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Universidad de Zaragoza, 50009 Zaragoza, Spain elduque@unizar.es

Received: 30.03.2016; accepted: 13.04.2016.

Abstract. This paper presents a survey of the results and ideas behind the classification
of the fine gradings, up to equivalence, on the simple finite dimensional Lie algebras over an
algebraically closed field of characteristic zero.

Keywords: Simple Lie algebra; grading; fine; quasitorus.

MSC 2010 classification: Primary 17B70; Secondary 17B40, 17B20, 17B60.

1 Introduction

These notes constitute an expanded version of some parts of the mini course
delivered by the second author at the Conference “Advances in Group Theory
and Applications AGTA-2015”.

Gradings by abelian groups have played a key role in the study of Lie algebras
and superalgebras, starting with the root space decomposition of the semisimple
Lie algebras over the complex field, which is an essential ingredient in the Killing-
Cartan classification of these algebras. Gradings by a cyclic group appear in the
connection between Jordan algebras and Lie algebras through the Tits-Kantor-
Koecher construction, and in the theory of Kac-Moody Lie algebras. Gradings
by the integers or the integers modulo 2 are ubiquitous in Geometry.

In 1989, Patera and Zassenhaus [23] began a systematic study of gradings
by abelian groups on Lie algebras. They raised the problem of classifying the
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16 C. Draper, A. Elduque

fine gradings, up to equivalence, on the simple Lie algebras over the complex
numbers. This problem has been settled now thanks to the work of many col-
leagues.

A list of the corresponding maximal quasitori for the classical simple Lie
algebras over C, with the exception of D4 later considered in [9], was obtained
in [20], while a full classification, including D4, was given in [13], relying on the
previous work of several other authors.

As for the exceptional simple Lie algebras, fine gradings on G2 were classi-
fied independently in [7] and [2], based on the classification of gradings on the
octonions in [11]. Fine gradings on F4 were classified in [8] (see also [4]), where
these were used to classify the fine gradings on the Albert algebra. The process
can be reversed, first classifying the fine gradings on the Albert algebra and
then using these to classify the fine gradings on F4, in a way valid also in prime
characteristic [16]. For E6 the classification of fine gradings was obtained in [10].
The classification for E7 and E8 can be extracted from the recent work of Jun
Yu [24, 25].

However, someone looking for the first time at the problem of the classi-
fication of fine gradings on the finite dimensional simple Lie algebras over an
algebraically closed field of characteristic zero finds it difficult to get a unified list
of the fine gradings and a neat idea of what the fine gradings look like, without
going through many technical details scattered through different places.

The goal of this survey is to provide a description of the classification of
fine gradings on the finite dimensional simple Lie algebras over an algebraically
closed field F of characteristic zero. No proofs will be given but the main ideas
used in the classification will be explained.

The reader is referred to the monograph [17] and the references therein for
most of the missing details.

The paper is organized as follows. Section 2 will be devoted to give the
basic definitions on gradings needed in the sequel, as well as the relationship of
fine gradings with maximal quasitori of the automorphism group. Then the fine
gradings on the simple Lie algebras of type A will be treated in Section 3 and
on the orthogonal and symplectic Lie algebras in Section 4. Fine gradings on
the exceptional simple Lie algebras will be quickly reviewed in Section 5. The
reader may consult [5]. Finally, Section 6 will show how most of the results in
characteristic zero remain valid in the modular case, and will highlight what
remains to be done.
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2 Basic definitions

Let F be an arbitrary ground field. Vector spaces and algebras will be defined
over F. Unadorned tensor products will be assumed to be over F.

Given an abelian group G and a nonasociative (i.e., not necessarily associa-
tive) algebra A, a grading on A by G (or G-grading) is a decomposition into a
direct sum of subspaces

Γ : A =
⊕
g∈G
Ag (1)

such that Ag1Ag2 ⊆ Ag1g2 for any g1, g2 ∈ G. For each g ∈ G, Ag is the
homogeneous component of degree g, its elements are the homogeneous elements
of degree g.

Assume that

Γ1 : A =
⊕
g∈G
Ag and Γ2 : A =

⊕
h∈H
A′h

are two gradings on A. Then:

• Γ1 and Γ2 are said to be equivalent if there is an automorphism ϕ ∈
Aut(A), called a graded equivalence, such that for any g ∈ G there is an
h ∈ H with ϕ(Ag) = A′h.

• Γ1 is said to be a refinement of Γ2 if for any g ∈ G there is an h ∈ H such
that Ag ⊆ A′h. Then Γ2 is said to be a coarsening of Γ1. If one of these
containments is strict, the refinement is said to be proper.

The grading Γ is said to be fine if it admits no proper refinement [23, Defi-
nition 2]. Any grading is a coarsening of a fine grading.

Example 1 (Cartan grading). Let L be a finite dimensional semisimple Lie
algebra of rank r over an algebraically closed field of characteristic zero. Let H
be a Cartan subalgebra of L with root system Φ. The root space decomposition

L = H⊕

(⊕
α∈Φ

Lα

)

is an example of a fine grading by the group ZΦ (isomorphic to Zr). Here
L0 = H.

Example 2 (Pauli grading). Assume that n ≥ 2 and F contains a primitive
nth root of unity ε, and let A = Mn(F) be the associative algebra of n × n
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matrices over F. Consider the matrices

x =


1 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε2 . . . 0
...

...
...

. . .
...

