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Introduction

The topic of geodesics with respect to a linear connection on a manifold is
interesting for differential equations, differential geometry, theory of relativity
and other fields. In classical mechanics, geodesics are seen as trajectories of free
particles in a manifold. Magnetic curves, which generalize geodesics, represent
the trajectories around which a charged particle spirals under the action of a
magnetic field F .

A new notion, introduced in [3], generalizes both the geodesics and the
magnetic curves. These curves, called F -geodesics, are defined on a manifold
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endowed with a linear connection and an arbitrary (1,1)-tensor field (which can
be in particular the electro-magnetic field or the Lorentz force).

The notion of F -geodesic is slightly different from that of F -planar curve
(see [4], [5]). In [3], several examples and characterizations are given, and the
F -geodesics with respect to Vranceanu connections or adapted connections on
almost contact manifolds are studied. Also, the classical projective transforma-
tion, holomorphic-projective transformation and C-projective transformation
are generalized by considering a pair of symmetric connections which have the
same F -geodesics and then the transformations between such two connections,
namely F -planar diffeomorphisms (see [6, 7]), are studied.

In the present paper, we go further and consider a manifold M , endowed
with a linear connection as well as two given forces described by two (1,1)-tensor
fields. We define here (F,H)-geodesics, give some examples and establish the
relation between two symmetric connections having the same system of (F,H)-
geodesics.

1 (F,H)-geodesics

The main geometric objects used in the present note are provided by the
following:

Notations 1.1. By (M,F,H,∇) we mean a manifold M endowed with the
(1, 1)-tensor fields F and H, as well as with the linear connection ∇.

The following notion generalizes the classical geodesics and it is followed by
some examples.

Definition 1.2. We say that a smooth curve γ : I → M on a manifold
(M,F,H,∇) is an (F,H)-geodesic if the acceleration ∇γ̇(u)γ̇(u) belongs to the
space generated by F γ̇(u) andHγ̇(u). That is, there exist some smooth functions
α, β : I → R, such that

∇γ̇(u)γ̇(u) = α(u)F γ̇(u) + β(u)Hγ̇(u), (1)

where I is a real interval.

A physical interpretation for the particle γ(u) which satisfies (1) is that it
is moving in a space under the action of the external forces F and H.

By using local coordinates (x1, . . . , xm) on the m-dimensional manifold M ,
we can write the ordinary differential equation (1) by using the summation
convention as:

d2γi

du2
+ Γijk

dγj

du

dγk

du
= α(u)F ij

dγj

du
+ β(u)H i

k

dγk

du
, (2)
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where γi = xi ◦ γ(u), and Γijk are the Christoffel symbols of the connection ∇.
The mathematical meaning of (2) is that the covariant derivative with re-

spect to ∇ of the velocity field γ̇(u) = dγ
du along γ(u) remains in span {F γ̇(u),

Hγ̇(u)} and we note that this space may be of dimension 2, 1 or 0.

Remark 1.3. (a) If t is another parameter for the same curve γ(u), then
the relation (1) becomes:

∇γ̇(t)γ̇(t) = u(t)γ̇(t) + v(t)F γ̇(t) + w(t)Hγ̇(t), (3)

where u, v and w are some smooth functions along the curve γ(t).
(b) A curve γ(t) satisfying the relation (3) describes an (F,H)-geodesic up

to a reparametrization.
(c) From geometrical point of view, an (F,H)-geodesic up to a reparametriza-

tion is defined as a curve γ(t) such that the parallel transport along the curve
preserves the linear subspace of dimension 1, 2 or 3 spanned by γ̇(t), F γ̇(t) and
Hγ̇(t).

Examples of (F,H)-geodesics
(i) When F is the identity endomorphism up to a multiplicative function, and

H is identically zero, then an (F,H)-geodesic is a geodesic up to a reparametriza-
tion.

