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Abstract. We prove that functions with compact support in non-quasianalytic classes g}
of Roumieu-type and a4y of Beurling-type defined by a weight matrix M with some mild reg-
ularity conditions can be characterized by the decay properties of their Fourier transform. For
this we introduce the abstract technique of constructing from M multi-index matrices and as-
sociated function spaces. We study the behaviour of this construction in detail and characterize
its stability. Moreover non-quasianalyticity of the classes £aqy and £ a4y is characterized.

Keywords: Ultradifferentiable functions, non-quasianalyticity, Fourier transform

MSC 2000 classification: 26E10, 30D60, 46E10, 46A13

1 Introduction

Spaces of ultradifferentiable functions are sub-classes of smooth functions
with certain growth conditions on all their derivatives. In the literature two
different approaches are considered to introduce these classes, either using a
weight sequence M = (Mp); or using a weight function w. Given a compact set

K the classes
SO (x)
{h’ka x e K,keN,,

respectively

exp(1/lgz (1K)

should be bounded, where the positive real number h or [ is subject to either
a universal or an existential quantifier and ¢, denotes the Young-conjugate of

{f(k)(x):xEKkeN}
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pw = woexp. In the case of a universal quantifier we call the class of Beurling
type, denoted by £y or €. In the case of an existential quantifier we call the
class of Roumieu type, denoted by £y or &, y. In the following we write &
if either &g,y or &) is considered.

The classes &[py) were considered earlier than &,. For the weight sequence
approach see e.g. [7] and [6], for £, we refer to [2]. In [1] both methods were
compared and it was shown that in general a class &y cannot be obtained by
a weight function w and vice versa. At the beginning, ultradifferentiable classes
were studied using the growth of the derivatives and later with the Fourier
transform. Finally, Braun, Meise and Taylor in [2] have unified both theories.
For a detailed survey we refer to the introductions in [2] and [1].

In [9] we have considered classes £ defined by (one-parameter) weight
matrices M = {M?® : x € A}. The spaces £ and &|,) were identified as
particular cases of £y but one is able to describe more classes, e.g. the class
defined by the Gevrey-matriz G := {(p!*™1),en : s > 0}, see [9, 5.19]. Using this
new method one is able to transfer results from one setting into the other one
and to prove results for &7 and &), simultaneously, e.g. see [9] and [10].

The main aim of this work is to show that assuming some mild properties
for M the functions with compact support Dy C Erq can be characterized
in terms of the decay properties of their Fourier transform.

First, we generalize in Section 3 a central new idea in [9]. We have shown
that to each w we can associate a weight matrix €2 := {(Qé)jzo :1 > 0}, defined
by Qé = exp(1/lpf (7)), such that &, = &gy holds as locally convex vector
spaces.

In this work we start with an abstractly given weight matrix M = {M? : x €
A} satisfying some standard assumptions. To M we associate another matrix
wp = {wpe : ¢ € A} consisting of associated functions wys=. Applying again
the idea of [9] we obtain a matrix {M*! : x € A,l > 0} and iterating this
procedure we get a sequence of multi-index weight matrices consisting of weight
sequences and weight functions. In Section 3 this technique is studied in detail.

First, in 3.3, we will characterize the case where all multi-index weight ma-
trices of weight sequences are equivalent. Thus &} is stable as locally convex
vector space under adjoining indices, see Theorem 3.4. It will turn out that only
in the first step a non-stable effect can occur, see Corollary 3.8.

The spaces associated to the matrices of weight functions in this construction
are always stable. Using results from 3.10 and Theorem 3.4 we can prove the
first main result Theorem 3.2: As locally convex vector spaces the equality
EM) = Eluyy 1s valid.

In the next step, in Section 4, we characterize the non-quasianalyticity of
& m), see Theorem 4.1. Thus the cases where the spaces Dy are non-trivial
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are classified. The Roumieu case is quite clear and for the Beurling case we
generalize [14, Lemma 5.1], where stronger conditions for the matrix M were
assumed.

In Section 5 we combine Theorem 3.2 and Theorem 4.1. Using and gener-
alizing the methods and estimates introduced in [2] we are able to characterize
functions in Dy in terms of the decay properties of their Fourier transform,
see Theorem 5.1. As special case this holds for the Gevrey-matrix G.

Finally, in Section 6, we apply the technique of associating a weight matrix
to prove some variations of comparison results due to [1] concerning the classes
S[M} and g[w]

This work contains some results of the author PhD Thesis, see [12]. The
author thanks his advisors A. Kriegl, P.W. Michor and A. Rainer for the super-
vision and their helpful ideas.

1.1 Basic notation

We denote by £ the class of smooth functions, C¥ is the class of all real
analytic functions. We will write Nsg = {1,2,...} and N = N5oU{0}. Moreover
we put Ryg := {x € R:z > 0}, i.e. the set of all positive real numbers. For a =
(a1, ..., a,) € N” we use the usual multi-index notation, write a! := a;!... !,
la| == ai + -+ + oy and for z = (z1,...,2,) € R” we set @ = (" ---2%". We
also put 0% = 97" - - - 99" and for a given function f : U C R" — R* defined on a
non-empty open set U C R” we denote by f*) the k-th order Fréchet derivative
of f. Let Ey,..., Ex and F be topological vector spaces, then L(E1,..., E, F)
is the space of all bounded k-linear mappings F1 X --- X B, — F. If E = FE;
for i = 1,...,k, then we write L*(E, F). With || - ||[g» we denote the Euclidian
norm on R”.

Let K CC R" be a compact set with smooth boundary, then £(K,R®) de-
notes the space of all smooth functions on the interior K° such that each deriva-
tive of f can be continuously extended to K.

Convention: Let x € {M,w, M}, then we write &, if either £,y or & is
considered with the following restriction: Statements that involve more than
one &,; symbol must not be interpreted by mixing £,y and &). The same
notation resp. convention will be used for the conditions, so write (M[*]) for

either (My,y) or (M(y)).
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2 Basic definitions

2.1 Weight sequences and classes of ultradifferentiable func-
tions &)y

M = (M), € R§O is called a weight sequence. We introduce also m = (my)x
defined by my := % and p = (uk)g by pr = M]‘k/[:’ o = 1. M is called
normalized if 1 = My < M; holds (w.l.o.g.).

(1) M is called log-convez if

(IC) = VjeN: M]2 < Mj—le—H'
M is log-convex if and only if (uy)x is increasing. If M is log-convex and nor-

malized, then M and k — (M;)Y/* are both increasing, see e.g. [11, Lemma
2.0.4].

(2) M has moderate growth if
(mg) = 3C >1Vj ke N: My <CIFM;M;.

(3) M is called non-quasianalytic if

— M,
(nq) & E ]\2_1 < +o0.
p=1 P

Using Carleman’s inequality one can show that if M has (lc), then

3Q € Nyp: lim inf 292 > 1.
p—=oo iy

(5) For M = (M), and N = (N,), we write M < N if and only if M, < N,
holds for all p € N. Moreover we define
M\ /P
M <N & 301,C221Vp€N:Mp§CQCpr<:> sup <p> < 400
peN=o \ Vp

and call the sequences equivalent if

M~ N :& M=<Nand N=M.
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(mg) and (nq) are stable w.r.t. ~. Furthermore we will write

, M\ /P
M<JN: Vh>03C,>1VjeN: M; <CyWNj <= lim (”) =0.