0 0 0 . . . εn−1

 , y =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

 .

They satisfy xn = yn = 1, yx = εxy. Then the decomposition

A =
⊕

(ı̄,̄)∈Z2
n

A(ı̄,̄), with A(ı̄,̄) = Fxiyj ,

is a fine grading on A. Moreover, A becomes a graded division algebra, that is,
any nonzero homogeneous element is invertible.

The Pauli grading induces a fine Z2
n-grading in the special linear Lie algebra

sln(F) = {x ∈ A : tr(x) = 0}.
The Cartan grading and the Pauli grading on sln(F) are quite different in

nature. For the Cartan grading any homogeneous element of degree 6= 0 is
ad-nilpotent, while in the Pauli grading any nonzero homogeneous element is
ad-semisimple.

It should be noted that the Cartan grading on sln(F) is the restriction of
the grading on Mn(F), also called Cartan grading, by Zn−1 = Zε1⊕· · ·⊕Zεn−1,
where εi = (0, . . . , 1, . . . , 0) (1 in the ith position), such that the degree of Eij
is εi−1− εj−1, where Eij is the matrix with 1 in the (i, j) slot and 0’s elsewhere,
and where ε0 = 0. We may think of Mn(F) as the algebra of endomorphisms
EndF(V), where V is an n-dimensional vector space with a basis {v1, . . . , vn}.
Then V is Zn−1-graded: V =

⊕n−1
i=0 Vεi (simply a decomposition as a direct sum

of vector subspaces), with Vεi = Fvi+1 for i = 0, . . . , n− 1. The Cartan grading
is the grading induced on EndF(V):

EndF(V)ε := {f ∈ EndF(V) : f(Vδ) ⊆ Vε+δ ∀δ ∈ Zn−1}.

Remark 1. The case of n = 2 in Example 2 will appear quite often in what
follows. For further reference consider the matrices

q1 =

(
1 0
0 −1

)
, q2 =

(
0 1
1 0

)
, q3 = q1q2 =

(
0 1
−1 0

)
. (2)

Denote by Q the algebra M2(F) with the Z2
2-grading (the Pauli grading) where

q1 is homogeneous of degree (1̄, 0̄) and q2 is homogeneous of degree (0̄, 1̄). This
is a fine grading and the transpose involution preserves the homogeneous com-
ponents.
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Any tensor power Q⊗m is endowed with the naturally induced grading by
Z2m

2

(
' (Z2

2)m
)
. This is a division grading, and the involution τ which acts as

the transpose on each factor is an orthogonal involution that preserves each
homogeneous component. (If m = 0, τ = id.)

Given a grading Γ as in (1) and a character χ of G (i.e., a group homomor-
phism G→ F×), the map ϕχ : A → A, such that ϕχ(x) = χ(g)x for any g ∈ G
and x ∈ Ag, is an automorphism of A that acts diagonally on A, as it acts as a
scalar on each homogeneous component.

Hence each ϕχ belongs to the diagonal group of Γ, defined as follows:

Diag(Γ) := {ϕ ∈ Aut(A) : ∀g ∈ G, ∃αg ∈ F× such that ϕ|Ag = αgid}.

This is a subgroup of Aut(A) (closed in the Zariski topology).

If F is algebraically closed of characteristic zero, characters separate elements
of G, and hence the homogeneous components are just the common eigenspaces
for the action of the subgroup {ϕχ : χ ∈ Ĝ}, where Ĝ denotes the group of
characters of G. Conversely, assume that A has finite dimension and let K be an
abelian subgroup of Aut(A) whose elements act diagonally on A. The common
eigenspaces of the action of the elements in K give a grading on A by the group
of characters of the Zariski closure of K. In particular, gradings by G on A
correspond bijectively to homomorphisms (as algebraic groups) Ĝ→ Aut(A).

The next result [23, Theorem 2] follows easily:

Theorem 1. Let A be a finite dimensional algebra over an algebraically
closed field F of characteristic zero. Then a grading Γ as in (1) is fine if and
only if Diag(Γ) is a maximal abelian diagonalizable subgroup (i.e., a maximal
quasitorus) of Aut(A).

Moreover, two fine gradings on A are equivalent if and only if the corre-
sponding diagonal groups are conjugate in Aut(A), so there is a bijection{

Equivalence classes
of fine gradings on A

}
←→

{
Conjugacy classes of

maximal quasitori of Aut(A)

}
[Γ] −→ [Diag(Γ)].

(3)

As a direct consequence, if A and B are finite dimensional algebras over an
algebraically closed field F of characteristic 0 such that Aut(A) and Aut(B) are
isomorphic algebraic groups, then the problems of classifying fine gradings on
A and on B are equivalent.

In Example 1, the maximal quasitorus attached to the Cartan grading is the
maximal torus consisting of those automorphisms of L that fix all the elements
of the Cartan subalgebra H. This is isomorphic to (F×)r. In Example 2 the
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corresponding maximal quasitorus is the subgroup generated by Adx and Ady
(where Adp(q) := pqp−1) in Aut(Mn(F)) ' PGLn(F).

A grading Γ as in (1) may be realized by different groups. Think, for instance,
of the trivial grading A = Ae, which is a grading by any abelian group. However,
there is always a natural grading group: the group of characters of Diag(Γ)
(i.e., of homomorphisms of algebraic groups Diag(Γ) → F×). This is called the
universal group, or universal grading group. (See [17, §1.4].)

