Non-existence of smooth rational curves of degree $d = 13, 14, 15$ contained in a general quintic hypersurface of \mathbb{P}^4 and in some quadric hypersurface

Edoardo Ballico
Department of Mathematics, University of Trento
ballico@science.unitn.it

Received: 28.8.2016; accepted: 17.10.2016.

Abstract. Let $W \subset \mathbb{P}^4$ be a general quintic hypersurface. We prove that W contains no smooth rational curve $C \subset \mathbb{P}^4$ with degree $d \in \{13, 14, 15\}$, $h^0(I_C(1)) = 0$ and $h^0(I_C(2)) > 0$.

Keywords: General quintic 3-fold, rational curve, Clemens’ conjecture

MSC 2000 classification: primary 14J32, secondary 14M10, 14H50

Introduction

For any positive integer d let M_d be the set of all smooth and rational curves $C \subset \mathbb{P}^4$ with $\deg(C) = d$. Let Γ_d be the set of all non-degenerate $C \in M_d$ with $h^0(I_C(2)) > 0$. Clemens conjecture asks if for each d a general quintic hypersurface $W \subset \mathbb{P}^4$ contains only finitely many elements of M_d (a stronger form asks the same also for singular rational curves of degree $d > 5$) ([1], [2], [4], [12], [13], [14], [15], [19], [20], [24], [25]). For higher genera cases (and also for more general Calabi-Yau 3-folds), see [16], [17].

All the quoted finiteness results work for very low d, say $d \leq 12$. Here we add a very strong condition (to be contained in an integral quadric hypersurface) and prove the following result.

Theorem 1. If $13 \leq d \leq 15$, then a general quintic hypersurface of \mathbb{P}^4 contains no element of Γ_d.

The proof requires a result on the splitting type of the normal bundle of a smooth rational curve $C \subset \mathbb{P}^4$ ([3], [23]) and its use when C is contained in quadric hypersurface.
Concerning elements of $C \in M_d$ contained in a hyperplane we prove the following result.

Proposition 1. Let $C \in M_d$ be a degenerate curve, say contained in a hyperplane H, and let α be the minimal degree of a surface of H containing C. Assume that C is contained in a general quintic hypersurface. If $13 \leq d \leq 17$, then $\alpha \in \{4, 5\}$. If $d \geq 18$, then $\alpha = 5$.

1 Preliminaries

Let \mathcal{W} denote the set of all smooth quintic hypersurfaces $W \subset \mathbb{P}^4$ satisfying the thesis of [4]. In particular each $W \in \mathcal{W}$ contains only finitely many smooth rational curves D of degree ≤ 11 and all of them have as normal bundle $N_{D,W}$ the direct sum of two line bundles of degree -1, i.e. $h^i(N_{D,W}) = 0$, $i = 0, 1$.

For any scheme $A \subset \mathbb{P}^4$ let I_A denote the ideal sheaf of A in \mathbb{P}^4.

Let X be any projective scheme, $N \subset X$ an effective Cartier divisor and $Z \subset X$ any closed subscheme. The residual scheme $\text{Res}_N(Z)$ of Z with respect to N is the closed subscheme of X with $I_{Z,X} : I_{N,X}$ as its ideal sheaf. We always have $\text{Res}_N(Z) \subseteq Z$. If Z is zero-dimensional, we have $\deg(Z) = \deg(Z \cap N) + \deg(\text{Res}_N(Z))$. For any line bundle L on X we have the exact sequence

$$0 \rightarrow I_{\text{Res}_N(Z),X} \otimes L(-N) \rightarrow I_{Z,X} \otimes L \rightarrow I_{Z \cap N,N} \otimes L|_N \rightarrow 0 \quad (1)$$

(the residual exact sequence of N in X).

Lemma 1. Take any $C \in \Gamma_d$, $d \geq 6$, and any $Q \in |I_C(2)|$. Let $a_1 \geq a_2$ be the splitting type of the normal sheaf $N_{C,Q}$ of C in Q. Then $a_1 \leq 3d - 8$.

Proof. Since C is a smooth curve and $N_{C,Q}$ is the dual of the conormal sheaf of C in Q, $N_{C,Q}$ is a rank 2 vector bundle and hence by the classification of vector bundles on \mathbb{P}^1 it has a splitting type. Let $b_1 \geq b_2 \geq b_3$ be the splitting type of the normal bundle N_{C,\mathbb{P}^4} of C in \mathbb{P}^4. We have $b_1 + b_2 + b_3 = 5d - 2$. By [3, case $r = 1$ of Lemma 4.3] we have $b_3 \geq d + 3$ and hence $b_1 \leq 3d - 8$. The injective map $N_{C,Q} \rightarrow N_{C,\mathbb{P}^4}$ gives $a_1 \leq 3d - 8$. \[QED\]

