On Mutually Orthogonal Disjoint Copies of Graph Squares

R. El-Shanawany
Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Egypt.
ramadan_elshanawany380@yahoo.com

Received: 25.5.2016; accepted: 18.10.2016.

Abstract

A family of decompositions $\left\{\mathcal{G}_{0}, \mathcal{G}_{1}, \ldots, \mathcal{G}_{k-1}\right\}$ of a complete bipartite graph $K_{n, n}$ is a set of k mutually orthogonal graph squares (MOGS) if \mathcal{G}_{i} and \mathcal{G}_{j} are orthogonal for all $i, j \in\{0,1, \ldots, k-1\}$ and $i \neq j$. For any subgraph G of $K_{n, n}$ with n edges, $N(n, G)$ denotes the maximum number k in a largest possible set $\left\{\mathcal{G}_{0}, \mathcal{G}_{1}, \ldots, \mathcal{G}_{k-1}\right\}$ of (MOGS) of $K_{n, n}$ by G. Our objective of this paper is to compute $N(n, G)=k \geq 3$ where G represents disjoint copies of certain subgraphs of $K_{n, n}$.

Keywords: Orthogonal graph squares; Orthogonal double cover; Mutually orthogonal Latin squares.

MSC 2000 classification: 05C70, 05B30.

1 Introduction

In this paper, $K_{m, n}$ denotes to the complete bipartite graph with partition sets of sizes m and n, P_{n} for the path on n vertices, C_{n} for the cycle on n vertices, $s G$ for s disjoint copies of G and K_{n} for the complete graph on n vertices.

An edge decomposition $\mathcal{G}=\left\{G_{0}, G_{1}, \ldots, G_{s-1}\right\}$ of a graph H is a partition of the edge set of H into edge-disjoint subgraphs (pages) $G_{0}, G_{1}, \ldots, G_{s-1}$. If $G_{i} \cong G$ for all $i \in\{0,1, \ldots, s-1\}$, then \mathcal{G} is a decomposition of H by G. Two decompositions $\mathcal{G}=\left\{G_{0}, G_{1}, \ldots, G_{n-1}\right\}$ and $\mathcal{F}=\left\{F_{0}, F_{1}, \ldots, F_{n-1}\right\}$ of the complete bipartite graph $K_{n, n}$ are orthogonal if $\left|E\left(G_{i}\right) \cap E\left(F_{j}\right)\right|=1$ for all $i, j \in\{0,1, \ldots, n-1\}$. Orthogonality requires that $\left|E\left(G_{i}\right)\right|=\left|E\left(F_{i}\right)\right|=n$ for all $i \in\{0,1, \ldots, n-1\}$. A family of decompositions $\left\{\mathcal{G}_{0}, \mathcal{G}_{1}, \ldots, \mathcal{G}_{k-1}\right\}$ of $K_{n, n}$ is a set of k mutually orthogonal graph squares (MOGS) if \mathcal{G}_{i} and \mathcal{G}_{j} are orthogonal for all $i, j \in\{0,1, \ldots, k-1\}$ and $i \neq j$. We use the notation $N(n, G)$ for the maximum number k in a largest possible set $\left\{\mathcal{G}_{0}, \mathcal{G}_{1}, \ldots, \mathcal{G}_{k-1}\right\}$ of (MOGS) of $K_{n, n}$ by G, where G is a bipartite graph with n edges.

[^0]If two decompositions \mathcal{G} and \mathcal{F} of $K_{n, n}$ by G are orthogonal, then $\mathcal{G} \cup \mathcal{F}$ is an orthogonal double cover $(O D C)$ of $K_{n, n}$ by G. Orthogonal decompositions of graphs were studied by several authors; see the survey articles [1], [4], [5].