The definition of grading on an algebraA admits natural generalizations. For
instance, let ϕ be an involution of A, that is, an involutive antiautomorphism
of A. Then a grading on (A, ϕ) is a grading on the algebra A as in (1) such that
ϕ(Ag) = Ag for any g ∈ G. If Aut(A, ϕ) denotes the group of automorphisms
of A that commute with ϕ, then the bijection in (3) becomes a bijection:{

Equivalence classes of
fine gradings on (A, ϕ)

}
←→

{
Conjugacy classes of

maximal quasitori of Aut(A, ϕ)

}
[Γ] −→ [Diag(Γ)].

(4)

This works too for an antiautomorphism ϕ, not necessarily involutive.

3 Fine gradings on the special linear Lie algebras

In this and the next two sections, the ground field F will be assumed to be
algebraically closed of characteristic zero.

The group Aut(sln(F)) (n ≥ 2) is determined as follows [21]:

• Any automorphism of sl2(F) is the restriction of an automorphism of
M2(F), so we have an isomorphism Aut(sl2(F)) ' Aut(M2(F)).

• Any automorphism of sln(F), n ≥ 3, is the restriction of either an auto-
morphism of Mn(F) or the negative of an antiautomorphism of Mn(F),
so

Aut(sln(F)) ' Aut(Mn(F)) ∪
(
−Antiaut(Mn(F))

)
.

We will identify Aut(sln(F)) with the corresponding group in GL
(
Mn(F)

)
.

Hence, given any maximal quasitorus M in Aut(sln(F)), either:

• M ⊆ Aut(Mn(F)), so that the corresponding fine grading on sln(F) is the
restriction of a fine grading on Mn(F) (this is always the case for n = 2);
or
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• there is a quasitorus M ′ of Aut(Mn(F)) and an antiautomorphism ϕ of
Mn(F) such that M = M ′ ∪M ′(−ϕ). In particular, ϕ2 ∈M ′. In this case,
by maximality, M ′ is a maximal quasitorus of Aut

(
Mn(F), ϕ

)
.

In the first case, our task is to find the fine gradings on Mn(F), and this
is relatively simple. The classical Wedderburn theory tells us that any finite
dimensional central simple associative algebra is, up to isomorphism, the alge-
bra of endomorphisms of a finite dimensional right vector space over a central
division algebra. The same arguments (see [1]) imply that given any grading on
R = Mn(F), R is, up to graded isomorphism, the algebra of endomorphisms of
a graded right free-module of finite rank over a graded central division algebra:
R ' EndD(V).

The graded central division algebras are easily shown to be tensor products
of matrix algebras with Pauli gradings, and their degrees can be taken to be
powers of prime numbers (see, for instance, [13, Proposition 2.1]):

D 'Mn1(F)⊗ · · · ⊗Mnr(F),

where n1, . . . , nr are powers of prime numbers, with each slot endowed with the
Pauli grading as in Example 2.

On the other hand, if M = M ′∪M ′(−ϕ) for an antiautomorphism ϕ, we get
some freedom as we may change ϕ by ψϕ for any ψ ∈M ′. The antiautomorphism
ϕ induces an involution preserving the grading in the graded division algebra
determined as above for M ′. But note that if x and y are homogeneous elements
with yx = εxy with εm = 1, and if τ is an involution that preserves the one-
dimensional homogeneous components, then from τ(xy) = τ(y)τ(x), we also
get xy = εyx, so that yx = ε2yx and ε2 = 1. This shows that, in this case,
n1 = · · · = nr = 2, so our graded division algebra D must be isomorphic to
Q⊗m (see Remark 1) for some m ≥ 0. For m = 0, D is the ground field F.
Moreover, the involution of D can always be taken to be the involution τ in
Remark 1.

It turns out that, identifying R with EndD(V), the antiautomorphism ϕ
becomes the ‘adjoint’ relative to a nondegenerate sesquilinear form B : V×V →
D. That is, B is F-bilinear, D-linear in the second component, B(vd, w) =
τ(d)B(v, w), and B(xv,w) = B(v, ϕ(x)w) for any d ∈ D = Q⊗m, x ∈ R, and
v, w ∈ V.

By adjusting ϕ, using the freedom explained above, and B, we may find
a homogeneous D-basis {v1, . . . , vr, . . . , vr+2s} of V such that the coordinate
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matrix of B is of the following block-diagonal form

MB =



d1

. . .

dr
0 1
1 0

. . .

0 1
1 0



(5)

where r ≥ 0, d1, . . . , dr are nonzero homogeneous elements in D = Q⊗m, and
deg(vi) = gi, i = 1, . . . , r, with

g2
i = deg(di) for i = 1, . . . , r, gr+2i−1gr+2i = e for i = 1, . . . , s. (6)

Identifying R ' EndD(V) with Mr+2s(D), the antiautomorphism ϕ acts on
x = (xij) as ϕ(x) = M−1

B (τ(xji))MB. Note that the adjoint ϕ needs not be
involutive. This happens only if M−1

B M tτ
B is in the center of Mr+2s(D), which

consists of the scalar multiples of the identity matrix (for instance, this is the
case for D = F).