(ii) If both F and H are identically zero, then an (F,H)-geodesic becomes
a classical geodesic and moreover an (F,H)-geodesic up to a reparametrization
becomes a geodesic up to a reparametrization.

(iii) Another example of an (F,H)-geodesic can be taken from the La-
grangian mechanics, where the trajectory of a particle is described by the Euler-
Lagrange equations, with a particular Lagrangian function.

(iv) We provide now another example of (F,H)-geodesic, by using Lorentz
force defined on a (semi-)Riemannian manifold of arbitrary dimension.

For this purpose, we recall now the following notions for which we refer to
[1].

Definition 1.4. On a (semi-)Riemannian manifold (M, g), a closed 2-form
Ω is called a magnetic field if it is associated by the following relation to the
Lorentz force Φ, defined as a skew-symmetric (with respect to g) endomorphism
field on M :

g(Φ(X), Y ) = Ω(X,Y ), ∀X,Y ∈ Γ(TM).

The Lorentz force Φ is a divergence-free (1,1)-tensor field (i.e. divΦ = 0).
Let ∇ be the Levi-Civita connection of g and let q be the charge of a particle,

describing a smooth trajectory γ on M . Then the curve γ(t) where the speed
γ̇(t) satisfies the Lorentz equation

∇γ̇(t)γ̇(t) = qΦγ̇(t),
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is known in literature as a magnetic curve.

According to Definition 1.4, the above Lorentz equation describes an (F,H)-
geodesic on M, where F is defined by

FX = qΦ(X), ∀X ∈ Γ(TM),

and H vanishes identically.

Therefore, any magnetic curve is a particular case of an (F,H)-geodesic.

Moreover, if on a (semi-)Riemannian manifold (M, g) one has a pair of mag-
netic fields Ω1,Ω2 having the associated Lorentz forces Φ1 and Φ2 defined as
above, then according to Definition 1.4, a curve γ(t) which satisfies the bi-
Lorentz equation

∇γ̇(t)γ̇(t) = q1Φ1(γ̇(t)) + q2Φ2(γ̇(t)),

is an (F,H)-geodesic on M , where q1, q2 ∈ R,

F (X) = q1Φ1(X) and H(X) = q2Φ2(X), ∀X ∈ Γ(TM).

(v) In [3], the first author and Druta-Romaniuc introduced and studied F -
geodesics, which are examples of (F,H)-geodesics, when H vanishes identically.

From the Riemannian context, we recall the existence and uniqueness of the
solution of a second order differential equation with initial data, which gives
the existence and uniqueness of a geodesic passing through a given point p,
having a given velocity Xp ∈ TpM. The above properties were extended in [2] to
magnetic curves corresponding to an arbitrary magnetic field and then in [3] to
F -geodesics. One question arising on a triple (M,F,H,∇) is about the existence
of the (F,H)-geodesics. The answer is given by the theory of differential systems
with Cauchy condition, which leads to the following generalization of the above
result.

Proposition 1.5. Let (M,F,H,∇) be a manifold considered as in Notation
1.1. Then for any point p ∈M and any vector Xp ∈ TpM , there exists a unique
maximal (F,H)-geodesic passing through p and having the velocity Xp.

2 (F,H)-projective transformation

Another question which naturally occurs on a manifold (M,F,H) endowed
with a couple of (1, 1)-tensor fields, would be how are related two linear con-
nections having the same (F,H)-geodesics. For this purpose we introduce the
following:
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Definition 2.1. Let (M,F,H) be a manifold with a couple of forces given
by the (1, 1)-tensor fields F and H. Then two linear connection ∇ and ∇ are
called (F,H)-projectively related to each other, if they have the same system of
(F,H)-geodesics up to a reparametrization.

Notations 2.2. (i) If ∇ and ∇ are two torsion-free linear connections on
a manifold M , then we define the deformation tensor field S as the symmetric
(1, 2)-tensor field given by

S(X,Y ) = ∇XY −∇XY,∀X,Y ∈ Γ(TM).

