Congruences for (2, 3)-regular partition with designated summands

M. S. Mahadeva Naika
Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 001, Karnataka, India.
msmnaika@rediffmail.com

S. Shivaprasada Nayaka ${ }^{i}$

Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 001, Karnataka, India.
shivprasadnayaks@gmail.com

Received: 18.3.2016; accepted: 25.10.2016.

Abstract

Let $P D_{2,3}(n)$ count the number of partitions of n with designated summands in which parts are not multiples of 2 or 3 . In this work, we establish congruences modulo powers of 2 and 3 for $P D_{2,3}(n)$. For example, for each $\quad n \geq 0$ and $\alpha \geq 0 \quad P D_{2,3}\left(6 \cdot 4^{\alpha+2} n+5 \cdot 4^{\alpha+2}\right) \equiv 0$ $\left(\bmod 2^{4}\right)$ and $P D_{2,3}\left(4 \cdot 3^{\alpha+3} n+10 \cdot 3^{\alpha+2}\right) \equiv 0(\bmod 3)$.

Keywords: Designated summands, Congruences, Theta functions, Dissections,
MSC 2000 classification: primary 11P83, secondary 05A15, 05A17

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. A partition is (2,3)-regular partition of n if none of the parts are divisible by 2 or 3 .

Andrews, Lewis and Lovejoy [1] have investigated a new class of partition with designated summands are constructed by taking ordinary partitions and tagging exactly one of each part size. The total number of partitions of n with designated summands is denoted by $P D(n)$. Hence $P D(4)=10$, namely
$4^{\prime}, \quad 3^{\prime}+1^{\prime}, \quad 2^{\prime}+2,2+2^{\prime}, \quad 2^{\prime}+1^{\prime}+1,2^{\prime}+1+1^{\prime}, \quad 1^{\prime}+1+1+1, \quad 1+1^{\prime}+1+1$, $1+1+1^{\prime}+1, \quad 1+1+1+1^{\prime}$.
Andrews et al. [1] have derived the following generating function of $P D(n)$, namely

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D(n) q^{n}=\frac{f_{6}}{f_{1} f_{2} f_{3}} \tag{1}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
f_{n}:=\prod_{j=1}^{\infty}\left(1-q^{n j}\right), n \geq 1 \tag{2}
\end{equation*}
$$

\]

Andrews et al. [1] and N. D. Baruah and K. K. Ojah [3] have also studied $P D O(n)$, the number of partitions of n with designated summands in which all parts are odd. The generating function of $P D O(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D O(n) q^{n}=\frac{f_{4} f_{6}^{2}}{f_{1} f_{3} f_{12}} \tag{3}
\end{equation*}
$$

Mahadeva Naika et al. [12] have studied $P D_{3}(n)$, the number of partitions of n with designated summands whose parts not divisible by 3 and the generating function is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(n) q^{n}=\frac{f_{6}^{2} f_{9}}{f_{1} f_{2} f_{18}} \tag{4}
\end{equation*}
$$

In [13] Mahadeva Naika et al. have established many congruences for $P D_{2}(n)$, the number of bipartitions of n with designated summands and the generating function is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2}(n) q^{n}=\frac{f_{6}^{2}}{f_{1}^{2} f_{2}^{2} f_{3}^{2}} \tag{5}
\end{equation*}
$$

Motivated by the above works, in this paper, we defined $P D_{2,3}(n)$, the number of partitions of n with designated summands in which parts are not multiples of 2 or 3 . For example $P D_{2,3}(4)=4$, namely

$$
1^{\prime}+1+1+1, \quad 1+1^{\prime}+1+1, \quad 1+1+1^{\prime}+1, \quad 1+1+1+1^{\prime} .
$$

The generating function of $P D_{2,3}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(n) q^{n}=\frac{f_{4} f_{6}^{2} f_{9} f_{36}}{f_{1} f_{12}^{2} f_{18}^{2}} \tag{6}
\end{equation*}
$$

Following Ramanujan, for $|a b|<1$, we define his general theta function $f(a, b)$ as

$$
\begin{equation*}
f(a, b):=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} . \tag{7}
\end{equation*}
$$

The important special cases of $f(a, b)$ are

$$
\begin{equation*}
\varphi(q):=f(q, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}}=\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}}, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{f_{2}^{2}}{f_{1}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=f_{1}, \tag{10}
\end{equation*}
$$

where the product representations arise from famous Jacobi's triple product identity [5, p. 35, Entry 19]

$$
\begin{equation*}
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty} . \tag{11}
\end{equation*}
$$

In this paper, we list few formulas which helps to prove our main results in section 2 . In section 3, we obtain several congruences modulo powers of 2 and congruences modulo 3 in section 4.

2 Preliminary results

We list few dissection formulas to prove our main results.
Lemma 1. [14, p. 212] We have the following 5-dissection

$$
\begin{equation*}
f_{1}=f_{25}\left(a\left(q^{5}\right)-q-q^{2} / a\left(q^{5}\right)\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
a:=a(q):=\frac{\left(q^{2}, q^{3} ; q^{5}\right)_{\infty}}{\left(q, q^{4} ; q^{5}\right)_{\infty}} . \tag{13}
\end{equation*}
$$

Lemma 2. The following 2-dissection holds:

$$
\begin{equation*}
\frac{f_{9}}{f_{1}}=\frac{f_{18} f_{12}^{3}}{f_{36} f_{6} f_{2}^{2}}+q \frac{f_{36} f_{6} f_{4}^{2}}{f_{12} f_{2}^{3}} . \tag{14}
\end{equation*}
$$

Identity (2) is nothing but Lemma 3.5 in [16].
Lemma 3. The following 3-dissection holds:

$$
\begin{equation*}
\frac{f_{4}}{f_{1}}=\frac{f_{12} f_{18}^{4}}{f_{3}^{3} f_{36}^{2}}+q \frac{f_{6}^{2} f_{9}^{3} f_{36}}{f_{3}^{4} f_{18}^{2}}+2 q^{2} \frac{f_{6} f_{18} f_{36}}{f_{3}^{3}} \tag{15}
\end{equation*}
$$

Identity (3) is nothing but Lemma 2.6 in [3].
Lemma 4. The following 3-dissection holds:

$$
\begin{equation*}
\frac{f_{2}}{f_{1}^{2}}=\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}} . \tag{16}
\end{equation*}
$$

Equation (16) was proved by Hirschhorn and Sellers [10].
Lemma 5. [5, p. 49] We have

$$
\begin{gather*}
\varphi(q)=\varphi\left(q^{9}\right)+2 q f\left(q^{3}, q^{15}\right) \tag{17}\\
\psi(q)=f\left(q^{3}, q^{6}\right)+q \psi\left(q^{9}\right) \tag{18}
\end{gather*}
$$

Lemma 6. The following 2-dissections holds:

$$
\begin{align*}
f_{1}^{2} & =\frac{f_{2} f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{2} f_{16}^{2}}{f_{8}} \tag{19}\\
\frac{1}{f_{1}^{2}} & =\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}} \tag{20}\\
f_{1}^{4} & =\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{21}\\
\frac{1}{f_{1}^{4}} & =\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}} \tag{22}
\end{align*}
$$

Lemma (6) is a consequence of dissection formulas of Ramanujan, collected in Berndt's book [5, p. 40, Entry 25].