Let G̃ be the abelian group generated by a subgroup T isomorphic to Z2m
2

(the grading group of D = Q⊗m) and elements g1, . . . , gr+2s, subject only to
the relations in (6). The universal group of the ϕ-grading on R with maximal
quasitorus M ′ is isomorphic to the subgroup Ḡ of G̃ generated by T and the
elements gig

−1
j , 1 ≤ i, j ≤ r + 2s. The free rank of Ḡ is exactly s and Ḡ is the

cartesian product of a 2-group that contains T and a free subgroup.
The automorphism −ϕ of sln(F) refines this fine grading on (R, ϕ) to a fine

grading on sln(F). The universal group of this fine grading (corresponding to the
maximal quasitorusM) is a groupG containing an element h of order 2 such that
G/〈h〉 is isomorphic to Ḡ, since (−ϕ)2 ∈M ′. Recall that the character group Ĝ
is isomorphic to M . The characters of G which are trivial on h correspond to
the elements in M ′ and can be identified with the characters of Ḡ, while those
characters χ of G with χ(h) = −1 correspond to the elements in M ′(−ϕ). For
details see [13] or [17, Chapter 3]. If ϕ has order two, then G is isomorphic to
Ḡ× Z2.

In the situation above, attach to the maximal quasitorus M of Aut(sln(F))
the sequence (m, s; d1, . . . , dr) and denote by Γ(m,s; d1,...,dr) the fine grading above
whose diagonal group is M . Summing up, for each m ≥ 0 such that 2m divides
n and each s ≥ 0 with s ≤ n2−m−1, we take the Z2m

2 -graded division algebra
D = Q⊗m with the involution τ acting as the transpose t on each factor, and
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choose a homogeneous element di ∈ D for each i ≤ r = n2−m − 2s. Then,
we consider the right free-module V over D with basis {v1, . . . , vr+2s} which is
G̃-graded by assigning deg(vi) = gi and imposing VgDh ⊂ Vgh for any g, h ∈ G̃.

Thus EndD(V) is also G̃-graded, where x ∈ EndD(V) has degree g if xVh ⊂ Vgh
for all h ∈ G̃. If we consider the sesquilinear form B : V×V → D with coordinate
matrix given by MB in (5), we observe that B satisfies B(Vg,Vh) = 0 whenever
gh 6= e, and this implies that the adjoint ϕ : EndD(V)→ EndD(V) relative to B
is compatible with the G̃-grading on EndD(V), whose universal grading group
is in fact Ḡ. The grading Γ(m,s; d1,...,dr) is then the grading on sln(F) considered
by restricting the grading on EndD(V) ' Mr+2s(D) ' Mn(F) and refining it
with the antiautomorphism −ϕ.

Any outer fine grading on sln(F) appears in this way, but not conversely.
The grading Γ(m,s; d1,...,dr) is not fine for s = 0, r = 2 and Fd1 = Fd2. These
constitute the only exceptions [17, Theorem 3.30].

The point is now to distinguish whether two of these gradings are equivalent.
The equivalence classes of fine gradings on sln(F) are determined as follows:

Theorem 2.

(1) Up to equivalence, the only fine gradings on sl2(F) are the Cartan grading
(by Z) and the Pauli grading (by Z2

2).

(2) If n ≥ 3, any fine grading of sln(F) is equivalent to a grading of one and
only one of the following types:

(2.a) INNER GRADINGS: The restriction of a fine grading on R = Mn(F)
obtained by decomposing n as a product n = mps11 · · · psrr , m ≥ 1, r ≥
0, with p1, . . . , pr prime numbers, s1, . . . , sr ≥ 1; and by considering
the isomorphism

Mn(F) 'Mm(F)⊗Mp
s1
1

(F)⊗ · · · ⊗Mpsrr (F)

(Kronecker product). The grading on R is then given by combin-
ing the Cartan grading on Mm(F) and the Pauli gradings on each
Mp

si
i

(F). Moreover, if ps11 = · · · = psrr = 2, we require m ≥ 3.

(2.b) OUTER GRADINGS: The fine gradings Γ(m,s; d1,...,dr) with n = 2m(r+
2s) and nonzero homogeneous elements di ∈ Q⊗m, except for s = 0,
r = 2, Fd1 = Fd2.

Two such gradings Γ(m,s; d1,...,dr) and Γ(m′,s′; d′1,...,d
′
r′ )

are equivalent

if and only if m = m′, s = s′, r = r′, and there exist a graded
equivalence Φ : Q⊗m → Q⊗m, a permutation σ ∈ Sr and a nonzero
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homogeneous element z ∈ Q⊗m such that Φ(zdi) ∈ Fd′σ(i) for all
i = 1, . . . , r.

The details can be found in [13] or [17, Chapter 3]. The last requirement in
(2.a) is due to the fact that if ps11 = · · · = psrr = 2 and m = 1 or m = 2, the
grading can be refined to a grading in (2.b).

Example 3 (Fine gradings on sl4(F)).

Inner: Up to equivalence there are the following possibilities:

– The Cartan grading by Z3.

– The Pauli grading by Z2
4.

Outer: In this case, the possible sequences up to equivalence are the following:

– (0, 2; ∅), which gives a fine grading by Z2 × Z2.

– (0, 1; 1, 1), which gives a fine grading by Z× Z2
2.

– (0, 0; 1, 1, 1, 1), which gives a fine grading by Z4
2.

– (1, 1; ∅), which gives a fine grading by Z× Z3
2.

– (1, 0; 1, q1) (q1 as in (2)), which gives a fine grading by Z2
2 × Z4.

– (2, 0; 1), which gives a fine grading by Z5
2.

