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Abstract. Let W C P* be a general quintic hypersurface. We prove that W contains no
smooth rational curve C' C P* with degree d € {13,14,15}, h°(Zc(1)) = 0 and h°(Zc(2)) > 0.
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Introduction

For any positive integer d let My be the set of all smooth and rational
curves C C P* with deg(C) = d. Let I'y be the set of all non-degenerate C € My
with h%(Z¢(2)) > 0. Clemens conjecture asks if for each d a general quintic
hypersurface W C P* contains only finitely many elements of M, (a stronger
form asks the same also for singular rational curves of degree d > 5) ([1], [2],
[4], [12], [13], [14], [15], [19], [20], [24], [25]). For higher genera cases (and also
for more general Calabi-Yau 3-folds), see [16], [17].

All the quoted finiteness results work for very low d, say d < 12. Here we add
a very strong condition (to be contained in an integral quadric hypersurface)
and prove the following result.

Theorem 1. If 13 < d < 15, then a general quintic hypersurface of P*
contains no element of I'y.

The proof requires a result on the splitting type of the normal bundle of
a smooth rational curve C' C P4 ([3], [23]) and its use when C is contained in
quadric hypersurface.
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Concerning elements of C' € M, contained in a hyperplane we prove the
following result.

Proposition 1. Let C' € My be a degenerate curve, say contained in a
hyperplane H, and let o be the the minimal degree of a surface of H containing
C. Assume that C' is contained in a general quintic hypersurface. If 13 < d < 17,
then o € {4,5}. If d > 18, then o = 5.

1 Preliminaries

Let W denote the set of all smooth quintic hypersurfaces W C P? satisfying
the thesis of [4]. In particular each W € W contains only finitely many smooth
rational curves D of degree < 11 and all of them have as normal bundle Np
the direct sum of two line bundles of degree —1, i.e. h'(Npw) =0, i =0, 1.

For any scheme A C P* let Z4 denote the ideal sheaf of A in P*.

Let X be any projective scheme, N C X an effective Cartier divisor and
Z C X any closed subscheme. The residual scheme Resy(Z) of Z with respect
to N is the closed subscheme of X with 77 x : I x as its ideal sheaf. We always
have Resy(Z) C Z. If Z is zero-dimensional, we have deg(Z) = deg(Z N N) +
deg(Resy(Z)). For any line bundle £ on X we have the exact sequence

O%IResN(Z),X(X)E(_N)_>IZ,X®»C_>IZON,N®»C|N_>O (1)

(the residual exact sequence of N in X).

Lemma 1. Take any C € I'y, d > 6, and any Q € |Zc(2)|. Let a1 > ag be
the splitting type of the normal sheaf Nc.g of C in Q. Then a1 < 3d — 8.

Proof. Since C'is a smooth curve and N¢ ¢ is the dual of the conormal sheaf of
Cin @, N¢q is a rank 2 vector bundle and hence by the classification of vector
bundles on P! it has a splitting type. Let by > by > b3 be the splitting type of
the normal bundle Ngps of C in P*. We have by + by + bg = 5d — 2. By [3, case
r = 1 of Lemma 4.3] we have b3 > d 4+ 3 and hence b; < 3d — 8. The injective
map Ng,g — Neps gives ap < 3d — 8. QED

Remark 1. Obviously I'y # ) if and only if d > 4. The aim of this remark
is to prove that dimI'y = 3d 4+ 14 and to prove a more precise result for the
part associated to quadric hypersurfaces with a line as their singular locus. Let
Q C P* be an integral quadric and let C' C Q be a smooth and non-degenerate
rational curve of degree d. Let N¢ g be the normal sheaf of C'in @ and N¢ ps
the normal bundle of C in P*. Since C is a smooth curve and by its definition
N¢ q is the dual of the conormal sheaf of C'in @), N¢ g is locally free. Since C
is not contained in the singular locus of @), N¢ g has rank 2. There is a natural
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map j : Ngg — Nepa, which is injective outside the finite set C'N Sing(Q).
Hence j is injective. We have an exact sequence

