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ENTROPIES ON INDEPENDENT OCCUPATION SPACES

Carlo SEMPI(°?)

Sunto. 87 studiano alecune proprietd dell'entropia sopra gli spazi d'occu-
pazione indipendenti mettendo in rilievo la relazione tra questa entropia e
“'entropia di Shannon di ogni sito. L'ipotest di indipendenza consente di
rafforzare aleuni risultati di | 8| e di | 9] . In particolare, per
.'esistenza del limite nel teorema 3 si sostituisce la richiesta che l'insieme
tenda all'infinito nel senso di van Hove con quella piu semplice che tenda
all'nfinito 2l numero di sitti nell'insiteme. S1 determinanc altresi due

distribuziont che danno massima entropia, secondo il prineipio di Jaynes.

1. — INTRODUCTION.
Occupation spaces have been widely wused (see, e.g., [ 9 |, lfnT Jin
statistical mechanics to study systems as spin models, alloys, lattice

cases,... . In all these cases a n-dimensional occupation space may

b

il
e described as i‘.T .L.';.i where E"‘::{U,lﬁ,.,a,ri—l}(i =1,2,...,n),i.e. as the set

1 i

(°) Dipartimento di Matematica, Universita di Lecce, 73100 Lecce.



LY C.5empi

r. finite sequences (X.,X.,...,X ) with x. e Q.. The case r, = 2
| i i 2 n i i 1

n= 3

of ]
1

(i=1,2,...,n) is the one most commonly considered; we shall therefore deal

with it first. Each component can then assume the value O or 1. A

physical meaning is attached to the occupation space in the following way:

one has a set of n points, called sites, each of wich can either be
. . . . 1
occupied or not, or occupied by a particle of spin equal to 5 or to

] . . .
— e The wvalue of each component of a finite sequence is also given a

meaning: say, in the spin model, X, = 1 means that the spin of the
. ; : . 1 .

particle in the 1i-th site 1is I whilst X, = 0 means that the same
. . ] :

particle has spin equal to - 7. We shHall assume the components of every

2
sequence to be independent, to wit we shall deal only with independent

occupation spaces.

Let us consider a system of n  sites and let P, be the probability

that X, = 1, and hence 1 - P; the probability that X, = 0.

In

The probabilities on the N = 2 points of the n-dimensional
occupation space Xn are given by
p = T (1 -p,)  (j=1,2,...N)

i = ieo Pi keu Py

where 0 and U are the set of occupied and unoccupied sites respectively
(i.e.,the sites for which x,=1 or x, = 0, respectively). The Shannon's

i i
entropy associated with the system is

N

(1) HN(PI’PZ"”’PN} = - & Pj log Fj,

where, as in the following, the logarithms are in basis 2. As is easy to
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show by induction, (1) equals

n
.%fn[pl,pz,---.pn] - i§1 {!:Ji log P, +(1 - pi} log (1 - pi}}

that 1is the entropy of the system 1is the sum of the Shannon's entropies
associated with each site. This result was to be expected in view of the

assumption of independence and the properties of (1) (see 11,

In the general case if pij is the probability that X, =j (i=1,2,...,n,
'
b o= 1,2,...,r. ), s that . O ] € 1 < ; 1 € 1< 1 = 1
j c, 50 a le > (1 < i< n < j< 1:“1) jgl pij

(1 < i < n), then the independence assumption yields for the entropy of

|4
the system with N':iﬂlri possible states
- ) .
Hn(EI’P-E’ ’En] = H N' (Pl’P2’ ’EN') -
(3)
N
=.L ceesP. )y
iZ1 Hp (PypoPypre Py )

1 1

where p. represents the probability vector P,
i

{pil’piZ"“’piri)

(i=1,2,...,n). In the following the vector notation will be reserved to

denote (3).
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It 1s the purpose of this note to study a few of the properties of Hn

and to set the applications of these entropies to statistical mechanics in

the framework of information theory.
2. - PROPERTIES OF Hn

Tl
Let roo: = {{pl,pz,...,pn},pi > 0, i§1 p. = 1} denote the set of

complete n-ary discrete probability distributions.