P00 P

For convenience we introduce the set

LC:={M € RY,: M is normalized, log-convex, len;o(Mk)l/k = +oo}.
Let r,s € Nyg and U C R" be a non-empty open set. We introduce the classes
of ultradifferentiable functions of Roumieu type by

E(UR?) :={fe&UR°): VK CCUIh>0: |fllar,xn < +oo},
and the classes of ultradifferentiable functions of Beurling type by

Em(UR?) :={fe&UR"): VK CCUVYh>0: |flmrn<-+oo},
where we denote

”f(k) (z) ”Lk(RT',RS)
keN,zeK h* M;,

and ”f(k)(ZE)HLk(Rr’Rs) = sup{||f(k)(x)(vl, e ,Uk)HRs : ||Ui|’R’l‘ <1 V1 <3< ki}
For a compact set K with smooth boundary

EM,h(K; RS) = {f € g(K7 RS) : HfHM,K,h < +OO}

is a Banach space and we define the following topological vector spaces

(1)

| fllagmcn =

Ean(URY) = lim lig £ 4(K,R*) = lim €y (K, R?) (2)
KccU h>0 KCU
and
S(M)(U,Rs) = m gngM’h(K,Rs) = hén E(M)(K,RS) (3)
KCcU h>0 KCU

In Enrp (K, R?) instead of compact sets K with smooth boundary one can also
consider a relatively compact open subset K of U (see [15]) or one can work
with Whitney jets on the compact set K (see [6] and also [1]).

We recall some facts for log-convex M:

(i) We write ELPN(URY) == {f € EWU,R*) : 3h>0: ||f|aun < +00}.
Then there exist characteristic functions

Or € EEPURR) Y j N (9?}(0)‘ > M;, (4)
see [9, Lemma 2.9] and [15, Theorem 1]. Note that the Beurling class

gglobal

M) (R,R) cannot contain such 6/, see [11, Proposition 3.1.2].
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(43) If N is arbitrary, then MXN <= &y C Eny and M<IN <= Eqppy C
S(N). If M € LC, then M<XN «— E[M} - E[N].

(4ii) For any non-empty open set U C R" both classes E; (U, R) and £ (U, R)
are closed under pointwise multiplication, see e.g. [11, Proposition 2.0.8].

2.2 Classes of ultradifferentiable functions defined by weight
matrices

Definition 2.3. Let (A, <) be a partially ordered set which is both up- and
downward directed, A = R+ is the most important example. A weight matriz
M associated to A is a family of weight sequences M := {M® € RY: 2z € A}
such that

(M) & VaeA: M*is normalized, increasing, M* < MY for x < y.
We call M standard log-convez, if

(Mge) & (M) and Ve A: M* e LC.

Also the sequences mj, := % and pi = %, pg =1, will be used.

We introduce spaces of vector-valued ultradifferentiable functions classes
defined by a weight matrices of Roumieu type £y and Beurling type &) as
follows, see also [9, 4.2].

Let r,s € Nyg, let U C R” be a non-empty open set. For all compact sets

K cc U we put

Epp (KR == | & (K R?) Ey(URY) == (] | &y (K, R)

z€EA KccU xzeA
(5)
and
Eoy (K R®) i= () Eun) (K, R®) Euny (U R®) = () Euray (U R®). (6)
TzEA zEA

For a compact set K CC R” one has the representations

5{M}(K,Rs) = hgl 11& SMz’h(K,]RS)
x€A h>0

and so for U C R" non-empty open

Eny(URY) := lim lim lim Epge (K, RY). (7)
KccU zeA h>0
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Similarly we get for the Beurling case

Ea(UR?) := lim  lim lim Epge (K, RY). (8)
KcCcU zeA h>0

If A = Ry we can assume that all occurring limits are countable and restrict
to A = N5 in the Roumieu case. Thus &) (U, R?®) is a Fréchet space and
lim lim Ene n (K, R%) = lim Enn (K, R?) is a Silva space, i.e. a countable
x€A h>0 nENsg
inductive limit of Banach spaces with compact connecting mappings. For more

details concerning the locally convex topology we refer to [9, 4.2-4.4]. In the
appendix in Proposition 7.2 we will show that for some weight matrices the

connecting mappings are even nuclear.

2.4 Conditions for a weight matrix M

We are going to introduce several conditions on M, see also [9, 4.1]. First

consider the following conditions of Roumieu type.
(Mgey) Ve € AIC>03yeAVjeN: M7, SC”IMJZ/

(Mimgy) Y2 €AIC>03y1,y2 € AV j,keN: M2, < C’HRM;.”M;:?
(M) VC>0VzeAID>03yeAVEkeN: C*MF < DM}
(Mystricty) Vo € ATy €A 1 supgen., (%) VR +00

(Mpry) Ve e AJy e A: M*aMY
Analogously we introduce the Beurling type conditions.
(Me)) Ve €AIC>03yecAVjeN: MY, < CIHIMY?
(Mmg)) Vo1, 52 € A3C>03y e AV jk EN:M;/Jrk < C’J‘JF’“M]”.“]W]ZC2

(M) VC>0VzeA3ID>03yeAVkeN: C*MY < DM}

M 1/k
(Mstrict)) Ve € ATy €A 1 supgen., (VE) = 400

(M@pry) Ve e AJye A: MY<M?®
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2.5 Inclusion relations

Given two matrices M = {M?® : 2z € A} and N = {NY : y € AN’} we
introduce
M{ZIN &VaexeATyeN: M*<NY

and
MEN eVye NIxreA: M<NY.

By definition M[=<]N implies Ejpq € Eng and write
M{=IN & M{Z}IN and N{=Z}IM

and

M(=)N & M(ZN and N(<)M.

Moreover, we introduce
MAN :&VeeAVye N : M*<NY,

so M < N implies Emy € Ewy- In [9, Proposition 4.6] the relations above
were characterized for (Mg.) matrices with A = A’ = R-¢. In this context we
introduce also

(Mycey) 3z e A lim infj,_o0 (M) Y% > 0,

(My)  VaeA: liminfy,o(mf)/*F >0,

(Mcey) Vo €A limy oo (m§)V* = +00.

Recall [9, Proposition 4.6]: If (M/cwy) holds then the class of real-analytic-
functions is contained in Egpqy, if (M cw)) then the real-analytic functions are
contained in Exyy. If (My) is satisfied, then the restrictions of entire functions
are contained in & py).

Convention: If A = Ry or Ny, then R+ or Ny are always regarded with
its natural order <. We will call M constant if M = {M} or more generally
if M*~MYV for all z,y € A, which violates both (M guict}) and (M serict))-
Otherwise it will be called non-constant.

2.6 Classes of ultradifferentiable functions &

A function w : [0,00) — [0,00) (sometimes w is extended to C, by w(z) :=
w(|z|)) is called a weight function if

(i) w is continuous,
(77) w is increasing,

(7i1) w(xz) =0 for all € [0,1] (normalization, w.l.o.g.),
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(1v) limy—yoo w(z) = +00.

For convenience we will write that w has (wp) if it satisfies (i) — (iv).
Moreover we consider the following conditions:

(w1) w(2t) = 0O(w(t)) as t — 4o0.
(we) w(t) =O(t) as t — 0.

(w3) log(t) = o(w(t)) as t = 400 (& limy—4 00 =0).

_t
@W(t)
w4) Qo t— w(e) is a convex function on R.

ws) w(t) =o(t) as t — +o0.

(wa)

(ws)

(wg) IH>1Yt>0: 2w(t) <w(Ht)+ H.

(w7)E|H>OE|C>OVt>O w(t?) < Cw(Ht) +C.
)

(Wnq “Odt < oo.

