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Abstract. We prove that functions with compact support in non-quasianalytic classes E{M}

of Roumieu-type and E(M) of Beurling-type defined by a weight matrix M with some mild reg-
ularity conditions can be characterized by the decay properties of their Fourier transform. For
this we introduce the abstract technique of constructing from M multi-index matrices and as-
sociated function spaces. We study the behaviour of this construction in detail and characterize
its stability. Moreover non-quasianalyticity of the classes E{M} and E(M) is characterized.
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1 Introduction

Spaces of ultradifferentiable functions are sub-classes of smooth functions
with certain growth conditions on all their derivatives. In the literature two
different approaches are considered to introduce these classes, either using a
weight sequence M = (Mk)k or using a weight function ω. Given a compact set
K the classes {

f (k)(x)

hkMk
: x ∈ K, k ∈ N

}

,

respectively
{

f (k)(x)

exp(1/lϕ∗
ω(lk))

: x ∈ K, k ∈ N

}

,

should be bounded, where the positive real number h or l is subject to either
a universal or an existential quantifier and ϕ∗

ω denotes the Young-conjugate of
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2 G. Schindl

ϕω = ω ◦ exp. In the case of a universal quantifier we call the class of Beurling
type, denoted by E(M) or E(ω). In the case of an existential quantifier we call the
class of Roumieu type, denoted by E{M} or E{ω}. In the following we write E[⋆]
if either E{⋆} or E(⋆) is considered.

The classes E[M ] were considered earlier than E[ω]. For the weight sequence
approach see e.g. [7] and [6], for E[ω] we refer to [2]. In [1] both methods were
compared and it was shown that in general a class E[M ] cannot be obtained by
a weight function ω and vice versa. At the beginning, ultradifferentiable classes
were studied using the growth of the derivatives and later with the Fourier
transform. Finally, Braun, Meise and Taylor in [2] have unified both theories.
For a detailed survey we refer to the introductions in [2] and [1].

In [9] we have considered classes E[M] defined by (one-parameter) weight
matrices M := {Mx : x ∈ Λ}. The spaces E[M ] and E[ω] were identified as
particular cases of E[M] but one is able to describe more classes, e.g. the class
defined by the Gevrey-matrix G := {(p!s+1)p∈N : s > 0}, see [9, 5.19]. Using this
new method one is able to transfer results from one setting into the other one
and to prove results for E[M ] and E[ω] simultaneously, e.g. see [9] and [10].

The main aim of this work is to show that assuming some mild properties
for M the functions with compact support D[M] ⊆ E[M] can be characterized
in terms of the decay properties of their Fourier transform.

First, we generalize in Section 3 a central new idea in [9]. We have shown
that to each ω we can associate a weight matrix Ω := {(Ωl

j)j≥0 : l > 0}, defined
by Ωl

j := exp(1/lϕ∗
ω(lj)), such that E[ω] = E[Ω] holds as locally convex vector

spaces.

In this work we start with an abstractly given weight matrixM = {Mx : x ∈
Λ} satisfying some standard assumptions. To M we associate another matrix
ωM := {ωMx : x ∈ Λ} consisting of associated functions ωMx . Applying again
the idea of [9] we obtain a matrix {Mx;l : x ∈ Λ, l > 0} and iterating this
procedure we get a sequence of multi-index weight matrices consisting of weight
sequences and weight functions. In Section 3 this technique is studied in detail.

First, in 3.3, we will characterize the case where all multi-index weight ma-
trices of weight sequences are equivalent. Thus E[M] is stable as locally convex
vector space under adjoining indices, see Theorem 3.4. It will turn out that only
in the first step a non-stable effect can occur, see Corollary 3.8.

The spaces associated to the matrices of weight functions in this construction
are always stable. Using results from 3.10 and Theorem 3.4 we can prove the
first main result Theorem 3.2: As locally convex vector spaces the equality
E[M] = E[ωM] is valid.

In the next step, in Section 4, we characterize the non-quasianalyticity of
E[M], see Theorem 4.1. Thus the cases where the spaces D[M] are non-trivial
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are classified. The Roumieu case is quite clear and for the Beurling case we
generalize [14, Lemma 5.1], where stronger conditions for the matrix M were
assumed.

In Section 5 we combine Theorem 3.2 and Theorem 4.1. Using and gener-
alizing the methods and estimates introduced in [2] we are able to characterize
functions in D[M] in terms of the decay properties of their Fourier transform,
see Theorem 5.1. As special case this holds for the Gevrey-matrix G.

Finally, in Section 6, we apply the technique of associating a weight matrix
to prove some variations of comparison results due to [1] concerning the classes
E[M ] and E[ω].

This work contains some results of the author PhD Thesis, see [12]. The
author thanks his advisors A. Kriegl, P.W. Michor and A. Rainer for the super-
vision and their helpful ideas.

1.1 Basic notation

We denote by E the class of smooth functions, Cω is the class of all real
analytic functions. We will write N>0 = {1, 2, . . . } and N = N>0∪{0}. Moreover
we put R>0 := {x ∈ R : x > 0}, i.e. the set of all positive real numbers. For α =
(α1, . . . , αn) ∈ Nn we use the usual multi-index notation, write α! := α1! . . . αn!,
|α| := α1 + · · ·+ αn and for x = (x1, . . . , xn) ∈ Rn we set xα = xα1

1 · · ·xαn
n . We

also put ∂α = ∂α1
1 · · · ∂αn

n and for a given function f : U ⊆ Rr → Rs defined on a
non-empty open set U ⊆ Rr we denote by f (k) the k-th order Fréchet derivative
of f . Let E1, . . . , Ek and F be topological vector spaces, then L(E1, . . . , Ek, F )
is the space of all bounded k-linear mappings E1 × · · · × Ek → F . If E = Ei

for i = 1, . . . , k, then we write Lk(E,F ). With ‖ · ‖Rn we denote the Euclidian
norm on Rn.

Let K ⊂⊂ Rr be a compact set with smooth boundary, then E(K,Rs) de-
notes the space of all smooth functions on the interior K◦ such that each deriva-
tive of f can be continuously extended to K.

Convention: Let ⋆ ∈ {M,ω,M}, then we write E[⋆] if either E{⋆} or E(⋆) is
considered with the following restriction: Statements that involve more than
one E[⋆] symbol must not be interpreted by mixing E{⋆} and E(⋆). The same
notation resp. convention will be used for the conditions, so write (M[⋆]) for
either (M{⋆}) or (M(⋆)).
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2 Basic definitions

2.1 Weight sequences and classes of ultradifferentiable func-
tions E[M ]

M = (Mk)k ∈ RN
>0 is called a weight sequence. We introduce also m = (mk)k

defined by mk := Mk
k! and µ = (µk)k by µk := Mk

Mk−1
, µ0 := 1. M is called

normalized if 1 =M0 ≤M1 holds (w.l.o.g.).
(1) M is called log-convex if

(lc) :⇔ ∀ j ∈ N : M2
j ≤Mj−1Mj+1.

M is log-convex if and only if (µk)k is increasing. If M is log-convex and nor-
malized, then M and k 7→ (Mk)

1/k are both increasing, see e.g. [11, Lemma
2.0.4].

(2) M has moderate growth if

(mg) :⇔ ∃ C ≥ 1 ∀ j, k ∈ N : Mj+k ≤ Cj+kMjMk.

(3) M is called non-quasianalytic if

(nq) :⇔
∞∑

p=1

Mp−1

Mp
< +∞.

Using Carleman’s inequality one can show that if M has (lc), then

∞∑

p=1

Mp−1

Mp
< +∞⇔

∞∑

p=1

1

(Mp)1/p
< +∞.

(4) M has (β3) if

∃ Q ∈ N>0 : lim inf
p→∞

µQp

µp
> 1.

(5) For M = (Mp)p and N = (Np)p we write M ≤ N if and only if Mp ≤ Np

holds for all p ∈ N. Moreover we define

M � N :⇔ ∃ C1, C2 ≥ 1 ∀ p ∈ N : Mp ≤ C2C
p
1Np ⇐⇒ sup

p∈N>0

(
Mp

Np

)1/p

< +∞

and call the sequences equivalent if

M ≈ N :⇔ M�N and N�M.
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(mg) and (nq) are stable w.r.t. ≈. Furthermore we will write

M ⊳ N :⇔ ∀ h > 0 ∃ Ch ≥ 1 ∀ j ∈ N : Mj ≤ Chh
jNj ⇐⇒ lim

p→∞

(
Mp

Np

)1/p

= 0.

For convenience we introduce the set

LC := {M ∈ RN
>0 : M is normalized, log-convex, lim

k→∞
(Mk)

1/k = +∞}.

Let r, s ∈ N>0 and U ⊆ Rr be a non-empty open set. We introduce the classes
of ultradifferentiable functions of Roumieu type by

E{M}(U,R
s) := {f ∈ E(U,Rs) : ∀ K ⊂⊂ U ∃ h > 0 : ‖f‖M,K,h < +∞},

and the classes of ultradifferentiable functions of Beurling type by

E(M)(U,R
s) := {f ∈ E(U,Rs) : ∀ K ⊂⊂ U ∀ h > 0 : ‖f‖M,K,h < +∞},

where we denote

‖f‖M,K,h := sup
k∈N,x∈K

‖f (k)(x)‖Lk(Rr,Rs)

hkMk
(1)

and ‖f (k)(x)‖Lk(Rr,Rs) := sup{‖f (k)(x)(v1, . . . , vk)‖Rs : ‖vi‖Rr ≤ 1 ∀ 1 ≤ i ≤ k}.
For a compact set K with smooth boundary

EM,h(K,R
s) := {f ∈ E(K,Rs) : ‖f‖M,K,h < +∞}

is a Banach space and we define the following topological vector spaces

E{M}(U,R
s) := lim←−

K⊂⊂U

lim−→
h>0

EM,h(K,R
s) = lim←−

K⊆U

E{M}(K,R
s) (2)

and
E(M)(U,R

s) := lim←−
K⊂⊂U

lim←−
h>0

EM,h(K,R
s) = lim←−

K⊆U

E(M)(K,R
s). (3)

In EM,h(K,Rs) instead of compact sets K with smooth boundary one can also
consider a relatively compact open subset K of U (see [15]) or one can work
with Whitney jets on the compact set K (see [6] and also [1]).