0— NC,Q i) NC7]P>4 5 00(2) (2)

with A := coker(u) supported on the finite set Sing(Q) N C'. Set e := deg(A). If
Sing(Q®) is a point, o, then blowing up it we get that e = 1if o € C and e =0
if o ¢ C. Since Q \ Sing(Q) is homogeneous, N¢ g is spanned. Since p,(C) = 0,
we get h!'(N¢,g) = 0 and hence h°(N¢g) = 3d + e. Hence the subset of all T
parametrizing curves contained either in smooth quadrics or in quadric cones
with O-dimensional vertex has dimension 3d + 14. Let I, _ be the subset of all
non-degenerate C' € My contained in some integral quad7ric hypersurface with
singular locus a line R with deg(R N C) = e. Now assume that @) has the line
R as its singular locus. We consider only the part of the Hilbert scheme of @
formed by curves ¢’ with deg(R N C’") = e (it contains C' by assumption). Let
a1 > ag be the splitting type of N¢ . Since a1 < 3d — 8 (Lemma 1), we have
az > e+6. Hence h!'(Neoo(—2)) = 0 and so dim H(Q, Z,d) = 3d+ e — 2e. Since
R has 0o® subschemes of degree e and P* has oco'! rank 3 quadrics, we get that
the part coming from quadrics with rank 3 has dimension < 3d + 11.

Lemma 2. Let I'yo be the set of all non-degenerate C' € My, d > 12, with
h%(Zc(2)) = 2 and contained in a smooth quintic hypersurface. Then dimT o <
d+25.

Proof. Fix C € T'gp and let T' C P* be the intersection of two different elements
of |Z¢(2)]. Let S be the irreducible component of 7' containing C'. Since C is
non-degenerate, we have deg(S) > 3. Hence either deg(S) =3 or S =T and T
is irreducible.

(a) Assume deg(S) = 3. Since S spans P*, it is a minimal degree surface,
i.e. either a cone over a rational normal curve of P? or an embedding of the
Hirzebruch surface F3.

(al) Assume that S is a cone with vertex o and let m : U — S be its
minimal desingularization. U is isomorphic to the Hirzebruch surface F3 and m
is induced by the complete linear system |Op, (h + 3f)|, where h is the section
of the ruling of F3 with negative self-intersection and f is a fiber of the ruling
of F3. We have f2 =0, f-h =1 and h? = —3. Let C’ be the strict transform of
C in U and take positive integers a,b with b > 3a and C' € |ah+bf]|. Since m is
induced by |h +3f|, we have b = d. Since wp, = Op,(—2h —5f), the adjunction
formula gives wer = Ocr((a—2)h+(d—5) f). Since C'is smooth, we have C' = C'
and in particular p,(C’) = 0. Hence —2 = (ah + df) - ((a —2)h + (d = 5)f) =
(a —2)(d — 3a) + a(d — 5). Hence a = 1. Since d > 7, the curve C' = f(C’) has
a singular point at o, a contradiction.
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(a2) Assume S = F} and take integers a,b with b > a > 0 and C € |ah +
bf|, where h is the section of the ruling of F; with negative intersection and f is
a ruling of F;. We have |OF, (1)| = |Op, (h+2f)| and wr, = OF, (—2h—3f) and
sowe = Oc((a—2)h+(b—3)f). Hence d = a+band —2 = (a—2)(b—a)+a(b—3).
Hence a = 1 and b = d — 1. Since d — 1 > 5, every quintic hypersurface W
containing C contains S. If W is smooth, then its Picard group is generated by
Ow (1), by the Lefschetz theorem and so it contains only surfaces whose degree
is divisible by 5. Hence S ¢ W, a contradiction.

(b) Assume S =T, i.e. assume that T is irreducible. For a general hyper-
plane H C P4, T'N H is an integral curve with p,(7T' N H) = 1 and hence it has
at most one singular point. Hence the one-dimensional part of Sing(7T') is either
empty or a line.

(b1) Assume that Sing(7") contains a line L. A general hyperplane section
of T is an irreducible and singular curve with arithmetic genus 1. Hence if T is
a cone with vertex o, then T is the image of a minimal degree cone 7" of P° by
a birational, but not isomorphic linear projection. If T" is not a cone, then it is
the image of a minimal degree smooth surface F of P? by a birational, but not
isomorphic linear projection ([8, Theorem 19.5]).