An interesting example is ws(t) := max{0,log(¢)°}, s > 1, which satisfies all
listed properties except (wg). For convenience we define the sets

W :={w :[0,00) — [0,00) : w has (wp), (w3), (w1)},
W = {w e Wy : w has (w1)}.
For w € Wy we can define the Legendre-Fenchel-Young-conjugate ¢}, by
po(x) :=supfey —@u(y) :y 20}, 20

with the following properties, e.g. see [2, Remark 1.3, Lemma 1.5]: It is convex
and increasing, ¢} (0) = 0, ¢ = vu, limg_ s w%(x) = 0 and finally = WT(QD)

and x — %(x) are increasing on [0, 4+00) .
For two weights o, 7 € Wy we write

0=7:=7(t) =0(0(t)) ast = 400
and call them equivalent if
o~T & o=1 and 7=<0.
Moreover introduce

o7 & 7(t) = o(o(t)) as t — +o0.
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Let r,s € Nyg, U C R" be a non-empty open set and w € Wy. The space of
vector-valued ultradifferentiable functions of Roumieu type is defined by

E(UR?) :={fe&EUR*): VK CCUII>0: ||flluxy <+oo}
and the space of vector-valued ultradifferentiable functions of Beurling type by
EWUR) :={feUR*): VK CCUVYI>0: [fllwr <+oo},

where .
up ||f( )($)||Lk(Rr,Rs)
keNzek  exp(7o5(lk))

[ fllw, i1 =

For compact sets K with smooth boundary
Eo)(K,R?) :={f € E(K,R?) || fllw, k0 < 400}

is a Banach space and we consider the following topological vector spaces

g{w}(U,Rs) = I&H hﬂgUJ’l(K,Rs): gn g{w}(K,RS) (10)
KccU >0 KccU
and
Ew(URY) == lim lim &, (K, R) = lim &y, (K,R®). (11)
KccU >0 KccUu

For 0,7 € Wwe get 027 & &5 C & and 70 & &y C (), see [9, Corollary
5.17].
We summarize some facts which are shown in [9, Section 5].

(¢) A central new idea was that to each w € W we can associate a (M)
weight matrix Q := {Q} = (Qé-)jeN :1 >0} by

Qi exp (Fe ).

(41) &) = ) holds as locally convex vector spaces and 2 satisfies (M }),

(M(mg)) and (Myry), (M(1))-

(7i1) Equivalent weight functions w yield equivalent weight matrices w.r.t. both
(=) and {~}. Note that (M|,)) is stable w.r.t. [~], whereas (M) not.

(iv) Defining classes of ultradifferentiable functions by weight matrices as in
(5) and in (6) is a common generalization of defining them by using a
(single) weight sequence M, i.e. a constant weight matrix, or by a weight
function w € W. But one is able to describe also other classes, e.g. the
class defined by the Gevrey-matrix G := {(p!**1),en : s > 0}.



Characterization of ultradifferentiable test functions 11

2.7 Classes of ultra-differentiable functions defined by a weight
matrix of associated functions

Let M € RY,, the associated function wy : R>g — R U {+oo} is defined by

tP My
war(t) == suplog fort > 0, war(0) :== 0. (12)
peN My

Lemma 2.8. If M € LC, then wys belongs to Wj.

Moreover liminf, oo (m,)Y/? > 0 implies (wa), limy o0 (my)/P = +oo im-
plies (ws) for wyy.

We refer to [6, Definition 3.1] and [1, Lemma 12 (iv) = (v)]. That lim(m,)"/? =
+o0 implies (ws) for wyy follows analogously as lim inf(m,)'/P > 0 implies (w2)
for wps as shown in [1, Lemma 12 (iv) = (v)]. Note that by Stirling’s formula
lim inf(m,,)"/? > 0 is precisely (MO0) in [1].

Remark 2.9. Let w € Wy be given, then

(1) Q' € LC for each I > 0 by [9, 5.5],
(2) w~wq for each I > 0 by [9, Lemma 5.7],
(3) w satisfies

(a) (wnq) if and only if some/each Q! satisfies (nq),

(b) (we) if and only if some/each Q' satisfies (mg) if and only if Q'~Q"
for each [,n > 0,

by [9, Corollary 5.8, Theorem 5.14].

Let M = {M?* : z € A} be (M), then we introduce the new weight matrix
wp = {wpye :x € A} Let U C R” be non-empty open and put

o) (UR) = {f €EURY): VK CCUTz € AI> 0+ ||fllungeics < +00}
and
5(MM)(U,RS) ={felUR): VKCCUV2cAVI>0: ||fllwye ki <400}

Thus we obtain the topological vector spaces representations

g{wM}(U7R8) = @ hg 5WMIJ(K7RS) (13)
KccU zeA, >0
and
5(WM)(U,RS) = w 1&11 gwMEyl(K,RS) (14)

KCcU z€eA,>0
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3 Stability of constructing multi-index weight matri-
ces

3.1 Introduction

Let M := {M?* : z € A} be (Mg.). By Lemma 2.8 we get wy= € W) for
each € A. On the other hand by [9, 5.5] to each w € W), we can associate a
(M) weight matrix 2 := {(Qé)jeN :1 > 0} by putting Qé = exp (795(1)).

So one can consider the construction

M7 v wpge v M5 s @) ey = MT2 (15)

where for x € A, l; € R5q, j € N5, and ¢ € N we put

1l 1, ) : 1, )
ME e (gt @) MEY = exp (S ()
lj+1 wM J l1

respectively

P
w1 () 1= 1 —— | f iy, (0) == 0.
Wity (t) Zsolég og (M;C%ll:---vlj) ort >0, Wit (0):=0
On the one hand we obtain a sequence of matrices of weight functions. [9, Lemma
5.7] implies

VxEAVjEN>0Vl1,...,lj>02 Wy railyseenljpg MW ~LL LW, (16)

M:L‘;ll ..... lj

hence this construction is always stable. So for each non-empty open U C R”
we get
oy (UR) = lm L &, (KR (17)
KCCU zeA,l,h>0

and

Ewrg(URY) = lm  lim & a(K.R°). (18)

— ijz;lv
KCCU zeA,l,h>0

On the other hand we get a sequence of matrices of weight sequences. In The-
orem 3.4 we are going to characterize the stability of this construction and we
will see that only in the first step of (15) there can occur a non-stable effect
(see Corollary 3.8).

Finally the aim of this Section is to prove the following result:

Theorem 3.2. Let M := {M* € RY : z € A} be (M), let r,s € N5
and U be a non-empty open set in R". If M has (M) and (Myg), then we
get as locally convex vector spaces

E[M](U, R®) = E[NM](U, R?).
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3.3 Stability of constructing multi-index matrices consisting of
weight sequences

In this section we show the following result which is the first step to prove
Theorem 3.2.

Theorem 3.4. Let M = {M? : z € A} be (Ms). Then M[=|{M*! : x €
A, 1l > 0} if and only if

(1) in the Roumieu-case (M y,g)) holds,
(2) in the Beurling-case (M p,)) holds, provided A = Rxo.

First we prove

Lemma 3.5. For each z € A, Il € Nyg and j € N we get

M7= ()Y (19)

PROOF. We use [6, Proposition 3.2] and get

y>0

= exp <sup {(yj) - %SOUJ]\/[;E (y)}) = sup exp(yj)

y>0 y>0 €xD (1@uwy (V)

Mf;l = exp (;cpZMz (lj)) = exp (; sup{y(lj) — uwpm (y)})

s/ 5! M 1/1
=Ssup—F++———=\|Sup—m——— = (M3 .
“>1 exp (Fwar=(s)) <s>§ exp(wase (8))> (M50

All steps except the last one hold also for [ > 0 instead of [ € N+. QED
The next result generalizes [6, Proposition 3.6].
Proposition 3.6. Let M be (My.), then

(Mimg) <= Vo€ ATH>13yc AVt >0: 2wy (t) < wy=(HE) + H,
(20)
Mmg) = Ve c AFH>13yc AVt>0: 2wpype(t) < wyy(Ht) + H.
(1)
Even if wye~wpy for all z,y € A, (20) or (21) does not imply necessarily (wg)
for each wpy=.
ProoOF. We follow [6, Lemma 3.5, Proposition 3.6] and consider the Roumieu
case. (Mpg)) is equivalent to

. 3 Yy o_.
VeeAIH>13yeAVpeN: My <HP min MyM) = H’N}.
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By [6, Lemma 3.5] we have wyv = 2wpsv and proceed as in [6, Proposition 3.6]
to get

tP tP
2wy (t) = suplog () = sup log :
( pEN Nfo/ pEN minp<g<p M(}“'Mﬁ_q

tPHP
< suplog( — ) = wyr= (Ht).

peEN Mp
Conversely, again as in [6, Proposition 3.6]
tP tP
N/ =sup———— =sUup —————
Pso exp(wne(t) >0 exp(2wprv (L))
tP 1

> gu = MZE.
- tzg exp(wp= (Ht) + H)  HpPexp(H) ?