We recall some facts for log-convex M :

(i) We write Eglobal{M} (U,Rs) := {f ∈ E(U,Rs) : ∃ h > 0 : ‖f‖M,U,h < +∞}.
Then there exist characteristic functions

θM ∈ Eglobal{M} (R,R) : ∀ j ∈ N :
∣
∣
∣θ

(j)
M (0)

∣
∣
∣ ≥Mj , (4)

see [9, Lemma 2.9] and [15, Theorem 1]. Note that the Beurling class

Eglobal(M) (R,R) cannot contain such θM , see [11, Proposition 3.1.2].
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(ii) If N is arbitrary, then M�N ⇐⇒ E{M} ⊆ E{N} and M⊳N ⇐⇒ E{M} ⊆
E(N). If M ∈ LC, then M�N ⇐⇒ E[M ] ⊆ E[N ].

(iii) For any non-empty open set U ⊆ Rr both classes E{M}(U,R) and E(M)(U,R)
are closed under pointwise multiplication, see e.g. [11, Proposition 2.0.8].

2.2 Classes of ultradifferentiable functions defined by weight
matrices

Definition 2.3. Let (Λ,≤) be a partially ordered set which is both up- and
downward directed, Λ = R>0 is the most important example. A weight matrix
M associated to Λ is a family of weight sequencesM := {Mx ∈ RN

>0 : x ∈ Λ}
such that

(M) :⇔ ∀ x ∈ Λ : Mx is normalized, increasing, Mx ≤My for x ≤ y.

We callM standard log-convex, if

(Msc) :⇔ (M) and ∀ x ∈ Λ : Mx ∈ LC.

Also the sequences mx
k :=

Mx
k

k! and µxk :=
Mx

k
Mx

k−1
, µx0 := 1, will be used.

We introduce spaces of vector-valued ultradifferentiable functions classes
defined by a weight matrices of Roumieu type E{M} and Beurling type E(M) as
follows, see also [9, 4.2].

Let r, s ∈ N>0, let U ⊆ Rr be a non-empty open set. For all compact sets
K ⊂⊂ U we put

E{M}(K,R
s) :=

⋃

x∈Λ
E{Mx}(K,R

s) E{M}(U,R
s) :=

⋂

K⊂⊂U

⋃

x∈Λ
E{Mx}(K,R

s)

(5)
and

E(M)(K,R
s) :=

⋂

x∈Λ
E(Mx)(K,R

s) E(M)(U,R
s) :=

⋂

x∈Λ
E(Mx)(U,R

s). (6)

For a compact set K ⊂⊂ Rr one has the representations

E{M}(K,R
s) := lim−→

x∈Λ
lim−→
h>0

EMx,h(K,R
s)

and so for U ⊆ Rr non-empty open

E{M}(U,R
s) := lim←−

K⊂⊂U

lim−→
x∈Λ

lim−→
h>0

EMx,h(K,R
s). (7)
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Similarly we get for the Beurling case

E(M)(U,R
s) := lim←−

K⊂⊂U

lim←−
x∈Λ

lim←−
h>0

EMx,h(K,R
s). (8)

If Λ = R>0 we can assume that all occurring limits are countable and restrict
to Λ = N>0 in the Roumieu case. Thus E(M)(U,R

s) is a Fréchet space and
lim−→
x∈Λ

lim−→
h>0

EMx,h(K,Rs) = lim−→
n∈N>0

EMn,n(K,Rs) is a Silva space, i.e. a countable

inductive limit of Banach spaces with compact connecting mappings. For more
details concerning the locally convex topology we refer to [9, 4.2-4.4]. In the
appendix in Proposition 7.2 we will show that for some weight matrices the
connecting mappings are even nuclear.

2.4 Conditions for a weight matrix M
We are going to introduce several conditions on M, see also [9, 4.1]. First

consider the following conditions of Roumieu type.

(M{dc}) ∀ x ∈ Λ ∃ C > 0 ∃ y ∈ Λ ∀ j ∈ N :Mx
j+1 ≤ Cj+1My

j

(M{mg}) ∀ x ∈ Λ ∃ C > 0 ∃ y1, y2 ∈ Λ ∀ j, k ∈ N :Mx
j+k ≤ Cj+kMy1

j My2
k

(M{L}) ∀ C > 0 ∀ x ∈ Λ ∃ D > 0 ∃ y ∈ Λ ∀ k ∈ N : CkMx
k ≤ DM

y
k

(M{strict}) ∀ x ∈ Λ ∃ y ∈ Λ : supk∈N>0

(
My

k
Mx

k

)1/k
= +∞

(M{BR}) ∀ x ∈ Λ ∃ y ∈ Λ :Mx⊳My

Analogously we introduce the Beurling type conditions.

(M(dc)) ∀ x ∈ Λ ∃ C > 0 ∃ y ∈ Λ ∀ j ∈ N :My
j+1 ≤ Cj+1Mx

j

(M(mg)) ∀ x1, x2 ∈ Λ ∃ C > 0 ∃ y ∈ Λ ∀ j, k ∈ N :My
j+k ≤ Cj+kMx1

j Mx2
k

(M(L)) ∀ C > 0 ∀ x ∈ Λ ∃ D > 0 ∃ y ∈ Λ ∀ k ∈ N : CkMy
k ≤ DMx

k

(M(strict)) ∀ x ∈ Λ ∃ y ∈ Λ : supk∈N>0

(
Mx

k

My
k

)1/k
= +∞

(M(BR)) ∀ x ∈ Λ ∃ y ∈ Λ :My⊳Mx
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2.5 Inclusion relations

Given two matrices M = {Mx : x ∈ Λ} and N = {Ny : y ∈ Λ′} we
introduce

M{�}N :⇔ ∀ x ∈ Λ ∃ y ∈ Λ′ : Mx�Ny

and
M(�)N :⇔ ∀ y ∈ Λ′ ∃ x ∈ Λ : Mx�Ny.

By definitionM[�]N implies E[M] ⊆ E[N ] and write

M{≈}N :⇔M{�}N and N{�}M

and
M(≈)N :⇔M(�)N and N (�)M.

Moreover, we introduce

M ⊳ N :⇔ ∀ x ∈ Λ ∀ y ∈ Λ′ :Mx⊳Ny,

so M ⊳ N implies E{M} ⊆ E(N ). In [9, Proposition 4.6] the relations above
were characterized for (Msc) matrices with Λ = Λ′ = R>0. In this context we
introduce also

(M{Cω}) ∃ x ∈ Λ : lim infk→∞(mx
k)

1/k > 0,

(MH) ∀ x ∈ Λ : lim infk→∞(mx
k)

1/k > 0,
(M(Cω)) ∀ x ∈ Λ : limk→∞(mx

k)
1/k = +∞.

Recall [9, Proposition 4.6]: If (M{Cω}) holds then the class of real-analytic-
functions is contained in E{M}, if (M(Cω)) then the real-analytic functions are
contained in E(M). If (MH) is satisfied, then the restrictions of entire functions
are contained in E(M).

Convention: If Λ = R>0 or N>0, then R>0 or N>0 are always regarded with
its natural order ≤. We will call M constant if M = {M} or more generally
if Mx≈My for all x, y ∈ Λ, which violates both (M{strict}) and (M(strict)).
Otherwise it will be called non-constant.

2.6 Classes of ultradifferentiable functions E[ω]
A function ω : [0,∞) → [0,∞) (sometimes ω is extended to C, by ω(x) :=

ω(|x|)) is called a weight function if

(i) ω is continuous,

(ii) ω is increasing,

(iii) ω(x) = 0 for all x ∈ [0, 1] (normalization, w.l.o.g.),
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(iv) limx→∞ ω(x) = +∞.

For convenience we will write that ω has (ω0) if it satisfies (i)− (iv).
Moreover we consider the following conditions:

(ω1) ω(2t) = O(ω(t)) as t→ +∞.

(ω2) ω(t) = O(t) as t→∞.

(ω3) log(t) = o(ω(t)) as t→ +∞ (⇔ limt→+∞ t
ϕω(t)

= 0).

(ω4) ϕω : t 7→ ω(et) is a convex function on R.

(ω5) ω(t) = o(t) as t→ +∞.

(ω6) ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.

(ω7) ∃ H > 0 ∃ C > 0 ∀ t ≥ 0 : ω(t2) ≤ Cω(Ht) + C.

(ωnq)
∫∞
1

ω(t)
t2
dt <∞.

An interesting example is ωs(t) := max{0, log(t)s}, s > 1, which satisfies all
listed properties except (ω6). For convenience we define the sets

W0 := {ω : [0,∞)→ [0,∞) : ω has (ω0), (ω3), (ω4)},

W := {ω ∈ W0 : ω has (ω1)}.
For ω ∈ W0 we can define the Legendre-Fenchel-Young-conjugate ϕ∗

ω by

ϕ∗
ω(x) := sup{xy − ϕω(y) : y ≥ 0}, x ≥ 0

with the following properties, e.g. see [2, Remark 1.3, Lemma 1.5]: It is convex

and increasing, ϕ∗
ω(0) = 0, ϕ∗∗

ω = ϕω, limx→∞ x
ϕ∗
ω(x)

= 0 and finally x 7→ ϕω(x)
x

and x 7→ ϕ∗
ω(x)
x are increasing on [0,+∞) .

For two weights σ, τ ∈ W0 we write

σ�τ :⇔ τ(t) = O(σ(t)) as t→ +∞

and call them equivalent if

σ∼τ :⇔ σ�τ and τ�σ.