(b1.1) Assume that T is the image of a minimal degree non-degenerate

cone 7" C P° and let v : U — T’ be its minimal desingularization. We have

= Fy and w is induced by the complete linear system |Op,(h + 4f)|. Let

D C U be the strict transform of the curve, whose image in P* is C. Write

D € |ah + bf| with b > 4a > 0. As in step (al) we first get b = d and then
a = 1. We get that u(D) is singular and hence C' is singular, a contradiction.

(b1.2) Assume that 7 is the image of a minimal degree smooth surface
F of P° and let D C F be the curve with image C. Since C is smooth, D is
smooth. There is e € {0,2} such that F' = F, embedded by the complete linear
system |h + (e + 1) f|. Take positive integers a,b such that D € |Op (ah + bf)|
and b > ea. As in step (a) we first get @ = 1 and then b = d — 1. If e =
0 we get that every quintic hypersurface containing D contains F' and hence
every quintic hypersurface containing C' contains 7', contradicting the Lefschetz
theorem as in step (a2). Now assume e = 2. Fy has no smooth plane conic and
its lines are either the elements of |f| or h. Since h- (h+ (d —1)f) = d — 3,
we have deg(L N C) = d — 3. Since 3 is a prime integer, the linear projection
¢r : P*\ L — P? maps C birationally onto an integral plane cubic. Hence C is
contained in the intersection of T" with a cubic hypersurface, contradicting the
assumption d > 12 by Bezout.

(b2) Assume that Sing(T') is finite. Since T is a complete intersection,
it is a locally complete intersection. Hence T is a normal Del Pezzo surface
of degree 4. Let u : V — T be a minimal desingularization and D the strict
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transform of C' in V. Since D is smooth and rational, the adjunction formula
gives —2 = wy - D + D%V is rational and it is classified ([6]). Since V is a
weak del Pezzo, u is induced by the complete linear system |wy;|. Hence d =
Or(C) - Or(1) = u*(C) - wp. Write w*(C) = D + Y ¢;D; with ¢; > 0 and
D; contracted by w. Since wy, is spanned ([6, IV, §3, Théoreme 1]), we get
wy - D; = 0. Hence wy - D = —d. Hence D? = d — 2. Hence h°(Op(D)) = d — 1.
Thus the set of all C C T depends on d — 1 parameters. Since the Grassmannian
G(2,15) of all lines of |Op4(2)| has dimension 26, this part of I'y 2 has dimension
at most d + 25. QED

Lemma 3. There is no non-degenerate C € My, d > 12, with h%(Z¢(2)) > 3
and contained in a smooth quintic hypersurface.

Proof. Take a non-degenerate C' € My, d > 12, with h%(Z(2)) > 3. Let T be
the intersection of two general elements of |Z¢(2)| and let S be the irreducible
component of 7" containing C'. Since C' is non-degenerate, we have deg(S) > 3.
Hence either deg(S) = 3 or S = T and T is irreducible. We exclude the case
S =T, because d > 8 and h°(Zr(2)) = 2. We exclude the case deg(S) = 3 as in
step (a) of the proof of Lemma 2. QBED

Lemma 4. Let A(d) be the set of all C' € T'yq for which there exists a line
L C P* with deg(L N C) > 5. Then dim A(d) < 12 4 3d.

Proof. We take C' € T'y and a line L C P* such that deg(L N C) > 5. Take
Q € |Zc(2)]. Bezout implies L C Q. If @ has a line as its singular locus, then we
use Remark 1. Hence we may assume that either () is smooth or it is a cone with
vertex a single point, 0. We write e = 1 if @) is singular and 0o € C' and e = 0
otherwise. Take Z C C'NL with deg(Z) = 5. Let a1 > agy be the splitting type of
N¢ - Since a1 < 3d—8 (Lemma 1), we have as > 4. Hence h!(N¢ g(—Z)) = 0.
Use that L has oo® subschemes of degree 5 and that @) has oo lines. QED

2 Proof of Theorem 1

Fix any non-degenerate C' € My and let H C P* be any hyperplane. We
often use the exact sequence

0—=>Zc(t—1) = Zc(t) = Zenu,a(t) = 0 (3)

Lemma 5. Let Z C P? be a degree d curvilinear scheme spanning P3. As-
sume d < 15 and h'(P3,Z7(5)) > 0. Then either there is a line L C P3 with
deg(L N Z) > 7 or there is a conic D with deg(DNC) > 12.