Remark 1. Obviously $\Gamma_d \neq \emptyset$ if and only if $d \geq 4$. The aim of this remark is to prove that $\dim \Gamma_d = 3d + 14$ and to prove a more precise result for the part associated to quadric hypersurfaces with a line as their singular locus. Let $Q \subset \mathbb{P}^4$ be an integral quadric and let $C \subset Q$ be a smooth and non-degenerate rational curve of degree d. Let $N_{C,Q}$ be the normal sheaf of C in Q and N_{C,\mathbb{P}^4} the normal bundle of C in \mathbb{P}^4. Since C is a smooth curve and by its definition $N_{C,Q}$ is the dual of the conormal sheaf of C in Q, $N_{C,Q}$ is locally free. Since C is not contained in the singular locus of Q, $N_{C,Q}$ has rank 2. There is a natural
map \(j : N_{C,Q} \to N_{C,P^4} \), which is injective outside the finite set \(C \cap \text{Sing}(Q) \). Hence \(j \) is injective. We have an exact sequence

\[
0 \to N_{C,Q} \xrightarrow{j} N_{C,P^4} \xrightarrow{\omega} \mathcal{O}_C(2)
\]

(2)

with \(\Delta := \text{coker}(u) \) supported on the finite set \(\text{Sing}(Q) \cap C \). Set \(e := \text{deg}(\Delta) \). If \(\text{Sing}(Q) \) is a point, \(o \), then blowing up it we get that \(e = 1 \) if \(o \in C \) and \(e = 0 \) if \(o \notin C \). Since \(Q \setminus \text{Sing}(Q) \) is homogeneous, \(N_{C,Q} \) is spanned. Since \(p_a(C) = 0 \), we get \(h^1(N_{C,Q}) = 0 \) and hence \(h^0(N_{C,Q}) = 3d + e \). Hence the subset of all \(\Gamma \) parametrizing curves contained either in smooth quadrics or in quadric cones with 0-dimensional vertex has dimension \(3d + 14 \). Let \(\Gamma_{d,e} \) be the subset of all non-degenerate \(C \in M_d \) contained in some integral quadric hypersurface with singular locus a line \(R \) with \(\text{deg}(R \cap C) = e \). Now assume that \(Q \) has the line \(R \) as its singular locus. We consider only the part of the Hilbert scheme of \(Q \) formed by curves \(C' \) with \(\text{deg}(R \cap C') = e \) (it contains \(C \) by assumption). Let \(a_1 \geq a_2 \) be the splitting type of \(N_{C,Q} \). Since \(a_1 \leq 3d - 8 \) (Lemma 1), we have \(a_2 \geq e + 6 \). Hence \(h^1(N_{C,Q}(-Z)) = 0 \) and so \(\dim H(Q, Z, d) = 3d + e - 2e \). Since \(R \) has \(\infty^e \) subschemes of degree \(e \) and \(\mathbb{P}^4 \) has \(\infty^{11} \) rank 3 quadrics, we get that the part coming from quadrics with rank 3 has dimension \(\leq 3d + 11 \).

Lemma 2. Let \(\Gamma_{d,2} \) be the set of all non-degenerate \(C \in M_d, d > 12 \), with \(h^0(\mathcal{I}_C(2)) = 2 \) and contained in a smooth quintic hypersurface. Then \(\dim \Gamma_{d,2} \leq d + 25 \).

Proof. Fix \(C \in \Gamma_{d,2} \) and let \(T \subset \mathbb{P}^4 \) be the intersection of two different elements of \(|\mathcal{I}_C(2)| \). Let \(S \) be the irreducible component of \(T \) containing \(C \). Since \(C \) is non-degenerate, we have \(\text{deg}(S) \geq 3 \). Hence either \(\text{deg}(S) = 3 \) or \(S = T \) and \(T \) is irreducible.

(a) Assume \(\text{deg}(S) = 3 \). Since \(S \) spans \(\mathbb{P}^4 \), it is a minimal degree surface, i.e. either a cone over a rational normal curve of \(\mathbb{P}^3 \) or an embedding of the Hirzebruch surface \(F_1 \).

(a1) Assume that \(S \) is a cone with vertex \(o \) and let \(m : U \to S \) be its minimal desingularization. \(U \) is isomorphic to the Hirzebruch surface \(F_3 \) and \(m \) is induced by the complete linear system \(|\mathcal{O}_{F_3}(h + 3f)| \), where \(h \) is the section of the ruling of \(F_3 \) with negative self-intersection and \(f \) is a fiber of the ruling of \(F_3 \). We have \(j^2 = 0, f \cdot h = 1 \) and \(h^2 = -3 \). Let \(C' \) be the strict transform of \(C \) in \(U \) and take positive integers \(a, b \) with \(b \geq 3a \) and \(C' \in |ah + bf| \). Since \(m \) is induced by \(|h + 3f| \), we have \(b = d \). Since \(\omega_{F_3} \cong \mathcal{O}_{F_3}(-2h - 5f) \), the adjunction formula gives \(\omega_{C'} \cong \mathcal{O}_{C'}((a - 2)h + (d - 5)f) \). Since \(C \) is smooth, we have \(C' \cong C \) and in particular \(p_a(C') = 0 \). Hence \(-2 = (ah + df) \cdot ((a - 2)h + (d - 5)f) = (a - 2)(d - 3a) + a(d - 5) \). Hence \(a = 1 \). Since \(d \geq 7 \), the curve \(C = f(C') \) has a singular point at \(o \), a contradiction.
(a2) Assume $S \cong F_1$ and take integers a, b with $b \geq a > 0$ and $C \in |ah + bf|$, where h is the section of the ruling of F_1 with negative intersection and f is a ruling of F_1. We have $|\mathcal{O}_{F_1}(1)| = |\mathcal{O}_{F_1}(h + 2f)|$ and $\omega_{F_1} \cong \mathcal{O}_{F_1}(-2h - 3f)$ and so $\omega_C \cong \mathcal{O}_C((a-2)h+(b-3)f)$. Hence $d = a+b$ and $-2 = (a-2)(b-a)+a(b-3)$. Hence $a = 1$ and $b = d - 1$. Since $d - 1 > 5$, every quintic hypersurface W containing C contains S. If W is smooth, then its Picard group is generated by $\mathcal{O}_W(1)$, by the Lefschetz theorem and so it contains only surfaces whose degree is divisible by 5. Hence $S \not\subseteq W$, a contradiction.