Moreover introduce

σ⊳τ :⇔ τ(t) = o(σ(t)) as t→ +∞.
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Let r, s ∈ N>0, U ⊆ Rr be a non-empty open set and ω ∈ W0. The space of
vector-valued ultradifferentiable functions of Roumieu type is defined by

E{ω}(U,Rs) := {f ∈ E(U,Rs) : ∀ K ⊂⊂ U ∃ l > 0 : ‖f‖ω,K,l < +∞}

and the space of vector-valued ultradifferentiable functions of Beurling type by

E(ω)(U,Rs) := {f ∈ E(U,Rs) : ∀ K ⊂⊂ U ∀ l > 0 : ‖f‖ω,K,l < +∞},

where

‖f‖ω,K,l := sup
k∈N,x∈K

‖f (k)(x)‖Lk(Rr,Rs)

exp(1lϕ
∗
ω(lk))

. (9)

For compact sets K with smooth boundary

Eω,l(K,Rs) := {f ∈ E(K,Rs) : ‖f‖ω,K,l < +∞}

is a Banach space and we consider the following topological vector spaces

E{ω}(U,Rs) := lim←−
K⊂⊂U

lim−→
l>0

Eω,l(K,Rs) = lim←−
K⊂⊂U

E{ω}(K,Rs) (10)

and
E(ω)(U,Rs) := lim←−

K⊂⊂U

lim←−
l>0

Eω,l(K,Rs) = lim←−
K⊂⊂U

E(ω)(K,Rs). (11)

For σ, τ ∈ W we get σ�τ ⇔ E[σ] ⊆ E[τ ] and τ⊳σ ⇔ E{τ} ⊆ E(σ), see [9, Corollary
5.17].

We summarize some facts which are shown in [9, Section 5].

(i) A central new idea was that to each ω ∈ W we can associate a (Msc)
weight matrix Ω := {Ωl = (Ωl

j)j∈N : l > 0} by
Ωl
j := exp

(
1
lϕ

∗
ω(lj)

)
.

(ii) E[ω] = E[Ω] holds as locally convex vector spaces and Ω satisfies (M{mg}),
(M(mg)) and (M{L}), (M(L)).

(iii) Equivalent weight functions ω yield equivalent weight matrices w.r.t. both
(≈) and {≈}. Note that (M[mg]) is stable w.r.t. [≈], whereas (M[L]) not.

(iv) Defining classes of ultradifferentiable functions by weight matrices as in
(5) and in (6) is a common generalization of defining them by using a
(single) weight sequence M , i.e. a constant weight matrix, or by a weight
function ω ∈ W. But one is able to describe also other classes, e.g. the
class defined by the Gevrey-matrix G := {(p!s+1)p∈N : s > 0}.
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2.7 Classes of ultra-differentiable functions defined by a weight
matrix of associated functions

Let M ∈ RN
>0, the associated function ωM : R≥0 → R ∪ {+∞} is defined by

ωM (t) := sup
p∈N

log

(
tpM0

Mp

)

for t > 0, ωM (0) := 0. (12)

Lemma 2.8. If M ∈ LC, then ωM belongs to W0.
Moreover lim infp→∞(mp)

1/p > 0 implies (ω2), limp→∞(mp)
1/p = +∞ im-

plies (ω5) for ωM .

We refer to [6, Definition 3.1] and [1, Lemma 12 (iv)⇒ (v)]. That lim(mp)
1/p =

+∞ implies (ω5) for ωM follows analogously as lim inf(mp)
1/p > 0 implies (ω2)

for ωM as shown in [1, Lemma 12 (iv) ⇒ (v)]. Note that by Stirling’s formula
lim inf(mp)

1/p > 0 is precisely (M0) in [1].

Remark 2.9. Let ω ∈ W0 be given, then

(1) Ωl ∈ LC for each l > 0 by [9, 5.5],

(2) ω∼ωΩl for each l > 0 by [9, Lemma 5.7],

(3) ω satisfies

(a) (ωnq) if and only if some/each Ωl satisfies (nq),

(b) (ω6) if and only if some/each Ωl satisfies (mg) if and only if Ωl≈Ωn

for each l, n > 0,

by [9, Corollary 5.8, Theorem 5.14].

LetM = {Mx : x ∈ Λ} be (Msc), then we introduce the new weight matrix
ωM := {ωMx : x ∈ Λ}. Let U ⊆ Rr be non-empty open and put

E{ωM}(U,R
s) := {f ∈ E(U,Rs) : ∀ K ⊂⊂ U ∃ x ∈ Λ ∃ l > 0 : ‖f‖ωMx ,K,l < +∞}

and

E(ωM)(U,R
s) := {f ∈ E(U,Rs) : ∀ K ⊂⊂ U ∀ x ∈ Λ ∀ l > 0 : ‖f‖ωMx ,K,l < +∞}.

Thus we obtain the topological vector spaces representations

E{ωM}(U,R
s) := lim←−

K⊂⊂U

lim−→
x∈Λ,l>0

EωMx ,l(K,R
s) (13)

and
E(ωM)(U,R

s) := lim←−
K⊂⊂U

lim←−
x∈Λ,l>0

EωMx ,l(K,R
s) (14)
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3 Stability of constructing multi-index weight matri-
ces

3.1 Introduction

Let M := {Mx : x ∈ Λ} be (Msc). By Lemma 2.8 we get ωMx ∈ W0 for
each x ∈ Λ. On the other hand by [9, 5.5] to each ω ∈ W0 we can associate a
(Msc) weight matrix Ω := {(Ωl

j)j∈N : l > 0} by putting Ωl
j := exp

(
1
lϕ

∗
ω(lj)

)
.

So one can consider the construction

Mx 7→ ωMx 7→Mx;l1 7→ ωMx;l1 7→ Mx;l1,l2 7→ . . . , (15)

where for x ∈ Λ, lj ∈ R>0, j ∈ N>0, and i ∈ N we put

M
x;l1,...,lj+1

i := exp

(
1

lj+1
ϕ∗
ωM

x;l1,...,lj
(lj+1i)

)

, Mx;l1
i := exp

(
1

l1
ϕ∗
ωMx (l1i)

)

respectively

ω
Mx;l1,...,lj (t) := sup

p∈N
log

(

tp

M
x;l1,...,lj
p

)

for t > 0, ω
Mx;l1,...,lj (0) := 0.

On the one hand we obtain a sequence of matrices of weight functions. [9, Lemma
5.7] implies

∀ x ∈ Λ ∀ j ∈ N>0 ∀ l1, . . . , lj > 0 : ω
Mx;l1,...,lj+1∼ωMx;l1,...,lj∼ . . .∼ωMx , (16)

hence this construction is always stable. So for each non-empty open U ⊆ Rr

we get
E{ωM}(U,R

s) = lim←−
K⊂⊂U

lim−→
x∈Λ,l,h>0

Eω
Mx;l ,h(K,R

s) (17)

and
E(ωM)(U,R

s) = lim←−
K⊂⊂U

lim←−
x∈Λ,l,h>0

Eω
Mx;l ,h(K,R

s). (18)

On the other hand we get a sequence of matrices of weight sequences. In The-
orem 3.4 we are going to characterize the stability of this construction and we
will see that only in the first step of (15) there can occur a non-stable effect
(see Corollary 3.8).

Finally the aim of this Section is to prove the following result:

Theorem 3.2. Let M := {Mx ∈ RN
>0 : x ∈ Λ} be (Msc), let r, s ∈ N>0

and U be a non-empty open set in Rr. IfM has (M[L]) and (M[mg]), then we
get as locally convex vector spaces

E[M](U,R
s) = E[ωM](U,R

s).
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3.3 Stability of constructing multi-index matrices consisting of
weight sequences

In this section we show the following result which is the first step to prove
Theorem 3.2.

Theorem 3.4. LetM = {Mx : x ∈ Λ} be (Msc). ThenM[≈]{Mx;l : x ∈
Λ, l > 0} if and only if

(1) in the Roumieu-case (M{mg}) holds,

(2) in the Beurling-case (M(mg)) holds, provided Λ = R>0.

First we prove

Lemma 3.5. For each x ∈ Λ, l ∈ N>0 and j ∈ N we get

Mx;l
j = (Mx

jl)
1/l. (19)

Proof. We use [6, Proposition 3.2] and get

Mx;l
j := exp

(
1

l
ϕ∗
ωMx (lj)

)

= exp

(

1

l
sup
y≥0
{y(lj)− ϕωMx (y)}

)

= exp

(

sup
y≥0

{

(yj)− 1

l
ϕωMx (y)

})

= sup
y≥0

exp(yj)

exp
(
1
lϕωMx (y)

)

= sup
s≥1

sj

exp
(
1
l ωMx(s)

) =

(

sup
s≥0

sjl

exp(ωMx(s))

)1/l

= (Mx
jl)

1/l.

All steps except the last one hold also for l > 0 instead of l ∈ N>0. QED

The next result generalizes [6, Proposition 3.6].

Proposition 3.6. LetM be (Msc), then

(M{mg})⇐⇒ ∀ x ∈ Λ ∃ H ≥ 1 ∃ y ∈ Λ ∀ t ≥ 0 : 2ωMy(t) ≤ ωMx(Ht) +H,
(20)

(M(mg))⇐⇒ ∀ x ∈ Λ ∃ H ≥ 1 ∃ y ∈ Λ ∀ t ≥ 0 : 2ωMx(t) ≤ ωMy(Ht) +H.
(21)

Even if ωMx∼ωMy for all x, y ∈ Λ, (20) or (21) does not imply necessarily (ω6)
for each ωMx .

Proof. We follow [6, Lemma 3.5, Proposition 3.6] and consider the Roumieu
case. (M{mg}) is equivalent to

∀ x ∈ Λ ∃ H ≥ 1 ∃ y ∈ Λ ∀ p ∈ N : Mx
p ≤ Hp min

0≤q≤p
My

qM
y
p−q =: HpNy

p .
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By [6, Lemma 3.5] we have ωNy = 2ωMy and proceed as in [6, Proposition 3.6]
to get

2ωMy(t) = sup
p∈N

log

(
tp

Ny
p

)

= sup
p∈N

log

(

tp

min0≤q≤pM
y
qM

y
p−q

)

≤ sup
p∈N

log

(
tpHp

Mx
p

)

= ωMx(Ht).