Lemma 7. The following 2-dissection holds:

$$
\begin{equation*}
\frac{f_{3}}{f_{1}}=\frac{f_{4} f_{6} f_{16} f_{24}^{2}}{f_{2}^{2} f_{8} f_{12} f_{48}}+q \frac{f_{6} f_{8}^{2} f_{48}}{f_{2}^{2} f_{16} f_{24}} \tag{23}
\end{equation*}
$$

Xia and Yao [18] gave a proof of Lemma (7).
Lemma 8. The following 2-dissections holds:

$$
\begin{align*}
\frac{f_{3}^{2}}{f_{1}^{2}} & =\frac{f_{4}^{4} f_{6} f_{12}^{2}}{f_{2}^{5} f_{8} f_{24}}+2 q \frac{f_{4} f_{6}^{2} f_{8} f_{24}}{f_{2}^{4} f_{12}} \tag{24}\\
\frac{f_{1}^{2}}{f_{3}^{2}} & =\frac{f_{2} f_{4}^{2} f_{12}^{4}}{f_{6}^{5} f_{8} f_{24}}-2 q \frac{f_{2}^{2} f_{8} f_{12} f_{24}}{f_{4} f_{6}^{4}} \tag{25}
\end{align*}
$$

Xia and Yao[17] proved (24) by employing an addition formula for theta functions. Replacing q by $-q$ in (20) and then using the fact that $(-q ;-q)_{\infty}=$ $\frac{f_{2}^{3}}{f_{1} f_{4}}$, we obtain (25).

Lemma 9. The following 2-dissections holds:

$$
\begin{align*}
& \frac{f_{3}^{3}}{f_{1}}=\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}} \tag{26}\\
& \frac{f_{1}^{3}}{f_{3}}=\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{f^{2}} f_{12}^{3}}{f_{4} f_{6}^{2}} \tag{27}\\
& \frac{f_{3}}{f_{1}^{3}}=\frac{f_{4}^{6} f_{6}^{3}}{f_{2}^{9} f_{12}^{2}}+3 q \frac{f_{4}^{2} f_{6} f_{12}^{2}}{f_{2}^{7}} . \tag{28}
\end{align*}
$$

Hirschhorn, Garvan and Borwein [8] proved (26) and (27). For proof of (28), see [4].

Lemma 10. The following 2-dissections holds:

$$
\begin{align*}
\frac{1}{f_{1} f_{3}} & =\frac{f_{8}^{2} f_{12}^{5}}{f_{2}^{2} f_{4} f_{6}^{4} f_{24}^{2}}+q \frac{f_{4}^{5} f_{24}^{2}}{f_{2}^{4} f_{6}^{2} f_{8}^{2} f_{12}} \tag{29}\\
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}} \tag{30}
\end{align*}
$$

Equation (29) was proved by Baruah and Ojah [3]. Replacing q by $-q$ in (29) and using the fact that $(-q ;-q)_{\infty}=\frac{f_{2}^{3}}{f_{1} f_{4}}$, we get (30).

Lemma 11. The following 3-dissection holds:

$$
\begin{equation*}
f_{1} f_{2}=\frac{f_{6} f_{9}^{4}}{f_{3} f_{18}^{2}}-q f_{9} f_{18}-2 q^{2} \frac{f_{3} f_{18}^{4}}{f_{6} f_{9}^{2}} \tag{31}
\end{equation*}
$$

One can see this identity in [9].
Lemma 12. (Cui and Gu [7, Theorem 2.2]). For any prime $p \geq 5$,

$$
\begin{equation*}
f_{1}=\sum_{\substack{k=\frac{1-p}{} \\ k \neq \frac{ \pm \pm-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right)+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}}, \tag{32}
\end{equation*}
$$

where

$$
\frac{ \pm p-1}{6}:= \begin{cases}\frac{p-1}{6}, & \text { if } p \equiv 1 \quad(\bmod 6) \\ \frac{-p-1}{6}, & \text { if } p \equiv-1 \quad(\bmod 6)\end{cases}
$$

Furthermore, for $\frac{-(p-1)}{2} \leq k \leq \frac{p-1}{2}$ and $k \neq \frac{(\pm p-1)}{6}$,

$$
\frac{3 k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{24} \quad(\bmod p)
$$

3 Congruences Modulo Powers of 2.

Theorem 1. For $n \geq 1$ and $\alpha \geq 0$, then

$$
\begin{align*}
P D_{2,3}(18 n) & \equiv 0 \quad(\bmod 4) \tag{33}\\
P D_{2,3}\left(2 \cdot 3^{\alpha+3} n\right) & \equiv 0 \quad(\bmod 4) \tag{34}
\end{align*}
$$

Proof. We have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(n) q^{n}=\frac{f_{4} f_{6}^{2} f_{9} f_{36}}{f_{1} f_{12}^{2} f_{18}^{2}} \tag{35}
\end{equation*}
$$

Substituting (14) into (35), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(n) q^{n}=\frac{f_{4} f_{6} f_{12}}{f_{2}^{2} f_{18}}+q \frac{f_{4}^{3} f_{6}^{3} f_{36}^{2}}{f_{2}^{3} f_{12}^{3} f_{18}^{2}} \tag{36}
\end{equation*}
$$

Extracting the even terms in the above equation

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(2 n) q^{n}=\frac{f_{2} f_{3} f_{6}}{f_{1}^{2} f_{9}} \tag{37}
\end{equation*}
$$

Substituting (16) into (37), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(2 n) q^{n}=\frac{f_{6}^{5} f_{9}^{5}}{f_{3}^{7} f_{18}^{3}}+2 q \frac{f_{6}^{4} f_{9}^{2}}{f_{3}^{6}}+4 q^{2} \frac{f_{6}^{3} f_{18}^{3}}{f_{3}^{5} f_{9}} \tag{38}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from both sides of (38) and replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n) q^{n}=\frac{f_{2}^{5} f_{3}^{5}}{f_{1}^{7} f_{6}^{3}} \tag{39}
\end{equation*}
$$

By the binomial theorem, it is easy to see that for positive integers k and m,

$$
\begin{equation*}
f_{2 k}^{2 m} \equiv f_{k}^{4 m} \quad(\bmod 4) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2 k}^{4 m} \equiv f_{k}^{8 m} \quad(\bmod 8) \tag{41}
\end{equation*}
$$

Invoking (41) into (39), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n) q^{n} \equiv \frac{f_{1} f_{2} f_{3}^{5}}{f_{6}^{3}} \quad(\bmod 8) \tag{42}
\end{equation*}
$$

Employing (31) into (42), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n) q^{n} \equiv \frac{f_{3}^{4} f_{9}^{4}}{f_{6}^{2} f_{18}^{2}}-q \frac{f_{3}^{5} f_{9} f_{18}}{f_{6}^{3}}-2 q^{2} \frac{f_{3}^{6} f_{18}^{4}}{f_{6}^{4} f_{9}^{2}} \quad(\bmod 8) \tag{43}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from both sides of (43) and replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n) q^{n} \equiv \frac{f_{1}^{4} f_{3}^{4}}{f_{2}^{2} f_{6}^{2}} \quad(\bmod 8) \tag{44}
\end{equation*}
$$