QED

Now we are able to prove the first part of Theorem 3.4.

Theorem 3.7. Let M = {M® € RY : z € A} be (My), r,s € Noo. If
(Mmg}) holds then for each non-empty open set U C R" we get as locally
convex vector spaces

Epy(URY) = Tm i Eypea (K, RY),
KccU zeAlL,h>0

If (M(mg)) holds then we get as locally convex vector spaces

Em(U,R?) = @ lim Epgan (K, R?).
KCCU z€A,l,h>0

PROOF. Roumieu case. By (19) implication (C) holds in any case since
M=t = M® < MY for < y. We show (2) and by (19) it suffices to prove

VereAVIEN, gdye AJC>1VjeN:

(MY < CIMY & MG < CINMY), (22)
which implies £ye (K, R*) C Env on (K, R?). Now for each 2 € A there exists
D >1and y € A such that M3; < D*(MY)? for all j € N by (Mpg) and so
(22) follows by iterating this estimate [-times.

Beurling case. (D) is valid in any case since M%! = M?® for each z € A. Let
us prove (C), more precisely we show

VeeAVI>03yeAIC>1VjeN: M/ <M, (23)
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which implies Enpy (K, R?) C Eppan o (K, R?). Tterating (21) gives

VeeAVEkeNsgIye AIH>1Vt>0: 2Pwpe(t) < wyw(HR)+(28-1)H.

(24)
Let | € Nog be given (large) and k € N+ be chosen minimal with [ < 2*. For
all x € A and j € N we have as in the proof of (19)

Mm;l/l*su t—j>su t/
i 190 exp(lwnr (1) = rob exp(wazs (HFL) + (28 — 1)H)

1 1y

pu— I M .

exp((2F —1)H) \ HF J
Consequently for arbitrary x € A and | € N5y we find y € A such that
MY<M=1/t, QED

An immediate consequence of Theorem 3.7 is

Corollary 3.8. Let M be (M), then after the first step in (15) the con-
struction yields always equivalent weight matrices of weight sequences w.r.t. to
both {~} and (~).

PROOF. Let z € A be arbitrary but fixed. By Lemma 2.8 we have wy= € W
and so [9, 5.5] implies that each matrix M?® := {M%! : [ > 0}, x € A, satisfies
both (Myg)) and (M g))- QED

Now we prove the converse implication for Theorem 3.4. Here, the assump-
tion A = Ry for the Beurling case is necessary.

Proposition 3.9. Let M := {M® € RY : 2 € A} be (My).
(1) The equality

g{M}(R,R) = I&H hﬂ gMG?;l,h(Kv R)
KCCR z€AL,h>0

implies (M pg) for M.
(7i) Assume that A = Ry, then

EpRR) = lim  lim  Eyeuy(K R)
KCCR zeA,l,h>0

implies (M) for M.

PRrROOF. We generalize the technique in the proof of [9, Lemma 5.9 (5.11)].
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Roumieu case. For each x € A and [ > 0 there exists a characteristic function
0. € gelobal (R R), see (4). So the inclusion (D) implies

{M=i1}
VeeAVI>03yeA: MB <MY= MY,

equivalently

. I, . . . .
VeeAVI>03dye AIC>1VjeN: ?prI(lj)Sjlog(C')+<pry(j).

(25)
Consider (25) for all t > 0 instead of all j € N. Then
1*1*—~t1*lt—1 t =
?PWW( )] (s)= :12115 st — j%w( )¢ = 731;10){8 — . ()}
1 1 1

*k

= 7(prw (5) = Z‘sz\/m (s) = jme (exp(s)),

which holds since wy= € Wy and so @ . (5) = Puye(s). The right hand side
gives

(D + @0, () (s) = igg{(s — D)t =5, ()} = 95, (s = D)

Then we use [9, Lemma 5.7] (since wy= € Wy we can replace w by way = wyyi
there) and get for s > 0 sufficiently large:

1, .1, .
sup {st — 7P (lt)} > sup {5] — 7 Puns (lj)}

t>0 JeN

1
> i — 7D — > — t—tD — " t
(2_5) igg{sy ID = ¢ (1)} 2 5 312113{8 Poony (D)}

1 . 1 exp(s

Thus for all ¢ sufficiently large %wMz (t) > %CL)My (&) holds. Put | = 4 and by
(20) we have shown (M g1 ).

Beurling case. We follow the second Section in [3], see also [9, Proposition
4.6 (1)]. By assumption (,cp Ere)(R,R) € Mpep 50 ey (R, R) and both
are Fréchet spaces. Using the closed graph theorem the inclusion is continuous.
Hence for each compact set K1 CR, x € A, [ > 0 and h > 0, there exist C, h; >
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0, y € A and a compact set K3 C R such that for each f €
we obtain

:EEA )(R7 R)

F@ (¢ F@ (¢
= swp Ol o gy 20
teK1,jeN hJM tekajeN hyM;

= CHf”My,KQ,hr

Let K be a compact interval containing 0, put h = 1 and take fs(t) := sin(st)+
cos(st) for t € R and s > 0. Note that fs € (,en Egbbal(R R) for any s > 0

M®)
since hmk_mo(M")l/lC 400 for each x € A. Then
s/ O £ )

. T; . x;l Sup x;l
jEN Mj jeN Mj teKi,jeN Mj

(4) j
O] _ oy 27

=C o N B M
S 145

teKy,jeN hJ My

which implies exp(wjz:(s)) < 2C exp (wMy (i» Using [6, Proposition 3.2]
we get for all j € N
. tJ tI h
ij =sup ———— > sup = 1My
t>0 eXp(wa?l(t)) t>0 20 exp (WMU (%)) 20
1

hence MY=<M%!. We summarize:

1, )
Ve eAVI>03yecA3ID>1VjeN: ¢  (j)<jlog(D )+7s0wa(l]).

(26)
Now use the proof of the Roumieu case to get wyu (t) > gwy= () for ¢ suffi-
ciently large. The choice [ = § and (21) imply (Mmg))- QED

3.10 Classes &, defined by a weight matrix of associated func-
tions

The goal of this section is to prove

Theorem 3.11. Let M := {M* € RY : 2 € A} be (My), let r,s € Nxg
and U be a non-empty open set in R".

(i) (Myry) for M implies

Eony(UR?) = lim L Eppou (K, RY),
KCCUzxeA,l,h>0
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(4) (M) for M implies

Eur(URY) = lim - lim - Eppe (K, RY)
KCcU zeAl,h>0

as locally convex vector spaces.

The main Theorem 3.2 follows then by combining Theorem 3.7 and Theorem
3.11.
We start with the following result:

Proposition 3.12. Let M := {M® € RY : 2z € A} be (My).
(1) (Myry) implies

VeeATyeA: wyy(2t) = O(wp=(t)) ast — oo. (27)

(i) (My,) implies

VeeAJyeA: wy=(2t) =0(wpw(t)) ast — oco. (28)

If all associated functions are equivalent w.r.t. ~, then each/some wy/= satisfies
(wl).