Conversely, again as in [6, Proposition 3.6]

Ny
p = sup

t≥0

tp

exp(ωNy(t))
= sup

t≥0

tp

exp(2ωMy(t))

≥ sup
t≥0

tp

exp(ωMx(Ht) +H)
=

1

Hp exp(H)
Mx

p .

QED

Now we are able to prove the first part of Theorem 3.4.

Theorem 3.7. Let M := {Mx ∈ RN
>0 : x ∈ Λ} be (Msc), r, s ∈ N>0. If

(M{mg}) holds then for each non-empty open set U ⊆ Rr we get as locally
convex vector spaces

E{M}(U,R
s) = lim←−

K⊂⊂U

lim−→
x∈Λ,l,h>0

EMx;l,h(K,R
s).

If (M(mg)) holds then we get as locally convex vector spaces

E(M)(U,R
s) = lim←−

K⊂⊂U

lim←−
x∈Λ,l,h>0

EMx;l,h(K,R
s).

Proof. Roumieu case. By (19) implication (⊆) holds in any case since
Mx;1 =Mx ≤My for x ≤ y. We show (⊇) and by (19) it suffices to prove

∀ x ∈ Λ ∀ l ∈ N>0 ∃ y ∈ Λ ∃ C ≥ 1 ∀ j ∈ N :

(Mx
jl)

1/l ≤ CjMy
j ⇔Mx

jl ≤ Cjl(My
j )

l, (22)

which implies EMx;l,h(K,R
s) ⊆ EMy ,Ch(K,Rs). Now for each x ∈ Λ there exists

D ≥ 1 and y ∈ Λ such that Mx
2j ≤ D2j(My

j )
2 for all j ∈ N by (M{mg}) and so

(22) follows by iterating this estimate l-times.
Beurling case. (⊇) is valid in any case since Mx;1 =Mx for each x ∈ Λ. Let

us prove (⊆), more precisely we show

∀ x ∈ Λ ∀ l > 0 ∃ y ∈ Λ ∃ C ≥ 1 ∀ j ∈ N : My
j ≤ CjMx;l

j , (23)
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which implies EMy ,h(K,Rs) ⊆ EMx;l,Ch(K,R
s). Iterating (21) gives

∀ x ∈ Λ ∀ k ∈ N>0 ∃ y ∈ Λ ∃ H ≥ 1 ∀ t ≥ 0 : 2kωMx(t) ≤ ωMy(Hkt)+(2k−1)H.
(24)

Let l ∈ N>0 be given (large) and k ∈ N>0 be chosen minimal with l ≤ 2k. For
all x ∈ Λ and j ∈ N we have as in the proof of (19)

M
x;1/l
j = sup

t≥0

tj

exp(lωMx(t))
≥ sup

t≥0

tj

exp(ωMy(Hkt) + (2k − 1)H)

=
1

exp((2k − 1)H)

(
1

Hk

)j

My
j .

Consequently for arbitrary x ∈ Λ and l ∈ N>0 we find y ∈ Λ such that
My�Mx;1/l. QED

An immediate consequence of Theorem 3.7 is

Corollary 3.8. LetM be (Msc), then after the first step in (15) the con-
struction yields always equivalent weight matrices of weight sequences w.r.t. to
both {≈} and (≈).

Proof. Let x ∈ Λ be arbitrary but fixed. By Lemma 2.8 we have ωMx ∈ W0

and so [9, 5.5] implies that each matrixMx := {Mx;l : l > 0}, x ∈ Λ, satisfies
both (M{mg}) and (M(mg)). QED

Now we prove the converse implication for Theorem 3.4. Here, the assump-
tion Λ = R>0 for the Beurling case is necessary.

Proposition 3.9. LetM := {Mx ∈ RN
>0 : x ∈ Λ} be (Msc).

(i) The equality

E{M}(R,R) = lim←−
K⊂⊂R

lim−→
x∈Λ,l,h>0

EMx;l,h(K,R)

implies (M{mg}) forM.

(ii) Assume that Λ = R>0, then

E(M)(R,R) = lim←−
K⊂⊂R

lim←−
x∈Λ,l,h>0

EMx;l,h(K,R)

implies (M(mg)) forM.

Proof. We generalize the technique in the proof of [9, Lemma 5.9 (5.11)].
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Roumieu case. For each x ∈ Λ and l > 0 there exists a characteristic function
θx,l ∈ Eglobal{Mx;l}(R,R), see (4). So the inclusion (⊇) implies

∀ x ∈ Λ ∀ l > 0 ∃ y ∈ Λ : Mx;l�My =My;1,

equivalently

∀ x ∈ Λ ∀ l > 0 ∃ y ∈ Λ ∃ C ≥ 1 ∀ j ∈ N :
1

l
ϕ∗
ωMx (lj) ≤ j log(C) + ϕ∗

ωMy (j).

(25)
Consider (25) for all t ≥ 0 instead of all j ∈ N. Then

(
1

l
ϕ∗
ωMx (l·)

)∗
(s) = sup

t≥0

{

st− 1

l
ϕ∗
ωMx (lt)

}

=
1

l
sup
t′≥0

{
st′ − ϕ∗

ωMx (t
′)
}

=
1

l
ϕ∗∗
ωMx (s) =

1

l
ϕωMx (s) =

1

l
ωMx(exp(s)),

which holds since ωMx ∈ W0 and so ϕ∗∗
ωMx (s) = ϕωMx (s). The right hand side

gives

(·D + ϕ∗
ωMy (·))∗(s) = sup

t≥0
{(s−D)t− ϕ∗

ωMy (t)} = ϕ∗∗
ωMy (s−D)

= ϕωMy (s−D) = ωMy

(
exp(s)

C

)

.

Then we use [9, Lemma 5.7] (since ωMx ∈ W0 we can replace ω by ωMy = ωMy;1

there) and get for s ≥ 0 sufficiently large:

sup
t≥0

{

st− 1

l
ϕ∗
ωMx (lt)

}

≥ sup
j∈N

{

sj − 1

l
ϕ∗
ωMx (lj)

}

≥
︸︷︷︸

(25)

sup
j∈N
{sj − jD − ϕ∗

ωMy (j)} ≥
1

2
sup
t≥0
{st− tD − ϕ∗

ωMy (t)}

=
1

2
ϕ∗∗
ωMy (s−D) =

1

2
ωMy

(
exp(s)

C

)

.

Thus for all t sufficiently large 1
l ωMx(t) ≥ 1

2ωMy

(
t
C

)
holds. Put l = 4 and by

(20) we have shown (M{mg}).
Beurling case. We follow the second Section in [3], see also [9, Proposition

4.6 (1)]. By assumption
⋂

x∈Λ E(Mx)(R,R) ⊆
⋂

x∈Λ,l>0 E(Mx;l)(R,R) and both
are Fréchet spaces. Using the closed graph theorem the inclusion is continuous.
Hence for each compact set K1 ⊆ R, x ∈ Λ, l > 0 and h > 0, there exist C, h1 >
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0, y ∈ Λ and a compact set K2 ⊆ R such that for each f ∈ ⋂x∈Λ E(Mx)(R,R)
we obtain

‖f‖Mx;l,K1,h = sup
t∈K1,j∈N

|f (j)(t)|
hjMx;l

j

≤ C sup
t∈K2,j∈N

|f (j)(t)|
hj1M

y
j

= C‖f‖My ,K2,h1 .

Let K1 be a compact interval containing 0, put h = 1 and take fs(t) := sin(st)+

cos(st) for t ∈ R and s ≥ 0. Note that fs ∈
⋂

x∈Λ E
global
(Mx) (R,R) for any s ≥ 0

since limk→∞(Mx
k )

1/k = +∞ for each x ∈ Λ. Then

sup
j∈N

sj

Mx;l
j

= sup
j∈N

|f (j)s (0)|
Mx;l

j

≤ sup
t∈K1,j∈N

|f (j)s (t)|
Mx;l

j

≤ C sup
t∈K2,j∈N

|f (j)s (t)|
hj1M

y
j

≤ C sup
j∈N

2sj

hj1M
y
j

,

which implies exp(ωMx;l(s)) ≤ 2C exp
(

ωMy

(
s
h1

))

. Using [6, Proposition 3.2]

we get for all j ∈ N

Mx;l
j = sup

t≥0

tj

exp(ωMx;l(t))
≥ sup

t≥0

tj

2C exp
(

ωMy

(
t
h1

)) =
hj1
2C

My
j ,

hence My�Mx;l. We summarize:

∀ x ∈ Λ ∀ l > 0 ∃ y ∈ Λ ∃ D ≥ 1 ∀ j ∈ N : ϕ∗
ωMy (j) ≤ j log(D) +

1

l
ϕ∗
ωMx (lj).

(26)
Now use the proof of the Roumieu case to get ωMy(t) ≥ 1

2lωMx

(
t
D

)
for t suffi-

ciently large. The choice l = 1
4 and (21) imply (M(mg)). QED

3.10 Classes E[ωM] defined by a weight matrix of associated func-
tions

The goal of this section is to prove

Theorem 3.11. Let M := {Mx ∈ RN
>0 : x ∈ Λ} be (Msc), let r, s ∈ N>0

and U be a non-empty open set in Rr.

(i) (M{L}) forM implies

E{ωM}(U,R
s) = lim←−

K⊂⊂U

lim−→
x∈Λ,l,h>0

EMx;l,h(K,R
s),
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(ii) (M(L)) forM implies

E(ωM)(U,R
s) = lim←−

K⊂⊂U

lim←−
x∈Λ,l,h>0

EMx;l,h(K,R
s)

as locally convex vector spaces.

The main Theorem 3.2 follows then by combining Theorem 3.7 and Theorem
3.11.

We start with the following result:

Proposition 3.12. LetM := {Mx ∈ RN
>0 : x ∈ Λ} be (Msc).