82 E. Ballico

Proof. Since Z spans P3, we have deg(Z N N) < 14 for every plane N. Assume
for the moment the existence of a plane N C P3 such that h' (N, Zznn N (5)) > 0,
then N contains either a line L C P3 with deg(L N Z) > 7 or a conic D with
deg(D N C) > 12 ([7, Corollaire 2]). Now assume h'(N,Zzncn(t)) = 0 for
all planes N C P3. We may assume h'(Zz(5)) = 0 for all Z' C Z (taking if
necessary a smaller non-degenerate Z), because h*(N,Zzncn(t)) = 0 for all
planes N. Set Zy := Z. Let N; C P3 be a plane such that e; := deg(Zy N Ny)
is maximal. Set Z; := Respy, (Zp). Define recursively for each integer i > 2 the
plane N; C P3| the integer e; and the scheme Z; in the following way. Let N;
be any plane such that e; := deg(Z;—1 N NV;) is maximal. Set Z; := Resn;, (Zi—1).
We have e; < e;_1 for all i > 2. For each i > 1 we have the exact sequence

0— IZZ-(E) — Z) — 12171(6 — Z) — IZiflmNini (6 — Z) —0 (4)

If ¢; < 2, then Z;_1 C N; and hence Z; = (). Since deg(Z) < 15, we get
deg(Zg) <0, i.e. Zg = 0. Since h'(Ng, Op,) = 0, there is an integer i such that
1 <i<5and h'(Zz_,nn, N;(6—1)) > 0. We call f such a minimal integer. Since
hY(N,Zznc,n(5)) = 0 for all planes N, we have f > 2. Hence f € {2,3,4,5}. We
have ey > 8 — f. Since the sequence {e;} is non-increasing, we get f(8 — f) < 15.
Since f > 2, we get that f € {2,3,5}.

(a) Assume f = 3. Since e; > eg > e3 > 5, we get e = eg = e3 = 5. Since
e3 < 7 and hY(N3, Zz,nns.ns(3)) > 0, there is a line R C N3 with deg(RN Zs) >
5. Taking a plane F' containing R and with maximal deg(M NZ;) we get ea > 6,
a contradiction.

(b) Assume f = 2. We have e; > 6. Since e; > eg and e; + ey < 15,
we have ey < 7. Hence there is a line R C Ny such that deg(R N Z;) > 6.
Assuming that L does not exists, then deg(RN Z) = 6. Let M; C P3 be a
plane containing R and with maximal g; := deg(M; N Z) among the planes
containing R. Since Z spans P3, we have g; > 7. Set W; := Resy, (Z). By
assumption h'(Mi,Zzn, a(5)) = 0. Hence the residual sequence of M; C
P3 gives h'(P3, Iy, (4)) > 0. Let My C P3 be a plane with maximal gy :=
deg(W1 N Ms). Set Wy := Resyy, (W1). Let M3 C P2 be a plane with maximal
g3 := deg(WaN Ms). Set W3 := Respz, (W2). In this way we get a non-decreasing
sequence {g;}i>2 with > .., 9; = d — g1 < 8. We get an integer h € {2,3} with
hY(Mp, Zag, o,y ., (6 — h)) > 0 and g, > 8 — h. As in step (a) we exclude the
case h = 3. Hence h = 2. As in the first part of step (b) we get a line D C P3
such that deg(D N W) = 6.

(b1) Assume DNR = (). Let T C P3 be a general quadric surface containing
DUR. Since Zpyr(2) is spanned and Z is curvilinear, T" is smooth and TNZ =
(DU R) N Z (as schemes). Hence hY(T,Zznr1(5)) = 0. Since deg(Resz(Z)) =
d — 12 < 3, we have hl(IReST(Z)(?))) = 0. The residual sequence of T gives a
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contradiction.

(b2) Assume DN R # () and D # R. Let N be the plane spanned by
D U R. Since deg(Resy(Z)) < d — 11, we have h' (N, Zgesy (2),n(4)) = 0. The
residual sequence of N gives h'(N,Zznn n(5)) > 0, contradicting one of our
assumptions.

