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Abstract. Fix a linear subspace V' C P™ and a linearly independent set S C V. Let Zgv C V
or Zs,r with r := dim(V') and s = #(5), be the zero-dimensional subscheme of V' union of all
double points 2p, p € S, of V (not of P" if n > r). We study the Hilbert function of Zs v and
of general unions in P" of these schemes. In characteristic 0 we determine the Hilbert function
of general unions of Z1 (easy), of Z2,2 and, if n = 3, general unions of schemes Z3 2 and Zs 2.
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Introduction

Fix P € P™. Look at all possible zero-dimensional schemes Z with Z..q =
{P} and invariant for the action of the group Gp of all h € Aut(P") such that
h(P) = P. In characteristic zero we only get the infinitesimal neighborhoods
mP of P in P", m > 0, i.e the closed subschemes of P" with (Zp)™ as its
ideal sheaf. If we take two distinct points P,Q € P", P # @), we also have a
line (the line L spanned by the set {P,@}) and it is natural to look at the
zero-dimensional schemes Z C P" such that Z,q = {P,Q} and h*(Z) = Z
for all h € Aut(P") fixing P and @ (or, if we take non-ordered points fixing
the set {P,Q}) and in particular fixing L. A big restriction (if n > 1) is to
look only to the previous schemes Z which are contained in L, not just with
Zrea = {P,Q} C L. The easiest invariant zero-dimensional scheme (after the
set {P,Q}) is the degree 4 zero-dimensional scheme (2P + 2Q), L), i.e. the zero-
dimensional subscheme Z5 1 of L with 2 connected components, both of degree
2, and with {P, Q} as its support. We call them (2, 1)-schemes. This is a kind of
collinear zero-dimensional schemes and hence the Hilbert function of a general
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union of them is known ([1], [6]). We may generalize this construction in the
following way.

For any linear space V' C P and any P € V let (2P,V) denote the closed
subscheme of V with (Zpy)? as its ideal sheaf. We have (2P, V) = 2PNV,
(2P, V)ea = {P} and deg(2P,V) = dim(V) + 1. Fix integer n > r > s—1> 0.
Fix an r-dimensional linear subspace V' C P™ and a linearly independent set
S C V with §(S) = s. Set Zgy := Upes(2p,V). Zgy is a zero-dimensional
scheme, (Zgv)reda = S, Zs,y C V and deg(Zg,v) = s(r +1). Any two schemes
Zg vy and Zgy with dim(V) = dim(V’) and #(S) = 4(S’) are projectively
equivalent. In the case s = r + 1 we may see Zg as the first order invariant
of the linearly independent set S inside the projective space V' (not the full
projective space P™ if r < n) and V is exactly the linear span of S, so that it is
uniquely determined by the set S C P". In the case s < r, Zgy is not uniquely
determined by S. The scheme Zgy prescribes some infinitesimal directions at
each point of S, so that each connected component of Zgy spans V. Zgy is the
minimal zero-dimensional subscheme B C P™ such that B,.q 2 S and the linear
span of each connected component A of B spans a linear space V4 D V. In all
cases Zg,y depends only on S and V' and not on the projective space containing
V. An (s,r)-scheme of P" or a scheme Z,, of P" is any scheme Zgy, C P"
for some S, V with dim(V) = r and §(S) = s. Set Zs; := Z5,_1. We have
deg(Zs,) = s(r+1). If 4(S) = 1 we say that Zgy is a 2-point of V. A scheme
Z1,2 is called a planar 2-point.

Let Z C P™ be a zero-dimensional scheme. Consider the exact sequence

0—Zz(t) = Opn(t) = Oz(t) — 0 (0.1)