(b) Assume $S = T$, i.e. assume that T is irreducible. For a general hyperplane $H \subset \mathbb{P}^4$, $T \cap H$ is an integral curve with $p_a(T \cap H) = 1$ and hence it has at most one singular point. Hence the one-dimensional part of $\text{Sing}(T)$ is either empty or a line.

(b1) Assume that $\text{Sing}(T)$ contains a line L. A general hyperplane section of T is an irreducible and singular curve with arithmetic genus 1. Hence if T is a cone with vertex o, then T is the image of a minimal degree cone T' of \mathbb{P}^5 by a birational, but not isomorphic linear projection. If T is not a cone, then it is the image of a minimal degree smooth surface F of \mathbb{P}^5 by a birational, but not isomorphic linear projection ([8, Theorem 19.5]).

(b1.1) Assume that T is the image of a minimal degree non-degenerate cone $T' \subset \mathbb{P}^5$ and let $u : U \to T'$ be its minimal desingularization. We have $U \cong F_4$ and u is induced by the complete linear system $|\mathcal{O}_{F_4}(h + 4f)|$. Let $D \subset U$ be the strict transform of the curve, whose image in \mathbb{P}^4 is C. Write $D \in |ah + bf|$ with $b \geq 4a > 0$. As in step (a1) we first get $b = d$ and then $a = 1$. We get that $u(D)$ is singular and hence C is singular, a contradiction.

(b1.2) Assume that T is the image of a minimal degree smooth surface F of \mathbb{P}^5 and let $D \subset F$ be the curve with image C. Since C is smooth, D is smooth. There is $e \in \{0, 2\}$ such that $F \cong F_e$ embedded by the complete linear system $|h + (e+1)f|$. Take positive integers a, b such that $D \in |\mathcal{O}_{F_e}(ah + bf)|$ and $b \geq ea$. As in step (a) we first get $a = 1$ and then $b = d - 1$. If $e = 0$ we get that every quintic hypersurface containing D contains F and hence every quintic hypersurface containing C contains T, contradicting the Lefschetz theorem as in step (a2). Now assume $e = 2$. F_2 has no smooth plane conic and its lines are either the elements of $|f|$ or h. Since $h \cdot (h + (d-1)f) = d - 3$, we have $\deg(L \cap C) = d - 3$. Since 3 is a prime integer, the linear projection $\ell_L : \mathbb{P}^4 \setminus L \to \mathbb{P}^2$ maps C birationally onto an integral plane cubic. Hence C is contained in the intersection of T with a cubic hypersurface, contradicting the assumption $d > 12$ by Bezout.

(b2) Assume that $\text{Sing}(T)$ is finite. Since T is a complete intersection, it is a locally complete intersection. Hence T is a normal Del Pezzo surface of degree 4. Let $u : V \to T$ be a minimal desingularization and D the strict
Quartic hypersurface

transform of C in V. Since D is smooth and rational, the adjunction formula

gives $-2 = \omega_V \cdot D + D^2$. V is rational and it is classified ([6]). Since V is a
weak del Pezzo, u is induced by the complete linear system $|\omega_V^\vee|$. Hence $d = O_T(C) \cdot O_T(1) = u^*(C) \cdot \omega_C^\vee$. Write $u^*(C) = D + \sum c_iD_i$ with $c_i \geq 0$ and
D_i contracted by u. Since ω_V^\vee is spanned ([6, IV, §3, Théorème 1]), we get

$\omega_V^\vee \cdot D = 0$. Hence $\omega_V \cdot D = -d$. Hence $D^2 = d - 2$. Hence $h^0(O_D(D)) = d - 1$.

Thus the set of all $C \subset T$ depends on $d - 1$ parameters. Since the Grassmannian

$G(2, 15)$ of all lines of $|O_{\mathbb{P}^4}(2)|$ has dimension 26, this part of $\Gamma_{d,2}$ has dimension

at most $d + 25$.

Lemma 3. There is no non-degenerate $C \in \mathcal{M}_d$, $d > 12$, with $h^0(\mathcal{I}_C(2)) \geq 3$
and contained in a smooth quartic hypersurface.

Proof. Take a non-degenerate $C \in \mathcal{M}_d$, $d > 12$, with $h^0(\mathcal{I}_C(2)) \geq 3$. Let T be
the intersection of two general elements of $|\mathcal{I}_C(2)|$ and let S be the irreducible
component of T containing C. Since C is non-degenerate, we have $\deg(S) \geq 3$.

Hence either $\deg(S) = 3$ or $S = T$ and T is irreducible. We exclude the case $S = T$, because $d > 8$ and $h^0(\mathcal{I}_T(2)) = 2$. We exclude the case $\deg(S) = 3$ as in
step (a) of the proof of Lemma 2.