(b3) Assume D = R. Let H,M C P3 be general planes containing R.
Since Respgun(Z) = Resg(Resp(Z)), we have deg(Resgur(Z)) < d—12 < 3.
Hence h'(Zpesy , (2)(3)) = 0. The residual sequence of H U M gives h'(H U
M, Zzn5unny, o (5)) > 0. The minimality condition of Z gives Z N (H UR) =
Z. Hence d = 12. For any q € Zyeq let Z; be the connected component of
Z containing ¢q. Since Resy(Z) has degree 6 and it is supported by D, we
have 2deg(Resy(Z;)) = deg(Z,) for all ¢. In particular we may take ¢ with
Zq € R. Since Z is curvilinear, we may find a plane N D R with deg(NNZ,) >
deg(R N Zg). Since deg(Resn(Z)) < 12 — 7, we have h' (N, Igesy (2),n(4)) = 0.
The residual sequence of N gives h'(N,Zznn n(5)) > 0, contradicting one of
our assumptions.

(c) Assume f = 5. Since deg(Z;—1) < 4, we get the existence of a line
R C N5 such that deg(R N Zy) > 3. Since deg(R N Z3) > 3, the maximality
property of N4 implies eq > 4. Hence 15 > 4 -4 4 3, a contradiction.

Lemma 6. Fix a non-degenerate C' € My contained in some W € W and
assume the existence of a conic D C P* with deg(DNC) > 12 and that deg(L N
C) <6 for each line L C Dyoq. Then D is smooth.

Proof. Take W € W containing C. Let N be the plane spanned by D. First
assume that D C N is a double line. Set L := D,¢q. Since deg(L N C) < 6 by
assumption, we have deg(L NC') = 6. Bezout implies L C W. Since W € W, we
have N w = Or(—1)®Or(—1). Bezout implies that D C WNN. Fix a general
hyperplane H D N. Since W is smooth WNH has isolated singularities. We have
an injective map N gnw — Npw, contradicting the inclusion D C H N W.
Now assume that D = RU L with R, L lines and R # L. Since deg(LNC) <6
and deg(RNC') < 6 by assumption, we have deg(LNC) = deg(RNC') < 6. Hence
LUR C W, contradicting the fact that any two lines of W are disjoint. QED

Lemma 7. Take a non-degenerate C € My contained in some W & W.
Assume h'(Zc(5)) > 0 and that there is either a line L with deg(LNC) > 17 or
a conic D with deg(D N C) > 12. Then h'(Zc(4)) > h(Zo(5)).

Proof. Let S; be the set of all lines L with deg(L N C) > 7 and let Sy be the
set of all conics D such that deg(DNC) > 10. Assume for the moment that the
sets S1 and So are finite. Let N C P* be a general plane and let M C P* be any
hyperplane containing N. Set V := H%(Zxn(1)). We have dim(V) = 2. Since S}
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is finite and N is general, then NNL = () for all L € S; and hence L ¢ M for all
L € S5. Since S5 is finite, then N contains a unique point of the plane spanned by
any D € S5 and hence D ¢ M. Lemma 5 gives h' (M, Zcqn i (5))) = 0. Hence
the bilinear map H%(Z¢(5))Y xV — H(Z¢(4))V is non-degenerate in the second
variable. By the bilinear lemma we have h!'(Zo(4)) > h'(Zo(5)) — 1+ dim V.

Now assume that S7 is infinite and call A an irreducible positive dimensional
family of its elements. Take a general (R, L) € A. We have L N R = (), unless
either there is 0 € P* with o € J for all J € A or there is a plane N with
J C N for all J € A. The second case is not possible, because C ¢ N. The
first case is excluded, because the linear projection from o would map C onto a
non-degenerate curve of P? with degree < (d —1)/6 < 3.

Now assume that S is infinite. Let S5 be the set of all D € Sy with D a
smooth conic. As in the proof just given we find that the set of all lines R with
deg(R N C) = 6 and supporting a component of some D € Sy is finite. Hence
it is sufficient to prove that S% is finite. For each D € S} let (D) be the plane
spanned by D. If D1 # D5, no hyperplane contains D1UDy by Bezout and hence
(D7) N {D3) = (. Since any two planes of P* meet, we have #(55) < 1. QED

Proof of Theorem 1: Fix C € My, d < 15.
By Remark 1 we may assume h'(Z¢(5)) > 2d — 13.