Let us look at one case in detail. If m = 1 and s = 0 then r = 2 and
D = Q = M2(F). The homogeneous elements in Q are ∪3

i=0Fqi (q0 = 1), so that
the element d1 can be taken to be 1 because of the possibility of multiplying by
z as in (2.b). The element d2 can be taken to be qi for some i (multiplying by a
nonzero scalar) and, moreover, either 1 or q1 since there is a graded equivalence
of Q which sends qi to q1 if i 6= 0. The first possibility: Γ(1,0;1,1), provides a
grading by Z4

2 which is not fine. Hence we are in the case Γ(1,0;1,q1). The group

G̃ is generated by T , isomorphic to Z2
2, together with an order two element g1

and another element g2 with square deg q1 (so that the order of g2 is 4). Hence
Ḡ can be identified with Z4 × Z2 (deg q1 = (2̄, 0̄) and deg q2 = (0̄, 1̄) generate
the subgroup T of Ḡ) taking g2g

−1
1 = (1̄, 0̄). A matrix x ∈ M2(Q) with qk in

the position (i, j) will have degree (deg qk)gig
−1
j , so that M2(Q) decomposes as

a direct sum of 8 homogeneous components, all of them of dimension 2. Here

−ϕ(x) =

(
−xt11 −xt21q1

−q1x
t
12 −q1x

t
22q1

)
acts with eigenvalue −1 in M2(Q)(0̄,0̄) and in M2(Q)(2̄,0̄) and splits each of
the remaining homogeneous components of M2(Q) into two pieces, producing
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a Z4 × Z2
2-grading on M2(Q)− ' M4(F)−, and hence on sl4(F) = L, given by

Le = 0 = L(2̄,0̄,0̄),

L(2̄,0̄,1̄) =

{( a 0 0 0
0 −a 0 0
0 0 b 0
0 0 0 −b

)
: a, b ∈ F

}
,

and all the other 13 homogeneous components of dimension 1.

Example 4. An example of an outer fine grading on sln(F) where not only
−ϕ is not involutive, but also there are no order two elements in M ′(−ϕ), is the
Z3

4-fine grading Γ(1,0; 1,q1,q2,q3) on sl8(F).

4 Fine gradings on orthogonal and symplectic Lie
algebras

Recall that the ground field F is assumed to be algebraically closed of char-
acteristic zero.

Involutions of the matrix algebra R = Mn(F) come in two flavors. If n is odd
there are only orthogonal involutions, all of them conjugate to the transposition,
while if n is even, besides the orthogonal involutions, there appear the symplectic
involutions, and all of them are conjugate. If ϕ is an involution of R, the Lie
algebra of skew symmetric elements

K(R, ϕ) := {x ∈ R : ϕ(x) = −x}

is isomorphic to the orthogonal Lie algebra son(F) if ϕ is orthogonal, and to
the symplectic Lie algebra sp2k(F) if n = 2k and ϕ is symplectic. Moreover, the
restriction map

Aut(R, ϕ) −→ Aut(K(R, ϕ))

φ 7→ φ|K(R,ϕ),

is a group isomorphism if n ≥ 5, unless ϕ is orthogonal and n = 6 or n = 8 (see
[21, Chapter IX]). If n = 6, so6(F) is isomorphic to sl4(F), and for n = 8, the
automorphism group of so8(F) contains outer automorphisms of order 3, due to
the phenomenon of triality.

Therefore, with these exceptions, the classification of the fine gradings on
K(R, ϕ) reduces to the classification of fine gradings in (R, ϕ). Given such a
grading on (R, ϕ), we may identify R with EndD(V), where D = Q⊗m for
some m ≥ 0, and V is a free right D-module endowed with a hermitian form
B : V × V → D. That is, B is sesquilinear, nondegenerate, and also B(v, w) =
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τ
(
B(w, v)

)
for any v, w ∈ V, where τ is the involution on Q⊗m considered in

Remark 1. Moreover, ϕ is given by the ‘adjoint’ relative to B.
Then there is a homogeneous D-basis {v1, . . . , vr, . . . , vr+2s} of V such that

the coordinate matrix of B has the following block-diagonal form:

MB =



d1

. . .

dr
0 1
ε 0

. . .

0 1
ε 0



where r ≥ 0, d1, . . . , dr are nonzero homogeneous elements in D = Q⊗m, and
either ε = 1 and τ(di) = di for all i = 1, . . . , r, if ϕ is orthogonal, or ε = −1 and
τ(di) = −di for all i = 1, . . . , r, if ϕ is symplectic. (If D = F and ϕ is symplectic,
this clearly forces r = 0.)

Moreover, if deg(vi) = gi for i = 1, . . . , r, . . . , r + 2s, one has the same
relations as in (6). As for type A, let G̃ be the abelian group generated by a
subgroup T isomorphic to Z2m

2 (the grading group of D = Q⊗m) and elements
g1, . . . , gr+2s, subject only to the relations in (6). The universal group of this
fine grading on (R, ϕ) is isomorphic to the subgroup G of G̃ generated by T
and the elements gig

−1
j , 1 ≤ i, j ≤ r+ 2s. The free rank of G is exactly s and G

is the Cartesian product of a 2-group that contains T and a free subgroup.
In this situation, attach to this fine grading the sequence (m, s; d1, . . . , dr) as

for type A and denote by Γ′(m,s; d1,...,dr) the grading restricted to K(R, ϕ). Then:

Theorem 3. Let ϕ be an involution of R = Mn(F) and assume n ≥ 5,
and n 6= 6, 8 if ϕ is orthogonal. Then any fine grading on K(R, ϕ) is equivalent
to a grading Γ′(m,s; d1,...,dr) as above for some m, r, s such that n = 2m(r + 2s),

and homogeneous elements d1, . . . , dr ∈ Q⊗m, except for s = 0, r = 2, and
Fd1 = Fd2.