Congruence (33) follow from (40) and (44).
Equation (44) can be rewritten as

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n) q^{n} \equiv \frac{f_{3}^{4}}{f_{6}^{2}}\left(\frac{f_{1}^{2}}{f_{2}}\right)^{2} \quad(\bmod 8) \tag{45}
\end{equation*}
$$

Replacing q by $-q$ in (17) and using the fact that

$$
\begin{equation*}
\phi(-q)=\frac{f_{1}^{2}}{f_{2}} \tag{46}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\frac{f_{1}^{2}}{f_{2}}=\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}} \tag{47}
\end{equation*}
$$

Employing (47) into (45), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n) q^{n} \equiv \frac{f_{3}^{4} f_{9}^{4}}{f_{6}^{2} f_{18}^{2}}+4 q^{2} \frac{f_{3}^{6} f_{18}^{4}}{f_{6}^{4} f_{9}^{2}}-4 q \frac{f_{3}^{5} f_{9} f_{18}}{f_{6}^{3}} \quad(\bmod 8) \tag{48}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from both sides of (48) and replacing q^{3} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(54 n) q^{n} \equiv \frac{f_{1}^{4} f_{3}^{4}}{f_{2}^{2} f_{6}^{2}} \quad(\bmod 8) \tag{49}
\end{equation*}
$$

In view of the congruences (44) and (49), we get

$$
\begin{equation*}
P D_{2,3}(54 n) \equiv P D_{2,3}(18 n) \quad(\bmod 8) \tag{50}
\end{equation*}
$$

Utilizing (50) and by mathematical induction on α, we arrive

$$
\begin{equation*}
P D_{2,3}\left(2 \cdot 3^{\alpha+3} n\right) \equiv P D_{2,3}(18 n) \quad(\bmod 8) \tag{51}
\end{equation*}
$$

Using (33) into (51), we get (34).

Theorem 2. For $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{align*}
P D_{2,3}(72 n+42) & \equiv 0 \quad(\bmod 4), \tag{52}\\
P D_{2,3}(36 n+30) & \equiv 0 \quad(\bmod 4), \tag{53}\\
P D_{2,3}(144 n+120) & \equiv 0 \quad(\bmod 4), \tag{54}\\
P D_{2,3}\left(9 \cdot 4^{\alpha+3} n+30 \cdot 4^{\alpha+2}\right) & \equiv 0 \quad(\bmod 4), \tag{55}\\
P D_{2,3}(54 n+18) & \equiv 4 \cdot P D_{2,3}(18 n+6) \quad(\bmod 8), \tag{56}\\
P D_{2,3}(54 n+36) & \equiv 2 \cdot P D_{2,3}(18 n+12) \quad(\bmod 8), \tag{57}\\
P D_{2,3}(36 n+30) & \equiv 2 \cdot P D_{2,3}(72 n+60) \quad(\bmod 8) . \tag{58}
\end{align*}
$$

Proof. Extracting the terms involving $q^{3 n+1}$ from (48), dividing by q and then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(54 n+18) q^{n} \equiv-4 \frac{f_{1}^{5} f_{3} f_{6}}{f_{2}^{3}} \quad(\bmod 8) \tag{59}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+1}$ from (43), dividing by q and then replacing q^{3} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+6) q^{n} \equiv-\frac{f_{1}^{5} f_{3} f_{6}}{f_{2}^{3}} \quad(\bmod 8) \tag{60}
\end{equation*}
$$

From (59) and (60), we arrive at (56).
Extracting the terms involving $q^{3 n+2}$ from (48), dividing by q^{2} and then replacing q^{3} by q, we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(54 n+36) q^{n} \equiv 4 \frac{f_{\frac{1}{6} f_{6}^{4}}^{f_{2}^{4} f_{3}^{2}} \quad(\bmod 8) ~}{\text {. }} \tag{61}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+2}$ from (43), dividing by q^{2} and then replacing q^{3} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+12) q^{n} \equiv-2 \frac{f_{1}^{6} f_{6}^{4}}{f_{2}^{4} f_{3}^{2}} \quad(\bmod 8) \tag{62}
\end{equation*}
$$

In view of the congruences (61) and (62), we get (57).
From (60), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+6) q^{n} \equiv 7 \frac{f_{1}^{5} f_{3} f_{6}}{f_{2}^{3}} \quad(\bmod 8) \tag{63}
\end{equation*}
$$

Invoking (41) into (63), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+6) q^{n} \equiv 7 \frac{f_{2} f_{3} f_{6}}{f_{1}^{3}} \quad(\bmod 8) \tag{64}
\end{equation*}
$$

Employing (28) into (64), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+6) q^{n} \equiv 7 \frac{f_{4}^{6} f_{6}^{4}}{f_{2}^{8} f_{12}^{2}}+21 q \frac{f_{4}^{2} f_{6}^{2} f_{12}^{2}}{f_{2}^{6}} \quad(\bmod 8) \tag{65}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (65) and then replacing q^{2} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+6) q^{n} \equiv 7 \frac{f_{2}^{6} f_{3}^{4}}{f_{1}^{8} f_{6}^{2}} \quad(\bmod 8) \tag{66}
\end{equation*}
$$

Invoking (40) into (66), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+6) q^{n} \equiv 3 f_{2}^{2} \quad(\bmod 4) \tag{67}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (67), we get (52).
Extracting the terms involving $q^{2 n+1}$ from (65), dividing by q and then replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+24) q^{n} \equiv 5 \frac{f_{2}^{2} f_{3}^{2} f_{6}^{2}}{f_{1}^{6}} \quad(\bmod 8) \tag{68}
\end{equation*}
$$

Invoking (41) into (68), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+24) q^{n} \equiv 5 \frac{f_{6}^{2}}{f_{2}^{2}}\left(f_{1} f_{3}\right)^{2} \quad(\bmod 8) \tag{69}
\end{equation*}
$$

Employing (30) into (69), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+24) q^{n} \equiv 5 \frac{f_{8}^{4} f_{12}^{8}}{f_{4}^{4} f_{24}^{4}}+5 q^{2} \frac{f_{4}^{8} f_{6}^{4} f_{24}^{4}}{f_{2}^{4} f_{8}^{4} f_{12}^{4}}-10 q \frac{f_{4}^{2} f_{6}^{2} f_{12}^{2}}{f_{2}^{2}} \quad(\bmod 8) \tag{70}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (70), dividing by q and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(72 n+60) q^{n} \equiv 6 \frac{f_{2}^{2} f_{3}^{2} f_{6}^{2}}{f_{1}^{2}} \quad(\bmod 8) \tag{71}
\end{equation*}
$$

Invoking (41) into equation (62), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+12) q^{n} \equiv 6 \frac{f_{3}^{8}}{f_{1}^{2} f_{3}^{2}} \quad(\bmod 8) \tag{72}
\end{equation*}
$$

Invoking (40) into (72), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+12) q^{n} \equiv 2 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 4) \tag{73}
\end{equation*}
$$