PrOOF. By (Myyy) for each x € A and each h > 0 there exists y € A and
D > 0 such that M,fhk < DM} holds for all k& € N. Multiplying with tk for

arbitrary ¢ > 0 we get (;\L;)yk < Dﬂ% and finally log (%) < log (51) + D1,
k k k k
which holds for all k£ € N. So by definition wpsv (ht) < wps=(t) + D7 holds and it
is enough to take h = 2.
The Beurling case is completely analogous, use (M) instead of (Myy).

The next result generalizes [9, Lemma 5.9 (5.10)].

Proposition 3.13. Let {0, € Wy : * € A} be given and assume the
Roumieu type condition (see Proposition 3.12 above):

VeeAJyeA: 0y(2t) = O(0,(t)) ast — oo.
Then

VeeAVseNdye AIL>1Va>0VjeN:
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If the Beurling type condition
VeeATJyeA: 0,(2t) = O(oy(t)) ast — oo
holds, then
VreAVseNdye AdL>1Va>0VjeN:

1, . S L L, ,
exp (165, ai) ) exp(e) < exp (2L Y exp (i, (200i)).

If each wpy= has (w1), then the Roumieu and the Beurling case is satisfied with
x=y.

PrOOF. We consider the Roumieu case. For all x € A there exist y € A and
L > 1 with o,(4t) < Lo, (t)+L for all t > 0, hence pq, (t+1) = oy(exp(t+1)) <
Lo, (exp(t)) + L. First we have

1
¢5,(Ls) = Lsup {st — Ecpgy(t) it > O} > Lsup{st — (1 + ¢, (t—1)):t >0}

> Lsup{s(t—1)+s—1—g,(t—1):t>1} = Ls — L + Ly, (s),
and so

VeeAdyeAIL>1VE>0: Ly (t)+ Lt <L+, (Lt).

Using induction on this inequality we get

VreAVseNdye AdIL>1Vt>0:
S
Loy (t) + sLt < of (L°t) + Y L.
i=1
Now put t = aj for j € Nand a > 0, divide by L®a and finally apply exp. QED

Propositions 3.12 and 3.13 imply
Corollary 3.14. Let M := {M® € RY : 2 € A} be (My.).

(i) If M has (Myg,), then

VeeAVh>03yeAVa>03D>03db>0VjeN:
Tiaq j ;b
Mj W < DMj . (29)

(73) If M has (M(L)), then

VereAVh>03dyeAVb>0dD>0da>0VjeN:
TH A ;b
MY < DM;®. (30)
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Using (29) in the Roumieu and (30) in the Beurling case we get Theorem
3.11 and are done.

We can also prove:

Corollary 3.15. Let M := {M® € RY : 2 € A} be (Ms), then (27)<=(29)
and (28)<=(30).

PROOF. It remains to show (<=). In (29) let h = 2, a = 1, multiply with #/
for arbitrary ¢t > 0 and apply log. Thus wyy»(2t) = O(wp=(t)) holds as t — oo.
Finally [9, Lemma 5.7] implies wyy~wprv for each b > 0. The case for (30) is
analogous. QED

3.16 Applications of Theorem 3.2

If M = Q for some w € W, then by Theorem 3.2 and [9, Theorem 5.14] we
get & = Ela) = Elug] = E[wgl} for each [ > 0. More generally we can prove

Corollary 3.17. Let M = {M?* : x > 0} have (Ms.). Then the following
are equivalent:

(i) There exists w € W with &y = -

(it) There exists a (Msc)-matrix N' = {N?® : x > 0} with M[~|N, such that
wnz~wyy for each z,y > 0 and NV has (M) and (M),

PROOF. (i) = (i) We can take N' = Q, see [9, Proposition 4.6, Lemma 5.7]
and [9, Theorem 5.14, Corollary 5.15].
(17) = (i) Combining Theorem 3.2 and [9, Theorem 5.14] we get

Vo >0: &g =EN = Eun = Eiwnel = EN] (31)

with N® := {N%!: [ > 0}. Note that wy= € W for each = > 0, see Proposition
3.12. So we can take w = wy= and Q = N?* for some arbitrary = > 0, i.e.
Ql = N@i,
Finally by [9, Proposition 4.6] we get M[~JN® and any o € W with £;) =
& satisfies o~wy= by [9, Corollary 5.17].
Let M = {M?* : x € A} be (M) given, then in general we will not have
wpre~wpry for any x,y € A. On the one hand by definition wyv < wys= whenever
r < y and on the other hand [7, 1.8 III] yields wys=(t) = sup,eyplog(t) —
log(My) = pixlog(t) —log(M,, ), where pup, <t < pp 4. So if M satisfies
. (qu)c qo_pt,z
Ve,y>0x<y3dC>13ty>1Vit>tgdqeN: e <t , (32)
Pt,x

then all associated functions are equivalent w.r.t. ~. Moreover we can prove:
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Lemma 3.18. Let M, N € LC.
(1) If wyy satisfies (wq), then M<XN — wy<wn.
(2) If N satisfies (mg), then wy=wy = N=M.

PROOF. (1) For all ¢ > 0 we get

ar(t) = sup(plog(t) ~ 0g(01,) > sup(plog(t) ~ log(D*N,)) =aw (1)
pEe MSN J4S

for a constant D > 0 (large). Iterating (w1) we have wps(2"t) < C"wp(t) + C
for a constant C > 1 and all ¢ > 0. Choose now n € N minimal such that
D < 2" hence wy(t) < wpr(Dt) < wpr(2™t) < CMwpy(t) + C for all £ > 0 and
so wy (t) = O(wpr(t)) as t — oo.

(2) By [6, Proposition 3.6] condition (mg) for N implies (wg) for wy. Using
[6, Proposition 3.2] we can estimate for all p € N:

tP tP
M, =sup ———— > su
P00 epwu () = 1b exp(Cran(t) + C1)
W DWN
” tP o 1 \? N
> = —_—
= 72000 explwn (H™) + (27 — 1)H) 3(1—1) P

where n € N is chosen minimal such that C; < 2" (iterating (ws) as in (24)).
Thus N=<M follows. QED

3.19 Roumieu case versus Beurling case

For &z and &, ) it is also important to know whether one can replace
in their definitions the Roumieu classes Eqprey, £,y by the Beurling classes
Emwys E(wpe)- In the case Epy this can be done assuming (Mgp)), see [9, 4.2
(4.4)]. If M = Q for some w € W, then (wy) is sufficient to guarantee this
property for the Roumieu case and the Beurling case, see [9, Theorem 5.14 (4)].

Proposition 3.20. Let M = {M?* : 2 € A} be (Mq).
(i) If M has (Mypgy) and each M* has (mg), then
VeeATJyeA: wys<wpy, (33)

which implies [ J, 5 Efupgat = Uzen Elwpre)
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(43) If M has (M gg)) and each M?® has (mg), then

VeeAJyeA: wyy<wpye, (34)

which implies ﬂxeA g{wMz} = meA S(wMz)'
(#71) If each wps= has (w1) and (33) holds, then M has (Mpgy).
(iv) If each wpy= has (w1) and (34) holds, then M has (M gg)).

PROOF. We consider the Roumieu case (i) and (ii¢), the Beurling case (i)
and (iv) is completely analogous.
(7) (33) means

VeeAIJyeAVC>03ID>0Vt>0: wyv(t) < Cwpe(t)+ D.
By assumption (M ggy) holds, i.e.
VeeAIyeAVh>03C,>0VjeN: M <C,h M.

Multiplying with ¢ for arbitrary ¢ > 0 and j € N we get by definition log(C},) +
wre(t) > warv (t/h).

Now let 1 > C > 0 be given, (mg) for MY implies (wg) for wpsv. Iterating this
condition (see (24)) we take & € N minimal with C~! < 2* and choose h := ﬁ
Then C~ Y wpry (t) < wprs (HR) + (28 — 1)H = wprs (t/h) + Hy < wpye(t) + Ha.

