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Abstract. Texture retrieval is a very challenging issue that combines two major tasks,
feature extraction (FE) and similarity measurement (SM). The FE step consists of computing
some texture characteristics that, even small in size, describe perfectly the texture content
by using stochastic models like Gaussian or non-Gaussian (Gamma, Weibull,...) distributions.
The estimated parameters will form the vector of characteristics of the texture. Secondly, the
SM step consists of deriving a distance on the chosen model manifold, in order to find the
closest textures of a query using their characteristic vectors. In this context, the commonly
used similarity measure is the Kullback-leibler divergence (KLD). Nevertheless, KLD is not a
distance since it does not satisfy symmetry and triangular inequality properties. In this paper
we propose Geodesic distance (GD) as a similarity measure on the Generalized Gamma (GG)
manifold, in order to illustrate the importance of geometric reasoning in the image retrieval
field. The principle idea is the use of the distances between the probability distributions in
precise manner through the GD, as an application in the SM between the texture images which
are represented by the parameters of the probability distributions. And that can be a good
illustration of the value of the Riemannian geometry through statistical manifold in an applied
field such as the texture retrieval. Generalized Gamma is a three parameters distribution that
covers Gamma, Weibull and Exponential models as special cases, which allowed the modeling
of a wide range of texture families. We take advantage of this property in order to make a
prior study of the GD for the Gamma, Weibull and Exponential sub-manifolds due to the
cumbersomeness of deriving GD for the generalized gamma directly. Experiments are carried
out considering texture retrieval in the domains of dual tree complex wavelet transform and
steerable pyramid transform, using the Vistex texture database. Results show that GD achieves
performances that are close or higher to KLD for the three sub-manifolds, which is of a great
interest since GD is a Riemannian metric contrary to KLD.
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Introduction

The research of visually similar content is a central theme in the field of
image retrieval. In the past, numerous methods have been proposed to identify
similar visual content of the color point of view, texture and shape. The mea-
sured characteristics (based on the statistical models, for example see the work
of Do and Vetterli[18] and the work of Allili [2]) of an image are grouped into a
vector. The similarity between two images can then be measured with a metric
defined on the vector space thus defined. The images are considered similar if
the distance between them is small. For this, the complexity of calculating the
distance must be reasonable since the research task is performed in real time.

In the literature there is several metrics (distance or divergence) between
probability distributions that has been defined, such as the Minkowski distance
and the Kullback-Leibler Divergence (KLD). In this paper we use the Rao-
Geodesic Distance, which is a natural distance measure on statistical manifolds.
Knowing that, distances between probability distributions play a critical role
in problems of statistical inference and in practical applications to study the
relations between a given set of data. A statistical model is defined by a family
of probability distributions, usually qualified by a set of continuous parame-
ters known as parameters. These parameters have geometrical properties that
are produced by the local information contents and compotitions of the dis-
tributions. Starting from Fisher’s main work [8] in 1925, the study of these
geometrical properties has become widespread in the statistical literature. In
1945, Rao [20] introduced a Riemannian metric as the Fisher information ma-
trix over the parameter space of a parametric family of probability distributions
and suggested the geodesic distance caused by the metric as a measure of dis-
similarity/similarity between two probability distributions. In the Riemannian
geometry the homologue of straight lines are the geodesics, which are the most
direct path and shortest distance between two points on the statistical mani-
fold, that they represent two probability distributions. (For an introduction to
differential geometry and Riemannian geometry the reader may refer to [23] and
[15]).

The Riemannian manifold and the geodesic distance concepts were used in
many application fields of computer sciences such as: computer vision and im-
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age processing, such as the Fisher-Rao Riemannian metric for Shape Analysis
[1], where they use the Fisher geodesics to compute the distance between 2D
corpus callosum shapes. Riemannian Priors on the Univariate Normal Model
for the image classification [21], where they applyed the new prior distributions
on the univariate normal model based on the Riemannian geometry of the uni-
variate normal model the classification. These concepts were also used for color
texture classification as in [6]. Our aim is to calculate the Rao geodesic distance
of the Generalized Gamma (GG) manifold, motivated by the generecity and
the flexibility of the GG distribution. This latter encompasses a variety of well
known statistical models, and contains an additional shape parameters, which
helps to enhance retrieval and/or classification processes. However, resolving
the GG geodesic equations seems a cumbersome task. For this, as a first step of
the derivation of Rao geodesic distance in the case of generalized gamma man-
ifold, in this work, we present a case study on three sub-manifolds of the GG
manifold, namely the Weibull sub-manifold, the Gamma sub-manifold and the
Exponential sub-manifold. The sub-manifolds are deduced by fixing parameters
of the GG distributions, which is a common method of deriving GD for statisti-
cal manifolds (see [10], and [19]). The study is carried out in the image retrieval
domain (and exactly in the similarity measurement step) as an application of
the Riemannian manifold and the geodesic distance concepts. The results ob-
tained by the geodesic distance as similarity measurement are compared with
the Kullback-Leibler divergence, which is popular distance in the image retrieval
domain, but it is not symmetric and does not satisfy the triangle inequality.