It is well-known that orthogonal Latin squares exist for every $n \notin\{2,6\}$. A family of k-orthogonal Latin squares of order n is a set of k Latin squares any two of which are orthogonal. It is customary to denote $N(n)=\max \{k$: $\exists k \quad M O L S\}$ by the maximal number of squares in the largest possible set of mutually orthogonal Latin squares $(M O L S)$ of side n. An edge decomposition of $K_{n, n}$ by $n K_{2}$ is equal to a Latin square of side n; two edge decompositions \mathcal{G} and \mathcal{F} of $K_{n, n}$ by $n K_{2}$ are orthogonal if and only if the corresponding Latin squares of side n are orthogonal; thus $N\left(n, n K_{2}\right)=N(n)$. The computation of $N(n)$ is one of the most complicated problems in combinatorial designs; see the survey articles by Abel et al. [2] and Colbourn and Dinitz in [3]. It is clear that $N(n, G)$ is a natural generalization of $N(n)$. Many authors studied ODC of $K_{n, n}$ by G, which equal to $N(n, G)=2$ (i.e., El-Shanawany et al. [5]). Here, we have exposed the first results of $N(n, G)=k \geq 3$ in the case of $G \neq n K_{2}$. El-Shanawany [6] could prove that $N\left(p, K_{2}+((p-1) / 2) P_{3}\right)=p$ such that, $p>2$, is a prime number and $N\left(p,(p-2) K_{2}+P_{3}\right) \geq p-1$, where p is a prime number. He also, conjectured that if p is a prime number, then $N\left(p, P_{p+1}\right)=p$. This guess has been proved by Sampathkumar et al. [7]. In [8] El-Shanawany has presented an interesting another proof of that guess. Also, he has given a new result for $N(n, G)$, where $G=\mathbb{P}_{d+1}(F)$ is a path of length d with $d+1$ vertices (i.e., every edge of that path is one-to-one corresponding to an isomorphic to a graph $F)$. The two sets $\left\{0_{0}, 1_{0}, \ldots,(n-1)_{0}\right\}$ and $\left\{0_{1}, 1_{1}, \ldots,(n-1)_{1}\right\}$ denote the vertices of the partition sets of $K_{n, n}$. If there is no chance of confusion, we will write (x, y) instead of $\left\{x_{0}, y_{1}\right\}$ for the edge between the vertices x_{0} and y_{1}.

In the following, we give now the formal basic definitions of a G-square over additive group \mathbb{Z}_{n}.

Definition 1. (see [6]) Let G be a subgraph of $K_{n, n}$. A square matrix \mathcal{L} of order n is called a G-square if every element in \mathbb{Z}_{n} occur exactly n times and the graphs $G_{\gamma}, \quad \gamma \in \mathbb{Z}_{n}$ with $E\left(G_{\gamma}\right)=\left\{(x, y): \mathcal{L}(x, y)=\gamma ; x, y \in \mathbb{Z}_{n}\right\}$ are isomorphic to graph G.

For an edge decomposition G_{i} we may associate bijectively a $n \times n$-square with entries belonging to \mathbb{Z}_{n} denoted by $\mathcal{L}_{i}=\mathcal{L}_{i}(x, y), 0 \leq i \leq k-1 ; x, y \in \mathbb{Z}_{n}$ with

$$
\begin{equation*}
\mathcal{L}_{i}(x, y)=\gamma \Leftrightarrow(x, y) \in E\left(G_{i \gamma}\right), \gamma \in \mathbb{Z}_{n} \tag{1}
\end{equation*}
$$

Similar to Definition 1, we define:
Definition 2. Let i, j be different positive integers. Two square matrices \mathcal{L}_{i} and \mathcal{L}_{j} of order n are said to be orthogonal if for any ordered pair (a, b), there
is exactly one position (x, y) for $\mathcal{L}_{i}(x, y)=a$ and $\mathcal{L}_{j}(x, y)=b$.
Theorem 1. (see [1])There exist a set of $n-1$ pairwise orthogonal Latin squares of order n whenever n is a prime power.

In [8] El-Shanawany presented an immediate result of the Definition 2 , $N\left(3, P_{4}\right)=3$. Define the 3 MOLSs of order 4 (3 mutually orthogonal decompositions (MOD) of $K_{3,3}$ by P_{4}) as follows:

$$
\mathcal{K}_{0}=\left[\begin{array}{lll}
0 & 0 & 1 \tag{2}\\
2 & 1 & 1 \\
2 & 0 & 2
\end{array}\right], \quad \mathcal{K}_{1}=\left[\begin{array}{lll}
0 & 2 & 2 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad \mathcal{K}_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 2 \\
0 & 2 & 2
\end{array}\right]
$$

Applying Theorem 1 which satisfy as a special case of the Definition 2. We immediately get the following result, $N(4)=N\left(4,4 K_{2}\right)=3$. Define the 3 MOLSs of order 4 (3 mutually orthogonal decompositions (MOD) of $K_{4,4}$ by $4 K_{2}$) as follows:

$$
\mathcal{L}_{0}=\left[\begin{array}{llll}
1 & 0 & 3 & 2 \tag{3}\\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0 \\
0 & 1 & 2 & 3
\end{array}\right], \mathcal{L}_{1}=\left[\begin{array}{cccc}
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 3
\end{array}\right], \quad \mathcal{L}_{2}=\left[\begin{array}{cccc}
3 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]
$$

2 Mutually Orthogonal Disjoint Copies of Graph Squares

In this section, we discuss new constructions for $M O G S$: one of which is direct and the others recursive. The following theorem mentions the building of $M O G S$, using $M O L S$.

Theorem 2. Let k and $m \neq 2,6$ be positive integers with $N\left(m,(m-1) K_{2}\right)=$ k. Suppose that $N(n, G)=k$, where G is a subgraph of $K_{n, n}$, then $N(m n, m G) \geq$ k, where m is a subgraph of $K_{m n, m n}$.