(i) Tterating (wy) for wase gives wpy=(2") < L wpy=(t)+> iy L. Solet 1 >
h > 0 be given and choose n € Ny minimal with 2~ < 27, Then wys=(t/h) <
ware (27t) < L"wpr=(t) + >, L and choose C' := L™ which depends only on
x € A and given h. According to z € A and C we use (33) and [6, Proposition
3.2] to obtain, for all j € N:

y i i
My = igg exp(wpv (t)) = 212110) exp(Cwyy=(t) + D)
1 t 1
DS (o ()~ Dy

Note that the constant D; depends also only on x and h. QED

4 Characterization of the non-quasianalyticity of &

Let M be (M), then &y is called non-quasianalytic if &rq contains non-
trivial functions with compact support.

The goal is to characterize this property in terms of the weight matrix M
which gives answer to [9, Remark 4.8].
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Theorem 4.1. Let M = {M?* : z € A} be (M).

(1) Emy is non-quasianalytic if and only if there exists xgp € A such that
M=o is non-quasianalytic.

(i) €y is non-quasianalytic if and only if each &/2) is non-quasianalytic,
provided A = R<g.

Remark 4.2. The theorem above still holds if we assume that each M?* €
]R§O is arbitrary with M =1 and M* < MY whenever x < y, i.e. the assump-
tion that each M?® is increasing is not necessary. This holds by the definitions
of &) given in 2.2 and since we work in the proofs of Propositions 4.4 and 4.7
below with the regularizations M and M’ which will be defined in 4.3. Note
that M < N implies M'e < Nl and M1 < N7,

4.3 Non-quasianalyticity of &

Before we start proving Theorem 4.1 we recall and summarize some facts
for classical Denjoy-Carleman-classes 5. Let M € RY, with My = 1, then we
denote by M = (M ch) ; the log-convex minorant of M which is given by

tJ
M =sup———
J >0 exp(war(t))

resp.
MY = inf{ MR GRNR) <G <k £ 1y, MY = My =1

see [6, Definition 3.1] and [7] resp. [5]. Moreover we introduce
, k
ML= (M), M= (inf{(Mj)l/J Lj> k}) fork>1, M{:=1,

see also [5]. ((MF)Y/*); is the increasing minorant of ((My)/*),, M = M if and
only if k +— (Mj,)'/* is increasing. If M is (Ic), then M = M and (M')! = M,
so M < M' < M.

Proposition 4.4. Let M € R§0 with Mo = 1. Then &}y is non-quasianalytic

if and only if M has (nq) and if and only if > op>1 —d— < +oo. In this case

77
CY C & = S[MI] = S[Mlc} holds.
1

Remark: The equivalence > %, Qe < oo if and only if M has (nq)
P
can be shown directly without using the non-quasianalyticity of &5y, see the

proof of [5, Theorem 1.3.8].
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ProOOF. By [5, Theorem 1.3.8] and [6, Theorem 4.2] we know that &) is

non-quasianalytic if and only if 3772, W
P

holds for M'®. More precisely the Roumieu-case follows directly by [5, Theorem

1.3.8]. If €5y is non-quasianalytic, then £y too and apply [5, Theorem 1.3.8].

< +oo and if and only if (nq)

If M'¢ has (nq), then by [6, Theorem 4.2] the class & ey 1s non-quasianalytic,
hence &,y too.
Claim. If &y is non-quasianalytic, then

M. )Y/P
lim (m,)'/? = 400 & lim (M) = +00.
pP—00 k—o0 p
We put a,, := W in the well-known Lemma 4.5 below and since (M}{ yr <

(M,)'/? for all p € N+ the claim follows.

This claim generalizes remark (b.1) on page 387 in [13] since there (lc) (which
is assumed in (b)) for M was necessary. Moreover it implies C* C &5

Finally by [9, Theorem 2.15] and the claim we see that Eppe © Epyr C
&y = Epnier-

Lemma 4.5. Let (a,)p>1 be a decreasing sequence of positive real numbers
with > -, ap < +00. Then pa, — 0 as p — oo.

4.6 The general case &

Proposition 4.4 shows that &,y is non-quasianalytic if and only if &y is.
In the general case this is not true, e.g. let M = {M?', M2} such that M < M?,
& is quasianalytic whereas )y is not (take MZ} := p! and Mg := pl® for
some s > 1).

We prove now Theorem 4.1. The Roumieu part is obvious and the Beurling
part will follow from the following Proposition 4.7 which uses the idea of [14,
Lemma 5.1]. We construct a non-quasianalytic sequence N which is smaller than
any sequence in the matrix M. More precisely, we will show that N <M, while
in [14, Lemma 5.1 only N (<)M was proved. Moreover the assumptions in [14]
where each M7 is log-convex and u < py, for all p € N and y < z will be not
needed for our proof.

Proposition 4.7. Let M := {M® € RY : 2 € A = R} satisfy (M) such
that &[p/+] is non-quasianalytic for each z > 0. Then we get:
(i) There exists N with Ny = 1 and N/ = N, &N 1s non-quasianalytic and
N<M, so E{N} - E(M)

(i) Let U be a non-empty open subset of R". For every bounded subset B
in Erq)(U) there exists a sequence N as in (i) such that B is a bounded
subset in & (U), too.
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(#4i) Let N := {N® : x € Ryo} satisfy (M) and (Myewy) and such that
N <M. Then there exists a sequence L which satisfies (Ic), (nq) and finally
N<ALaM.

PROOF. (i) Since A = R+ and M satisfies (M) we can restrict to A = {1 :
n € Nyo}, see 2.2. By [5, Theorem 1.3.8] and [6, Theorem 4.2] we get

1
VazeNsg: TN, < 100
,; (L)1)

Now, as in [14, Lemma 5.1}, we introduce sequences (aq)q>0 and (bq)q>0 recur-
sively as follows. Put ag = by = 0, then let a, be the first integer such that

o0

1 274
< .
Qg > bqfh p:az+1 ((Ml/(q—l—l))}[))l/p g+ 1 (35)
q

bq shall be the first integer such that %((Ml/q)éq)l/“q < qfll((Ml/(qH))iq)l/bq
holds. Since for each q € N+ separately p — ((M/ q)é)l/ P is increasing, tending
to infinity and since ((Ml/q){))l/i’ > ((Ml/(qul))If))l/p for each p,q > 1 we have
aq < by for each q.

Now introduce N = (INVp),, as follows. We put Ny := 1 and for p € N5 we
set

(N,)/7 — ;((MI/Q)II))l/P for by 1 <p < ay,

1
(NP = < ((M/%);,)1% for ag+1<p<by— 1.
Claim. The mapping p — (Np)l/p is increasing, i.e. N/ = N.
Ifbg—1 <p<agand ag+1 < p < by—1, then (Np)l/p < (Np+1)1/(p+1) holds
by definition. If p = a4, then

1 1
(N)!/? = (M) < = (M) )1 = (N /)

s

and if p = b, — 1, then

1 1
(N7 = (V1)) < g ()] )1 = () /0D

holds by the choice of (by),.
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Claim. &y is non-quasianalytic. First we have

oo 1 0o bg—1 1 gt .
- Lt 1
p=§1:+1 (Np)'/P qz=; p=§q:+1 (Np)L/P pgb:q (Np)1/P
00 bg—1 “
=> qz e QZH g+1
q=1 \p=aq+1 ((Ml/q)éq)l/aq = ((Ml/(qul))ZI?)l/p

oo g+1
EHIPS (/e = b

<29
(%) holds because by the choice of (b;), we have

1 1/(g+1)\I\1/p 1 1/g\I \1/a
ﬁ((M [y e < g((M [1) )M
for ag+1 < p < b,;—1. Since N = N and by [5, Theorem 1.3.8] and [6, Theorem
4.2] we are done.