The outline of this paper is as follows. In the next section, we set up the
first step in image retrieval system which is the Feature Extraction step (FE),
where we deal with our images in the wavelet domain, then in the section 2 we
present the GG sub-manifolds. In section 3, Rao-Geodesic distance is provided
for the three sub-manifolds. In Section 4, experimental results are conducted on
the VisTex texture database in order to evaluate the GD performance. Section
5 concludes with some discussions.

1 The wavelet domain

A wavelet is a small wave (or wave) with limited time, which has the ability
to describe the time-frequency plane, with atoms of different time brackets. It is
an appropriate tool for the analysis of non-stationary or transient phenomena,
so the wavelet domain is suitable for representing our images, of course there
is another signal analysis domains that can represents the images such as the
Fourrier transform, but the scope of this article does not allow us to quote the
advantages of the wavelet transform domain compared to the fourrier transform
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Figure 1. Diagram of a wavelet transform DTCWT.

domain. Among a variety of wavelet transforms in the litterature, in this article
we will focus just on the Dual-tree complex wavelet transform (DTCWT), and
the Steerable Pyramides (SP).

1.1 The Dual-tree complex wavelet transform (DTCWT)

Complex wavelet transform (CWT) is an expansion of the discrete wavelet
transform (DWT) [13]. It provides multi-resolution and accurate representation
of the image. The Complex Wavelet Transform Dual Tree (DTCWT) provides
the transform of a signal by employing two DWT decompositions (tree a and
the tree b, see the Figure 1). It is possible for the DTCWT to produce on the
first tree real coefficients and in the other tree imaginary coefficients.

The DTCWT was developed to integrate the adequat properties of the
Fourier transform in the wavelet transform, and it was used in the image pro-
cessing domain such as in [25] and [14]. As the name implies, two trees bank
of parallel filters, wavelet, are used, one to generate the real part of complex
wavelet coefficients: real tree and the other for generating the imaginary part of
the coefficients complex wavelet: imaginary tree.

1.2 The Steerable pyramides (SP)

The steerable pyramid algorithm is an invertible multi-scale image transform
[7], it breaks down an image into oriented and band-pass filtered the compo-
nents at different scales. It has useful shiftability properties in both rendering
and rotation [4]. As Mallat inroduces his algorithm of the discrete wavelet trans-
form (DWT) [13], the SP transform decomposes an image into a set of scaled
component images from which the original can be rebuilt. The SP sub-samples
the image at each step of iteration, generating gradually half-sized images. Con-
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Figure 2. Block diagram of pyramid decomposition.

trary to the DWT, the SP avoids aliasing when sub-sampling [7]. Also unlike
the DWT, it is shift and invariant, owing to the absence of aliasing in the down-
sampling process. One must choose the order of the derivative upon which the
steerable pyramid transform is based. The number, k, of orientation bands at
each scale is one more than the order of the derivative. The transform is over-
complete by the factor 4k/3.

The block diagram in figure 2 shows that the image is divided into low
and highpass subbands, using filters L0 and H0. The lowpass subband is then
separated into a series of oriented bandpass subbands and a lowpass subband.
This lowpass subband is sub-sampled by a factor of 2 in the X and Y directions.
The recursive construction of a pyramid is obtained by inserting a copy of the
shaded portion of the diagram at the location of the solid circle.

2 The sub-cases of the Generalized Gamma manifold

Based on the previous chapter, we focus on the characterization of textures
in the wavelet domain by probabilistic stochastic models, specifically by using
the Generalized Gamma distribution. In reality, we are trying to modeling the
histograms of the coefficients derived from the DTCWT or the SP (see the
Figure 3) by the GG probability density function (pdf).

