ON A THEOREM MOUCHTARI AND ŠERSTNEV

C. ALSINA (°) and B. SCHWEIZER(°°)

Abstract. In this note we use a duality theorem to quickly and easily obtain the unique solution of a functional equation on the space of probability distribution functions which was first studied and solved by D.H. Mouchtari and A.N. Šerstnev.

Let Δ^+ be the set of all probability distribution functions of non-negative random variables, i.e.,

$$\Delta^+ = \left\{ \begin{array}{l} F \mid F : [-\infty, \infty] \longrightarrow [0,1], \ F(0) = 0, F(\infty) = 1, \ F \quad \text{is} \\ \\ \text{non-decreasing and left-continuous on} \quad \left[-\infty, \infty\right) \right\},$$

and let ϵ_0 be the distribution function in Δ^+ defined by $\epsilon_0(x) = 0$ for $x \leq 0$ and $\epsilon_0(x) = 1$ for x > 0. A mapping τ from $\Delta^+ \times \Delta^+$ into Δ^+ is a triangle function if for all F, G, H, K in Δ^+ ,

- (°) Dep.Matemàtiques (ETSAY), Universitat Politècnica de Barcelona, Ap. Correns 508, Terrassa, Barcelona, Spain.
- (°°) Dept. of Math. & Stat., Univ.of Massachusetts, Amherst., MA 01003 U.S.A.

(a)
$$\tau(F, \epsilon_0) = F$$
,

(b)
$$\tau(F,G) \leq \tau(H,K)$$
 whenever $F \leq H, G \leq K$,

(c)
$$\tau(F,G) = \tau(G,F)$$
,

(d)
$$\tau(\tau(F,G),H) = \tau(F,\tau(G,H))$$
.

Thus convolution and the mapping τ_{M} defined by

(1)
$$\tau_{M}(F,G)(x) = \sup_{u+v=x} Min(F(u),G(v))$$

are triangle functions.

If j denotes the identity function on $[-\infty,\infty]$, then for any F in Δ^+ and any a>0, the distribution function in Δ^+ whose value for any $x\geq 0$ is F(x/a) may be conveniently denoted by F(j/a).

In [2] D.M. Mouchtari and A.N. Serstnev showed that if τ is a triangle function then the equality

(2)
$$\tau(F(j/a),F(j/b)) = F(j/a + b)$$

holds for all F in Δ^+ and all a,b>0 if and only if $\tau = \tau_M$. Thus τ_M is the unique triangle function which satisfies the functional equation (2). The purpose of this note is to show that the duality theorem established in [1] yields a very simple proof of this fact. To this end we recall that for any F in Δ^+ the left-continuous quasi-inverse of F is the function F^ from [0,1] into $[0,\infty]$ defined by

(3)
$$F^{(y)} = \begin{cases} 0, & y = 0, \\ sup\{x | F(x) < y\}, & 0 < y \leq 1. \end{cases}$$

In particular,

(4)
$$[F(j/a)]^{=} aF^{;}$$

and if F^ = G^ then F = G. We denote the space of quasi-inverses of elements of Δ^+ by $(\Delta^+)^-$.

It follows from the duality theorem of [1] that

(5)
$$\left[\tau_{M}(F,G)\right]^{2} = F^{+} G^{-},$$

whence,

(6)
$$\left[\tau_{M}(F(j/a),F(j/b))\right]^{2} = aF^{2} + bF^{2}$$

= $(a + b)F^{2} = \left[F(j/a + b)\right]^{2}$.

Thus τ_{M} is a solution of (2).

Turning to the converse, for any triangle function τ let τ^{\smallfrown} be the binary operation induced on $(\Delta^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!^{\dagger}})^{\smallfrown}$ by

Then (2) is equivalent to

(8)
$$\tau^{(aF^{,bF^{)}}} = (a + b)F^{.}$$

Next, for any F, G in Δ^+ and any a,b > 0, let U^ and V^ be the functions defined by

(9)
$$U^* = Min(\frac{1}{a}F^*, \frac{1}{b}G^*)$$
 and $V^* = Max(\frac{1}{a}F^*, \frac{1}{b}G^*)$.