Il

THEOREM 1. The mapping Hn : iElrr — R is, for n = 2,3,...,
1

( . . _
(H1) symmetric: Hn(El,EZ,...,En}-Hn{E“{“,RH{z],...,p_n{n]],where (n (1),

n(2),...n(n)) is any permutation of (1,2,...,n);

(H2) non-negative: Hnip_l,ﬂz,...,p_n} > 0,

(H3) decisive: Hn{Elﬂz"”’En} = 0 if and only if p. = c(r )

L 1

(i=1,2,...n) where c(r.) € T is such that one component equals 1 while

1 L.
1

the remaining ones vanish;

' ble: ) = H -
(H4) expansible: Hn{El’EZ"”’P—n—-l’E{rn}’ H o 1(BysRyrer s );

1
n
(HS) maximal: Hn(El’EZ’”"En} < B log r s
(H6) continuous: Eﬁ"‘l"_'i:_Trn) Hn[EI’EZ"”’En—l’Rn) - Hn_lfﬁl,y_z,...,gn_l}.

Proof. All the assertions are obvious consequences of (3) and of the proper-

ties of Shannon's entropy.

REMARKS 1. Along with (H1), i has a second, more obvious property

cf symmetry arising from the symmetry of Shannon's entropy with respect to
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the interchange of the components of any of the probability vectors p, 's.
1

2. If r =r (i =1,2,,...,n) then (HS5) reads

(H5 ") Hn{p].pz,...,pn] < n log r.

3. - APPLICATIONS TO STATISTICAL MECHANICS.

We shall now show that the independence assumption allows one 10
strengthen proposition 6 and 7 in |8 |, and, at one and the same time, to

simplify their proofs.

In order to use the same notation as 1in 8; we set

Ay o=
S(A) Hn(E],Rz, P,

I

where LA denotes the set of sites:

THEOREM 2. The following properties hold:

n
(S1) 0 < S(A) < iE:l log %
n'
(S2) "CA = 0<S(A) -S(A) <. 2. log r,,
— = i=n+l Z o
where /. is formed by the sites numbered 1 to n and &' by those

numbered 1 to n', with n' > n;

- A A\ f = I-'t <+ A 1tivi .
(S83) S luﬂzl + S | r"wuz] S( 1] S( 2] (strong additivity)

Proof. (S1) follows immediately from (3), (H2) and (HS5).
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nl nl
z = S(A) -S(A X ,
(§2) 0 < By Hri(pil'piZ’ ,piri] S(A) -S(A) < Lz log r., where

the last inequality follows from the maximality of Shannon's entropy.

(53) If hl is composed by the sites numbered 1 to n and 1"*2 by those

numbered m+l to r, with m < n < r, then, by (3)

T I
AU A AN A - 5 _
S(A, sty o) = It Hri{pil’piZ’ piri)
Il r A
_ _ (A Y
Z1t iemm Hri(pil’pif”"piri} S(A) + SUE,)

COROLLARY. (S4) sS(h v A)) < stﬂl) " S(ﬂzj (subadditivity).

REMARKS 1. In the case 1:"_1 =2 (i=1,2,...,n) one has

(S1') S(A) < n and (S2') S(A') - S(A") < n' - n,

L _ ]

which are the same upper bounds as given in [9]
2. (53) improves on the property of strong subadditivity of i_91

3. The same expressions, (strong) additivity and subadditivity, have
here a meaning different from that usual in information theory [[1]):
therefore caution should be paid in using these terms. Here additivity is

meant with respect to the set of sites, there with respect to probabilities.