Congruence (53) fellows extracting the terms involving $q^{2 n+1}$ from (73).
Which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+12) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 4) \tag{74}
\end{equation*}
$$

Substituting (26) into (74), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+12) q^{n} \equiv 2 \frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+2 q \frac{f_{12}^{3}}{f_{4}} \quad(\bmod 4) \tag{75}
\end{equation*}
$$

Which implies,

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(72 n+48) q^{n} \equiv 2 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 4) \tag{76}
\end{equation*}
$$

Congruence (54) fellows extracting the terms involving $q^{2 n+1}$ from (76).
From equation (76) and (73), we have

$$
\begin{equation*}
P D_{2,3}(72 n+48) \equiv P D_{2,3}(18 n+12) \quad(\bmod 4) \tag{77}
\end{equation*}
$$

By mathematical induction on α, we arrive at

$$
\begin{equation*}
P D_{2,3}\left(18 \cdot 4^{\alpha+1}+3 \cdot 4^{\alpha+2}\right) \equiv P D_{2,3}(18 n+12) \quad(\bmod 4) \tag{78}
\end{equation*}
$$

Using (54) into (78), we get (55).
Equation (72) can rewritten as

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+12) q^{n} \equiv 6\left(\frac{f_{3}^{3}}{f_{1}}\right)^{2} \quad(\bmod 8) \tag{79}
\end{equation*}
$$

Employing (26) into (79), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(18 n+12) q^{n} \equiv 6 \frac{f_{4}^{6} f_{6}^{4}}{f_{2}^{4} f_{12}^{2}}+6 q^{2} \frac{f_{12}^{6}}{f_{4}^{2}}+12 q \frac{f_{4}^{2} f_{6}^{2} f_{12}^{2}}{f_{2}^{2}} \quad(\bmod 8) \tag{80}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (80), dividing by q and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+30) q^{n} \equiv 12 \frac{f_{2}^{2} f_{3}^{2} f_{6}^{2}}{f_{1}^{2}} \quad(\bmod 8) \tag{81}
\end{equation*}
$$

From (71) and (81), we get (58).
Theorem 3. For each $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{gather*}
P D_{2,3}\left(72 \cdot 25^{\alpha+1} n+6 \cdot 25^{\alpha+1}\right) \equiv P D_{2,3}(72 n+6) \quad(\bmod 4), \tag{82}\\
P D_{2,3}(360(5 n+i)+150) \equiv 0 \quad(\bmod 4), \tag{83}
\end{gather*}
$$

where $i=1,2,3,4$.
Proof. From the equation (67), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(72 n+6) q^{n} \equiv 3 f_{1}^{2} \quad(\bmod 4) \tag{84}
\end{equation*}
$$

Employing (12) in the above equation, and then extracting the terms containing $q^{5 n+2}$, dividing by q^{2} and replacing q^{5} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(360 n+150) q^{n} \equiv 3 f_{5}^{2} \quad(\bmod 4) \tag{85}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(1800 n+150) q^{n} \equiv 3 f_{1}^{2} \equiv \sum_{n=0}^{\infty} P D_{2,3}(72 n+6) q^{n} \quad(\bmod 4) \tag{86}
\end{equation*}
$$

By induction on α, we obtain (82). The congruence (83) follows by extracting the terms involving $q^{5 n+i}$ for $i=1,2,3,4$ from both sides of (85).

Theorem 4. For each $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{align*}
P D_{2,3}(24 n+20) & \equiv 0 \quad(\bmod 16), \tag{87}\\
P D_{2,3}\left(6 \cdot 4^{\alpha+2} n+5 \cdot 4^{\alpha+2}\right) & \equiv 0 \quad(\bmod 16) . \tag{88}
\end{align*}
$$

Proof. Extracting the terms involving $q^{3 n+1}$ from (38), dividing by q and then replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+2) q^{n}=2 \frac{f_{2}^{4} f_{3}^{2}}{f_{1}^{6}} \tag{89}
\end{equation*}
$$

Invoking (41) into equation (89), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+2) q^{n}=2\left(f_{1} f_{3}\right)^{2} \quad(\bmod 16) \tag{90}
\end{equation*}
$$

Substituting (30) into (90), we arrive

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+2) q^{n} \equiv 2 \frac{f_{2}^{2} f_{8}^{4} f_{12}^{8}}{f_{4}^{4} f_{6}^{2} f_{24}^{4}}+2 q^{2} \frac{f_{4}^{8} f_{6}^{2} f_{24}^{4}}{f_{2}^{2} f_{8}^{4} f_{12}^{4}}-4 q f_{4}^{2} f_{12}^{2} \quad(\bmod 16) \tag{91}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (91), dividing by q and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+8) q^{n} \equiv 12 f_{2}^{2} f_{6}^{2} \quad(\bmod 16) \tag{92}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (92), we get (87).
Extracting the terms involving $q^{2 n}$ from (92) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+8) q^{n} \equiv 12\left(f_{1} f_{3}\right)^{2} \quad(\bmod 16) \tag{93}
\end{equation*}
$$

In view of the congruences (90) and (93), we get

$$
\begin{equation*}
P D_{2,3}(24 n+8) \equiv 6 \cdot P D_{2,3}(6 n+2) \quad(\bmod 16) . \tag{94}
\end{equation*}
$$

Utilizing (94) and by mathematical induction on α, we arrive

$$
\begin{equation*}
P D_{2,3}\left(6 \cdot 4^{\alpha+1}+2 \cdot 4^{\alpha+1}\right) \equiv 6^{\alpha+1} \cdot P D_{2,3}(6 n+2) \quad(\bmod 16) \tag{95}
\end{equation*}
$$

Using (87) into (95), we arrive (88).
Theorem 5. For each $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{equation*}
P D_{2,3}\left(6 \cdot 4^{\alpha+1} n+4^{\alpha+2}\right) \equiv P D_{2,3}(6 n+4) \quad(\bmod 32) . \tag{96}
\end{equation*}
$$

Proof. Extracting the terms involving $q^{3 n+2}$ from (38), dividing by q^{2} and then replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+4) q^{n}=4 \frac{f_{2}^{3} f_{6}^{3}}{f_{1}^{5} f_{3}} \tag{97}
\end{equation*}
$$

Invoking (41) into (97), we arrive

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+4) q^{n} \equiv 4 \frac{f_{1}^{3} f_{6}^{3}}{f_{2} f_{3}} \quad(\bmod 32) \tag{98}
\end{equation*}
$$

Employing (27) into (98), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+4) q^{n} \equiv 4 \frac{f_{4}^{3} f_{6}^{3}}{f_{2} f_{12}}-12 q \frac{f_{2} f_{6} f_{12}^{3}}{f_{4}} \quad(\bmod 32) \tag{99}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (99) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+4) q^{n} \equiv 4 \frac{f_{2}^{3} f_{3}^{3}}{f_{1} f_{6}} \quad(\bmod 32) \tag{100}
\end{equation*}
$$

Employing (26) into (100), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+4) q^{n} \equiv 4 \frac{f_{2} f_{4}^{3} f_{6}}{f_{12}}+4 q \frac{f_{2}^{3} f_{12}^{3}}{f_{4} f_{6}} \quad(\bmod 32) \tag{101}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (101), dividing by q and then replac$\operatorname{ing} q^{2}$ by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+16) q^{n} \equiv 4 \frac{f_{1}^{3} f_{6}^{3}}{f_{2} f_{3}} \quad(\bmod 32) \tag{102}
\end{equation*}
$$