Then

(10)
$$aU^{\leq} F^{\leq} aV^{\circ}$$
 and $bU^{\leq} G^{\leq} bV^{\circ}$.

Since $\tau^{\hat{}}$ is non-decreasing on $(\Delta^{\hat{}})^{\hat{}}$, it follows that

(11)
$$\tau^{(aU^{,bU^{)}} \leq \tau^{(F^{,G^{)}} \leq \tau^{(aV^{,bV^{)}}}.$$

Suppose that τ satisfies (2). Then combining (8) and (11) we have that for all a,b>0,

(12)
$$(a + b)U^{\hat{}} \leq \tau^{\hat{}}(F^{\hat{}},G^{\hat{}}) \leq (a + b)V^{\hat{}}.$$

To show that (12) implies that $\tau = \tau_M$, we choose x such that 0 < x < 1 and consider the following three cases:

Case 1. $F^{*}(x) \neq 0$ and $G^{*}(x) \neq 0$. Then setting $a = F^{*}(x)$ and $b = G^{*}(x)$ in (9) yields $U^{*}(x) = V^{*}(x) = 1$, and using (12) we have at once that:

(13)
$$\tau^{(F^{,G^{}})(x)} = F^{(x)} + G^{(x)}.$$

Case 2. $F^{(x)} = G^{(x)} = 0$. Then setting a = b = 1 in (9) yields $U^{(x)} = V^{(x)} = 0$, whence by (12) we have $\tau^{(F^{(x)}, G^{(x)})} = 0$ and (13) is again valid.

Case 3. $F^*(x) = 0$ and $G^*(x) \neq 0$. Then setting $a = \varepsilon > 0$ and $b = G^*(x)$ in (9) yields $U^*(x)=0$ and $V^*(x)=1$, whence it follows that $\tau^*(F^*,G^*)(x) \leq G^*(x) + \varepsilon$. Since ε is arbitrary, we have $\tau^*(F^*,G^*)(x) \leq G^*(x)$. But (a) and (b) imply $\tau(F,G) \leq G$, whence $G^*(x) \leq \tau^*(F^*,G^*)(x)$, and again (13) holds. The same conclusion follows if $F^*(x) \neq 0$ and $G^*(x) = 0$.

Thus (13) holds for all x in (0,1) whence, using (5) and (7), we have $\tau = \tau_{M}$.

We conclude with several remarks.

- 1. Note that neither the commutativity nor the associativity of τ was used in the above argument.
- 2. The above argument also shows that $\tau(F(j/a),F(j/b)) \ge F(j/a+b)$ (resp., $\le F(j/a+b)$) if and only if $\tau \le \tau_M$ (resp., $\tau \ge \tau_M$).
- 3. If L is a suitable binary operation on $[0,\infty]$ then $\tau(F(j/a),F(j/b))=F(j/L(a,b))$ if and only if $\tau=\tau_{M,L}$ (see [1], Theorem 4.8. and [3], Section 7.7).

REFERENCES

- [1] M.J. FRANK and B.SCHWEIZER, On the duality of generalized infimal and supremal convolutions, Rendiconti di Matematica, 12 (1979), 1-23.
- [2] D.H. MOUCHTARI and A.N. ŠERSTNEV, Les fonctions du triangle pour les espaces normés aléatories, General Inequalities I, ed. by E.F. Beckenbach, ISNM Vol. 41, Birkhauser Verlag, Basel (1978), 255-260.
- [3] B. SCHWEIZER and A. SKLAR, Probabilistic metric spaces, Elsevier North-Holland, New York (to appear).

Lavoro pervenuto alla Redazione il 6 Novembre 1980 ed accettato per la pubblicazione il 25 Febbraio 1981 su parere favorevole di B. Forte e G. Letta