Proof. Since $m \geq 3, m \neq 6$, suppose that there are k mutually orthogonal Latin squares

$$
L^{s}=\left(a_{i j}^{s}\right), \quad s=1,2, \cdots, k, \quad 0 \leq i, j \leq m-1
$$

of order m on the set $\{0,1, \ldots, m-1\}$.
For any $l \in\{0,1, \ldots, m-1\}$ and $G_{l} \cong G$, let

$$
L_{l}^{s}=\left(b_{i j}^{s, l}\right), \quad s=1,2, \cdots, k, \quad 0 \leq i, j \leq n-1
$$

be k mutually orthogonal G_{l}-squares of order n.

Now we construct k mutually orthogonal $(m G)$-squares $M_{s}=\left(c_{i j}^{s}\right), s=$ $1,2, \cdots, k$, and $0 \leq i, j \leq m n-1$. For given $i, j \in\{0,1, \ldots, m n-1\}$, let $\alpha, \beta, \gamma, \delta$ be defined by

$$
\begin{aligned}
& i=\alpha \cdot n+\beta, \quad 0 \leq \alpha \leq m-1, \quad 0 \leq \beta \leq n-1 \\
& j=\gamma \cdot n+\delta, \quad 0 \leq \gamma \leq m-1, \quad 0 \leq \delta \leq n-1,
\end{aligned}
$$

then the entries $c_{i j}^{s}$ of M_{s} are as follows:

$$
\begin{equation*}
c_{i j}^{s}=c_{\alpha \cdot n+\beta, \gamma \cdot n+\delta}^{s}=n \cdot a_{\alpha, \gamma}^{s}+b_{\beta, \delta}^{s, \alpha} . \tag{4}
\end{equation*}
$$

We prove that this construction of M_{s} has the desired properties. Firstly, we show that M_{s} is an $(m G)$-square. Let $i \in\{0,1, \ldots, m n-1\}$ be arbitrarily chosen. Then, let $\bar{\alpha}^{s}$ and $\bar{\beta}^{s}$ be

$$
i=n \cdot \bar{\alpha}^{s}+\bar{\beta}^{s}, \quad 0 \leq \bar{\alpha}^{s} \leq m-1, \quad 0 \leq \bar{\beta}^{s} \leq n-1
$$

We are looking for all edges of the given graph by the entries i in M_{s}. By construction we have $n \cdot a_{\alpha, \gamma}^{s}+b_{\beta, \delta}^{s, \alpha}=n \cdot \bar{\alpha}^{s}+\bar{\beta}^{s}$. By the ranges of $\alpha, \beta, \bar{\alpha}, \bar{\beta}$, it follows that $a_{\alpha, \gamma}^{s}=\bar{\alpha}^{s}$ and $b_{\beta, \delta}^{s, \alpha}=\bar{\beta}^{s}$. For any $\alpha \in\{0,1, \ldots, m-1\}$ there is a unique γ, with $a_{\alpha, \gamma}^{s}=\bar{\alpha}^{s}$, since L^{s} is a Latin square. For fixed α, γ the graph induced by the vertices

$$
n \cdot \alpha+\beta, \quad n \cdot \gamma+\delta, \text { where } \beta, \delta \in\{0,1, \ldots, m-1\}
$$

is exactly G_{α}. Since α is running from 0 to $m-1$ the graph given by the entries i in M_{s} is the vertex disjoint union of $m G$. Secondly, we show that M_{s}, $s=1,2, \cdots, k$ are mutually orthogonal. Assume the contrary, i.e., there are two equal pairs of entries of M_{r} and M_{t} where $1 \leq r<t \leq k$. That is, there are (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ with $x, y, x^{\prime}, y^{\prime} \in\{0,1, \ldots, m n-1\}, \quad(x, y) \neq\left(x^{\prime}, y^{\prime}\right)$ and $\left(C_{x, y}^{r}, C_{x, y}^{t}\right)=\left(C_{x^{\prime}, y^{\prime}}^{r}, C_{x^{\prime}, y^{\prime}}^{t}\right)$. Hence $C_{x, y}^{r}=C_{x^{\prime}, y^{\prime}}^{r}$ and $C_{x, y}^{t}=C_{x^{\prime}, y^{\prime}}^{t}$ and

$$
\begin{aligned}
& n \cdot a_{\alpha, \gamma}^{r}+b_{\beta, \delta}^{r, \alpha}=n \cdot a_{\alpha^{\prime}, \gamma^{\prime}}^{r}+b_{\beta^{\prime}, \delta^{\prime}}^{r, \alpha^{\prime}} \\
& n \cdot a_{\alpha, \gamma}^{t}+b_{\beta, \delta}^{t, \alpha}=n \cdot a_{\alpha^{\prime}, \gamma^{\prime}}^{t}+b_{\beta^{\prime}, \delta^{\prime}}^{t, \alpha^{\prime}}
\end{aligned}
$$