The Generalized Gamma distribution (GG) has been studied and applied
in different fields, such as speech spectra [22] and stock return modeling [11], it
was first introduced by Stacy [24] and then applied in the texture retrieval by
Choy [5]. The probability density function of the GG considered is given by:

f(x; θ) =
βxβλ−1

αβλγ(λ)
e−( x

α
)β (1)

θ = (α, β, λ) denotes the parameter set, α > 0; β > 0 and λ > 0 are the scale,
shape and index shape parameters respectively; γ(.) is the standard Gamma
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Figure 3. Wavelet subband coefficient histogram.

function defined by: γ(z) =
∫ +∞

0 e(−t)t(z−1)dt, z > 0. Note that (1) is reduced
to the Gamma function when β = 1, when α = 1 we are in the case of the
Weibull distribution and when α = β = 1, we have the exponential distribution.
And this is a proof that the GG model covers a wide variety of frequently used
distribution such as: the gamma, the weibull and the exponential distributions,
that compose our sub-cases study.

2.1 The Gamma distribution

The probability density function using the scale-shape parametrization is:

f(x;α, β) =
xβ−1

αβγ(β)
e−( x

α
) (2)

where γ(.) is the standard Gamma function. The Gamma parameters (α and
β) can be estimated by the maximum likelihood estimation (MLE), by solving
this equation:

θ̂ = arg max
θ

log

n∏
i=1

f(xi;α, β) (3)

and sloving the equation (3) leads us to the following system of equations:

α̂ =
1

nβ̂

n∑
i=1

xi , log(β̂)− γ′(β̂)

γ(β̂)
= log(

1

n

n∑
i=1

xi)−
1

n

n∑
i=1

log(xi) (4)
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2.2 The Weibull distribution

The probability density function using the scale-shape parametrization is:

f(x;α, λ) =
β

α
(
x

α
)k−1e−( x

α
)β (5)

where γ(.) is the standard Gamma function. To estimate the parameters of
the Weibull distribution (α and λ), the MLE give us the following system of
equations to solve:

λ̂k =
1

n

n∑
i=1

xi
k , k̂−1 =

∑n
i=1 xi

k ln(xi)∑n
i=1 xi

k
− 1

n

n∑
i=1

ln(xi) (6)

2.3 The Exponential distribution

The probability density function using the one parametrization is:

f(x;λ) = λe−λx (7)

here λ > 0 is the parameter of the distribution, often called the rate parameter.
The maximum likelihood estimate for the rate parameter is:

λ̂ =
1

1
n

∑n
i=1 xi

(8)

3 The Geodesic Distance on statistical manifolds

Statistical manifolds are representations of smooth families of probability
density functions that allow differential geometry to be applied to problems in
stochastic processes and information theory. We model a family of probability
distribution functions given by a set of parameters. In other words, we consider
each distribution as a point on a Riemannian manifold.

If we want to see the FE step from a mathematical point of view, we can
say that the images in the database are considered as elements of the manifold
and each image is considered as point on the statistical manifold (as the Figure
4 shows). In our case, we are modeling our images by the set of parameters that
had been estimated in the Feature Extraction step (FE), in order to measure
the distance between our images, represented by their set of parameters, in the
Similarity Measurement step (SM), (for more details about the image retrieval
systems see the Experimental Results section)

Rao [20] proposed a method (Rao-Geodesic distance) for measuring dis-
tances between distributions of a parametric family, all of whose members sat-
isfy certain regularity conditions(see [3]). The measure is based on a metric of
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Figure 4. Statistical manifold.

a Riemannian geometry, the metric being in terms of the elements of the infor-
mation matrix for the family [3]. In information geometry [23], it is well known
that a parametric model {pθ; θ ∈ Θ} , where Θ ⊂ Rr, can be equipped with a
Riemannian geometry, determined by Fishers information matrix:

gij(θ) = E

{
∂ ln p(X|θ)

∂θi

∂ ln p(X|θ)
∂θj

| θ
}

(9)

with (i, j = 1, 2, ..., r), which we calculated in the case of the GG by the following
matrix:

I(α, β, λ) =


λβ2

α2
−1
α (λψ(λ) + 1) β

α
−1
α (λψ(λ) + 1) 1

β2 [1 + λψ(1, λ) + λψ(λ)2 + 2ψ(λ)] −ψ(λ)
β

β
α

−ψ(λ)
β ψ(1, λ)


where ψ(.) is the digamma function defined by: ψ(z) = γ′(z)

γ(z) , and the ψ(m, z) is

the polygamma function defined by: ψ(m, z) = d(m)

dzm ψ(z).