In view of the congruences (98) and (102), we obtain

$$
\begin{equation*}
P D_{2,3}(24 n+16) \equiv P D_{2,3}(6 n+4) \quad(\bmod 32) . \tag{103}
\end{equation*}
$$

Utilizing (103) and by mathematical induction on α, we get (96).
Theorem 6. For $n \geq 0$, we have

$$
\begin{align*}
& P D_{2,3}(48 n+34) \equiv 0 \quad(\bmod 8), \tag{104}\\
& P D_{2,3}(48 n+46) \equiv 0 \quad(\bmod 8), \tag{105}\\
& P D_{2,3}(96 n+52) \equiv 0 \quad(\bmod 8), \tag{106}\\
& P D_{2,3}(96 n+76) \equiv 0 \quad(\bmod 8) . \tag{107}
\end{align*}
$$

Proof. Extracting the terms involving $q^{2 n+1}$ from (99), dividing by q and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+10) q^{n} \equiv 20 \frac{f_{1} f_{3} f_{6}^{3}}{f_{2}} \quad(\bmod 32) \tag{108}
\end{equation*}
$$

Substituting (30) into (108), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+10) q^{n} \equiv 20 \frac{f_{6}^{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{24}^{2}}-20 q \frac{f_{4}^{4} f_{6}^{4} f_{24}^{2}}{f_{2}^{2} f_{8}^{2} f_{12}^{2}} \quad(\bmod 32) \tag{109}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (109) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+10) q^{n} \equiv 20 \frac{f_{3}^{2} f_{4}^{2} f_{6}^{4}}{f_{2}^{2} f_{12}^{2}} \quad(\bmod 32) \tag{110}
\end{equation*}
$$

Invoking (40) into (110), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+10) q^{n} \equiv 4 f_{2}^{2} f_{3}^{2} \quad(\bmod 16) \tag{111}
\end{equation*}
$$

By the binomial theorem, it is easy to see that for positive integers k and m,

$$
\begin{equation*}
f_{2 k}^{m} \equiv f_{k}^{2 m} \quad(\bmod 2) \tag{112}
\end{equation*}
$$

Invoking (112) into (111), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+10) q^{n} \equiv 4 f_{4} f_{6} \quad(\bmod 8) \tag{113}
\end{equation*}
$$

Congruences (104) follows that extracting the terms involving $q^{2 n+1}$ from (113).
Extracting the terms involving $q^{2 n+1}$ from (109), dividing by q and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+22) q^{n} \equiv 12 \frac{f_{2}^{4} f_{3}^{4} f_{12}^{2}}{f_{1}^{2} f_{4}^{2} f_{6}^{2}} \quad(\bmod 32) \tag{114}
\end{equation*}
$$

Invoking (40) into (114), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+22) q^{n} \equiv 12 \frac{f_{3}^{4} f_{6}^{2}}{f_{1}^{2}} \quad(\bmod 16) \tag{115}
\end{equation*}
$$

Invoking (112) into (115), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+22) q^{n} \equiv 4 \frac{f_{6}^{2} f_{12}}{f_{2}} \quad(\bmod 8) \tag{116}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (116), we get (105).
Extracting the terms involving $q^{2 n}$ from (101) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+4) q^{n} \equiv 4 \frac{f_{1} f_{2}^{3} f_{3}}{f_{6}} \quad(\bmod 32) \tag{117}
\end{equation*}
$$

Substituting (30) into (117), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+4) q^{n} \equiv 4 \frac{f_{2}^{4} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6}^{2} f_{24}^{2}}-4 q \frac{f_{2}^{2} f_{4}^{4} f_{24}^{2}}{f_{8}^{2} f_{12}^{2}} \quad(\bmod 32) \tag{118}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (118) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+4) q^{n} \equiv 4 \frac{f_{1}^{4} f_{4}^{2} f_{6}^{4}}{f_{2}^{2} f_{3}^{2} f_{12}^{2}} \quad(\bmod 32) \tag{119}
\end{equation*}
$$

Invoking (40) into (119), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+4) q^{n} \equiv 4 \frac{f_{4}^{2}}{f_{3}^{2}} \quad(\bmod 16) \tag{120}
\end{equation*}
$$

Invoking (112) into (120), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+4) q^{n} \equiv 4 \frac{f_{8}}{f_{6}} \quad(\bmod 8) \tag{121}
\end{equation*}
$$

Congruences (106) obtained by extracting the term involving $q^{2 n+1}$ from (121).
Extracting the terms involving $q^{2 n+1}$ from (118), dividing by q and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+28) q^{n} \equiv 28 \frac{f_{1}^{2} f_{2}^{4} f_{12}^{2}}{f_{4}^{2} f_{6}^{2}} \quad(\bmod 32) \tag{122}
\end{equation*}
$$

Invoking (40) into (122), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+28) q^{n} \equiv 12 f_{1}^{2} f_{6}^{2} \quad(\bmod 16) \tag{123}
\end{equation*}
$$

Invoking (112) into (123), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+28) q^{n} \equiv 4 f_{2} f_{12} \quad(\bmod 8) \tag{124}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (124), we get (107).
Theorem 7. For any prime $p \equiv 5, \alpha \geq 1$ and $n \geq 0$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}\left(48 p^{2 \alpha} n+10 p^{2 \alpha}\right) q^{n} \equiv 4 f_{2} f_{3} \quad(\bmod 8) \tag{125}
\end{equation*}
$$

Proof. Extracting the terms involving $q^{2 n}$ from (113) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+10) q^{n} \equiv 4 f_{2} f_{3} \quad(\bmod 8) \tag{126}
\end{equation*}
$$

Define

$$
\begin{equation*}
\sum_{n=0}^{\infty} f(n) q^{n}=f_{2} f_{3} \quad(\bmod 8) \tag{127}
\end{equation*}
$$

Combining (126) and (127), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(48 n+10) q^{n} \equiv 4 \sum_{n=0}^{\infty} f(n) q^{n} \quad(\bmod 8) \tag{128}
\end{equation*}
$$