Lemma 4. Let $\Delta(d)$ be the set of all $C \in \Gamma_d$ for which there exists a line
$L \subset \mathbb{P}^4$ with $\deg(L \cap C) \geq 5$. Then $\dim \Delta(d) \leq 12 + 3d$.

Proof. We take $C \in \Gamma_d$ and a line $L \subset \mathbb{P}^4$ such that $\deg(L \cap C) \geq 5$. Take
$Q \in |\mathcal{I}_C(2)|$. Bezout implies $L \subset Q$. If Q has a line as its singular locus, then we
use Remark 1. Hence we may assume that either Q is smooth or it is a cone with
vertex a single point, o. We write $e = 1$ if Q is singular and $o \in C$ and $e = 0$
otherwise. Take $Z \subseteq C \cap L$ with $\deg(Z) = 5$. Let $a_1 \geq a_2$ be the splitting type of
$N_{C,Q}$. Since $a_1 \leq 3d - 8$ (Lemma 1), we have $a_2 \geq 4$. Hence $h^1(N_{C,Q}(-Z)) = 0$.

Use that L has ∞^5 subschemes of degree 5 and that Q has ∞^3 lines.

2 Proof of Theorem 1

Fix any non-degenerate $C \in \mathcal{M}_d$ and let $H \subset \mathbb{P}^4$ be any hyperplane. We
often use the exact sequence

$0 \to \mathcal{I}_C(t - 1) \to \mathcal{I}_C(t) \to \mathcal{I}_{C \cap H,H}(t) \to 0$ \hspace{1cm} (3)

Lemma 5. Let $Z \subset \mathbb{P}^3$ be a degree d curvilinear scheme spanning \mathbb{P}^3. Assume
$d \leq 15$ and $h^1(\mathbb{P}^3, \mathcal{I}_Z(5)) > 0$. Then either there is a line $L \subset \mathbb{P}^3$ with
$\deg(L \cap Z) \geq 7$ or there is a conic D with $\deg(D \cap C) \geq 12$.

QED
Proof. Since Z spans \mathbb{P}^3, we have $\deg(Z \cap N) \leq 14$ for every plane N. Assume for the moment the existence of a plane $N \subset \mathbb{P}^3$ such that $h^1(N, \mathcal{I}_{Z \cap N,N}(5)) > 0$, then N contains either a line $L \subset \mathbb{P}^3$ with $\deg(L \cap Z) \geq 7$ or a conic D with $\deg(D \cap C) \geq 12$ ([7, Corollaire 2]). Now assume $h^1(N, \mathcal{I}_{Z \cap C,N}(t)) = 0$ for all planes $N \subset \mathbb{P}^3$. We may assume $h^1(\mathcal{I}_Z(5)) = 0$ for all $Z' \subset Z$ (taking if necessary a smaller non-degenerate Z), because $h^1(N, \mathcal{I}_{Z \cap C,N}(t)) = 0$ for all planes N. Set $Z_0 := Z$. Let $N_1 \subset \mathbb{P}^3$ be a plane such that $e_1 := \deg(Z_0 \cap N_1)$ is maximal. Set $Z_1 := \text{Res}_{N_1}(Z_0)$. Define recursively for each integer $i \geq 2$ the plane $N_i \subset \mathbb{P}^3$, the integer e_i and the scheme Z_i in the following way. Let N_i be any plane such that $e_i := \deg(Z_{i-1} \cap N_i)$ is maximal. Set $Z_i := \text{Res}_{N_i}(Z_{i-1})$. We have $e_i \leq e_{i-1}$ for all $i \geq 2$. For each $i \geq 1$ we have the exact sequence

$$0 \to \mathcal{I}_{Z_i}(5 - i) \to \mathcal{I}_{Z_{i-1}}(6 - i) \to \mathcal{I}_{Z_{i-1} \cap N_i,N_i}(6 - i) \to 0$$

(4)

If $e_i \leq 2$, then $Z_{i-1} \subset N_i$ and hence $Z_i = \emptyset$. Since $\deg(Z) \leq 15$, we get $\deg(Z_0) \leq 0$, i.e. $Z_0 = \emptyset$. Since $h^1(N_0, \mathcal{O}_{N_0}) = 0$, there is an integer i such that $1 \leq i \leq 5$ and $h^1(\mathcal{I}_{Z_i \cap N_i,N_i}(6 - i)) > 0$. We call f such a minimal integer. Since $h^1(N, \mathcal{I}_{Z \cap C,N}(5)) = 0$ for all planes N, we have $f \geq 2$. Hence $f \in \{2, 3, 4, 5\}$. We have $e_f \geq 8 - f$. Since the sequence $\{e_i\}$ is non-increasing, we get $f(8 - f) \leq 15$. Since $f \geq 2$, we get that $f \in \{2, 3, 5\}$.

(a) Assume $f = 3$. Since $e_1 \geq e_2 \geq e_3 \geq 5$, we get $e_1 = e_2 = e_3 = 5$. Since $e_3 \leq 7$ and $h^1(N_3, \mathcal{I}_{Z_2 \cap N_3,N_3}(3)) > 0$, there is a line $R \subset N_3$ with $\deg(R \cap Z_2) \geq 5$. Taking a plane F containing R and with maximal $\deg(M \cap Z_1)$ we get $e_2 \geq 6$, a contradiction.