Obviously, for any common (F,H)-geodesic up to a reparametrization γ(t)
of ∇ and ∇, one has:

S(γ̇(t), γ̇(t)) = ∇γ̇(t)γ̇(t)−∇γ̇(t)γ̇(t) =

= a(t)γ̇(t) + b(t)F γ̇(t) + c(t)Hγ̇(t), (4)

where a, b, c are some smooth functions along the curve γ(t).

(ii) We say that the deformation tensor field S satisfies the coefficients lin-
earity (CL) condition, if for any common (F,H)-geodesic in the last relation,
the coefficients a, b and c depend linearly on the speed of the curve. Precisely,
S satisfies the (CL)-condition, if there exist three 1-forms A,B,C ∈ Γ(T ∗M),
such that

a(t) = A(γ̇(t)), b(t) = B(γ̇(t)), c(t) = C(γ̇(t)), (5)

for each common (F,H)-geodesic of ∇ and ∇.

Definition 2.3. We say that two symmetric linear connections ∇ and ∇
on M are related by an (F,H)-planar diffeomorphism if

∇XY = ∇XY + ω(Y )X + ω(X)Y + θ(X)FY+

+ θ(Y )FX + η(X)HY + η(Y )HX, ∀X,Y ∈ Γ(TM), (6)

for some 1-forms ω, θ and η on M .

Two symmetric linear connections related by an (F,H)-planar diffeomorfism
are (F,H)-projectively related. More precisely, we have:

Theorem 2.4. Let (M,F,H) be a manifold endowed with two (1, 1)-tensor
fields F andH. Then any two symmetric linear connections are (F,H)-projectiv-
ely related to each other and their deformation tensor field S satisfies (CL)
condition, provided they are related by an (F,H)-planar diffeomorphism.

Proof. Let ∇ and ∇ be two symmetric linear connections on M related by
an (F,H)-planar diffeomorphism, i.e. (6) is satisfied. If we take γ(t) to be a
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geodesic up to a reparametrization of ∇, then from (3) we obtain:

∇γ̇(t)γ̇(t) = u(t)γ̇(t) + v(t)F γ̇(t) + w(t)Hγ̇(t)

+ 2ω(γ̇(t))γ̇(t) + 2θ(γ̇(t))F γ̇(t)+

+ 2η(γ̇(t))Hγ̇(t),

where we have used two notations of (6) and (3).

Hence ∇γ̇(t)γ̇(t) = u(t)γ̇(t) + v(t)F γ̇(t) + w(t)Hγ̇(t), where u = u+ 2ω ◦ γ̇,
v = v + 2θ ◦ γ̇, w = w + 2η ◦ γ̇, which shows that γ is an (F,H)-geodesic up to
a reparametrization of ∇. In the same way, it follows that any geodesic up to
a reparametrization of ∇ is an (F,H)-geodesic up to a reparametrization of ∇
and therefore ∇ and ∇ are (F,H)-projectively related to each other.

Any common (F,H)-geodesic up to a reparametrization γ(t) of ∇ and ∇
satisfies (4). From (6) one has

S(γ̇(t), γ̇(t)) = ∇γ̇(t)γ̇(t)−∇γ̇(t)γ̇(t) = 2ω(γ̇(t))γ̇(t)+

+ 2θ(γ̇(t))F γ̇(t) + 2η(γ̇(t))Hγ̇(t),

which shows that (CL) condition (5) is satisfied with A = 2ω, B = 2θ and
C = 2η, which complete the proof.

We recall the following

Definition 2.5. On a manifold M , let F,H,L be three (1, 1)-tensor fields
such that L = F ◦H = −H ◦ F. Then the structure (F,H,L) is called

(a) quaternionic (or almost hypercomplex), if F 2 = H2 = L2 = −I;

(b) almost hyper-para-complex if F 2 = −H2 = −L2 = −I,
where I is the identity.