(a) Assume h°(Z¢(2)) = 1, say {Q} = |Z¢(2)|. Fix a general hyperplane
H cP.

(al) Assume that there is no line L C P* with deg(L N C) > 7 and no
conic D with deg(D N C) > 12. Lemma 5 gives h'(H,Zoqm u(5)) = 0 for every
hyperplane H C P*. Hence the bilinear lemma gives h!(Z¢(4)) > h' (Zc(5))+4 >
2d—9. Since CNH is in uniform position, we have h'(H, Zony g (4)) < d—13 < 2
([10, Lemma 3.9]). By (3) we have h'(Zc(3)) > 2d — 11. Hence h°(Z¢(3)) >
35 —3d —1+2d— 11 > 8. Since h°(Z¢(2)) = 1, the general M € |Z¢(3)| has
not Q as a component. Set F' := () N M. First assume that F' is irreducible.
The curve D := F N H is a complete intersection curve with degree 6 and
arithmetic genus 4. In particular h'(H,Z¢ 5(3)) = 0. Thus b (H, Zenm,u(3)) =
hY(D,Zerm,p(3)). We have hY (D, Zenm,p(3)) < 1, because deg(Zonm,p(3)) =
18 —d > 3. Hence h'(H,Zcnm,u(3)) < 1. Since h'(Z¢(2)) > 2d — 12, we have
h%(Zc(2)) = 15 — 2d — 1 + hY(Zo(2)) > 2, contradicting the assumption of step
(a).

Now assume that F' is not irreducible. Call T' the irreducible component of
F containing C. T is a non-degenerate surface and hence deg(7T) > 3. Since
h%(Zc(2)) = 1, we have h®(Z7(2)) = 1 and hence neither deg(T) = 3 nor T is
the complete intersection of two quadrics.

Assume deg(T') = 4. Since T is not a complete intersection, a general hyper-
plane section of 7' is a smooth rational curve of degree 4. Since h* (H, Zonm u(t)) =
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0 for all t > 2 and h%(Ocnp(t)) = 4t + 1, t = 3,4, we get h'(H,Zcrnm u(3))
d—13 and kY (Zenm.u(4)) = 0. We get h1(Z¢(3)) > hY(Zo(4)) and R (Zo(2))
hY(Zc(3)) + 13 — d > d + 4. Hence h°(Z¢(2)) > 18 — d, a contradiction.

Now assume deg(7") = 5. In this case T is linked to a plane by the complete
intersection T and hence T'N H is linked to a line by a complete intersection of a
quadric and a cubic. Hence T'N H is arithmetically Cohen-Macaulay with degree
5 and arithmetic genus 2 ([18, Theorem 1.1 (a)], [22], [21, Proposition 3.1]). Thus
hl(H,ICmH7H(4)) = hl(Tﬂ H,ICmH’H(Zl)) = 0 and hl(H,ICm}LH(S)) < 2. We
get h'(Zc(2)) < 2d — 11 and hence h°(Z¢(2)) > 3, a contradiction.

(a2) Now assume that there is a line L C P* with deg(L N C) > 7. By
Lemma 4 we may assume h'(Z¢(5)) > 2d — 11. Lemma 7 gives h'(Zc(4)) >
2d—10 and hence h'(Z¢(3)) > 2d—12 > 7. We get h°(Z¢(3)) > 5. We repeat the
proof of step (al) with a loss of 1; for instance, if deg(7") = 4 (resp. deg(7") = 5)
we get h1(Zo(2)) > d + 3 and h°(Z¢(2)) > 17 — d (vesp. h'(Zo(2)) > 2d — 12
and hence h°(Z¢(2)) > 2), a contradiction.

(a3) Assume the existence of a conic D with deg(D N C) > 12, but that
there is no line L € P* with deg(L N C) > 7. By Lemma 6 we may assume that
D is smooth.

(a3.1) Assume for moment h'(Z¢(5)) > 2d—12. Lemma 7 gives h (Z¢(4)) >
2d — 11. The case t = 4 of (3) and [10, Lemma 3.9] give h*(Zo(3)) > 2d — 13.
Hence h°(Zo(3)) > 35 — 14 — d > 5. As in step (al) we first get h'(Zo(3)) >
h'(Zc(4)) and then hY(Z¢(2)) > h!(Zc(3)) — 1. Thus h(Ze(2)) > 2, contradict-
ing our assumption.