(b) Assume $f = 2$. We have $e_2 \geq 6$. Since $e_1 \geq e_2$ and $e_1 + e_2 \leq 15$, we have $e_2 \leq 7$. Hence there is a line $R \subset N_2$ such that $\deg(R \cap Z_1) \geq 6$.

Assuming that L does not exists, then $\deg(R \cap Z) = 6$. Let $M_1 \subset \mathbb{P}^3$ be a plane containing R and with maximal $g_1 := \deg(M_1 \cap Z)$ among the planes containing R. Since Z spans \mathbb{P}^3, we have $g_1 \geq 7$. Set $W_1 := \text{Res}_{M_1}(Z)$. By assumption $h^1(M_1, \mathcal{I}_{Z \cap M_1,M_1}(5)) = 0$. Hence the residual sequence of $M_1 \subset \mathbb{P}^3$ gives $h^1(\mathbb{P}^3, \mathcal{I}_{W_1}(4)) > 0$. Let $M_2 \subset \mathbb{P}^3$ be a plane with maximal $g_2 := \deg(W_1 \cap M_2)$. Set $W_2 := \text{Res}_{M_2}(W_1)$. Let $M_3 \subset \mathbb{P}^3$ be a plane with maximal $g_3 := \deg(W_2 \cap M_3)$. Set $W_3 := \text{Res}_{M_3}(W_2)$. In this way we get a non-decreasing sequence $\{g_i\}_{i \geq 2}$ with $\sum_{i \geq 2} g_i = d - g_1 \leq 8$. We get an integer $h \in \{2, 3\}$ with $h^1(M_h, \mathcal{I}_{M_h \cap W_{h-1},M_h}(6 - h)) > 0$ and $g_h \geq 8 - h$. As in step (a) we exclude the case $h = 3$. Hence $h = 2$. As in the first part of step (b) we get a line $D \subset \mathbb{P}^3$ such that $\deg(D \cap W_1) = 6$.

(b1) Assume $D \cap R = \emptyset$. Let $T \subset \mathbb{P}^3$ be a general quadric surface containing $D \cup R$. Since $\mathcal{I}_{D \cup R}(2)$ is spanned and Z is curvilinear, T is smooth and $T \cap Z = (D \cup R) \cap Z$ (as schemes). Hence $h^1(T, \mathcal{I}_{Z \cap T,T}(5)) = 0$. Since $\deg(\text{Res}_T(Z)) = d - 12 \leq 3$, we have $h^1(\mathcal{I}_{\text{Res}_T(Z)}(3)) = 0$. The residual sequence of T gives a
contradiction.

(b2) Assume $D \cap R \neq \emptyset$ and $D \neq R$. Let N be the plane spanned by $D \cup R$. Since $\deg(\Res_N(Z)) \leq d - 11$, we have $h^1(N, \mathcal{I}_{\Res_N(Z)}, N(4)) = 0$. The residual sequence of N gives $h^1(N, \mathcal{I}_{Z \cap N, N(5)}) > 0$, contradicting one of our assumptions.

(b3) Assume $D = R$. Let $H, M \subset \mathbb{P}^3$ be general planes containing R. Since $\Res_{H \cup M}(Z) = \Res_H(\Res_M(Z))$, we have $\deg(\Res_{H \cup M}(Z)) \leq d - 12 \leq 3$. Hence $h^1(\mathcal{I}_{\Res_{H \cup M}(Z)}(3)) = 0$. The residual sequence of $H \cup M$ gives $h^1(H \cup M, \mathcal{I}_{Z \cap (H \cup M), H \cup M}(5)) > 0$. The minimality condition of Z gives $Z \cap (H \cup R) = Z$. Hence $d = 12$. For any $q \in Z_{\text{red}}$ let Z_q be the connected component of Z containing q. Since $\Res_H(Z)$ has degree 6 and it is supported by D, we have $2 \deg(\Res_H(Z_q)) = \deg(Z_q)$ for all q. In particular we may take q with $Z_q \not\subseteq R$. Since Z is curvilinear, we may find a plane $N \supset R$ with $\deg(N \cap Z_q) > \deg(R \cap Z_q)$. Since $\deg(\Res_N(Z)) \leq 12 - 7$, we have $h^1(N, \mathcal{I}_{\Res_N(Z)}, N(4)) = 0$. The residual sequence of N gives $h^1(N, \mathcal{I}_{Z \cap N, N(5)}) > 0$, contradicting one of our assumptions.

(c) Assume $f = 5$. Since $\deg(Z_{i-1}) \leq 4$, we get the existence of a line $R \subset N_3$ such that $\deg(R \cap Z_4) \geq 3$. Since $\deg(R \cap Z_3) \geq 3$, the maximality property of N_4 implies $e_4 \geq 4$. Hence $15 \geq 4 \cdot 4 + 3$, a contradiction.

Lemma 6. Fix a non-degenerate $C \in M_d$ contained in some $W \in \mathcal{W}$ and assume the existence of a conic $D \subset \mathbb{P}^4$ with $\deg(D \cap C) \geq 12$ and that $\deg(L \cap C) \leq 6$ for each line $L \subset D_{\text{red}}$. Then D is smooth.