Indeed, assuming that gij(θ) is strictly positive definite, for each θ ∈ Θ, a
Riemannian metric on Θ is defined by:

ds2(θ) =

r∑
i,j=1

gij(θ)dθ
idθj (10)

Once the Riemannian metric Equation (10) is introduced, given two probability
measures Pθ1 and Pθ2 which belong to the statistical model, the Rao distance
between Pθ1 and Pθ2 is defined as the Riemannian distance between δ(θ1, θ2) ∈
Θ, by the following formula:

δ(θ1, θ2) =|
∫ t2

t1

[

r∑
i,j=1

gij(θ)
dθi

dt

dθj

dt
]
1
2dt | (11)
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In particular, among the curves between θ1 and θ1, which interest us is the
one that represents the minimum distance between these two points. We call it
the Geodesic, and it is given as a solution to differential equations, called the
Euler-Lagrange equations (or the geodesic equations) :

θ̈k(t) +
∑
i,j

Γkij [θ(t)]θ̇
i(t)θ̇j(t) = 0 (12)

where the Γkµυ is the Christoffel symbols of the second kind, that is defined by:

Γkµυ =
1

2

∑
ρ

gkρ(
∂gυρ
∂θµ

+
∂gµρ
∂θυ

− ∂gµυ
∂θρ

) (13)

and gµυ denotes the components of the inverse metric. The geodesic equations
are defined in the case of the GG as follows:

α̈+ Γαααα̇
2 + 2Γααβα̇β̇ + 2Γααλα̇λ̇+ 2Γαβλβ̇λ̇ = 0

β̈ + Γβααα̇2 + Γββββ̇
2 + Γβλλλ̇

2 + 2Γβαλα̇λ̇+ 2Γββλβ̇λ̇ = 0

λ̈+ Γλααα̇
2 + Γλβββ̇

2 + Γλλλλ̇
2 + 2Γλαβα̇β̇ = 0

As already stated, before solving equations for the general GG case, in this
paper, we provide a case-study by fixing different GG parameters. This lead us
to a sub-manifold GD study.

3.1 The Geodesic distance on Gamma sub-manifold

The Rao-Geodesic distance has been computed for several statistical models,
see Atkinson and Mitchell [3], Mitchell and Krzanowski [9]among others. There
are some statistical models, such as Generalized Gaussian, for which a closed
form of the Rao distance is not available, in which cases a numerical approach
may be appropriate. Nevertheless, for distributions that lie infinitesimally close
on the probabilistic manifold, it can be proved that the KLD equals half of the
squared GD between the distributions. It follows that locally [12]:

GD(fθ1 , fθ2) ≈
√

2SKLD(fθ1 , fθ2) (14)
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with:
SKLD(fθ1 , fθ2) = KLD(fθ1 , fθ2) +KLD(fθ2 , fθ1) and

KLD(f(x;α1, β1), f(x;α2, β2), fθ2) =

(α1 − α2)ψ(α1)− log γ(α1) + log γ(α2)

+ α2(log β2 − log β1) + α1
β1 − β2

β2
(15)

where ψ(α) is the digamma function.

3.2 The Geodesic distance on Weibull sub-manifold

For the case of the Weibull distribution a closed form of the Rao distance is
available, and it is defined as it follows [17]:

GD(fθ1 , fθ2) =
π√
6

log
1 +K

1−K
(16)

where: K =

 [log(
β2
β1

)−a (λ2−λ1)
λ2λ1

]2+b2
(λ2−λ1)

2

λ22λ
2
1

[log(
β2
β1

)−a (λ2−λ1)
λ2λ1

]2+b2
(λ2+λ1)

2

λ22λ
2
1

 1
2

and a = 1 − γ, b = π√
6

(γ is the

Euler constant).

3.3 The Geodesic distance on Exponential sub-manifold

According to the Atkinson and al. paper [3], the closed form of the Rao
distance on the Exponential manifold isdefined by:

GD(fθ1 , fθ2) =| log

(
λ1

λ2

)
| (17)

4 Experimental Results

The Content-Based Image Retrieval (CBIR) is a technique to search for
images based on their visual characteristics. Images are conventionally described
by descriptors such as texture, color or shape.

The general principle of content-based image retrieval has two stages (Figure
5). During a first phase, which is the Feature Extraction (FE) (offline mode),
the signatures of the images is calculated and stored in a database. In the second
phase, which is the Similarity Measurement (SM), the research is conducted on-
line. The user submits an image as a query. The system calculates the signature
according to the same manner as during the first phase of indexing. Thus, this
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signature is compared to all previously stored signatures to bring back the most
similar image to the query.

In this section, experiment is conducted to test the effectivenesse of the
geodesic distance as a similarity measure for CBIR. We used database Vistex
[16] which is a collection of texture images. The purpose of Vistex is to provide
texture images which are representative of actual conditions, and contains 40
color classes textures, and in each class has 16 different images.( See the Figure
6)

First, we take each texture image in the database and we turn it to the
gray-level(because we need only the texture descriptor).Then each image is de-
composed via the Dual Tree Complex Wavelet Transform (DTCWT). After
that, each sub-band is represented via the parameters of the generalized gamma
model. The parameters of each sub-band of the image are then concatenated to
represente the image.