Claim. N<M, i.e. N<MY/® for all z € Nog.

We have (N,)'/7 < é((Ml/q)II,)l/p < %(Mg/q)l/” whenever p > b,_1, so
5{1\7} - S(M) follows.

(i7) Let (Kj)jen., be a fundamental system of compact subsets of U. For
J € N5 put

22977 £ (@) | o e )
kj = sup T
feBieNzeK; (M /J)i

Now introduce (aq), and (by)q as in (i) but such that a, is the first integer
satisfying (35) and additionally kg4127% < 1.

Let || - [[v,x,n be any fundamental continuous semi-norm in &y, then there
exists k € N with h~! < 28 and K C K. For all i € N with ¢ > a;, there exists
a unique j > k with a;_; < i < a;. By definition this implies %((Ml/j)}{)l/p <
(N,)/P for all p € N with p < i and so (Ml/j)ll, < jPN, for such p. Thus we get
for all ¢ sufficiently large

IO @Iz @ g 241570 @) ey _ |
- ’ < ) <9I < 91 <
jl&l}g hZNZ N :cseufl?j (Ml/]){ o 2 k] - 27 k] — 17
for all f € B.

We are done since by Proposition 4.4 the matrix M has (M cw)) and so for
each M/ separately we get 5[(M1/j)lc} = 8[(M1/j)1} = 8[M1/j].
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(#1) By (Mycwy) and [9, Theorem 2.15 (1)] we can assume that each N* € N/
is log-convex since Eqnay = Eg(yeyicy for all z (we can drop all small indices for

which possibly lim inf k_mo(ni)l/ k = 0 without changing the space Eny)-

By Proposition 4.4 and (i) there exists P with P<M, &p) = & pie and ple
has (nq). Consequently S[Plc] is non-quasianalytic and P°<2M holds, too.

On the other hand by [4, Lemma 3.5.7] there exists @ with N'<Q<IM.

Now put Q) = max{P,iC,Qk}. Since Q' > P we have that &g 1s non-
quasianalytic, g = |gne) and Q''° satisfies (nq).

On the other hand Q' > @ implies N'<1Q’. Since &g = €] and each

N® € N has (Ic), also N <1 Q"¢ follows.
Finally Q'*<a<M holds because Q"' < @’ and P'°, Q<M.
The conclusion follows now by defining L := Q'°. QED

If M = Q is coming from w € W, then we obtain the following consequence:
Corollary 4.8. Let w € W be given, TFAE:

(i) w has (wnq),
(i E{W} contains functions with compact support,

)
)
(vi1) 5(w contains functions with compact support,
(iv) some € has (nq),

)

(v) each Q' has (nq).

PROOF. By [9, 5.5] the matrix € is (Ms.). By [9, 5.5, Corollary 5.8 (1)] we
have (i) < (iv) < (v). The rest follows from Theorem 4.1. QED

5 Characterization of £, using the Fourier trans-
form

Using the central results from Sections 3 and 4 we are now able to char-
acterize functions in &y in terms of the decay of its Fourier transform. First
put

DR"):={fe€&R"): 3K CCR", supp(f) C K}.
Let M = {M* : x € A} satisfy (M). If £y respectively Eagy is non-
quasianalytic, then

{feéR"): K cCU supp(f) CK, Ve e AVh>0 :|f|laern <—4oo}
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respectively

{fe&R"): IKCCUsupp(f) CK,3x€AIh>0 :|fllpmern <400}

is non-trivial.
On the other hand let M = {M?* : 2 € A} be (Ms.) and let K CC R" be
compact. Then for x € A and h > 0 introduce the Banach space

Don(K) = {f € ER") : supp(f) € K, || fllo < +o0},

where || f[[,, = Jgr |/(t)] exp(hwpy=(t))dt. So one can define

Dl (K) = lim Dy 5 (K) Doy (K) == lim D, p(K),
z€A,h>0 zeN,h>0

and for non-empty open U C R"

Diwpy(U) i= lim Dy, (K) Dy (U) i= lim Dy, 3 (K).
Kccu Kccu

Now we formulate our main theorem:
Theorem 5.1. Let M := {M?*:x € A} be (Mg.). Moreover assume that

(i) M has (M[L}),
(41) M has (M),
(iii) Enq is non-quasianalytic.
Then we obtain the equalities
Dy = Do) = Dlopa-

Examples. The previous theorem is valid if M = Q) for some w € W with
(wnq) or also for the Gevrey-matrix G.

For the proof we have to generalize [2, Lemma 3.3]. Let K CC R" and let
Hy (t) := supseg (t, s) be the support function. A, (K) shall denote the Lebesgue
measure of K.

Lemma 5.2. Let M = {M? : 2 € A} be (M) and f € D(R").

(i) Let x € A and h > 0 be arbitrary and assume that Hfoh =: C < +oo.

Then o
o |r@le (net (5)) < o @0

Q€N teR”

holds.
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(ii) Let M satisfy additionally (M)).

In the Roumieu case assume that there exist some z € A and C,h > 0
such that (36) is valid. Then there exists D > 1 depending on z, h and the
dimension r and there exist y € A and L > 1 depending only on x and r
such that with K := supp(f) we have for all z € C"

f <M(K)—=——
FE <00 o
In the Beurling case for arbitrary y € A and h > 0 there exists D > 1 depending
on z, h and the dimension r and there exist z € A and L > 1 depending only on
y and r such that (37) holds (with y, D, L) provided (36) is valid (with x, h, C).

For (i7) it is sufficient to assume (27) in the Roumieu and (28) in the Beurling
case, see Proposition 3.12.

DT exp (HK(Im(z)) - ZwMy(z)> . (37)

PROOF. (i) Since each wy= € Wy we can replace in the proof of [2, Lemma
3.3 (1)] the weight w by wps=.

(7i) We consider the Roumieu case. Iterating (27) yields wpsv (rt) < %w M (t)+
% for all t > 0 and for some y € A and L > 1 both depending only on z and
7. By (w3) for wpsy there exists some B > 1 such that (2h/L)wsw (t) — log(t) >
(h/L)wprv(t) — B for all ¢ > 1.

Then follow [2, Lemma 3.3 (2)]. QED

Lemma 5.2 and the Paley-Wiener theorem for D(K) (see [5, 7.3.1]) imply

Proposition 5.3. Let M = {M* : z € A} be (M) with (M), let
K CC R" be a compact convex set and f € L'(R").

() The Roumieu case. The following are equivalent:

(@) [ € Dy (K),

(b) f € D(K) and there exists € A and [ > 0 such that || fl|w,,. k1 <
+-00,

(c) there exist x € A and C,l > 0 such that for all z € C" we have

/(2)] < Cexp(Hi (Im(2)) — lwpr=(2)).
(ii) The Beurling case. The following are equivalent:
(a) f € ﬁ(wM)(K)a

(b) f e D(K) and for all z € A and [ > 0 we have || f||w,,.. k1 < +00,

(c) for all z € A and [ > 0 there exists C' > 1 such that for all z € C" we
have

£ ()] < Cexp(Hg (Im(2)) — lwp=(2)).

Theorem 5.1 follows now by applying Theorem 3.2 and Proposition 5.3.
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6 Comparison of the classes &), and &,

In [1] the authors compared the classical methods which are used to intro-
duce classes of ultradifferentiable functions, either by a weight sequence M or
a weight function w. In [9] we have introduced the technique of associating a
weight matrix € to a given function w. The aim of this section is to reformulate
the comparison theorems in view of this new method.