(i) (M{L}) implies

∀ x ∈ Λ ∃ y ∈ Λ : ωMy(2t) = O(ωMx(t)) as t→∞. (27)

(ii) (M(L)) implies

∀ x ∈ Λ ∃ y ∈ Λ : ωMx(2t) = O(ωMy(t)) as t→∞. (28)

If all associated functions are equivalent w.r.t. ∼, then each/some ωMx satisfies
(ω1).

Proof. By (M{L}) for each x ∈ Λ and each h > 0 there exists y ∈ Λ and

D > 0 such that Mx
k h

k ≤ DMy
k holds for all k ∈ N. Multiplying with tk for

arbitrary t > 0 we get (ht)k

My
k
≤ D tk

Mx
k
and finally log

(
(ht)k

My
k

)

≤ log
(

tk

Mx
k

)

+ D1,

which holds for all k ∈ N. So by definition ωMy(ht) ≤ ωMx(t) +D1 holds and it
is enough to take h = 2.

The Beurling case is completely analogous, use (M(L)) instead of (M{L}).
QED

The next result generalizes [9, Lemma 5.9 (5.10)].

Proposition 3.13. Let {σx ∈ W0 : x ∈ Λ} be given and assume the
Roumieu type condition (see Proposition 3.12 above):

∀ x ∈ Λ ∃ y ∈ Λ : σy(2t) = O(σx(t)) as t→∞.

Then

∀ x ∈ Λ ∀ s ∈ N ∃ y ∈ Λ ∃ L ≥ 1 ∀ a > 0 ∀ j ∈ N :

exp

(
1

a
ϕ∗
σx
(aj)

)

exp(s)j ≤ exp

(∑s
i=1 L

i

Lsa

)

exp

(
1

Lsa
ϕ∗
σy
(Lsaj)

)

.
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If the Beurling type condition

∀ x ∈ Λ ∃ y ∈ Λ : σx(2t) = O(σy(t)) as t→∞

holds, then

∀ x ∈ Λ ∀ s ∈ N ∃ y ∈ Λ ∃ L ≥ 1 ∀ a > 0 ∀ j ∈ N :

exp

(
1

a
ϕ∗
σy
(aj)

)

exp(s)j ≤ exp

(∑s
i=1 L

i

Lsa

)

exp

(
1

Lsa
ϕ∗
σx
(Lsaj)

)

.

If each ωMx has (ω1), then the Roumieu and the Beurling case is satisfied with
x = y.

Proof. We consider the Roumieu case. For all x ∈ Λ there exist y ∈ Λ and
L ≥ 1 with σy(4t) ≤ Lσx(t)+L for all t ≥ 0, hence ϕσy(t+1) = σy(exp(t+1)) ≤
Lσx(exp(t)) + L. First we have

ϕ∗
σy
(Ls) = L sup

{

st− 1

L
ϕσy(t) : t ≥ 0

}

≥ L sup{st− (1 + ϕσx(t− 1)) : t ≥ 0}

≥ L sup{s(t− 1) + s− 1− ϕσx(t− 1) : t ≥ 1} = Ls− L+ Lϕ∗
σx
(s),

and so

∀ x ∈ Λ ∃ y ∈ Λ ∃ L ≥ 1 ∀ t ≥ 0 : Lϕ∗
σx
(t) + Lt ≤ L+ ϕ∗

σy
(Lt).

Using induction on this inequality we get

∀ x ∈ Λ ∀ s ∈ N ∃ y ∈ Λ ∃ L ≥ 1 ∀ t ≥ 0 :

Lsϕ∗
σx
(t) + sLst ≤ ϕ∗

σy
(Lst) +

s∑

i=1

Li.

Now put t = aj for j ∈ N and a > 0, divide by Lsa and finally apply exp. QED

Propositions 3.12 and 3.13 imply

Corollary 3.14. LetM := {Mx ∈ RN
>0 : x ∈ Λ} be (Msc).

(i) IfM has (M{L}), then

∀ x ∈ Λ ∀ h > 0 ∃ y ∈ Λ ∀ a > 0 ∃ D > 0 ∃ b > 0 ∀ j ∈ N :

Mx;a
j hj ≤ DMy;b

j . (29)

(ii) IfM has (M(L)), then

∀ x ∈ Λ ∀ h > 0 ∃ y ∈ Λ ∀ b > 0 ∃ D > 0 ∃ a > 0 ∀ j ∈ N :

My;a
j hj ≤ DMx;b

j . (30)
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Using (29) in the Roumieu and (30) in the Beurling case we get Theorem
3.11 and are done.

We can also prove:

Corollary 3.15. LetM := {Mx ∈ RN
>0 : x ∈ Λ} be (Msc), then (27)⇐⇒(29)

and (28)⇐⇒(30).

Proof. It remains to show (⇐=). In (29) let h = 2, a = 1, multiply with tj

for arbitrary t > 0 and apply log. Thus ωMy;b(2t) = O(ωMx(t)) holds as t→∞.
Finally [9, Lemma 5.7] implies ωMy;b∼ωMy for each b > 0. The case for (30) is
analogous. QED

3.16 Applications of Theorem 3.2

IfM = Ω for some ω ∈ W, then by Theorem 3.2 and [9, Theorem 5.14] we
get E[ω] = E[Ω] = E[ωΩ] = E[ωΩl ] for each l > 0. More generally we can prove

Corollary 3.17. Let M = {Mx : x > 0} have (Msc). Then the following
are equivalent:

(i) There exists ω ∈ W with E[M] = E[ω].

(ii) There exists a (Msc)-matrix N = {Nx : x > 0} withM[≈]N , such that
ωNx∼ωNy for each x, y > 0 and N has (M[mg]) and (M[L]).

Proof. (i)⇒ (ii) We can take N = Ω, see [9, Proposition 4.6, Lemma 5.7]
and [9, Theorem 5.14, Corollary 5.15].

(ii)⇒ (i) Combining Theorem 3.2 and [9, Theorem 5.14] we get

∀ x > 0 : E[M] = E[N ] = E[ωN ] = E[ωNx ] = E[Nx] (31)

with N x := {Nx;l : l > 0}. Note that ωMx ∈ W for each x > 0, see Proposition
3.12. So we can take ω = ωNx and Ω = N x for some arbitrary x > 0, i.e.
Ωl = Nx;l.

Finally by [9, Proposition 4.6] we getM[≈]N x and any σ ∈ W with E[σ] =
E[M] satisfies σ∼ωNx by [9, Corollary 5.17]. QED

Let M = {Mx : x ∈ Λ} be (Msc) given, then in general we will not have
ωMx∼ωMy for any x, y ∈ Λ. On the one hand by definition ωMy ≤ ωMx whenever
x ≤ y and on the other hand [7, 1.8 III] yields ωMx(t) = supp∈N p log(t) −
log(Mx

p ) = pt,x log(t)− log(Mx
pt,x), where µ

x
pt,x ≤ t < µxpt,x+1. So ifM satisfies

∀ x, y > 0 x ≤ y ∃ C ≥ 1 ∃ t0 ≥ 1 ∀ t ≥ t0 ∃ q ∈ N :
(My

q )C

Mx
pt,x

≤ tqC−pt,x , (32)

then all associated functions are equivalent w.r.t. ∼. Moreover we can prove:



Characterization of ultradifferentiable test functions 21

Lemma 3.18. Let M,N ∈ LC.

(1) If ωM satisfies (ω1), then M�N =⇒ ωM�ωN .

(2) If N satisfies (mg), then ωN�ωM =⇒ N�M .

Proof. (1) For all t > 0 we get

ωM (t) = sup
p∈N

(p log(t)− log(Mp)) ≥
︸︷︷︸

M�N

sup
p∈N

(p log(t)− log(DpNp)) = ωN

(
t

D

)

for a constant D > 0 (large). Iterating (ω1) we have ωM (2nt) ≤ CnωM (t) + C
for a constant C ≥ 1 and all t ≥ 0. Choose now n ∈ N minimal such that
D ≤ 2n, hence ωN (t) ≤ ωM (Dt) ≤ ωM (2nt) ≤ CnωM (t) + C for all t ≥ 0 and
so ωN (t) = O(ωM (t)) as t→∞.

(2) By [6, Proposition 3.6] condition (mg) for N implies (ω6) for ωN . Using
[6, Proposition 3.2] we can estimate for all p ∈ N:

Mp = sup
t>0

tp

exp(ωM (t))
≥
︸︷︷︸

ωM�ωN

sup
t>0

tp

exp(C1ωN (t) + C1)

≥ C2 sup
t>0

tp

exp(ωN (Hnt) + (2n − 1)H)
= C3

(
1

Hn

)p

Np,

where n ∈ N is chosen minimal such that C1 ≤ 2n (iterating (ω6) as in (24)).
Thus N�M follows. QED

3.19 Roumieu case versus Beurling case

For E[M] and E[ωM] it is also important to know whether one can replace
in their definitions the Roumieu classes E{Mx}, E{ωMx} by the Beurling classes
E(Mx), E(ωMx ). In the case E[M] this can be done assuming (M[BR]), see [9, 4.2
(4.4)]. If M = Ω for some ω ∈ W, then (ω7) is sufficient to guarantee this
property for the Roumieu case and the Beurling case, see [9, Theorem 5.14 (4)].

Proposition 3.20. LetM = {Mx : x ∈ Λ} be (Msc).

(i) IfM has (M{BR}) and each Mx has (mg), then

∀ x ∈ Λ ∃ y ∈ Λ : ωMx⊳ωMy , (33)

which implies
⋃

x∈Λ E{ωMx} =
⋃

x∈Λ E(ωMx ).
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(ii) IfM has (M(BR)) and each Mx has (mg), then

∀ x ∈ Λ ∃ y ∈ Λ : ωMy⊳ωMx , (34)

which implies
⋂

x∈Λ E{ωMx} =
⋂

x∈Λ E(ωMx ).

(iii) If each ωMx has (ω1) and (33) holds, thenM has (M{BR}).

(iv) If each ωMx has (ω1) and (34) holds, thenM has (M(BR)).