According to the range of $a^{\prime} s$ and $b^{\prime} s$ is follows

$$
\begin{array}{ll}
b_{\beta, \delta}^{r, \alpha}=b_{\beta^{\prime}, \delta^{\prime}}^{r, \alpha^{\prime}}, & a_{\alpha, \gamma}^{r}=a_{\alpha^{\prime}, \gamma^{\prime}}^{r} \\
b_{\beta, \delta}^{t, \alpha}=b_{\beta^{\prime}, \delta^{\prime}}^{t, \alpha^{\prime}}, \quad & a_{\alpha, \gamma}^{t}=a_{\alpha^{\prime}, \gamma^{\prime}}^{t}
\end{array}
$$

Since L^{r} and L^{t} are orthogonal, from $\left(a_{\alpha, \gamma}^{r}, a_{\alpha, \gamma}^{t}\right)=\left(a_{\alpha^{\prime}, \gamma^{\prime}}^{r}, a_{\alpha^{\prime}, \gamma^{\prime}}^{t}\right)$ follows that $\alpha=\alpha^{\prime}$ and $\gamma=\gamma^{\prime}$.Since L_{α}^{r} and L_{α}^{t} are orthogonal, from $\left(b_{\beta, \delta}^{r, \alpha}, b_{\beta, \delta}^{t, \alpha}\right)=\left(b_{\beta^{\prime}, \delta^{\prime}}^{r, \alpha^{\prime}}, b_{\beta^{\prime}, \delta^{\prime}}^{t, \alpha^{\prime}}\right)$ follow that $\beta=\beta^{\prime}$ and $\delta=\delta^{\prime}$, i.e. $x=x^{\prime}$ and $y=y^{\prime}$ contradicting the assumption.

Until now, $N\left(n, C_{n}\right)=2$ still remains open for all n, except for the special cases $n=6$, and $n=2^{m}$ ($m \geq 2$ is a positive integer) have been solved by ElShanawany [6]. In the following, we give a direct construction of $N\left(n, C_{n}\right) \geq 3$ as the first result in this sense for $n=4$.

Corollary 1. $N\left(4, C_{4}\right) \geq 3$.
Proof. Applying Definition 2 with $n=4$, and for all $0 \leq s \leq 2$, there exist three mutually orthogonal decompositions (MOD) of $K_{4,4}$ by C_{4} iff there exist three mutually orthogonal C_{4}-squares \mathcal{N}_{s} of order 4 which defined as follows:

$$
\mathcal{N}_{0}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \tag{5}\\
0 & 0 & 1 & 1 \\
2 & 2 & 3 & 3 \\
2 & 2 & 3 & 3
\end{array}\right], \mathcal{N}_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
2 & 3 & 2 & 3 \\
0 & 1 & 0 & 1 \\
2 & 3 & 2 & 3
\end{array}\right], \mathcal{N}_{2}=\left[\begin{array}{llll}
0 & 2 & 2 & 0 \\
3 & 1 & 1 & 3 \\
3 & 1 & 1 & 3 \\
0 & 2 & 2 & 0
\end{array}\right]
$$

We prove that the page obtained from the entries in \mathcal{N}_{0} equal to 0 is isomorphic to C_{4}. Also, A similar argument applies to the other pages in $\mathcal{N}_{0}, \mathcal{N}_{1}$, and \mathcal{N}_{2}. There are exactly the two rows (columns) contain two 0 -entry. That is, for all $x \in \mathbb{Z}_{4}$, there are exactly two vertices $x_{0}\left(x_{1}\right)$ have degree two and zero, respectively.

QED
Conjecture 1. If $n \geq 3$ a positive integer, then $N\left(2 n, C_{2 n}\right) \geq 3$.
The next two new results follow immediately from Theorem 2 and Equation (3).

Corollary 2. Let $q^{\lambda} \geq 4$ be a prime power for $\lambda \in \mathbb{Z}^{+}$. Then $N\left(3 q^{\lambda}, q^{\lambda} P_{4}\right) \geq$ 3.