Theorem 6.1. Let w € W, TFAE:
(¢) There exists N € LC with S[N} = 5[w] = g[m,
(77) w has (ws),

(¢4i) there exists N € LC such that for each I > 0 we have &g = &Ny or
equivalently N~

Additionally we have:

(a) N and each Q! satisfy (mg).
(b) If w has (wa), then liminf, . (n,)/? > 0, (My) for Q and

* wy and each wq satisfy (w2),
* N and each Q! have (83),
* g[wN] — E[N] = (S'M = 5[911 fOT each l > 0.

If w has (ws), then lim, o0 (n,) /P = oo, (Mcwy) for © and wy and each
wey satisty (ws).

In the next theorem we start with a weight sequence N and not with a
weight function w as before.

Theorem 6.2. Let N € £C with (f3), TFAE:

(i) There exists w € W such that &) = &Ny,

(7i) N satisfies (mg),

1% N1 holds.
Eiun] = € hold

wn] T

Let Q := {Q': 1 > 0} be the matrix associated to w arising in (i). We get
for each [ > 0:

(@) w,war,wy € W satisty (wg),
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(b) woi~w~wyN,

(€) €y = €N = &) = &y,

)
)
(d) N=Q!,
(¢) €' has (mg).
)

(f) If N satisfies lim inf,_,(n,)"/? > 0, then

(*) w,wn and each wq have (w2),

(¥) each Q' has (B3),

() (My) for €.
If N satisfies lim,, o0 (n,) /P = +o00, then

(*) w,wn and each wg have (ws),
(*) (M(cwy) for Q.
Theorem 6.1 and Theorem 6.2 follow by the results below, [9, Section 5] and

[1], see also [12, 6.1-6.4].
Theorem 6.3. Let w € W, U C R" non-empty open. Then we get:

(1) w has (ws) if and only if &g (U) = &, (U) holds for each [ > 0. Moreover
for each [ > 0

(a) w~wao,
(b) Qe LcC,
(€) wo € W with (wg),
(d) Q*~QY holds for all z,y > 0,
(e) Q! satisfies (mg).
(2) Let w be as in (1) with (ws), then
(a) © has (My),
(b) each Q satisfies (33),
(c) each wq has (w2).
If wis as in (1) with (ws), then
(d) Q has (M(Cw))’

(e) each wg has (ws).



32 G. Schindl

PrOOF. (1) This was already shown in [9, Section 5].

(2) To prove (B3) for each Q! we proceed similarly as in [1, Lemma 12
(1) = (2)] (each sequence Q' satisfies the required assumptions).

If w has (w2) or (ws), then by [9, Lemma 5.7] each wq: too and by [9,
Proposition 4.6 (1), Corollary 5.15] we get (M3) or (Mcwy) for Q.

In the next result we start with a weight sequence M and not with w.

Theorem 6.4. Let M € LC with (f3) and (mg). Let » € Nyg and U C R"
be non-empty open. Then

(1) wapr € W has (ws).

(2) E(U) = Eny(U) = Eny(U) for each | > 0, where Nzl) = exp(1¢5,, (Ip)).
Moreover N' = M and for each | > 0
(a) N!'€ LC and has (mg),
(b) WNIWN, WL € W with (w6),
(¢) M~N".

(3) If M satisfies lim inf, o0 (m,)"/? > 0, then

(a) (w2) for wys and each wyu,
(b) each N! has (33) and lim infp%oo(né)l/p > 0.

If M satisfies lim,_o0(m,)'/? = 0o, then

(¢) (ws) for wpr and each wyt,

(d) each N' has limpﬁoo(né,)l/p = +00.

PRrROOF. (1) By 2.8 we get wys € Wy, by [1, Lemma 12 (2) = (4)] we get
(w1) and by [6, Proposition 3.6] we get (wg) for way.

(2) In Theorem 6.3 consider w = wy and then &y, 1(U) = Eny(U) for each
1> 0. By [9, 5.5] we have N! € £C and so

174 N .
M, = 2121%) m = exp <§gg (plog(t) — WM@))) = exp (‘PwM (P)) = N;a

for all p € N. Thus &5y = En1) = Ejuy,) = €y which implies M=~N' and (mg)
follows for each N'.

By 2.8 we have wyi € Wy, hence [9, Lemma 5.7] applied to wy; implies
wyt~wys for each I > 0 and so (w1) and (wg) for each wpy: follow.
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(3) By 2.8 the assumption liminf, oo (m,)"/? > 0 implies (w2) for wys and
each wpyi. Again by [9, Proposition 4.6 (1), Corollary 5.15] we get

lim inf(né,)l/p >0 foreach >0
p—00

and similarly for lim,_,o(m,)'/? = +o0.
To show (f3) for each N' we follow again [1, Lemma 12 (1) = (2)]. [@ED

7 Appendix: nuclearity of the connecting mappings
for &

First we recall [6, Lemma 2.3]:

Lemma 7.1. The identity mapping
C""HK,R) — C(K,R)

is nuclear for each compact set K CC R” with smooth boundary.

Let M := {M” : x € A} be (M). For z < y, h < k and a compact set
K CcC R" with smooth boundary consider the inclusion

Eme (K, R) — Epw (K, R), (38)
and we are going to prove the matrix generalization of [6, Proposition 2.4]:
Proposition 7.2. Let M satisfy (M).
(a) If (Myqey), then Vo € AVAh>03y e A3k >0:(38) is nuclear.
(b) If (M(ge)), thenVy € AVE>03z € AT h>0:(38) is nuclear.

PROOF. As already pointed out in [6, Proposition 2.4], since each inclusion
mapping is a product of two inclusion mappings of the same type, it is enough
to show quasi-nuclearity, see [8, Theorem 3.3.2]. For convenience put X :=
Ene p (K, R) and Y := Eppy 1 (K, R). So we have to show that there exists (u;);,
uj € X', such that 372, [|us]|x» < +oo and

Iflly <> 1wl ¥ feX.
j=1

Now we point out that

| £ ()] £ le(x ) 1 exr)
= T — — g S (39
Iflvi= oo g, 3% gy, < 2o g @Y
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By Lemma 7.1 there exists (v;);, v; € (C""}(K,R))’ such that

S loslenamy <+ IFDleuery < D0 [FD vdern |- (40)
j=1 J=1

Now let uq, ; be the linear functional on X defined by

(f, vj)er1 (ke R)

Elalpr?
o

(fstaz) = (41)

By (39) and (40) we get:
Iflly < D2 1{F uag)l
aeN" jeN
Moreover, by (41) we have

(D viderimxmy) 1P Nlerri e ryllvjlicr e r)
gy, S HeTMT

laf |al

[{fs wag)| =

- 1FFD e ere ) vsller+1 (ke R)

— Y
0<|q|<r+1 klelM,

sup ”f”XhlaJrqlM@Jrﬂ lvjller+1(x )
0<lg|<r+1 kmlMﬁé\
plal hletalpre

< sup lo+q]
— Y
klol o<jg<rin  RIPIMY,

|

| £l xllvjller+1 ke r)-

(a) Roumieu case. By (Myqcy) for given z € A we can find z; € A and H > 1
such that Mf, = M, < H*IM7) for all a € N' and ¢ € N” with 0 <
lg) <r+1. MY > M* holds for y > z; and so

hlatdl pre

sup \;+q| < AH'“'(l + A"
(0%

o<lgi<r+1  hlIMY,
for some constant A > 0. Hence if we choose k such that &k > Hh & % < 1,
then by (40) we get

Hh || .,
> sl sa 3 (B Iollenman (14 < 4o
aeN" jEN aeN" jeN

(b) Beurling case. By (Mqc)) for given y € A we can find y; € A and H > 1

such that Ml?j;rq' < H|0‘|M|‘Zé| for all « € N" and ¢ € R" with 0 < |¢| <r + 1.

So for given y € A and k > 0 (both small) we can take z < y1, h < % and
estimate as for the Roumieu case. QED
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