Proof. We consider the Roumieu case (i) and (iii), the Beurling case (ii)
and (iv) is completely analogous.

(i) (33) means

∀ x ∈ Λ ∃ y ∈ Λ ∀ C > 0 ∃ D > 0 ∀ t ≥ 0 : ωMy(t) ≤ CωMx(t) +D.

By assumption (M{BR}) holds, i.e.

∀ x ∈ Λ ∃ y ∈ Λ ∀ h > 0 ∃ Ch > 0 ∀ j ∈ N : Mx
j ≤ Ch h

jMy
j .

Multiplying with tj for arbitrary t > 0 and j ∈ N we get by definition log(Ch)+
ωMx(t) ≥ ωMy(t/h).

Now let 1 > C > 0 be given, (mg) forMy implies (ω6) for ωMy . Iterating this
condition (see (24)) we take k ∈ N minimal with C−1 ≤ 2k and choose h := 1

Hk .

Then C−1ωMy(t) ≤ ωMy(Hkt) + (2k − 1)H = ωMy(t/h) +H1 ≤ ωMx(t) +H2.
(iii) Iterating (ω1) for ωMx gives ωMx(2nt) ≤ LnωMx(t)+

∑n
i=1 L

i. So let 1 >
h > 0 be given and choose n ∈ N>0 minimal with h−1 ≤ 2n. Then ωMx(t/h) ≤
ωMx(2nt) ≤ LnωMx(t) +

∑n
i=1 L

i and choose C := L−n which depends only on
x ∈ Λ and given h. According to x ∈ Λ and C we use (33) and [6, Proposition
3.2] to obtain, for all j ∈ N:

My
j = sup

t≥0

tj

exp(ωMy(t))
≥ sup

t≥0

tj

exp(CωMx(t) +D)

≥ 1

D1
sup
t≥0

tj

exp(ωMx(ht))
=

1

D1hj
Mx

j .

Note that the constant D1 depends also only on x and h. QED

4 Characterization of the non-quasianalyticity of E[M]

LetM be (M), then E[M] is called non-quasianalytic if E[M] contains non-
trivial functions with compact support.

The goal is to characterize this property in terms of the weight matrix M
which gives answer to [9, Remark 4.8].
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Theorem 4.1. LetM = {Mx : x ∈ Λ} be (M).

(i) E{M} is non-quasianalytic if and only if there exists x0 ∈ Λ such that
E[Mx0 ] is non-quasianalytic.

(ii) E(M) is non-quasianalytic if and only if each E[Mx] is non-quasianalytic,
provided Λ = R>0.

Remark 4.2. The theorem above still holds if we assume that each Mx ∈
RN
>0 is arbitrary with Mx

0 = 1 and Mx ≤My whenever x ≤ y, i.e. the assump-
tion that each Mx is increasing is not necessary. This holds by the definitions
of E[M] given in 2.2 and since we work in the proofs of Propositions 4.4 and 4.7

below with the regularizations M lc and M I which will be defined in 4.3. Note
that M ≤ N implies M lc ≤ N lc and M I ≤ N I .

4.3 Non-quasianalyticity of E[M ]

Before we start proving Theorem 4.1 we recall and summarize some facts
for classical Denjoy-Carleman-classes E[M ]. Let M ∈ RN

>0 with M0 = 1, then we

denote by M lc = (M lc
j )j the log-convex minorant of M which is given by

M lc
j := sup

t>0

tj

exp(ωM (t))

resp.

M lc
j := inf{M (l−j)/(l−k)

k M (j−k)/(l−k) : k ≤ j ≤ l, k 6= l},M lc
0 :=M0 = 1

see [6, Definition 3.1] and [7] resp. [5]. Moreover we introduce

M I := (M I
k )k, M I

k :=
(

inf{(Mj)
1/j : j ≥ k}

)k
for k ≥ 1, M I

0 := 1,

see also [5]. ((M I
k )

1/k)k is the increasing minorant of ((Mk)
1/k)k,M

I =M if and
only if k 7→ (Mk)

1/k is increasing. IfM is (lc), thenM =M I and (M lc)I =M lc,
so M lc ≤M I ≤M .

Proposition 4.4. LetM ∈ RN
>0 withM0 = 1. Then E[M ] is non-quasianalytic

if and only if M lc has (nq) and if and only if
∑

p≥1
1

(MI
p )

1/p < +∞. In this case

Cω ( E[M ] = E[MI ] = E[M lc] holds.

Remark: The equivalence
∑∞

p=1
1

(MI
p )

1/p < +∞ if and only if M lc has (nq)

can be shown directly without using the non-quasianalyticity of E[M ], see the
proof of [5, Theorem 1.3.8].
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Proof. By [5, Theorem 1.3.8] and [6, Theorem 4.2] we know that E[M ] is

non-quasianalytic if and only if
∑∞

p=1
1

(MI
p )

1/p < +∞ and if and only if (nq)

holds for M lc. More precisely the Roumieu-case follows directly by [5, Theorem
1.3.8]. If E(M) is non-quasianalytic, then E{M} too and apply [5, Theorem 1.3.8].

If M lc has (nq), then by [6, Theorem 4.2] the class E(M lc) is non-quasianalytic,
hence E(M) too.

Claim. If E[M ] is non-quasianalytic, then

lim
p→∞

(mp)
1/p = +∞⇔ lim

k→∞
(Mp)

1/p

p
= +∞.

We put ap :=
1

(MI
p )

1/p in the well-known Lemma 4.5 below and since (M I
p )

1/p ≤
(Mp)

1/p for all p ∈ N>0 the claim follows.
This claim generalizes remark (b.1) on page 387 in [13] since there (lc) (which

is assumed in (b)) for M was necessary. Moreover it implies Cω ( E[M ].
Finally by [9, Theorem 2.15] and the claim we see that E[M lc] ⊆ E[MI ] ⊆

E[M ] = E[M lc]. QED

Lemma 4.5. Let (ap)p≥1 be a decreasing sequence of positive real numbers
with

∑

p≥1 ap < +∞. Then pap → 0 as p→∞.

4.6 The general case E[M]

Proposition 4.4 shows that E{M} is non-quasianalytic if and only if E(M) is.
In the general case this is not true, e.g. letM = {M1,M2} such thatM1 ≤M2,
E[M1] is quasianalytic whereas E[M2] is not (take M1

p := p! and M2
p := p!s for

some s > 1).
We prove now Theorem 4.1. The Roumieu part is obvious and the Beurling

part will follow from the following Proposition 4.7 which uses the idea of [14,
Lemma 5.1]. We construct a non-quasianalytic sequence N which is smaller than
any sequence in the matrixM. More precisely, we will show that N⊳M, while
in [14, Lemma 5.1] only N(�)M was proved. Moreover the assumptions in [14]
where each Mx is log-convex and µyp ≤ µxp for all p ∈ N and y ≤ x will be not
needed for our proof.

Proposition 4.7. LetM := {Mx ∈ RN
>0 : x ∈ Λ = R>0} satisfy (M) such

that E[Mx] is non-quasianalytic for each x > 0. Then we get:

(i) There exists N with N0 = 1 and N I = N , E[N ] is non-quasianalytic and
N⊳M, so E{N} ⊆ E(M).

(ii) Let U be a non-empty open subset of Rr. For every bounded subset B
in E(M)(U) there exists a sequence N as in (i) such that B is a bounded
subset in E{N}(U), too.
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(iii) Let N := {Nx : x ∈ R>0} satisfy (M) and (M{Cω}) and such that
N⊳M. Then there exists a sequence L which satisfies (lc), (nq) and finally
N⊳L⊳M.

Proof. (i) Since Λ = R>0 andM satisfies (M) we can restrict to Λ = { 1n :
n ∈ N>0}, see 2.2. By [5, Theorem 1.3.8] and [6, Theorem 4.2] we get

∀ x ∈ N>0 :
∑

p≥1

1

((M1/x)Ip)
1/p

< +∞.

Now, as in [14, Lemma 5.1], we introduce sequences (aq)q≥0 and (bq)q≥0 recur-
sively as follows. Put a0 = b0 = 0, then let aq be the first integer such that

aq > bq−1,
∞∑

p=aq+1

1

((M1/(q+1))Ip)
1/p
≤ 2−q

q + 1
. (35)

bq shall be the first integer such that 1
q ((M

1/q)Iaq)
1/aq < 1

q+1((M
1/(q+1))Ibq)

1/bq

holds. Since for each q ∈ N>0 separately p 7→ ((M1/q)Ip)
1/p is increasing, tending

to infinity and since ((M1/q)Ip)
1/p ≥ ((M1/(q+1))Ip)

1/p for each p, q ≥ 1 we have
aq < bq for each q.

Now introduce N = (Np)p as follows. We put N0 := 1 and for p ∈ N>0 we
set

(Np)
1/p =

1

q
((M1/q)Ip)

1/p for bq−1 ≤ p ≤ aq,

(Np)
1/p =

1

q
((M1/q)Iaq)

1/aq for aq + 1 ≤ p ≤ bq − 1.

Claim. The mapping p 7→ (Np)
1/p is increasing, i.e. N I = N .

If bq−1 ≤ p < aq and aq+1 ≤ p < bq−1, then (Np)
1/p ≤ (Np+1)

1/(p+1) holds
by definition. If p = aq, then

(Np)
1/p =

1

q
((M1/q)Ip)

1/p ≤ 1

q
((M1/q)Iaq)

1/aq = (Np+1)
1/(p+1)

and if p = bq − 1, then

(Np)
1/p =

1

q
((M1/q)Iaq)

1/aq ≤ 1

q + 1
((M1/(q+1))Ibq)

1/bq = (Np+1)
1/(p+1)

holds by the choice of (bq)q.
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Claim. E[N ] is non-quasianalytic. First we have

∞∑

p=a1+1

1

(Np)1/p
=

∞∑

q=1





bq−1
∑

p=aq+1

1

(Np)1/p
+

aq+1∑

p=bq

1

(Np)1/p





=
∞∑

q=1





bq−1
∑

p=aq+1

q

((M1/q)Iaq)
1/aq

+

aq+1∑

p=bq

q + 1

((M1/(q+1))Ip)
1/p





≤
︸︷︷︸

(⋆)

∞∑

q=1

∞∑

p=aq+1

q + 1

((M1/(q+1))Ip)
1/p

︸ ︷︷ ︸

≤2−q

≤ 1.