Two such gradings Γ′(m,s; d1,...,dr) and Γ′(m′,s′; d′1,...,d′r′ )
are equivalent if and

only if m = m′, s = s′, r = r′ and there exist a graded equivalence Φ: Q⊗m →
Q⊗m, a permutation σ ∈ Sr and a nonzero homogeneous element z ∈ Q⊗m such
that τ(z) = z and Φ(zdi) ∈ Fd′σ(i) for all i = 1, . . . , r.

For details see [13] or [17, Chapter 3]. The assumption τ(z) = z does not
appear in [13, Theorem 5.2] because the involution τ on Q⊗m is not fixed there.

Example 5 (Fine gradings on so5(F)). In this case, if 5 = 2m(r + 2s)
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then m = 0 and r = 1, 3, 5. In particular D = F and there are three different
nonequivalent fine gradings:

• r = 1, which gives the Cartan grading of so5(F) by Z2.

• r = 3, which gives a fine grading by Z× Z2
2.

• r = 5, which gives a fine grading by Z4
2.

In general, for so2k+1(F) (type B), there are exactly k + 1 nonequivalent
fine gradings, since the only possibilities are MB = diag{Ir, I2, . . . , I2} and
the grading is determined by the number s of I2-blocks (s ∈ {0, . . . , k}), with

universal grading group Zs × Z2(k−s)
2 .

Example 6 (Fine gradings on sp6(F)). In this case 6 = 2m(r + 2s), so the
following nonequivalent possibilities appear (with q3 as in (2)):

• (0, 3; ∅), which gives the Cartan grading by Z3.

• (1, 1; q3), which gives a fine grading by Z× Z2
2.

• (1, 0; q3, q3, q3), which gives a fine grading by Z4
2.

Example 7 (Fine gradings on sp8(F)). In this case 8 = 2m(r+2s), so there
are 7 nonequivalent possibilities:

• (0, 4; ∅), which gives the Cartan grading by Z4.

• (1, 2; ∅), which gives a fine grading by Z2 × Z2
2.

• (1, 1; q3, q3), which gives a fine grading by Z× Z3
2.

• (1, 0; q3, q3, q3, q3), which gives a fine grading by Z5
2.

• (2, 1; ∅), which gives a fine grading by Z× Z4
2.

• (2, 0; 1⊗ q3, q3 ⊗ 1), which gives a fine grading by Z4 × Z3
2.

• (3, 0; ∅), which gives a fine grading by Z6
2.

Remark 2. The situation for so8(F) is more complicated. If ϕ is an orthog-
onal involution of R = M8(F), and we identify Aut(R, ϕ) with a subgroup of
Aut(so8(F)) (by restriction), then Aut(R, ϕ) has index three in Aut(so8(F)).
It turns out that any maximal quasitorus of Aut(so8(F)) satisfies one of the
following possibilities (see [13, Theorem 6.7]):
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• Either it is conjugate to a maximal quasitorus of Aut(R, ϕ). There are
15 such possibilities up to conjugation in Aut(R, ϕ), but two of them
are conjugate in Aut(so8(F)), so we obtain here 14 fine gradings up to
equivalence.

• Or it contains an outer automorphism θ of order 3. There are, up to conju-
gation, only two such automorphisms. The centralizer of θ in Aut(so8(F))
is 〈θ〉×H, where H is, up to isomorphism, the simple group of type G2 in
one case and PGL3(F) in the other case. The maximal quasitori of G2 are
well-known, while the maximal quasitori of PGL3(F) correspond to the
inner fine gradings on sl3(F) and there are only two of them, according to
Theorem 2: the Cartan grading and the Pauli grading. As a consequence,
there are three more nonequivalent fine gradings on so8(F) with universal
groups Z2 × Z3, Z3

2 × Z3 and Z3
3.

5 Fine gradings on the exceptional simple Lie alge-
bras

As in the previous two sections, the ground field F is assumed here to be
algebraically closed of characteristic zero.

The simple Lie algebra L of type G2 (respectively F4) is, up to isomorphism,
the Lie algebra of derivations of the algebra of octonions O (respectively, of the
Albert algebra A, i.e., the simple exceptional Jordan algebra of the hermitian
matrices of order 3 with coefficients in O), and any automorphism of O (resp.,
A) induces, by conjugation, an automorphism of L, thus giving an isomorphism
of the automorphism groups. Thus the problem of classifying fine gradings, up
to equivalence, on L reduces to the same problem on the smaller algebra O
(resp., A). (See [17, Chapter 5] and references therein.)

Theorem 4.

• Up to equivalence, there are two fine gradings on the simple Lie algebra of
type G2: the Cartan grading by Z2 and a grading by Z3

2 in which L(0̄,0̄,0̄) = 0

and Lα is a Cartan subalgebra of L for any 0 6= α ∈ Z3
2. This grading is

induced by the natural Z3
2-grading on O obtained by constructing O from

the ground field in three steps by means of the Cayley-Dickson doubling
process.
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• Up to equivalence, there are four fine gradings on the simple Lie algebra of
type F4: the Cartan grading by Z4 and gradings by Z×Z3

2, Z5
2 and Z3

3. For
the last grading, Lα⊕L−α is a Cartan subalgebra of L for any 0 6= α ∈ Z3

3.