Proof. Since $q^{\lambda} \geq 4$, applying Theorem 1 to choose arbitrarily 3 mutually orthogonal Latin squares of order q^{λ} on the set $\left\{0,1, \ldots, q^{\lambda}-1\right\}$, define as follows:

$$
L^{s}=\left(a_{i j}^{s}\right), 0 \leq s \leq 2, \quad 0 \leq i, j \leq q^{\lambda}-1
$$

For any $l \in\left\{0,1, \ldots, q^{\lambda}-1\right\}$ and $G_{l} \cong P_{4}$, let

$$
L_{l}^{s}=\left(b_{i j}^{s, l}\right), \quad 0 \leq s \leq 2, \quad 0 \leq i, j \leq 2,
$$

be 3 mutually orthogonal P_{4}-squares of order 3 . Now we construct 3 of mutually orthogonal $\left(q^{\lambda} P_{4}\right)$-squares $M_{s}=\left(c_{i j}^{s}\right), 0 \leq s \leq 2$, and $0 \leq i, j \leq 3 q^{\lambda}-1$. For given $i, j \in\left\{0,1, \ldots, 3 q^{\lambda}-1\right\}$, let $\alpha, \beta, \gamma, \delta$ be defined by

$$
i=\alpha \cdot n+\beta, \quad 0 \leq \alpha \leq q^{\lambda}-1, \quad 0 \leq \beta \leq 2
$$

$$
j=\gamma \cdot n+\delta, \quad 0 \leq \gamma \leq q^{\lambda}-1, \quad 0 \leq \delta \leq 2
$$

then the entries $c_{i j}^{s}$ of M_{s} are as follows:

$$
\begin{equation*}
c_{i j}^{s}=c_{\alpha \cdot n+\beta, \gamma \cdot n+\delta}^{s}=3 \cdot a_{\alpha, \gamma}^{s}+b_{\beta, \delta}^{s, \alpha} . \tag{6}
\end{equation*}
$$

We prove that the page obtained from the entries in M_{0} equal to 0 is isomorphic to $q^{\lambda} P_{4}$. Also, a similar argument applies to the other pages in M_{0}, M_{1}, and M_{2}. There are exactly q^{λ} rows (columns) contain two 0 -entry and q^{λ} rows (columns) contain one 0 -entry, and q^{λ} rows (columns) contain no 0 -entry. That is, for all $x \in \mathbb{Z}_{3 q^{\lambda}}$, there are exactly q^{λ} vertices $x_{0}\left(x_{1}\right)$ have degree two, one and zero, respectively.

As a direct construction of this Corollary, for $n=3, m=q^{\lambda}=4$. For all $0 \leq s \leq 2$, applying Equation (6) using the 3 mutually orthogonal Latin squares \mathcal{L}_{s} of order 4 as in Equation (3) with the corresponding 3 mutually orthogonal P_{4}-squares \mathcal{K}_{s} of order 3 as in Equation (2) to define the 3 mutually orthogonal $4 P_{4}$-squares M_{s} of order 12 as follows.

$$
M_{0}=\left[\begin{array}{cccccccccccc}
3 & 5 & 5 & 0 & 2 & 2 & 9 & 11 & 11 & 6 & 8 & 8 \\
3 & 4 & 3 & 0 & 1 & 0 & 9 & 10 & 9 & 6 & 7 & 6 \\
4 & 4 & 5 & 1 & 1 & 2 & 10 & 10 & 11 & 7 & 7 & 8 \\
6 & 8 & 8 & 9 & 11 & 11 & 0 & 2 & 2 & 3 & 5 & 5 \\
6 & 7 & 6 & 9 & 10 & 9 & 0 & 1 & 0 & 3 & 4 & 3 \\
7 & 7 & 8 & 10 & 10 & 11 & 1 & 1 & 2 & 4 & 4 & 5 \\
9 & 11 & 11 & 6 & 8 & 8 & 3 & 5 & 5 & 0 & 2 & 2 \\
9 & 10 & 9 & 6 & 7 & 6 & 3 & 4 & 3 & 0 & 1 & 0 \\
10 & 10 & 11 & 7 & 7 & 8 & 4 & 4 & 5 & 1 & 1 & 2 \\
0 & 2 & 2 & 3 & 5 & 5 & 6 & 8 & 8 & 9 & 11 & 11 \\
0 & 1 & 0 & 3 & 4 & 3 & 6 & 7 & 6 & 9 & 10 & 9 \\
1 & 1 & 2 & 4 & 4 & 5 & 7 & 7 & 8 & 10 & 10 & 11
\end{array}\right],
$$