Now, we consider the congruence equation

$$
\begin{equation*}
2 \cdot \frac{3 k^{2}+k}{2}+3 \cdot \frac{3 m^{2}+m}{2} \equiv \frac{5 p^{2}-5}{24} \quad(\bmod p) \tag{129}
\end{equation*}
$$

which is equivalent to

$$
(2 \cdot(6 k+1))^{2}+6 \cdot(6 m+1)^{2} \equiv 0 \quad(\bmod p)
$$

where $\frac{-(p-1)}{2} \leq k, m \leq \frac{p-1}{2}$ and p is a prime such that $\left(\frac{-6}{p}\right)=-1$. Since $\left(\frac{-6}{p}\right)=-1$ for $p \equiv 5(\bmod 6)$, the congruence relation (129) holds if and only if both $k=m=\frac{ \pm p-1}{6}$. Therefore, if we substitute (32) into (127) and then extracting the terms in which the powers of q are congruent to $5 \cdot \frac{p^{2}-1}{24}$ modulo p and then divide by $q^{5 \cdot \frac{p^{2}-1}{24}}$, we find that

$$
\sum_{n=0}^{\infty} f\left(p n+5 \cdot \frac{p^{2}-1}{24}\right) q^{p n}=f_{2 p} f_{3 p}
$$

which implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} f\left(p^{2} n+5 \cdot \frac{p^{2}-1}{24}\right) q^{n}=f_{2} f_{3} \tag{130}
\end{equation*}
$$

and for $n \geq 0$,

$$
\begin{equation*}
f\left(p^{2} n+p i+5 \cdot \frac{p^{2}-1}{24}\right)=0 \tag{131}
\end{equation*}
$$

where i is an integer and $1 \leq i \leq p-1$. By induction, we see that for $n \geq 0$ and $\alpha \geq 0$,

$$
\begin{equation*}
f\left(p^{2 \alpha} n+5 \cdot \frac{p^{2 \alpha}-1}{24}\right)=f(n) \tag{132}
\end{equation*}
$$

Replacing n by $p^{2 \alpha} n+5 \cdot \frac{p^{2 \alpha}-1}{24}$ in (128), we arrive at (125).
Corollary 1. For each $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{align*}
& P D_{2,3}\left(3 \cdot 4^{\alpha+3} n+34 \cdot 4^{\alpha+1}\right) \equiv 0 \quad(\bmod 8), \tag{133}\\
& P D_{2,3}\left(3 \cdot 4^{\alpha+3} n+46 \cdot 4^{\alpha+1}\right) \equiv 0 \quad(\bmod 8), \tag{134}\\
& P D_{2,3}\left(6 \cdot 4^{\alpha+3} n+13 \cdot 4^{\alpha+2}\right) \equiv 0 \quad(\bmod 8), \tag{135}\\
& P D_{2,3}\left(6 \cdot 4^{\alpha+3} n+19 \cdot 4^{\alpha+2}\right) \equiv 0 \quad(\bmod 8) . \tag{136}
\end{align*}
$$

Proof. Corollary (1) follows from the Theorem (5) and Theorem (6).
Theorem 8. For $n \geq 0$, we have

$$
\begin{align*}
P D_{2,3}(12 n+11) & \equiv 0 \quad(\bmod 4) \tag{137}\\
P D_{2,3}(24 n+19) & \equiv 0 \quad(\bmod 4), \tag{138}\\
P D_{2,3}(24 n+17) & \equiv 0 \quad(\bmod 4), \tag{139}\\
P D_{2,3}(108 n+63) & \equiv 0 \quad(\bmod 4), \tag{140}\\
P D_{2,3}(108 n+99) & \equiv 0 \quad(\bmod 4), \tag{141}\\
P D_{2,3}(216 n+27) q^{n} & \equiv 2 \psi(q) \quad(\bmod 4), \tag{142}\\
P D_{2,3}(72 n+6) & \equiv P D_{2,3}(36 n+3) \quad(\bmod 4) \tag{143}\\
P D_{2,3}(96 n+28) & \equiv 2 \cdot P D_{2,3}(24 n+7) \quad(\bmod 4) . \tag{144}
\end{align*}
$$

Proof. Extracting the odd terms in (36), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(2 n+1) q^{n}=\frac{f_{2}^{3} f_{3}^{3} f_{18}^{2}}{f_{1}^{3} f_{6}^{3} f_{9}^{2}} \tag{145}
\end{equation*}
$$

Invoking (40) into (145), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(2 n+1) q^{n} \equiv \frac{f_{1} f_{2} f_{3}^{3} f_{9}^{2}}{f_{6}^{3}} \quad(\bmod 4) \tag{146}
\end{equation*}
$$

Substituting (31) into (146), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(2 n+1) q^{n} \equiv \frac{f_{3}^{2} f_{9}^{6}}{f_{6}^{2} f_{18}^{2}}-q \frac{f_{3}^{3} f_{9}^{3} f_{18}}{f_{6}^{3}}-2 q^{2} \frac{f_{3}^{4} f_{18}^{4}}{f_{6}^{4}} \quad(\bmod 4) \tag{147}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from (147) and replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+1) q^{n} \equiv \frac{f_{1}^{2} f_{3}^{6}}{f_{2}^{2} f_{6}^{2}} \quad(\bmod 4) \tag{148}
\end{equation*}
$$

Invoking (40) into (148), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+1) q^{n} \equiv \frac{f_{3}^{2}}{f_{1}^{2}} \quad(\bmod 4) \tag{149}
\end{equation*}
$$

Employing (24) into (149), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+1) q^{n} \equiv \frac{f_{4}^{4} f_{6} f_{12}^{2}}{f_{2}^{5} f_{8} f_{24}}+2 q \frac{f_{4} f_{6}^{2} f_{8} f_{24}}{f_{2}^{4} f_{12}} \quad(\bmod 4) \tag{150}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (150), dividing by q and then replac$\operatorname{ing} q^{2}$ by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+7) q^{n} \equiv 2 \frac{f_{2} f_{3}^{2} f_{4} f_{12}}{f_{1}^{4} f_{6}} \quad(\bmod 4) \tag{151}
\end{equation*}
$$

Invoking (112) into (151), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+7) q^{n} \equiv 2 f_{2} f_{12} \quad(\bmod 4) \tag{152}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (152), we obtain (137).
Extracting the terms involving $q^{2 n}$ from (152), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+7) q^{n} \equiv 2 f_{1} f_{6} \quad(\bmod 4) \tag{153}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (124) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(96 n+28) q^{n} \equiv 4 f_{1} f_{6} \quad(\bmod 8) \tag{154}
\end{equation*}
$$

In view of congruences (154) and (153), we obtain (144).
Extracting the terms involving $q^{3 n+1}$ from (147), dividing by q and then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+3) q^{n} \equiv 3 \frac{f_{1}^{3} f_{3}^{3} f_{6}}{f_{2}^{3}} \quad(\bmod 4) \tag{155}
\end{equation*}
$$

Invoking (40) into (155), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+3) q^{n} \equiv 3 \frac{f_{3}^{3} f_{6}}{f_{1} f_{2}} \quad(\bmod 4) \tag{156}
\end{equation*}
$$

Employing (26) into (156), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+3) q^{n} \equiv 3 \frac{f_{4}^{3} f_{6}^{3}}{f_{2}^{3} f_{12}}+3 q \frac{f_{6} f_{12}^{3}}{f_{2} f_{4}} \quad(\bmod 4) \tag{157}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (157) and replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+3) q^{n} \equiv 3 \frac{f_{2}^{3} f_{3}^{3}}{f_{1}^{3} f_{6}} \quad(\bmod 4) \tag{158}
\end{equation*}
$$

Invoking (40) into (158), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+3) q^{n} \equiv 3 \frac{f_{1} f_{2} f_{3}^{3}}{f_{6}} \quad(\bmod 4) \tag{159}
\end{equation*}
$$