(⋆) holds because by the choice of (bq)q we have

1

q + 1
((M1/(q+1))Ip)

1/p ≤ 1

q
((M1/q)Iaq)

1/aq

for aq+1 ≤ p ≤ bq−1. Since N = N I and by [5, Theorem 1.3.8] and [6, Theorem
4.2] we are done.

Claim. N⊳M, i.e. N⊳M1/x for all x ∈ N>0.

We have (Np)
1/p ≤ 1

q ((M
1/q)Ip)

1/p ≤ 1
q (M

1/q
p )1/p whenever p ≥ bq−1, so

E{N} ⊆ E(M) follows.
(ii) Let (Kj)j∈N>0 be a fundamental system of compact subsets of U . For

j ∈ N>0 put

kj := sup
f∈B,i∈N,x∈Kj

22jiji‖f (i)(x)‖Li(Rr,R)

(M1/j)Ii
.

Now introduce (aq)q and (bq)q as in (i) but such that aq is the first integer
satisfying (35) and additionally kq+12

−aq ≤ 1.
Let ‖ · ‖N,K,h be any fundamental continuous semi-norm in E(N), then there

exists k ∈ N with h−1 < 2k and K ⊆ Kk. For all i ∈ N with i > ak there exists
a unique j > k with aj−1 < i ≤ aj . By definition this implies 1

j ((M
1/j)Ip)

1/p ≤
(Np)

1/p for all p ∈ N with p ≤ i and so (M1/j)Ip ≤ jpNp for such p. Thus we get
for all i sufficiently large

sup
x∈K

‖f (i)(x)‖Li(Rr,R)

hiNi
≤ sup

x∈Kj

2kiji‖f (i)(x)‖Li(Rr,R)

(M1/j)Ii
≤ 2−jikj ≤ 2−aj−1kj ≤ 1,

for all f ∈ B.
We are done since by Proposition 4.4 the matrixM has (M(Cω)) and so for

each M1/j separately we get E[(M1/j)lc] = E[(M1/j)I ] = E[M1/j ].
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(iii) By (M{Cω}) and [9, Theorem 2.15 (1)] we can assume that each Nx ∈ N
is log-convex since E{Nx} = E{(Nx)lc} for all x (we can drop all small indices for

which possibly lim infk→∞(nxk)
1/k = 0 without changing the space E{N}).

By Proposition 4.4 and (i) there exists P with P⊳M, E[P ] = E[P lc] and P
lc

has (nq). Consequently E[P lc] is non-quasianalytic and P lc⊳M holds, too.
On the other hand by [4, Lemma 3.5.7] there exists Q with N⊳Q⊳M.
Now put Q′

k := max{P lc
k , Qk}. Since Q′ ≥ P lc we have that E[Q′] is non-

quasianalytic, E[Q′] = E[Q′ lc] and Q
′ lc satisfies (nq).

On the other hand Q′ ≥ Q implies N⊳Q′. Since E[Q′] = E[Q′ lc] and each

Nx ∈ N has (lc), also N ⊳ Q′ lc follows.
Finally Q′ lc⊳M holds because Q′ lc ≤ Q′ and P lc, Q⊳M.
The conclusion follows now by defining L := Q′ lc. QED

IfM = Ω is coming from ω ∈ W, then we obtain the following consequence:

Corollary 4.8. Let ω ∈ W be given, TFAE:

(i) ω has (ωnq),

(ii) E{ω} contains functions with compact support,

(iii) E(ω) contains functions with compact support,

(iv) some Ωl has (nq),

(v) each Ωl has (nq).

Proof. By [9, 5.5] the matrix Ω is (Msc). By [9, 5.5, Corollary 5.8 (1)] we
have (i)⇔ (iv)⇔ (v). The rest follows from Theorem 4.1. QED

5 Characterization of E[M] using the Fourier trans-
form

Using the central results from Sections 3 and 4 we are now able to char-
acterize functions in E[M] in terms of the decay of its Fourier transform. First
put

D(Rr) := {f ∈ E(Rr) : ∃ K ⊂⊂ Rr, supp(f) ⊆ K}.
Let M = {Mx : x ∈ Λ} satisfy (M). If E(M) respectively E{M} is non-
quasianalytic, then

D(M)(U) :=

{f ∈ E(Rr) : ∃ K ⊂⊂ U supp(f) ⊆ K, ∀ x ∈ Λ ∀ h > 0 : ‖f‖Mx,R,h < +∞}
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respectively

D{M}(K) :=

{f ∈ E(Rr) : ∃ K ⊂⊂ U supp(f) ⊆ K, ∃ x ∈ Λ ∃ h > 0 : ‖f‖Mx,R,h < +∞}

is non-trivial.
On the other hand let M = {Mx : x ∈ Λ} be (Msc) and let K ⊂⊂ Rr be

compact. Then for x ∈ Λ and h > 0 introduce the Banach space

D̂x,h(K) := {f ∈ E(Rr) : supp(f) ⊆ K, ‖f‖ˆx,h < +∞},

where ‖f ‖̂x,h :=
∫

Rr |f̂(t)| exp(hωMx(t))dt. So one can define

D̂(ωM)(K) := lim←−
x∈Λ,h>0

D̂x,h(K) D̂{ωM}(K) := lim−→
x∈Λ,h>0

D̂x,h(K),

and for non-empty open U ⊆ Rr

D̂(ωM)(U) := lim−→
K⊂⊂U

D̂(ωM)(K) D̂{ωM}(U) := lim−→
K⊂⊂U

D̂{ωM}(K).

Now we formulate our main theorem:

Theorem 5.1. LetM := {Mx : x ∈ Λ} be (Msc). Moreover assume that

(i) M has (M[L]),

(ii) M has (M[mg]),

(iii) E[M] is non-quasianalytic.

Then we obtain the equalities

D[M] = D[ωM] = D̂[ωM].

Examples. The previous theorem is valid if M = Ω for some ω ∈ W with
(ωnq) or also for the Gevrey-matrix G.

For the proof we have to generalize [2, Lemma 3.3]. Let K ⊂⊂ Rr and let
HK(t) := sups∈K〈t, s〉 be the support function. λr(K) shall denote the Lebesgue
measure of K.

Lemma 5.2. LetM = {Mx : x ∈ Λ} be (Msc) and f ∈ D(Rr).

(i) Let x ∈ Λ and h > 0 be arbitrary and assume that ‖f ‖̂x,h =: C < +∞.
Then

sup
α∈Nr,t∈Rr

|f (α)(t)| exp
(

−hϕ∗
ωMx

( |α|
h

))

≤ C

(2π)r
. (36)

holds.
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(ii) LetM satisfy additionally (M[L]).

In the Roumieu case assume that there exist some x ∈ Λ and C, h > 0
such that (36) is valid. Then there exists D ≥ 1 depending on x, h and the
dimension r and there exist y ∈ Λ and L ≥ 1 depending only on x and r
such that with K := supp(f) we have for all z ∈ Cr

|f̂(z)| ≤ λr(K)
CD

(2π)r
exp

(

HK(Im(z))− h

L
ωMy(z)

)

. (37)

In the Beurling case for arbitrary y ∈ Λ and h > 0 there exists D ≥ 1 depending
on x, h and the dimension r and there exist x ∈ Λ and L ≥ 1 depending only on
y and r such that (37) holds (with y,D,L) provided (36) is valid (with x, h, C).

For (ii) it is sufficient to assume (27) in the Roumieu and (28) in the Beurling
case, see Proposition 3.12.

Proof. (i) Since each ωMx ∈ W0 we can replace in the proof of [2, Lemma
3.3 (1)] the weight ω by ωMx .

(ii) We consider the Roumieu case. Iterating (27) yields ωMy(rt) ≤ L
2ωMx(t)+

L
2 for all t ≥ 0 and for some y ∈ Λ and L ≥ 1 both depending only on x and
r. By (ω3) for ωMy there exists some B ≥ 1 such that (2h/L)ωMy(t)− log(t) ≥
(h/L)ωMy(t)−B for all t ≥ 1.

Then follow [2, Lemma 3.3 (2)]. QED

Lemma 5.2 and the Paley-Wiener theorem for D(K) (see [5, 7.3.1]) imply

Proposition 5.3. Let M = {Mx : x ∈ Λ} be (Msc) with (M[L]), let
K ⊂⊂ Rr be a compact convex set and f ∈ L1(Rr).

(i) The Roumieu case. The following are equivalent:

(a) f ∈ D̂{ωM}(K),

(b) f ∈ D(K) and there exists x ∈ Λ and l > 0 such that ‖f‖ωMx ,K,l <
+∞,

(c) there exist x ∈ Λ and C, l > 0 such that for all z ∈ Cr we have

|f̂(z)| ≤ C exp(HK(Im(z))− lωMx(z)).

(ii) The Beurling case. The following are equivalent:

(a) f ∈ D̂(ωM)(K),

(b) f ∈ D(K) and for all x ∈ Λ and l > 0 we have ‖f‖ωMx ,K,l < +∞,

(c) for all x ∈ Λ and l > 0 there exists C ≥ 1 such that for all z ∈ Cr we
have

|f̂(z)| ≤ C exp(HK(Im(z))− lωMx(z)).

Theorem 5.1 follows now by applying Theorem 3.2 and Proposition 5.3.
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6 Comparison of the classes E[M ] and E[ω]
In [1] the authors compared the classical methods which are used to intro-

duce classes of ultradifferentiable functions, either by a weight sequence M or
a weight function ω. In [9] we have introduced the technique of associating a
weight matrix Ω to a given function ω. The aim of this section is to reformulate
the comparison theorems in view of this new method.