Proof. Take $W \in \mathcal{W}$ containing C. Let N be the plane spanned by D. First assume that $D \subset N$ is a double line. Set $L := D_{\text{red}}$. Since $\deg(L \cap C) \leq 6$ by assumption, we have $\deg(L \cap C) = 6$. Bezout implies $L \subset W$. Since $W \in \mathcal{W}$, we have $N_{L, W} \cong \mathcal{O}_L(-1) \oplus \mathcal{O}_L(-1)$. Bezout implies that $D \subset W \cap N$. Fix a general hyperplane $H \supset N$. Since W is smooth $W \cap H$ has isolated singularities. We have an injective map $N_{L, H \cap W} \rightarrow N_{L, W}$, contradicting the inclusion $D \subset H \cap W$. Now assume that $D = R \cup L$ with R, L lines and $R \neq L$. Since $\deg(L \cap C) \leq 6$ and $\deg(R \cap C) \leq 6$ by assumption, we have $\deg(L \cap C) = \deg(R \cap C) \leq 6$. Hence $L \cup R \subset W$, contradicting the fact that any two lines of W are disjoint.

Lemma 7. Take a non-degenerate $C \in M_d$ contained in some $W \in \mathcal{W}$. Assume $h^1(\mathcal{I}_C(5)) > 0$ and that there is either a line L with $\deg(L \cap C) \geq 7$ or a conic D with $\deg(D \cap C) \geq 12$. Then $h^1(\mathcal{I}_C(4)) > h^1(\mathcal{I}_C(5))$.

Proof. Let S_1 be the set of all lines L with $\deg(L \cap C) \geq 7$ and let S_2 be the set of all conics D such that $\deg(D \cap C) \geq 10$. Assume for the moment that the sets S_1 and S_2 are finite. Let $N \subset \mathbb{P}^4$ be a general plane and let $M \subset \mathbb{P}^4$ be any hyperplane containing N. Set $V := H^0(\mathcal{I}_N(1))$. We have $\dim(V) = 2$. Since S_1
is finite and \(N \) is general, then \(N \cap L = \emptyset \) for all \(L \in S_1 \) and hence \(L \not\in M \) for all \(L \in S_2 \). Since \(S_2 \) is finite, then \(N \) contains a unique point of the plane spanned by any \(D \in S_2 \) and hence \(D \not\in M \). Lemma 5 gives \(h^1(M, \mathcal{I}_{C \cap M, M}(5)) = 0 \). Hence the bilinear map \(H^0(\mathcal{I}_C(5))^2 \times V \to H^0(\mathcal{I}_C(4))^2 \) is non-degenerate in the second variable. By the bilinear lemma we have \(h^1(\mathcal{I}_C(4)) \geq h^1(\mathcal{I}_C(5)) - 1 + \dim V \).

Now assume that \(S_1 \) is infinite and call \(\Delta \) an irreducible positive dimensional family of its elements. Take a general \((R, L) \in \Delta\). We have \(L \cap R = \emptyset \), unless either there is \(o \in \mathbb{P}^4 \) with \(o \in J \) for all \(J \in \Delta \) or there is a plane \(N \) with \(J \subset N \) for all \(J \in \Delta \). The second case is not possible, because \(C \not\in N \). The first case is excluded, because the linear projection from \(o \) would map \(C \) onto a non-degenerate curve of \(\mathbb{P}^3 \) with degree \(\leq (d - 1)/6 < 3 \).

Now assume that \(S_2 \) is infinite. Let \(S'_2 \) be the set of all \(D \in S_2 \) with \(D \) a smooth conic. As in the proof just given we find that the set of all lines \(R \) with \(\deg(R \cap C) = 6 \) and supporting a component of some \(D \in S_2 \) is finite. Hence it is sufficient to prove that \(S'_2 \) is finite. For each \(D \in S'_2 \) let \(\langle D \rangle \) be the plane spanned by \(D \). If \(D_1 \neq D_2 \), no hyperplane contains \(D_1 \cup D_2 \) by Bezout and hence \(\langle D_1 \rangle \cap \langle D_2 \rangle = \emptyset \). Since any two planes of \(\mathbb{P}^4 \) meet, we have \(\sharp(S'_2) \leq 1 \).

Proof of Theorem 1: Fix \(C \in M_d, d \leq 15 \).

By Remark 1 we may assume \(h^1(\mathcal{I}_C(5)) \geq 2d - 13 \).

(a) Assume \(h^0(\mathcal{I}_C(2)) = 1 \), say \(\{Q\} = [\mathcal{I}_C(2)] \). Fix a general hyperplane \(H \subset \mathbb{P}^4 \).