For the simple Lie algebra of type E6, the fine gradings have been classified
in [10]. Up to equivalence, there are 14 different such gradings. If the grading is
produced by a maximal quasitorus M of the group of inner automorphisms and
M is not a maximal torus, then it contains either an elementary 2-group of type
Z3

2 or an elementary 3-group of type Z2
3 (two possibilities here). The knowledge

of the three centralizers allows to obtain the possible maximal quasitori, living
inside either Z3

2 × PGL(3), Z2
3 × PGL(3), or Z2

3 × G2. This gives 4 maximal
quasitori, producing fine gradings by the universal groups Z3

2 × Z2, Z3
2 × Z2

3,
Z2×Z2

3, and Z4
3. Otherwise M contains outer automorphisms. If M contains an

order two outer automorphism, this automorphism fixes a subalgebra of type
either C4 or F4 and the grading comes from extending either a fine grading
on C4 (seven possibilities here, according to Example 7) or a fine grading on
F4 (4 possibilities by Theorem 4, three of them containing also automorphisms
fixing C4). On the other hand, if M contains outer automorphisms but none
of them has order two, then the quasitorus M is isomorphic to Z3

4: an outer
automorphism fixes a subalgebra isomorphic to sl4(F)⊕sl2(F) and the restriction
of the fine grading to sl4(F) is just the Pauli Z2

4-grading.

The classification for E7 and E8 can be derived from recent work of Jun
Yu [25]. Yu classifies the conjugacy classes of the closed abelian subgroups F of
the compact real simple Lie groups G satisfying the condition dim gF0 = dimF ,
where g0 is the Lie algebra of G and gF0 is the subalgebra of fixed elements by the
action of F . This class of groups presents some nice functorial properties. In par-
ticular, the maximal finite abelian subgroups are among these subgroups. The
close relationship between compact Lie groups and complex reductive algebraic
groups allows, in principle, to extract from [25] the list of the conjugacy classes
of the maximal quasitori of the automorphism groups of the simple exceptional
Lie algebras over C. This gives the classification of the equivalence classes of
fine gradings in these algebras. The results over C can then be transferred to
any algebraically closed field of characteristic zero [15].

Then it turns out that the tentative list in [17, Figure 6.2] is complete. Up
to equivalence, there are again 14 fine gradings both on E7 and on E8, although
only some of them form natural families in E6, E7 and E8. This list contains
the universal grading groups of the fine gradings on the simple Lie algebras
of types E6, E7 and E8 together with a convenient model in each case which
stresses how some of these gradings appear in natural families. These models of
the fine gradings on the simple Lie algebras of type E are thoroughly discussed
in [5]. This work emphasizes the role of the nonassociative algebras in the grad-
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ings, describing them by using not only the famous unified construction of the
exceptional Lie algebras by Tits, but also constructions based on symmetric
composition algebras (specially relevant for explaining the Z3-gradings) and the
Kantor and Steinberg contructions of Lie algebras out of structurable algebras
(related to Z-gradings with more than three pieces).

The fine gradings by finite groups on the simple Lie algebra of type E8

have been independently classified in [6]. This problem is equivalent to the
computation of the conjugacy classes of the maximal abelian finite subgroups of
the simple algebraic group E8. These maximal quasitori (and hence the universal
grading groups of the related fine gradings) are isomorphic to either Z5

3, Z3
6, Z9

2,
Z8

2, Z3
4×Z2

2, Z4×Z6
2, or Z3

5. One of the main tools used for this classification is the
Brauer invariant of the irreducible modules for graded semisimple Lie algebras
introduced in [18]. This paper studies conditions for a module to be graded in a
way compatible with a given grading on the Lie algebra. The approach is thus
quite different to the one in [25]. These fine gradings on simple Lie algebras
by finite groups are remarkable because their behaviour is completely different
to the one of the root space decomposition (they may be considered just at
the other end of the spectrum of fine gradings): for instance, every nonzero
homogeneous element is (ad-)semisimple, which allows to choose bases formed
by semisimple elements. (In general, gradings are closely related to the problem
of a suitable choice of basis. Recall the relationship Chevalley basis–Cartan
grading.)

A remarkable grading in the above list is the Z3
5-grading on E8, because

such 5-symmetry is a particular fact of E8. Besides, it is one of the so-called
Jordan gradings [12], as well as the above fine Z3

2-grading on the simple Lie
algebra of type G2 and the fine Z3

3-grading on the simple Lie algebra of type
F4. These three gradings satisfy that every nonzero homogeneous component
has dimension 2 and is contained in a Cartan subalgebra. The fine Z3

5-grading
on E8 has not gone unnoticed. The interested reader can consult the notes of
Kostant’s talk [22], which deals with this and other gradings, like Dempwolf’s
decomposition of the Lie algebra of type E8 as a sum of 31 pieces, all of them
Cartan subalgebras, which is a Z5

2-grading, obtained as a coarsening of the fine
Z8

2-grading.

Note that the problem of the classification of fine gradings by finite groups is
a key piece of the puzzle of the (general) classification, because if the universal
group is infinite, then the grading on the Lie algebra induces a grading by a not
necessarily reduced root system [14] and it is determined by a fine grading on the
coordinate algebra of the grading by the root system. Associative, alternative,
Jordan or structurable algebras appear as coordinate algebras. In a sense, the
classification of the fine gradings whose associated quasitori are not finite is
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reduced to the classification of some fine gradings on certain nonassociative
algebras.