Theorem 6.1. Let ω ∈ W, TFAE:

(i) There exists N ∈ LC with E[N ] = E[ω] = E[Ω],

(ii) ω has (ω6),

(iii) there exists N ∈ LC such that for each l > 0 we have E[Ωl] = E[N ] or

equivalently N≈Ωl.

Additionally we have:

(a) N and each Ωl satisfy (mg).

(b) If ω has (ω2), then lim infp→∞(np)
1/p > 0, (MH) for Ω and

∗ ωN and each ωΩl satisfy (ω2),

∗ N and each Ωl have (β3),

∗ E[ωN ] = E[N ] = E[ω] = E[Ωl] for each l > 0.

If ω has (ω5), then limp→∞(np)
1/p =∞, (M(Cω)) for Ω and ωN and each

ωΩl satisfy (ω5).

In the next theorem we start with a weight sequence N and not with a
weight function ω as before.

Theorem 6.2. Let N ∈ LC with (β3), TFAE:

(i) There exists ω ∈ W such that E[ω] = E[N ],

(ii) N satisfies (mg),

(iii) E[ωN ] = E[N ] holds.

Let Ω := {Ωl : l > 0} be the matrix associated to ω arising in (i). We get
for each l > 0:

(a) ω, ωΩl , ωN ∈ W satisfy (ω6),
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(b) ωΩl∼ω∼ωN ,

(c) E[ωN ] = E[N ] = E[ω] = E[Ωl],

(d) N≈Ωl,

(e) Ωl has (mg).

(f) If N satisfies lim infp→∞(np)
1/p > 0, then

(∗) ω, ωN and each ωΩl have (ω2),

(∗) each Ωl has (β3),

(∗) (MH) for Ω.

If N satisfies limp→∞(np)
1/p = +∞, then

(∗) ω, ωN and each ωΩl have (ω5),

(∗) (M(Cω)) for Ω.

Theorem 6.1 and Theorem 6.2 follow by the results below, [9, Section 5] and
[1], see also [12, 6.1-6.4].

Theorem 6.3. Let ω ∈ W, U ⊆ Rr non-empty open. Then we get:

(1) ω has (ω6) if and only if E[Ωl](U) = E[ω](U) holds for each l > 0. Moreover
for each l > 0

(a) ω∼ωΩl ,

(b) Ωl ∈ LC,
(c) ωΩl ∈ W with (ω6),

(d) Ωx≈Ωy holds for all x, y > 0,

(e) Ωl satisfies (mg).

(2) Let ω be as in (1) with (ω2), then

(a) Ω has (MH),

(b) each Ωl satisfies (β3),

(c) each ωΩl has (ω2).

If ω is as in (1) with (ω5), then

(d) Ω has (M(Cω)),

(e) each ωΩl has (ω5).
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Proof. (1) This was already shown in [9, Section 5].

(2) To prove (β3) for each Ωl we proceed similarly as in [1, Lemma 12
(1)⇒ (2)] (each sequence Ωl satisfies the required assumptions).

If ω has (ω2) or (ω5), then by [9, Lemma 5.7] each ωΩl too and by [9,
Proposition 4.6 (1), Corollary 5.15] we get (MH) or (M(Cω)) for Ω. QED

In the next result we start with a weight sequence M and not with ω.

Theorem 6.4. Let M ∈ LC with (β3) and (mg). Let r ∈ N>0 and U ⊆ Rr

be non-empty open. Then

(1) ωM ∈ W has (ω6).

(2) E[ωM ](U) = E[N l](U) = E[M ](U) for each l > 0, whereN l
p := exp(1lϕ

∗
ωM

(lp)).

Moreover N1 =M and for each l > 0

(a) N l ∈ LC and has (mg),

(b) ωN l∼ωM , ωN l ∈ W with (ω6),

(c) M≈N l.

(3) If M satisfies lim infp→∞(mp)
1/p > 0, then

(a) (ω2) for ωM and each ωN l ,

(b) each N l has (β3) and lim infp→∞(nlp)
1/p > 0.

If M satisfies limp→∞(mp)
1/p =∞, then

(c) (ω5) for ωM and each ωN l ,

(d) each N l has limp→∞(nlp)
1/p = +∞.

Proof. (1) By 2.8 we get ωM ∈ W0, by [1, Lemma 12 (2) ⇒ (4)] we get
(ω1) and by [6, Proposition 3.6] we get (ω6) for ωM .

(2) In Theorem 6.3 consider ω = ωM and then E[ωM ](U) = E[N l](U) for each

l > 0. By [9, 5.5] we have N l ∈ LC and so

Mp = sup
t≥0

tp

exp(ωM (t))
= exp

(

sup
t≥0

(p log(t)− ωM (t))

)

= exp
(
ϕ∗
ωM

(p)
)
=: N1

p ,

for all p ∈ N. Thus E[M ] = E[N1] = E[ωM ] = E[N l] which implies M≈N l and (mg)

follows for each N l.

By 2.8 we have ωN l ∈ W0, hence [9, Lemma 5.7] applied to ωM implies
ωN l∼ωM for each l > 0 and so (ω1) and (ω6) for each ωN l follow.
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(3) By 2.8 the assumption lim infp→∞(mp)
1/p > 0 implies (ω2) for ωM and

each ωN l . Again by [9, Proposition 4.6 (1), Corollary 5.15] we get

lim inf
p→∞

(nlp)
1/p > 0 for each l > 0

and similarly for limp→∞(mp)
1/p = +∞.

To show (β3) for each N
l we follow again [1, Lemma 12 (1)⇒ (2)]. QED

7 Appendix: nuclearity of the connecting mappings
for E[M]

First we recall [6, Lemma 2.3]:

Lemma 7.1. The identity mapping

Cr+1(K,R) −→ C(K,R)

is nuclear for each compact set K ⊂⊂ Rr with smooth boundary.

Let M := {Mx : x ∈ Λ} be (M). For x ≤ y, h ≤ k and a compact set
K ⊂⊂ Rr with smooth boundary consider the inclusion

EMx,h(K,R) −→ EMy ,k(K,R), (38)

and we are going to prove the matrix generalization of [6, Proposition 2.4]:

Proposition 7.2. LetM satisfy (M).

(a) If (M{dc}), then ∀ x ∈ Λ ∀ h > 0 ∃ y ∈ Λ ∃ k > 0 : (38) is nuclear.

(b) If (M(dc)), then ∀ y ∈ Λ ∀ k > 0 ∃ x ∈ Λ ∃ h > 0 : (38) is nuclear.

Proof. As already pointed out in [6, Proposition 2.4], since each inclusion
mapping is a product of two inclusion mappings of the same type, it is enough
to show quasi-nuclearity, see [8, Theorem 3.3.2]. For convenience put X :=
EMx,h(K,R) and Y := EMy ,k(K,R). So we have to show that there exists (uj)j ,
uj ∈ X ′, such that

∑∞
j=1 ‖uj‖X′ < +∞ and

‖f‖Y ≤
∞∑

j=1

|〈f, uj〉X | ∀ f ∈ X.

Now we point out that

‖f‖Y := sup
α∈Nr,x∈K

∣
∣f (α)(x)

∣
∣

k|α|My
|α|

= sup
α∈Nr

‖f (α)‖C(K,R)

k|α|My
|α|

≤
∑

α∈Nr

‖f (α)‖C(K,R)

k|α|My
|α|

. (39)
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By Lemma 7.1 there exists (vj)j , vj ∈ (Cr+1(K,R))′ such that

∞∑

j=1

‖vj‖(Cr+1(K,R))′ < +∞, ‖f (α)‖C(K,R) ≤
∞∑

j=1

∣
∣
∣〈f (α), vj〉Cr+1(K,R)

∣
∣
∣ . (40)

Now let uα,j be the linear functional on X defined by

〈f, uα,j〉 :=
〈f (α), vj〉Cr+1(K,R)

k|α|My
|α|

. (41)

By (39) and (40) we get:

‖f‖Y ≤
∑

α∈Nr ,j∈N
|〈f, uα,j〉| .

Moreover, by (41) we have

|〈f, uα,j〉| =
|〈f (α), vj〉Cr+1(K,R)|

k|α|My
|α|

≤
‖f (α)‖Cr+1(K,R)‖vj‖Cr+1(K,R)

k|α|My
|α|

≤ sup
0≤|q|≤r+1

‖f (α+q)‖C(K,R)‖vj‖Cr+1(K,R)

k|α|My
|α|

≤ sup
0≤|q|≤r+1

‖f‖Xh|α+q|Mx
|α+q|‖vj‖Cr+1(K,R)

k|α|My
|α|

≤ h|α|

k|α|
sup

0≤|q|≤r+1

h|α+q|Mx
|α+q|

h|α|My
|α|

‖f‖X‖vj‖Cr+1(K,R).

(a) Roumieu case. By (M{dc}) for given x ∈ Λ we can find x1 ∈ Λ and H ≥ 1

such that Mx
|α+q| = Mx

|α|+|q| ≤ H |α|Mx1

|α| for all α ∈ Nr and q ∈ Nr with 0 ≤
|q| ≤ r + 1. My ≥Mx1 holds for y ≥ x1 and so

sup
0≤|q|≤r+1

h|α+q|Mx
|α+q|

h|α|My
|α|

≤ AH |α|(1 + hr+1)

for some constant A > 0. Hence if we choose k such that k > Hh ⇔ Hh
k < 1,

then by (40) we get

∑

α∈Nr ,j∈N
‖uα,j‖X′ ≤ A

∑

α∈Nr,j∈N

(
Hh

k

)|α|
‖vj‖(Cr+1(K,R))′)(1 + hr+1) < +∞.

(b) Beurling case. By (M(dc)) for given y ∈ Λ we can find y1 ∈ Λ and H ≥ 1

such that My1
|α+q| ≤ H |α|My

|α| for all α ∈ Nr and q ∈ Rr with 0 ≤ |q| ≤ r + 1.

So for given y ∈ Λ and k > 0 (both small) we can take x ≤ y1, h <
k
H and

estimate as for the Roumieu case. QED
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