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ON A THEOREM MOUCHTARI AND SERSTNEV

C. ALSINA (°) and B. SCHWEIZER(®°®°)

Abstract. In this note we use a duality theorem to quickly and eastily
obtain the wunitque solutiom of a funetional equation on the space of
probability distribution functions which was first studied and solved by

J.H, Mouchtari and A.N. éerstﬂev.

Let A" be the set of all probability distribution functions of non-

-negative random variables, i.e.,

A" - {F|F :[-w,0] — [0,1], F(0} = 0,F(0) = 1, F is

non-decreasing and left-continuous on [—m y 00 )} ,
and let £, be the distribution function in A' defined by EO(K] = 0
for x < 0 and e (x) =1 for x > 0. A mapping <t from A" x A" into

0

A is a triangle function if for all F, G, H, K in ﬂ+,
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(a) t (F, ﬂo} = F,

(b) T(F,G) < T(H,K) whenever F < H, G < K,
(¢) T(F,G) = T(G,F),
(d) t(t(F,G),H) = T(F, T(G,H)).

Thus convolution and the mapping TM defined by

(1) TM{F,G)(:{} = Sup o Min(F(u),G(v))

are triangle functions.

[f j denotes the identity function on | ~00,0] , then for any F in a"

. : : . +
and any a >0, the distribution function in A whose value for any x > 0

is F(x/a) may be conveniently denoted by F(j/a).

In [2] D.M. Mouchtari and A.N. Serstnev showed ‘that if 1 is a

triangle function then the equality

(2) T(F(j/a),F(j/b)) = F(j/a + b)

holds for all F in ﬂ+ and all a,b>0 if and only if T = TM. Thus TM
is the wunique triangle function which satisfies the functional equation
(2). The purpose of this note is to show that the duality theorem

established in|1] yields a very simple proof of this fact. To this end we

. + i .. .
recall that for any F in A the left-continuous gquasi-itnverse of F is

the function F~ from [0,1] into [0,0] defined by

0: }’=G:

(3) F (y)
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In particular,
(4) [F(j7a)] = aF~;

and if F°" = G° then F G. We denote the space of quasi-inverses of

H

elements of A by ()

It follows from the duality theorem of [1] that
5) [, (F,6)" = Fv 67,
whence,

(6) [TM(F{;;/a},F{j/bn]‘ - aF"+ bF"
- (a + b)F*= |F(j/a + b)]".

Thus TM is a solution of (2).

o

Turning to the converse, for any triangle function T let T be the

binary operation induced on (a')" by
7) (F,67) = [t(F,a)] .
Then (2) is equivalent to

(8) ™ (aF",bF") = (a + b)F~.

Next, for any F, G in A" and any a,b>0, let U" and V~ be the

functions defined by

(9) U= Min( 1 F~, l G”) and V° = Max( 1 F“,-l* G™)
a b a b

Then
(10) alU”< F"< aV~ and bU< G"< bV™.
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Since T~ is non-decreasing on (A)", it follows that
(11) ™ (al”,bU") < T°(F7,G") < T (aV",bV").

Suppose that T satisfies (2). Then combining (8) and (11) we have that

for all a,b>0,

(12) (a + bDJU" < 7 (F7,G7) < (a + b)V™,

To show that (12) implies that T = TM, we choose x such that O<x«<l

and consider the following three cases:

Case 1. F7(x) # O and G"(x) # 0. Then setting a = F~(x) and
b = G (x) in (9) yields U~ (x) = V°(x) =1, and wusing (12) we Hhave at

once that:

(13) T°(F7,G7)(x) F~(x) + G™(x).

Case 2. F7(x) = G (x) = 0. Then setting a =b =1 in (9) yields
U (x) = V?(x) = 0, whence by (12) we have T (F",G")(x) =0 and (13)

is again valid.

Case 3. F (x) = 0 and G (x) # O0.Then setting a = e¢>0 and b = G (x)
in (9) yields U “(x)=0 and V" (x) = 1, whence it follows that t (F7,G")(x)<
< G” (x) +¢ . Since ¢ is arbitrary, we have T(F ,G )(x) < G (x). But

(a) and (b) imply T(F,G) < G, whence G (x) < T(F ,G" )(x), and again

=
—

(13) holds. The same conclusion follows if F (x) £ 0 and G (x) = 0.

Thus (13) holds for all x in (0,1) whence, using (5) and (7), we

have T = TM.

We conclude with several remarks.
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1. Note that neither the commutativity nor the associativity of T was

used in the above argument.

2. The above argument also shows that T(F(j/a),F(j/b)) > F(j/a+b)

(resp., < F(j/a+b)) 1if and only if T < T M (resp., T > TM).

——
- .

3. If L is a suitable binary operation on [0, ] thent(F(j/a),F(j/b))=

- F(j/L(a,b)) if and only if T = TM L (see [1], Theorem 4.8. and [3 ].

Section 7.7).
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