Table 1 shows the average of the retrieval for the three sub-manifolds com-

Figure 5. Architecture of the CBIR system.

Figure 6. 40 texture classes from the Vistex database.
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Level 1 (DTCWT) Level 2 (DTCWT) Level 3 (DTCWT)

Gamma + GD 71.3281 78.2910 80.9375

Gamma + KLD 72.0801 78.6816 80.7813

Weibull +GD 72.4414 78.9648 81.6406

Weibull +KLD 72.7832 78.6328 80.8691

Exponential + GD 58.9648 68.8574 74.1504

Exponential + KLD 61.2305 71.2891 76.4063

Table 1. The retrieval rate of the three sub-manifolds modeling the DTCWT
coefficients combined with the Geodesic Distance(GD) or the KLD

Level 1(SP) Level 2(SP)

Gamma + GD 64.2773 74.5801

Gamma + KLD 64.0234 74.5996

Weibull +GD 65.3125 75.6055

Weibull +KLD 64.3750 74.8926

Exponential + GD 54.1699 65.5371

Exponential + KLD 55.5273 67.3438

Table 2. The retrieval rate of the three sub-manifolds modeling the SP coeffi-
cients combined with the Geodesic Distance(GD) or the KLD

bined with the Geodesic Distance(GD) and the KLD. We observe that the
(Gamma + GD) achieves higher retrieval rate in the level 3 of decomposi-
tion(80.9375). The (Weibull + GD)has shown also higher retrieval rate from
the second level of decomposition (78.9648 and 81.6406). Regarding, the (Ex-
ponential + GD), we notice a lower retrieval rate compared to the (Gamma +
GD) and the (Weibull + GD), and this is explained by, that the Exponential
distribution has single parameter (more we have the parameters, better we can
modelize shapes).

In the second experiment, instead of decomposing the bands of each im-
age via the DTCWT, we will use the Steerable Pyramids (SP) decomposition
following the same way of the first experiment.

The table 2 shows the average of the retrieval for the three sub-manifolds
combined with the Geodesic Distance(GD) and the KLD. We observe that for
the (Gamma + GD) achieves retrieval rate in the level 2 (74.5801) of decomposi-
ton which is close to the retrieval rate of the (Gamma + KLD). The (Weibull
+ GD)has shown higher retrieval rate compared to the (Weibull + KLD). As
it is the case for the Exponential distribution (GD or KLD) in the Table 1, we
notice a lower retrieval rate compared to the Gamma and the Weibull.
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Figure 7. Recall/Precision curves ob-
tained using a GG sub-manifold and the
geodesic distance considering DTCWT
transforms.

Figure 8. Recall/Precision curves ob-
tained using a GG sub-manifold and the
geodesic distance considering SP trans-
forms.
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Figure 9. Recall/Precision curves
obtained using a GG sub-manifold
(Weibull) and the geodesic distance
considering SP and DTCWT trans-
forms.

Furthermore, Figure 7 shows the recall/precision curves for the sub-cases
of the Generalized Gamma distribution combined with the DTCWT decom-
position (Level 3). We note that the ”DTCWT+Weibull+GD”has the highest
performance among the other methods, which is already proved by the experi-
ment results int the table 1.

The same remark is for Figure 8, that shows the recall/precision curves for
the sub-cases of the Generalized Gamma distribution combined with the SP
decomposition (Level 2). The ”SP+Weibull+GD”has the highest performance
among the other methods, which is already proved by the experiment results
int the table 2.

In the Figure 9, we take the most powerful method in the Figure 7 which
is the ”DTCWT+Weibull+GD” and the most performante method in the Fig-
ure 8 which is the ”SP+Weibull+GD” to see the method that has the highest
performance among the methods existing in the two figures (7 and 8). We no-
tice that the ”DTCWT+Weibull+GD” achieves high performance, which shows
that the DTCWT is more suitable to represent the spectral content of textures.

5 Conclusion

In this paper, we have studied the use of the Rao-Geodesic distance as a
similarity measurement on the GG manifold. For this a parameter fixing tech-
nique helps to conduct a case study on three sub-manifolds of the GG manifold.
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The experimental results show that GD achieves performances that are close
or higher to the common Kullback-Leibler Divergence. However, as it is known,
the advantage of GD is that it fulfills the distance properties contrary to KLD
(symmetry and triangular innequality properties). Our future work, will be de-
voted to the derivation of the Rao geodesic distance of the GG manifold in the
general case.
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