$$
M_{2}=\left[\begin{array}{cccccccccccc}
9 & 10 & 9 & 6 & 7 & 6 & 3 & 4 & 3 & 0 & 1 & 0 \\
10 & 10 & 11 & 7 & 7 & 8 & 4 & 4 & 5 & 1 & 1 & 2 \\
9 & 11 & 11 & 6 & 8 & 8 & 3 & 5 & 5 & 0 & 2 & 2 \\
3 & 4 & 3 & 0 & 1 & 0 & 9 & 10 & 9 & 6 & 7 & 6 \\
4 & 4 & 5 & 1 & 1 & 2 & 10 & 10 & 11 & 7 & 7 & 8 \\
3 & 5 & 5 & 0 & 2 & 2 & 9 & 11 & 11 & 6 & 8 & 8 \\
6 & 7 & 6 & 9 & 10 & 9 & 0 & 1 & 0 & 3 & 4 & 3 \\
7 & 7 & 8 & 10 & 10 & 11 & 1 & 1 & 2 & 4 & 4 & 5 \\
6 & 8 & 8 & 9 & 11 & 11 & 0 & 2 & 2 & 3 & 5 & 5 \\
0 & 1 & 0 & 3 & 4 & 3 & 6 & 7 & 6 & 9 & 10 & 9 \\
1 & 1 & 2 & 4 & 4 & 5 & 7 & 7 & 8 & 10 & 10 & 11 \\
0 & 2 & 2 & 3 & 5 & 5 & 6 & 8 & 8 & 9 & 11 & 11
\end{array}\right]
$$

Corollary 3. Let $\lambda \geq 0$, be an integer number. Then $N\left(2^{2(\lambda+1)}, 2^{2 \lambda} C_{4}\right) \geq$ 3.

Proof. Note that for $\lambda=0$, see Corollary 1. For $\lambda>0$, applying Theorem 1 to choose arbitrarily 3 mutually orthogonal Latin squares of order $2^{2 \lambda}$ on the set $\left\{0,1, \ldots, 2^{2 \lambda}-1\right\}$, define as follows:

$$
L^{s}=\left(a_{i j}^{s}\right), 0 \leq s \leq 2, \quad 0 \leq i, j \leq 2^{2 \lambda}-1
$$

For any $l \in\left\{0,1, \ldots, 2^{2 \lambda}-1\right\}$ and $G_{l} \cong C_{4}$, let

$$
L_{l}^{s}=\left(b_{i j}^{s, l}\right), \quad 0 \leq s \leq 2, \quad 0 \leq i, j \leq 3
$$

be 3 mutually orthogonal C_{4}-squares of order 4 . Now we construct 3 of mutually orthogonal $\left(2^{2 \lambda} C_{4}\right)$-squares $M_{s}=\left(c_{i j}^{s}\right), 0 \leq s \leq 2$, and $0 \leq i, j \leq 2^{2(\lambda+1)}-1$. For given $i, j \in\left\{0,1, \ldots, 2^{2(\lambda+1)}-1\right\}$, let $\alpha, \beta, \gamma, \delta$ be defined by

$$
\begin{array}{lll}
i=\alpha \cdot n+\beta, & 0 \leq \alpha \leq 2^{2 \lambda}-1, & 0 \leq \beta \leq 3 \\
j=\gamma \cdot n+\delta, & 0 \leq \gamma \leq 2^{2 \lambda}-1, & 0 \leq \delta \leq 3
\end{array}
$$

then the entries $c_{i j}^{s}$ of M_{s} are as follows:

$$
\begin{equation*}
c_{i j}^{s}=c_{\alpha \cdot n+\beta, \gamma \cdot n+\delta}^{s}=4 \cdot a_{\alpha, \gamma}^{s}+b_{\beta, \delta}^{s, \alpha} . \tag{7}
\end{equation*}
$$

We prove that the page obtained from the entries in M_{0} equal to 0 is isomorphic to $2^{2 \lambda} C_{4}$. Also, a similar argument applies to the other pages in M_{0}, M_{1}, and M_{2}. There are exactly $2^{2 \lambda+1}$ rows (columns) contain two 0 -entry and $2^{2 \lambda+1}$ rows (columns) contain no 0-entry. That is, for all $x \in \mathbb{Z}_{2^{2(\lambda+1)}}$, there are exactly $2^{2 \lambda+1}$ vertices $x_{0}\left(x_{1}\right)$ have degree two and zero, respectively.

QED

As a direct construction of this Corollary, for $n=4, m=2^{2 \lambda}=4$. For all $0 \leq s \leq 2$, applying Equation (7) using the 3 mutually orthogonal Latin squares \mathcal{L}_{s} of order 4 as in Equation (3) with the corresponding 3 mutually orthogonal C_{4}-squares \mathcal{N}_{s} of order 4 as in Equation (5) to define, the 3 mutually orthogonal $4 C_{4}$-squares M_{s} of order 16 as follows.