<
>

(a3.2) Now we justify the assumption made in step (a3.1). If @ is a quadric
with vertex a line, then we may assume h'(Zo(5)) > 2d — 10 by Remark 1. If
@ is a quadric cone with vertex a point o and o ¢ C, then we may assume
h'(Zc(3)) > 2d — 12 by Remark 1. Now assume that C is a contained in a
quadric cone () with vertex a point o € C. It is sufficient to prove that for
each irreducible component A of the set of all non-degenerate ¥ € M, with
Y C Q and 0o € Y a general Y € A has no conic D with deg(DNY) > 12
or that if C' € A, then it may be deformed to Y € A with no offending conic.
Bezout gives D C Q. We need to distinguish the case o € D and o ¢ D. First
assume o € D. Fix Z C DN C with deg(Z) = 12 and 0 € Z,q. Since D has
0o'? zero-dimensional schemes with degree 12 and @ has oo® conics through
o, it is sufficient to prove that h%(Ncg(—Z)) < 3d + 1 — 5 — 12. We have
ho(Nco(—2)) <3d+1—12 —7 by Lemma 1. If 0 ¢ D we use the same proof,
just using that @ has oo® conics.

The case of a smooth @ is similar.

(b) Now assume h°(Zc(2)) > 2. By Lemmas 2 and 3 C is contained
in an integral complete intersection of 2 quadrics and we may assume that
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hY(Zc(5)) > 4d—24. Hence as in step (a) we get h'(Zo(3)) > 4d—24, b1 (Zc(2)) >
3d — 13 and hence h°(Z¢(2)) > 2, contradicting Lemma 3.

3 Proof of Proposition 1

Remark 2. Fix an integer d > 13 and C' € M, contained in a hyperplane
H c P*. Since h°(H,Zc(5)) = 56, we have h'(Z¢(5)) > 5(d — 11) > 0.

Proof of Proposition 1: Take C € My contained in a hyperplane H C P* and
contained in some W € W. Let S C H be a degree a hypersurface. Since « is
the minimal degree of a surface of H containing C and C' is irreducible, S is
irreducible. Since C C W N H, we have a < 5.

(a) Assume o = 2. If S is smooth, then up to a change of the ruling of S
we may assume C € |Og(1,d —1)|. Since d — 1 > 5, W D S, contradicting the
Lefschetz theorem which implies that all surfaces contained in W have degree
divisible by 5. If S is a cone, then any smooth curve on it is projectively normal
([11, Ex. V.2.9]), contradicting Remark 2.

(b) Assume o = 3. Bezout implies h°(H,Zc(3)) = 1. By the Lefschetz
theorem we have S ;{ W. Since C C SNW, we get d < 15. The case d = 15 is
excluded, because the wsaw = Ognw (4) and so SNW # C. The case d = 14 is
excluded, because it would give that the complete intersection SNW would link
C to a line and hence it is arithmetically normal ([18], [21], [22]), contradicting
Remark 2. Now assume d = 13. In this case S N W links C' to a degree 2
locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically
Cohen-Macaulay, contradicting Remark 2. If D is a disjoint union of 2 lines,
then p,(D) = —1, contradicting [21, Proposition 3.1]. Now assume that D is a
double structure on a line L, but it is not a conic, i.e. that D is not a conic.
Since SNW links CUL to L, CUL, we have p,(CUL) —pq(L) = 2(11—-1) ([21,
Proposition 3.1]), i.e. p,(C'UL) = 20, and hence deg(C' N L) = 21, contradicting
the inequality d < 21.

(¢) Assume a = 4. Since C C W N S, we have d < 20. We exclude the
cases d = 20 and d = 19 as in step (b). Now assume d = 18. SN W links C
to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is
arithmetically Cohen-Macaulay, contradicting Remark 2. Now assume that D
is a double structure on a line L, but it is not a conic, i.e. that D is not a conic.
Since SN W links CU L to L, C'U L, we have p,(CUL) — po(L) = (17— 1)5/2
([21, Proposition 3.1]) and hence deg(C' N L) > 40, a contradiction.
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