Let the state p be defined as in [9] Then one can prove as in [6] or

in [10], the following theorem



“ntropies on independent occupation spaces 49

THEOREM 3. If r.sr (i = 1,2,...,n), then the limit

s(n) = lim H /n

n-+ I

exists and s € |0, log rj

r{i

|
it

REMARKS 1. The above result holds in particular if r

2. Last theorem corresponds tc propositon 7 in | 8 |.Moreover,
no mention 1is here made of convergence in the sense of wvan Hove {[Til )
that was required in | 81 . For theorem 3 tc hold it suffices that the
number of sites in the set /. 1lends tc infinity. This is certainly a simpler

condition to check than the convergence in the sense of van Hove.

4. - MAXIMUM PPRINCIPLE.

we shall give two simple applications of Jaynes's maximum entropy

principle {i-5|,i?t:|2E} Lo Hn.

Again we shall first deal with the special case r. = 2 (i=1,2,...,n).

n
Hn will be maximized subject to the restriction that P:iglpi be assigned.

Assigning P means prescribing the total number of occupied sites. As is

well known, one must maximize

n

p. = - £ [p; log p. +(1-p.) log (l—pi}}ﬂtpi

n
(4) Hn[pl,pZ,...,p ) +a Z, P,

n 1

where « is the Lagrange multiplier. Expression (4) is the sum of function
each of which depends on only one of the pi‘s. Thus it suffices separately

to maximize each of the functions f :|/0,1] —R

f(p.) : = -p, log p, ~(1-p,) log (1-p) + «p, (i=1,2,...,n).
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The condition f'(pi) = 0 yields pi = 2% /(1+2%) (i = 1,2,...,n).

The wvalue of the constant ®« 1is easily determined by means of the condition
n
P = 2, Pp,; one has P, = P/n (i =1,2,...,n). It is immediate tc check

that these probability actually maximize Hn under the given condition.

More important for its physical meaning is the following result. Let a

system of non-interacting particles be characterized by the energy levels

El’ 52,..., {:n; any single level can accomodate at most r particles with

< r <+oo . The case r = 1 corresponds to the Fermi-Dirac statistics,
the case r = + o to the Bose-~Einstein statistics, whilst any other
value of r corresponds to the intermediate statistics (\-_3]). I[f the
probability P, of the energy level H 1s known, pij represents the
probability of finding j particles in the state of energy ¢.. Let us

1
introduce the random variable ''mumber of particles per state’ N which

takes the wvalues ni], =3 (i=1,2,...,n; j = 1,2,...,r) and the random
variable ''energy per state'" E which takes the value Eij = jﬂi (i=1,2,...,n;
j=1,2,...,r). Assume that the mean values of E and N are given:

n r
(5) ? Z P ] &, =<e> ,

n
(6) B>

Conditions (5) and (6) give E and N the role of macroscopic observables.
Maximizing (3) subject to (5) and (6), one obtains the Fermi-Dirac and the
Bose-Einstein statistics tcgether with the intermediate ones. One must, in
fact, maximize

;
1§20 {_pij

s =

log P,. = @P.. j - BP.. J €);

i j 1] 1] 1
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an easy calculation leads tc

r
| _I . =1
(7) pi"_i = expl-aj - Be { kEO expl(- ak - Be, k) + .

We refer tc |2 | fcr a proof of the existence and uniqueness of parameters
o*  and p*  such that (7) satisfies conditions (5) and (6) and for a

proof that (7) with a = «* and p= p* does indeed maximize (3) subject

to (5) and (6). From (7) one can calculate the occupation number <« ni}

for each leve] £

" exp(-a - PBe ) (r+l)exp | =(r+l) (a+ Be )|
<N, >= L) p?. = ———— - - : - :
1 J=U ] l-exp(- a —[}r,i) 1-exp | =(r+1) (a+ ﬂf-‘iﬂ

In order tc obtain the Fermi-Dirac distribution it suffices to set 1 = 1
<n 1
> =
1~ F-D exp(a+ pe )+1
1
whilst to obtain the Bose-Einstein distribution, r will be allowed to tend

Lo + 20

1
i B-E exp(a + ﬂﬂi}—l
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