The converse of Theorem 2.4 is not true even in very special cases, such as
quaternionic (almost hypercomplex) and almost hyper-para-complex structures,
where the deformation tensor takes a slightly generalized form with additional
terms depending on F ◦H.

Theorem 2.6. If (F,H,L) is a quaternionic (resp. almost hyper-para-com-
plex) structure on M , parallel w.r.t. two symmetric connections ∇,∇ which
are (F,H)-projectively related to each other and the (CL)-condition is satisfied,
then

∇XY = ∇XY + ω(Y )X + ω(X)Y + θ(X)FY + θ(Y )FX + η(X)HY

+ η(Y )HX + ν(Y )LX + ν(X)LY, ∀X,Y ∈ Γ(TM), (7)

for some 1-forms ω, θ, η, ν on M .
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Proof. Let (F,H,L) be a quaternionic structure and let (U , x1, . . . , x4n) be a
local chart on M . Then

F ks F
s
r = Hk

sH
s
r = LksL

s
r = −δkr

F ksH
s
r = −Hk

sF
s
r = Lkr . (8)

Let ∇ and ∇ be two symmetric connections whose coefficients are Γhij and Γ
h
ij ,

respectively. Let S denote the deformation tensor:

Shij = Γ
h
ij − Γhij

and hence

Shij = Shji. (9)

If we assume that ∇ and ∇ are (F,H)-projectively related and (CL) condition
is satisfied, then at any point of M , one has:

Shijv
ivj = avh + bF hr v

r + cHh
r v

r, (10)

for any vector v (at that point) of components vr, where a, b, c are real functions.

By multiplying (10) with vk, one has

Shijv
ivjvk = avhvk + bF hr v

rvk + cHh
r v

rvk. (11)

Interchanging k and h and substracting the new relation from (11), we obtain
a relation in which we replace k by s and multiply by F ks , such that from (8)
we have:

(ShijF
k
l − F ks Ssijδhl )vivjvl = b(F hr v

r)(F ks v
s)

+ c(Hh
r v

r)(F ks v
s) + bvkvh − cLkrvrvh. (12)

We interchange k with h and obtain a new relation from which we substract
(12). After that, we change k with t and multiply by Lkt . Then we interchange
k with h and we substract the last relation from the previous one. Since this
new relation holds for any vector v, it follows:

StijF
h
l L

k
t − F hs SsijLkl − ShijHk

l +Hk
s S

s
ijδ

h
l −

− StijF kl Lht + F ks S
s
ijL

h
l + SkijH

h
l −Hh

s S
s
ijδ

k
l = 0.

Now, we make cyclic permutation of (i, j, l) and we add all these three relations.
Then we multiply with F lm and after that we contract h = m. In the new relation
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we take into account that F,H and L are traces free, i.e. F hh = Hh
h = Lhh = 0.

We also use the parallelism of F,H,L with respect to ∇ and ∇, i.e.:

SkljF
l
i = SlijF

k
l ;SkljH

l
i = SlijH

k
l ; SkljL

l
i = SlijL

k
l .

Therefore, by using (8) we obtain

− 2(2n+ 1)StijL
k
t + SljlL

k
i + SlilL

k
j−

− ShjlF lhHk
i − ShliF lhHk

j + StjlH
l
tF

k
i +

+ StliF
k
j H

l
t − LlsSsjlδki − LlsSsliδkj = 0.

We multiply this relation by Luk , we use (8) and then, with the following nota-
tions:

ωj =
1

2(2n+ 1)
Sljl; θj =

1

2(2n+ 1)
ShjlF

l
h;

ηj =
1

2(2n+ 1)
ShjlH

l
h; νj =

1

2(2n+ 1)
ShjlL

l
h,

we obtain the relation (7) written with indices. To prove the case when (F,H,L)
is an almost para-hyper-complex structure, we proceed in a similar way and
complete the proof.
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