Substituting (31) into (159), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+3) q^{n} \equiv 3 \frac{f_{3}^{2} f_{9}^{4}}{f_{18}^{2}}-3 q \frac{f_{3}^{3} f_{9} f_{18}}{f_{6}}-6 q^{2} \frac{f_{3}^{4} f_{18}^{4}}{f_{6}^{2} f_{9}^{2}} \quad(\bmod 4) \tag{160}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from (160) and replacing q^{3} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+3) q^{n} \equiv 3 \frac{f_{1}^{2} f_{3}^{4}}{f_{6}^{2}} \quad(\bmod 4) \tag{161}
\end{equation*}
$$

Invoking (40) into (161), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+3) q^{n} \equiv 3 f_{1}^{2} \quad(\bmod 4) \tag{162}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (67) and replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(72 n+6) q^{n} \equiv 3 f_{1}^{2} \quad(\bmod 4) \tag{163}
\end{equation*}
$$

In view of congruences (163) and (162), we obtain (143).
Extracting the terms involving $q^{3 n+2}$ from (160), dividing by q^{2} and then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+27) q^{n} \equiv 2 \frac{f_{1}^{4} f_{6}^{4}}{f_{2}^{2} f_{3}^{2}} \quad(\bmod 4) \tag{164}
\end{equation*}
$$

Invoking (40) into (164), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+27) q^{n} \equiv 2 \frac{f_{6}^{4}}{f_{3}^{2}} \quad(\bmod 4) \tag{165}
\end{equation*}
$$

Congruences (140) and (141) follows extracting the terms involving $q^{3 n+1}$ and $q^{3 n+2}$ from (165).

Invoking (112) into (165), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+27) q^{n} \equiv 2 \frac{f_{12}^{2}}{f_{6}} \quad(\bmod 4) \tag{166}
\end{equation*}
$$

Extracting the terms involving $q^{6 n}$ from (166) and replacing q^{6} by q, we get (142).

Extracting the terms involving $q^{3 n+2}$ from (147), dividing by q^{2} and then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+5) q^{n} \equiv 2 \frac{f_{1}^{4} f_{6}^{4}}{f_{2}^{4}} \quad(\bmod 4) \tag{167}
\end{equation*}
$$

Invoking (40) into (167), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n+5) q^{n} \equiv 2 \frac{f_{6}^{4}}{f_{2}^{2}} \quad(\bmod 4) \tag{168}
\end{equation*}
$$

Congruences (137) follows that extracting the terms involving $q^{2 n+1}$ from (168).
Extracting the terms involving $q^{2 n}$ from (168) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+5) q^{n} \equiv 2 \frac{f_{3}^{4}}{f_{1}^{2}} \quad(\bmod 4) \tag{169}
\end{equation*}
$$

Substitute (26) and (23) in (169)

$$
\begin{align*}
& \sum_{n=0}^{\infty} P D_{2,3}(12 n+5) q^{n} \\
& \equiv 2 \frac{f_{4}^{4} f_{6}^{3} f_{16} f_{24}^{2}}{f_{2}^{4} f_{8} f_{12}^{2} f_{48}}+2 q \frac{f_{4}^{3} f_{6}^{3} f_{8}^{2} f_{48}}{f_{2}^{4} f_{12} f_{16} f_{24}}+2 q \frac{f_{6} f_{12}^{2} f_{16} f_{24}^{2}}{f_{2}^{2} f_{8} f_{48}}+2 q^{2} \frac{f_{6} f_{8}^{2} f_{12}^{3} f_{48}}{f_{2}^{2} f_{16} f_{24}} \quad(\bmod 4) \tag{170}
\end{align*}
$$

Extracting the terms involving $q^{2 n+1}$ from (170), dividing by q and then replacing q^{2} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+17) q^{n} \equiv 2 \frac{f_{2}^{3} f_{3}^{3} f_{4}^{2} f_{24}}{f_{1}^{4} f_{6} f_{8} f_{12}}+2 \frac{f_{3} f_{6}^{2} f_{8} f_{12}^{2}}{f_{1}^{2} f_{4} f_{24}} \quad(\bmod 4) \tag{171}
\end{equation*}
$$

Invoking (112) into (171), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(24 n+17) q^{n} \equiv 2 f_{2} f_{3} f_{12}+2 f_{2} f_{3} f_{12} \quad(\bmod 4) \tag{172}
\end{equation*}
$$

which implies (139).
Theorem 9. For $n \geq 0, \alpha \geq 0$

$$
\begin{align*}
P D_{2,3}(648 n+459) & \equiv 0 \quad(\bmod 4), \tag{173}\\
P D_{2,3}\left(8 \cdot 9^{\alpha+3} n+51 \cdot 9^{\alpha+2}\right) & \equiv 0 \quad(\bmod 4) . \tag{174}
\end{align*}
$$

Proof. Employing (18) into (142), we get

$$
\begin{equation*}
P D_{2,3}(216 n+27) q^{n} \equiv 2 f\left(q^{3}, q^{6}\right)+2 q \psi\left(q^{9}\right) \quad(\bmod 4) \tag{175}
\end{equation*}
$$

Congruences (173) follows extracting the terms involving $q^{3 n+2}$ from (175).
Extracting the terms involving $q^{3 n+1}$ from (175), dividing by q and then replacing q^{3} by q, we have

$$
\begin{equation*}
P D_{2,3}(648 n+243) q^{n} \equiv 2 \psi\left(q^{3}\right) \quad(\bmod 4) \tag{176}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from (176) and replacing q^{3} by q, we obtain

$$
\begin{equation*}
P D_{2,3}(1944 n+243) q^{n} \equiv 2 \psi(q) \quad(\bmod 4) \tag{177}
\end{equation*}
$$

In view of congruences (142) and (177), we have

$$
\begin{equation*}
P D_{2,3}(1944 n+243) \equiv P D_{2,3}(216 n+27) \quad(\bmod 4) \tag{178}
\end{equation*}
$$

Utilizing (178) and by mathematical induction on α, we get

$$
\begin{equation*}
P D_{2,3}\left(24 \cdot 9^{\alpha+2} n+3 \cdot 9^{\alpha+2}\right) \equiv P D_{2,3}(216 n+27) \quad(\bmod 4) \tag{179}
\end{equation*}
$$

Using (173) into (179), we obtain (174).