$$
M_{0}=\left[\begin{array}{cccccccccccccccc}
4 & 4 & 5 & 5 & 0 & 0 & 1 & 1 & 12 & 12 & 13 & 13 & 8 & 8 & 9 & 9 \\
4 & 4 & 5 & 5 & 0 & 0 & 1 & 1 & 12 & 12 & 13 & 13 & 8 & 8 & 9 & 9 \\
6 & 6 & 7 & 7 & 2 & 2 & 3 & 3 & 14 & 14 & 15 & 15 & 10 & 10 & 11 & 11 \\
6 & 6 & 7 & 7 & 2 & 2 & 3 & 3 & 14 & 14 & 15 & 15 & 10 & 10 & 11 & 11 \\
8 & 8 & 9 & 9 & 12 & 12 & 13 & 13 & 0 & 0 & 1 & 1 & 4 & 4 & 5 & 5 \\
8 & 8 & 9 & 9 & 12 & 12 & 13 & 13 & 0 & 0 & 1 & 1 & 4 & 4 & 5 & 5 \\
10 & 10 & 11 & 11 & 14 & 14 & 15 & 15 & 2 & 2 & 3 & 3 & 6 & 6 & 7 & 7 \\
10 & 10 & 11 & 11 & 14 & 14 & 15 & 15 & 2 & 2 & 3 & 3 & 6 & 6 & 7 & 7 \\
12 & 12 & 13 & 13 & 8 & 8 & 9 & 9 & 4 & 4 & 5 & 5 & 0 & 0 & 1 & 1 \\
12 & 12 & 13 & 13 & 8 & 8 & 9 & 9 & 4 & 4 & 5 & 5 & 0 & 0 & 1 & 1 \\
14 & 14 & 15 & 15 & 10 & 10 & 11 & 11 & 6 & 6 & 7 & 7 & 2 & 2 & 3 & 3 \\
14 & 14 & 15 & 15 & 10 & 10 & 11 & 11 & 6 & 6 & 7 & 7 & 2 & 2 & 3 & 3 \\
0 & 0 & 1 & 1 & 4 & 4 & 5 & 5 & 8 & 8 & 9 & 9 & 12 & 12 & 13 & 13 \\
0 & 0 & 1 & 1 & 4 & 4 & 5 & 5 & 8 & 8 & 9 & 9 & 12 & 12 & 13 & 13 \\
2 & 2 & 3 & 3 & 6 & 6 & 7 & 7 & 10 & 10 & 11 & 11 & 14 & 14 & 15 & 15 \\
2 & 2 & 3 & 3 & 6 & 6 & 7 & 7 & 10 & 10 & 11 & 11 & 14 & 14 & 15 & 15
\end{array}\right]
$$

$$
M_{1}=\left[\begin{array}{cccccccccccccccc}
8 & 9 & 8 & 9 & 12 & 13 & 12 & 13 & 0 & 1 & 0 & 1 & 4 & 5 & 4 & 5 \\
10 & 11 & 10 & 11 & 14 & 15 & 14 & 15 & 2 & 3 & 2 & 3 & 6 & 7 & 6 & 7 \\
8 & 9 & 8 & 9 & 12 & 13 & 12 & 13 & 0 & 1 & 0 & 1 & 4 & 5 & 4 & 5 \\
10 & 11 & 10 & 11 & 14 & 15 & 14 & 15 & 2 & 3 & 2 & 3 & 6 & 7 & 6 & 7 \\
12 & 13 & 12 & 13 & 8 & 9 & 8 & 9 & 4 & 5 & 4 & 5 & 0 & 1 & 0 & 1 \\
14 & 15 & 14 & 15 & 10 & 11 & 10 & 11 & 6 & 7 & 6 & 7 & 2 & 3 & 2 & 3 \\
12 & 13 & 12 & 13 & 8 & 9 & 8 & 9 & 4 & 5 & 4 & 5 & 0 & 1 & 0 & 1 \\
14 & 15 & 14 & 15 & 10 & 11 & 10 & 11 & 6 & 7 & 6 & 7 & 2 & 3 & 2 & 3 \\
4 & 5 & 4 & 5 & 0 & 1 & 0 & 1 & 12 & 13 & 12 & 13 & 8 & 9 & 8 & 9 \\
6 & 7 & 6 & 7 & 2 & 3 & 2 & 3 & 14 & 15 & 14 & 15 & 10 & 11 & 10 & 11 \\
4 & 5 & 4 & 5 & 0 & 1 & 0 & 1 & 12 & 13 & 12 & 13 & 8 & 9 & 8 & 9 \\
6 & 7 & 6 & 7 & 2 & 3 & 2 & 3 & 14 & 15 & 14 & 15 & 10 & 11 & 10 & 11 \\
0 & 1 & 0 & 1 & 4 & 5 & 4 & 5 & 8 & 9 & 8 & 9 & 12 & 13 & 12 & 13 \\
2 & 3 & 2 & 3 & 6 & 7 & 6 & 7 & 10 & 11 & 10 & 11 & 14 & 15 & 14 & 15 \\
0 & 1 & 0 & 1 & 4 & 5 & 4 & 5 & 8 & 9 & 8 & 9 & 12 & 13 & 12 & 13 \\
2 & 3 & 2 & 3 & 6 & 7 & 6 & 7 & 10 & 11 & 10 & 11 & 14 & 15 & 14 & 15
\end{array}\right],
$$