(a1) Assume that there is no line \(L \subset \mathbb{P}^4 \) with \(\deg(L \cap C) \geq 7 \) and no conic \(D \) with \(\deg(D \cap C) \geq 12 \). Lemma 5 gives \(h^1(H, \mathcal{I}_{C \cap H, H}(5)) = 0 \) for every hyperplane \(H \subset \mathbb{P}^4 \). Hence the bilinear lemma gives \(h^1(\mathcal{I}_C(4)) \geq h^1(\mathcal{I}_C(5)) + 4 \geq 2d - 9 \). Since \(C \cap H \) is in uniform position, we have \(h^1(H, \mathcal{I}_{C \cap H, H}(4)) \leq d - 13 \leq 2 \) ([10, Lemma 3.9]). By (3) we have \(h^1(\mathcal{I}_C(3)) \geq 2d - 11 \). Hence \(h^0(\mathcal{I}_C(3)) \geq 35 - 3d - 1 + 2d - 11 \geq 8 \). Since \(h^0(\mathcal{I}_C(2)) = 1 \), the general \(M \in [\mathcal{I}_C(3)] \) has not \(Q \) as a component. Set \(F := Q \cap M \). First assume that \(F \) is irreducible. The curve \(D := F \cap H \) is a complete intersection curve with degree 6 and arithmetic genus 4. In particular \(h^1(H, \mathcal{I}_{C \cap H, H}(3)) = 0 \). Thus \(h^1(H, \mathcal{I}_{C \cap H, H}(3)) = h^1(D, \mathcal{I}_{C \cap H, D}(3)) \). We have \(h^1(\mathcal{I}_{C \cap H, D}(3)) \leq 1 \), because \(\deg(\mathcal{I}_{C \cap H, D}(3)) = 18 - d \geq 3 \). Hence \(h^1(\mathcal{I}_C(3)) \leq 1 \). Since \(h^1(\mathcal{I}_C(2)) \geq 2d - 12 \), we have \(h^0(\mathcal{I}_C(2)) = 15 - 2d - 1 + h^1(\mathcal{I}_C(2)) \geq 2 \), contradicting the assumption of step (a).

Now assume that \(F \) is not irreducible. Call \(T \) the irreducible component of \(F \) containing \(C \). \(T \) is a non-degenerate surface and hence \(\deg(T) \geq 3 \). Since \(h^0(\mathcal{I}_C(2)) = 1 \), we have \(h^0(\mathcal{I}_T(2)) = 1 \) and hence neither \(\deg(T) = 3 \) nor \(T \) is the complete intersection of two quadrics.

Assume \(\deg(T) = 4 \). Since \(T \) is not a complete intersection, a general hyperplane section of \(T \) is a smooth rational curve of degree 4. Since \(h^1(H, \mathcal{I}_{C \cap H, H}(t)) = 0 \), we have \(h^1(T, \mathcal{I}_C(2)) = 2 \) (4)}.
0 for all $t \geq 2$ and $h^0(\mathcal{O}_{C\cap H}(t)) = 4t + 1$, $t = 3, 4$, we get $h^1(H, \mathcal{I}_{C\cap H,H}(3)) \leq d - 13$ and $h^1(\mathcal{I}_{C\cap H,H}(4)) = 0$. We get $h^1(\mathcal{I}_C(3)) \geq h^1(\mathcal{I}_C(4))$ and $h^1(\mathcal{I}_C(2)) \geq h^1(\mathcal{I}_C(3)) + 13 - d \geq d + 4$. Hence $h^0(\mathcal{I}_C(2)) \geq 18 - d$, a contradiction.

Now assume deg(T) = 5. In this case T is linked to a plane by the complete intersection T and hence $T \cap H$ is linked to a plane by a complete intersection of a quadric and a cubic. Hence $T \cap H$ is arithmetically Cohen-Macaulay with degree 5 and arithmetic genus 2 ([18, Theorem 1.1 (a)], [22], [21, Proposition 3.1]). Thus $h^1(H, \mathcal{I}_{C\cap H,H}(4)) = h^1(T \cap H, \mathcal{I}_{C\cap H,H}(4)) = 0$ and $h^1(H, \mathcal{I}_{C\cap H,H}(3)) \leq 2$. We get $h^1(\mathcal{I}_C(2)) \leq 2d - 11$ and hence $h^0(\mathcal{I}_C(2)) \geq 3$, a contradiction.

(a2) Now assume that there is a line $L \subset \mathbb{P}^4$ with deg($L \cap C$) ≥ 7. By Lemma 4 we may assume $h^1(\mathcal{I}_C(5)) \geq 2d - 11$. Lemma 7 gives $h^1(\mathcal{I}_C(4)) \geq 2d - 10$ and hence $h^1(\mathcal{I}_C(3)) \geq 2d - 12 \geq 7$. We get $h^0(\mathcal{I}_C(3)) > 5$. We repeat the proof of step (a1) with a loss of 1; for instance, if deg(T) = 4 (resp. deg(T) = 5) we get $h^1(\mathcal{I}_C(2)) \geq d + 3$ and $h^0(\mathcal{I}_C(2)) \geq 17 - d$ (resp. $h^1(\mathcal{I}_C(2)) \geq 2d - 12$ and hence $h^0(\mathcal{I}_C(2)) \geq 2$), a contradiction.

(a3) Assume the existence of a conic D with deg($D \cap C$) ≥ 12, but that there is no line $L \subset \mathbb{P}^4$ with deg($L \cap C$) ≥ 7. By Lemma 6 we may assume that D is smooth.