4 Congruences Modulo 3.

Theorem 10. For $n \geq 0$ and $\alpha \geq 0$, then

$$
\begin{align*}
P D_{2,3}(6 n+3) & \equiv 0 \quad(\bmod 3), \tag{180}\\
P D_{2,3}(6 n+5) & \equiv 0 \quad(\bmod 3) \tag{181}\\
P D_{2,3}(36 n+30) & \equiv 0 \quad(\bmod 3) \tag{182}\\
P D_{2,3}\left(4 \cdot 3^{\alpha+3} n+10 \cdot 3^{\alpha+2}\right) & \equiv 0 \quad(\bmod 3) \tag{183}
\end{align*}
$$

Proof. Substituting (15) into (35), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(n) q^{n}=\frac{f_{6}^{2} f_{9} f_{18}^{2}}{f_{3}^{3} f_{12} f_{36}}+q \frac{f_{6}^{4} f_{9}^{4} f_{36}^{2}}{f_{3}^{4} f_{12}^{2} f_{18}^{4}}+2 q^{2} \frac{f_{6}^{3} f_{9} f_{36}^{2}}{f_{3}^{3} f_{12}^{2} f_{18}} \tag{184}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from (184) and replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(3 n) q^{n}=\frac{f_{2}^{2} f_{3} f_{6}^{2}}{f_{1}^{3} f_{4} f_{12}} \tag{185}
\end{equation*}
$$

By the binomial theorem, it is easy to see that for positive integers k and m,

$$
\begin{equation*}
f_{3 k}^{m} \equiv f_{k}^{3 m} \quad(\bmod 3) \tag{186}
\end{equation*}
$$

Invoking (186) into (185), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(3 n) q^{n} \equiv \frac{f_{2}^{8}}{f_{4}^{4}} \quad(\bmod 3) \tag{187}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (187) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n) q^{n} \equiv \frac{f_{1}^{8}}{f_{2}^{4}} \quad(\bmod 3) \tag{188}
\end{equation*}
$$

But

$$
\begin{gather*}
\frac{f_{1}^{8}}{f_{2}^{4}}=\frac{f_{1}^{2} f_{3}^{2}}{f_{2}^{4}} \tag{189}\\
\sum_{n=0}^{\infty} P D_{2,3}(6 n) q^{n} \equiv \frac{f_{1}^{2} f_{3}^{2}}{f_{2}^{4}} \quad(\bmod 3) \tag{190}
\end{gather*}
$$

Substituting (30) into (190), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(6 n) q^{n} \equiv \frac{f_{8}^{4} f_{12}^{8}}{f_{2}^{2} f_{4}^{4} f_{6}^{2} f_{24}^{4}}+q^{2} \frac{f_{4}^{8} f_{6}^{2} f_{24}^{4}}{f_{2}^{6} f_{8}^{4} f_{12}^{4}}-2 q \frac{f_{4}^{2} f_{12}^{2}}{f_{2}^{4}} \quad(\bmod 3) \tag{191}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (191), dividing by q and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+6) q^{n} \equiv \frac{f_{2}^{2} f_{6}^{2}}{f_{1}^{4}} \quad(\bmod 3) \tag{192}
\end{equation*}
$$

Invoking (186) into (192), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+6) q^{n} \equiv \frac{f_{2}^{2} f_{6}^{2}}{f_{1} f_{3}} \quad(\bmod 3) \tag{193}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+6) q^{n} \equiv \psi(q) \psi\left(q^{3}\right) \quad(\bmod 3) \tag{194}
\end{equation*}
$$

Employing (18) into (194), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(12 n+6) q^{n} \equiv \psi\left(q^{3}\right) f\left(q^{3}, q^{6}\right)+q \psi\left(q^{3}\right) \psi\left(q^{9}\right) \quad(\bmod 3) \tag{195}
\end{equation*}
$$

Congruences (182) follows by extracting the terms involving $q^{3 n+2}$ from (195).
Extracting the terms involving $q^{3 n+1}$ from (195), dividing by q and then replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(36 n+18) q^{n} \equiv \psi(q) \psi\left(q^{3}\right) \quad(\bmod 3) \tag{196}
\end{equation*}
$$

In view of congruences (194) and (196), we obtain

$$
\begin{equation*}
P D_{2,3}(36 n+18) q^{n} \equiv P D_{2,3}(12 n+6) \quad(\bmod 3) \tag{197}
\end{equation*}
$$

Utilizing (197) and by mathematical induction on α, we get

$$
\begin{equation*}
P D_{2,3}\left(4 \cdot 3^{\alpha+2} n+2 \cdot 3^{\alpha+2}\right) \equiv P D_{2,3}(12 n+6) \quad(\bmod 3) \tag{198}
\end{equation*}
$$

Using (182) into (198), we get (183).
Invoking (186) into (145), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{2,3}(2 n+1) q^{n} \equiv \frac{f_{6}^{4}}{f_{3}^{4}} \quad(\bmod 3) \tag{199}
\end{equation*}
$$

Congruences (180) and (181) follows by extracting the terms involving $q^{3 n+1}$ and $q^{3 n+2}$ from (199). \qquad

Acknowledgements. The authors would like to thank the anonymous referee for helpful comments and suggestions.

References

[1] G. E. Andrews, R. P. Lewis and J. Lovejoy: Partitions with designated summands, Acta Arith. 105, (2002), 51-66
[2] G. E. Andrews and S. C. F. Rose: MacMahon's sum-of-divisors functions, Chebyshev polynomials, and quasi-modular forms, J. Reine Angew. Math. 676, (2013), 97-103
[3] N. D. Baruah and K. K. Ojah: Partitions with designated summands in which all parts are odd, Integers. 15 (2015).
[4] N. D. Bardah and K. K. Ojah: Analogues of Ramanujan's partition identities and congruences arising from the theta functions and modular equations, Ramanujan J. 28, (2012), 385-407.
[5] B. C. Berndt: Ramanujan's Notebooks Part III, Springer-Verlag, New York, 1991.
[6] W. Y. C. Chen, K. Q. Jı, H. T. Jin and E. Y. Y. Shen: On the number of partitions with designated summands, J. Number Theory 133, (2013), 2929-2938.
[7] S.P. Cui, N. S. S. Gu: Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math., 51, (2013), 507-523.
[8] M. D. Hirschhorn, F. Garvan and J. Borwein: Cubic analogs of the Jacobian cubic theta function $\theta(z, q)$, Canad. J. Math. 45, (1993), 673-694.
[9] M. D. Hirschhorn and J. A. Sellers: A congruence modulo 3 for partitions into distinct non-multiples of four, J. Integer Seq., 17, Article 14.9.6, (2014).
[10] M. D. Hirschhorn, J. A. Sellers: Arithmetic properties of partition with odd distinct, Ramanujan J., 22, (2010), 273-284.
[11] P. A. MacMahon: Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc. 19, (1919), 75-113
[12] M. S. Mahadeva Naika and D. S. Gireesh: Congruences for 3-regular partitions with designated summands, Integers, A25 16 (2016).
[13] M. S. Mahadeva Naika and C. Shivashankar: Arithmetic properties of bipartitions with designated summands, Boletín de la Sociedad Matemática Mexicana, (to appear)
[14] S. Ramanujan: Collected papers, Cambridge University Press, Cambridge (1927), reprinted by Chelsea, New York (1962), reprinted by the American mathematical society, Providence, RI, 2000.
[15] E. X. W. XiA: Arithmetic properties of partitions with designated summands, J. Number Theory 159, (2016), 160-175.
[16] E. X. W. Xia, O. X. M. YaO: Some modular relations for the Göllnitz-Gordon functions by an even-odd method, J. Math. Anal. Appl. 387, (2012), 126-138
[17] E. X. W. Xia, O. X. M. YaO: Analogues of Ramanujan's partition identities, Ramanujan J. 31, (2013), 373-396.
[18] E. X. W. Xia, O. X. M. Yao: New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory 133, (2013), 1932-1949

[^0]: ${ }^{i}$ Thanks to UGC for providing National fellowship for higher education (NFHE), ref. no.F1-17.1/2015-16/NFST-2015-17-ST-KAR-1376.
 http://siba-ese.unisalento.it/ © 2016 Università del Salento

