition is satisfied,
then

VxY =VxY +w(Y)X +w(X)Y +0(X)FY +0(Y)FX +n(X)HY
+n(Y)HX +v(Y)LX + v(X)LY,VX,Y € I(TM), (7)

for some 1-forms w,d,n,v on M.
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Proof. Let (F, H,L) be a quaternionic structure and let (i, z!,...,2%") be a
local chart on M. Then

F{F} = H{H} = L{L} = 6}

FFHS = —HFFS = LF. (8)

- . . . =h
Let V and V be two symmetric connections whose coefficients are thj and I';;,
respectively. Let S denote the deformation tensor:
h _ Fh h
Sij = Lij — 15
and hence
h h
Sij = Sji' (9)

If we assume that V and V are (F, H)-projectively related and (C'L) condition
is satisfied, then at any point of M, one has:

Slhjvivj = avP + bFM" + cHMW', (10)
for any vector v (at that point) of components v, where a, b, ¢ are real functions.
By multiplying (10) with v*, one has
h,i,7..k h, k h k h k
Siv'v?o" = av™v" + bF v 0" + cH'v"v". (11)

Interchanging k and h and substracting the new relation from (11), we obtain
a relation in which we replace k by s and multiply by Fsk, such that from (8)
we have:

(SEFF — FES5io1 v v/o! = b(F") (Fiv®)

+ c(HM) (FFv®) + boFo — eLFvmoM. (12)
We interchange k with h and obtain a new relation from which we substract
(12). After that, we change k with ¢ and multiply by L¥. Then we interchange

k with h and we substract the last relation from the previous one. Since this
new relation holds for any vector v, it follows:

S FILE ~ FISyLY — ShHE + HES;0! -
- SR+ PR L + S ] - S50t =0

Now, we make cyclic permutation of (4, j,1) and we add all these three relations.
Then we multiply with F!., and after that we contract h = m. In the new relation
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we take into account that F, H and L are traces free, i.e. F,? = H,’; = LZ = 0.
We also use the parallelism of F, H, L with respect to V and V, i.e.:
SiF! = SLFf; S HY = S HT; SiLL = SLLE.
Therefore, by using (8) we obtain
k l 1k l 1k

— SWFVHY — SEFLHY + SLH[F}+

+ SiFfHY — LLS56F — LLSj6% = 0.
We multiply this relation by L}, we use (8) and then, with the following nota-
tions:

1 1
L T pa— 0 S
YIS 1) T T a0 1) it
1 1
T 5 1) YT gy 1) il

we obtain the relation (7) written with indices. To prove the case when (F, H, L)
is an almost para-hyper-complex structure, we proceed in a similar way and
complete the proof.
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