$$
M_{2}=\left[\begin{array}{cccccccccccccccc}
12 & 14 & 14 & 12 & 8 & 10 & 10 & 8 & 4 & 6 & 6 & 4 & 0 & 2 & 2 & 0 \\
15 & 13 & 13 & 15 & 11 & 9 & 9 & 11 & 7 & 5 & 5 & 7 & 3 & 1 & 1 & 3 \\
15 & 13 & 13 & 15 & 11 & 9 & 9 & 11 & 7 & 5 & 5 & 7 & 3 & 1 & 1 & 3 \\
12 & 14 & 14 & 12 & 8 & 10 & 10 & 8 & 4 & 6 & 6 & 4 & 0 & 2 & 2 & 0 \\
4 & 6 & 6 & 4 & 0 & 2 & 2 & 0 & 12 & 14 & 14 & 12 & 8 & 10 & 10 & 8 \\
7 & 5 & 5 & 7 & 3 & 1 & 1 & 3 & 15 & 13 & 13 & 15 & 11 & 9 & 9 & 11 \\
7 & 5 & 5 & 7 & 3 & 1 & 1 & 3 & 15 & 13 & 13 & 15 & 11 & 9 & 9 & 11 \\
4 & 6 & 6 & 4 & 0 & 2 & 2 & 0 & 12 & 14 & 14 & 12 & 8 & 10 & 10 & 8 \\
8 & 10 & 10 & 8 & 12 & 14 & 14 & 12 & 0 & 2 & 2 & 0 & 4 & 6 & 6 & 4 \\
11 & 9 & 9 & 11 & 15 & 13 & 13 & 15 & 3 & 1 & 1 & 3 & 7 & 5 & 5 & 7 \\
11 & 9 & 9 & 11 & 15 & 13 & 13 & 15 & 3 & 1 & 1 & 3 & 7 & 5 & 5 & 7 \\
8 & 10 & 10 & 8 & 12 & 14 & 14 & 12 & 0 & 2 & 2 & 0 & 4 & 6 & 6 & 4 \\
0 & 2 & 2 & 0 & 4 & 6 & 6 & 4 & 8 & 10 & 10 & 8 & 12 & 14 & 14 & 12 \\
3 & 1 & 1 & 3 & 7 & 5 & 5 & 7 & 11 & 9 & 9 & 11 & 15 & 13 & 13 & 15 \\
3 & 1 & 1 & 3 & 7 & 5 & 5 & 7 & 11 & 9 & 9 & 11 & 15 & 13 & 13 & 15 \\
0 & 2 & 2 & 0 & 4 & 6 & 6 & 4 & 8 & 10 & 10 & 8 & 12 & 14 & 14 & 12
\end{array}\right]
$$

3 Conclusion

This paper is devoted to computing to $N(n, G)$, where G represents disjoint copies of graph squares as in Theorem 2, and introduce constructions of new results as in Corollaries $1,2,3$, respectively.

Acknowledgements. The aouther is very grateful to referee for his valuable remarks and comments.

References

[1] B. Alspach, K. Heinrich, and G. Liu, Orthogonal factorizations of graphs, In Contemporary Design Theory, J. H. Dinitz and D. R. Stinson (Editors), Chapter 2, Wiley, New York, 1992,pp. 13-40.
[2] C. J. Colbourn and J. H. Dinitz (eds.), Handbook of Combinatorial Designs, Second Edition, Chapman \& Hall/CRC, London, Boca Raton, FL, 2007.
[3] C. J. Colbourn and J. H. Dinitz, Mutually orthogonal latin squares: a brief survey of constructions, J Statist Plann Inference 95 (2001), 9-48.
[4] H.-D.O.F. Gronau, S. Hartmann, M. Grüttmüller, U. Leck, V. Leck, On orthogonal double covers of graphs, Des. Codes Cryptogr. 27 (2002), 49-91.
[5] R. El-Shanawany, Hans-Dietrich O.F. Gronau, and Martin Grüttmüller. "Orthogonal double covers of $K_{n, n}$ by small graphs", Discrete Applied Mathematics, Vol. 138, pp: 47-63, 2004.
[6] R. El-Shanawany, Orthogonal double covers of complete bipartite graphs, Ph.D. Thesis, Universität Rostock, 2002.
[7] R. Sampathkumar, S. Srinivasan, Mutually Orthogonal Graph Squares, Journal of Combinatorial Designs. Published online 10 February 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jcd. 20216.
[8] El-Shanawany, R. (2016), On Mutually Orthogonal Graph-Path Squares.Open Journal of Discrete Mathematics, 6,7-12. http://dx.doi.org/10.4236/ojdm.2016.61002

[^0]: http://siba-ese.unisalento.it/ © 2016 Università del Salento