6 Modular case

In this section, the ground field F is assumed to be algebraically closed of
characteristic not two.

The gradings on a finite dimensional algebra A are no longer given by means
of common eigenspaces for the action of an (abelian) diagonalizable subgroup
of Aut(A). A different approach is needed.

Given a grading Γ as in (1) by the group G, consider the map:

η : A −→ A⊗ FG
xg 7→ xg ⊗ g

for any g ∈ G and xg ∈ Ag, where FG denotes the group algebra of G. Then
η is both a homomorphism of algebras and a map that provides A with the
structure of a comodule for the Hopf algebra FG. The map η is then called a
comodule algebra map.

Conversely, given such a map η, A is graded by G with

Ag = {x ∈ A : η(x) = x⊗ g}

for any g ∈ G. In a way, this means that Ag is the eigenspace for η with
eigenvalue g. Thus, gradings byG onA correspond bijectively with the comodule
algebra maps A → A⊗ FG.

But any comodule algebra map η induces a generic automorphism of alge-
bras over FG:

A⊗ FG −→ A⊗ FG
x⊗ h 7→ η(x)h

(7)

so that xg ⊗ h 7→ xg ⊗ gh for any g ∈ G and xg ∈ Ag. All the information on Γ
is contained in this single automorphism.

More generally, a comodule algebra map η : A → A⊗ FG defines a homo-
morphism of affine group schemes:

ρ : GD −→ Aut(A),

where the ‘Cartier dual’ GD is the affine group scheme (i.e., the representable
functor from the category of unital asociative commutative algebras over F into
the category of groups) such that

GD(R) = Homalg(FG,R) ' Homgroups(G,R
×),
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and Aut(A) is the affine group scheme whose R-points are the automorphisms
of the R-algebra A ⊗ R: Aut(A)(R) = AutR-alg(A ⊗ R). The behavior of ρ
on homomorphisms is the natural one. For each unital associative commutative
F-algebra R, the map ρR is defined as follows:

ρR : GD(R) = Homalg(FG,R) −→ Aut(A)(R)

f : FG→ R 7→ ρR(f) : A⊗R→ A⊗R
xg ⊗ r 7→ xg ⊗ f(g)r.

Conversely, if ρ : GD → Aut(A) is a homomorphism of affine group schemes
(i.e., a natural transformation), ρFG(id) is an automorphism of FG-algebras A⊗
FG→ A⊗FG as in (7), which induces a comodule algebra map by composition:

A ' A⊗ 1 ↪→ A⊗ FG ρFG(id)−−−−→ A⊗ FG.

The conclusion is that gradings by G on A correspond bijectively to homo-
morphisms of affine group schemes GD → Aut(A).

In other words, to work in prime characteristic, we have to substitute the
group of characters Ĝ by the Cartier dual GD, and the algebraic group Aut(A)
by the affine group scheme Aut(A). With this in mind, Theorem 1 remains
valid: the classification of the fine gradings up to equivalence corresponds to the
classification of the maximal quasitori in Aut(A) up to conjugation by elements
in Aut(A). (See [17] for details.)

In particular, if two algebras have isomorphic affine group schemes of auto-
morphisms, we can transfer the problem of classification from one algebra to the
other. The outcome is that Theorems 2, 3, and 4 remain valid in the modular
case if we change sln(F) by psln(F) (= [R,R]/(Z(R) ∩ [R,R]) for R = Mn(F))
with a couple of exceptions:

• The Z3
3-grading on the simple Lie algebra of type F4 does not exist in

characteristic 3.

• Also in characteristic 3, the automorphism group scheme Aut(psl3(F))
is not isomorphic to the group scheme of automorphisms and antiauto-
morphisms of M3(F), but to the group scheme of automorphisms of the
octonions! Hence in this case there are only two fine gradings on psl3(F)
with universal groups Z2 and Z3

2. Moreover, in this situation there is no
simple Lie algebra of type G2. (See [3] for some related results.)

For the simple Lie algebra L of type D4 (see [19]), in characteristic 3 all the
fine gradings are obtained by restriction of fine gradings in (M8(F), t), where



An overview of fine gradings on simple Lie algebras 33

t denotes the transpose involution (so there are 14 fine gradings up to equiva-
lence), while if the characteristic is > 3, the results in characteristic 0 remain
valid, but with a different proof that relies in the fact that Aut(L) is isomor-
phic to the affine group scheme of automorphisms of certain algebraic structure
called trialitarian algebra. The general philosophy is to find a simpler object
sharing the affine group scheme of automorphisms with the Lie algebra under
study.

For information on gradings on some simple modular Lie algebras of Cartan
type, the reader may consult [17, Chapter 7].

We finish this survey with the following

Open problem: Classify the fine gradings, up to equivalence, on the simple
Lie algebras of types E6, E7 and E8 over fields of prime characteristic ( 6= 2).

References

[1] Yu.A. Bahturin, S.K. Shegal, and M.V. Zaicev: Group gradings on associative al-
gebras, J. Algebra 241 (2001), no. 2, 677–698.

[2] Yu.A. Bahturin and M. Tvalavadze: Group gradings on G2, Comm. Algebra 37
(2009), no. 3, 885–893.
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