(a3.1) Assume for moment $h^1(\mathcal{I}_C(5)) \geq 2d - 12$. Lemma 7 gives $h^1(\mathcal{I}_C(4)) \geq 2d - 11$. The case $t = 4$ of (3) and [10, Lemma 3.9] give $h^1(\mathcal{I}_C(3)) \geq 2d - 13$. Hence $h^0(\mathcal{I}_C(3)) \geq 35 - 14 - d > 5$. As in step (a1) we first get $h^1(\mathcal{I}_C(3)) \geq h^1(\mathcal{I}_C(4))$ and then $h^1(\mathcal{I}_C(2)) \geq h^1(\mathcal{I}_C(3)) - 1$. Thus $h^0(\mathcal{I}_C(2)) \geq 2$, contradicting our assumption.

(a3.2) Now we justify the assumption made in step (a3.1). If Q is a quadric with vertex a line, then we may assume $h^1(\mathcal{I}_C(5)) \geq 2d - 10$ by Remark 1. If Q is a quadric cone with vertex a point o and $o \notin C$, then we may assume $h^1(\mathcal{I}_C(3)) \geq 2d - 12$ by Remark 1. Now assume that C is a contained in a quadric cone Q with vertex a point $o \in C$. It is sufficient to prove that for each irreducible component Δ of the set of all non-degenerate $Y \subset M_q$ with $Y \subset C$ and $o \in Y$ a general $Y \in \Delta$ has no conic D with deg($D \cap Y$) ≥ 12 or that if $C \subset \Delta$, then it may be deformed to $Y \in \Delta$ with no offending conic. Bezout gives $D \subset Q$. We need to distinguish the case $o \in D$ and $o \notin D$. First assume $o \in D$. Fix $Z \subset D \cap C$ with deg(Z) = 12 and $o \in Z_{\text{red}}$. Since D has ∞^{12} zero-dimensional schemes with degree 12 and Q has ∞^{6} conics through o, it is sufficient to prove that $h^0(N_{C,Q}(-Z)) < 3d + 1 - 5 - 12$. We have $h^0(N_{C,Q}(-Z)) \leq 3d + 1 - 12 - 7$ by Lemma 1. If $o \notin D$ we use the same proof, just using that Q has ∞^{6} conics.

The case of a smooth Q is similar.

(b) Now assume $h^0(\mathcal{I}_C(2)) \geq 2$. By Lemmas 2 and 3 C is contained in an integral complete intersection of 2 quadrics and we may assume that
$h^1(I_C(5)) \geq 4d-24$. Hence as in step (a) we get $h^1(I_C(3)) \geq 4d-24$, $h^1(I_C(2)) \geq 3d-13$ and hence $h^0(I_C(2)) > 2$, contradicting Lemma 3.

3 Proof of Proposition 1

Remark 2. Fix an integer $d \geq 13$ and $C \in M_d$ contained in a hyperplane $H \subset \mathbb{P}^4$. Since $h^0(H, I_C(5)) = 56$, we have $h^1(I_C(5)) \geq 5(d-11) > 0$.

Proof of Proposition 1: Take $C \in M_d$ contained in a hyperplane $H \subset \mathbb{P}^4$ and contained in some $W \in \mathcal{W}$. Let $S \subset H$ be a degree α hypersurface. Since α is the minimal degree of a surface of H containing C and C is irreducible, S is irreducible. Since $C \subset W \cap H$, we have $\alpha \leq 5$.

(a) Assume $\alpha = 2$. If S is smooth, then up to a change of the ruling of S we may assume $C \in |O_S(1, d-1)|$. Since $d-1 > 5$, $W \supset S$, contradicting the Lefschetz theorem which implies that all surfaces contained in W have degree divisible by 5. If S is a cone, then any smooth curve on it is projectively normal ([11, Ex. V.2.9]), contradicting Remark 2.

(b) Assume $\alpha = 3$. Bezout implies $h^0(H, I_C(3)) = 1$. By the Lefschetz theorem we have $S \nsubseteq W$. Since $C \subseteq S \cap W$, we get $d \leq 15$. The case $d = 15$ is excluded, because the $\omega_{S\cap W} \cong O_{S\cap W}(4)$ and so $S \cap W \neq C$. The case $d = 14$ is excluded, because it would give that the complete intersection $S \cap W$ would link C to a line and hence it is arithmetically normal ([18], [21], [22]), contradicting Remark 2. Now assume $d = 13$. In this case $S \cap W$ links C to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically Cohen-Macaulay, contradicting Remark 2. If D is a disjoint union of 2 lines, then $p_a(D) = -1$, contradicting [21, Proposition 3.1]. Now assume that D is a double structure on a line L, but it is not a conic, i.e. that D is not a conic. Since $S \cap W$ links $C \cup L$ to L, $C \cup L$, we have $p_a(C \cup L) - p_a(L) = 2(11-1)$ ([21, Proposition 3.1]), i.e. $p_a(C \cup L) = 20$, and hence $\deg(C \cap L) = 21$, contradicting the inequality $d < 21$.

(c) Assume $\alpha = 4$. Since $C \subseteq W \cap S$, we have $d \leq 20$. We exclude the cases $d = 20$ and $d = 19$ as in step (b). Now assume $d = 18$. $S \cap W$ links C to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically Cohen-Macaulay, contradicting Remark 2. Now assume that D is a double structure on a line L, but it is not a conic, i.e. that D is not a conic. Since $S \cap W$ links $C \cup L$ to L, $C \cup L$, we have $p_a(C \cup L) - p_a(L) = (17-1)5/2$ ([21, Proposition 3.1]) and hence $\deg(C \cap L) > 40$, a contradiction.
References