The exact sequence (0.1) induces the map rz; : H°(Opn(t)) — H°(Oz(t))
(the restriction map). We say that Z has mazimal rank if for each ¢ € N the
restriction map 7z is either injective (i.e. h%(Zz(t)) = 0) or surjective (i.e.
hY(Zz(t)) = 0). For each t € N let hz(t) be the rank of the restriction map rz;.
We have hy(t) = 0 for all t € N. If Z # (), then hz(0) = 1 and the function hz(t)
is strictly increasing until it stabilizes to the integer deg(Z). The regularity index
p of Z is the first t € N such that hy(t) = deg(Z2), i.e. such that h'(Zz(t)) = 0.
By the Castelnuovo - Mumford lemma the homogeneous ideal of Z is generated
in degree < p(Z) + 1 and h'(Zz(t)) = 0 for all t > p(Z). If Z is contained in a
proper linear subspace W C P, then each hyz(t) does not depend on whether
one sees Z as a subscheme of P” or of W and a minimal set of generators of
the homogeneous ideal of Z in P" is obtained lifting to P™ a minimal set of
generators of the homogeneous ideal of Z in W and adding n — dim(W) linear
equations. The integer hzg () only depends on 7, s and ¢ (see Remark 2). See
Proposition 1 for the Hilbert function of each Zgy .



Zero-dimensional scheme 81

We study the Hilbert function of general unions of these schemes. There are
obvious cases with non-maximal rank for Opn(2), but we compute the exact
values of hz(2) (see Propositions 2 and 3). For Z3 5 exceptional cases arise also
with respect to Opn(d) if d = 3 and n < 4 (Proposition 4) and one case with
d =4 and n = 3 (as expected by the Alexander-Hirschowitz theorem [1], [4])
(see Theorem 3).

For the schemes Z 9 we prove the following results (only in characteristic
zero).

Theorem 1. Fix integersn > 2,d > 3 and k > 2. Let Z C P™ be a general
union of k schemes Zss. Then either h%(Zz(d)) = 0 or h!(Zz(d)) = 0.

Theorem 2. Fix integersn > 2,d > 3 and k > 2. Let Z C P" be a general
union of k schemes Zso and one planar 2-point. Then either hO(IZ(d)) =0
or hY(Zz(d)) = 0, except in the case (n,k,d) = (2,2,4) in which h®(Zz(4)) =
Y (Zz(4)) = 1.

For general unions of an arbitrary number of schemes Z3 5 and Z5 o we prove
the case n = 3 (see Theorem 3 for Ops(d), d > 3).

We also explore the Hilbert function of general unions of zero-dimensional
schemes and general lines (see Lemma 6 for a non-expected easy case with non
maximal rank).

We work over an algebraically closed field K with characteristic 0. We heavily
use this assumption to apply several times Remark 3.

1 Preliminaries

For any closed subscheme Z C P™ and every hyperplane H C P" let Resy(Z)
be the closed subscheme of P™ with Z; : Ty as its ideal sheaf. For each ¢t € Z
we have a residual exact sequence

0— IResH(Z)(t —-1)— Iz(t) — IZQ[—LH({;) —0 (1.1)

We say that (1.1) is the residual exact sequence of Z and H. We have Resy(Z) C
Z. 1If Z is zero-dimensional, then deg(Z) = deg(Z N H) 4 deg(Resu(2)).

For any scheme Z C P" let hz : N — N denote the Hilbert function of Z, i.e.
for each t € N let hz(t) denote the rank of the restriction map H®(Opn(t)) —
HO(Oz(t)).

Remark 1. Let V C P" be an r-dimensional linear subspace. Assume Z C
V. Since for each t € N the restriction map H®(Opn(t)) — H(V,Oy(t)) is
surjective, the Hilbert function of Z is the same if we see Z as a subscheme of
P™ or if we see it as a subscheme of the r-dimensional projective space V.
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Remark 2. Fix integers n > r > 0 and s with 1 < s < r 4+ 1. Fix linear
spaces V; C P", i = 1,2, and sets S; C V;, i = 1,2, such that dim(V;) = r,
#(S;) = s and each S; is linearly independent. Since there is h € Aut(P") with
h(Vi) = Vo and h(S1) = Sa, Zs, v; and Zg, v, have the same Hilbert function.

Proposition 1. Let Z := Zgy be an (s,r)-scheme.

(i) If s = 1, then hz(t) =1+ 1 for all t > 1 and the homogeneous ideal
of Zsyv is generated by forms of degree < 2.

(i1) If s > 2, then hz(0) =1, hz(1) =r+1, hz(2) = (r+1)s—s(s—1)/2,
hz(t) = s(r 4+ 1) for all t > 3 and the homogeneous ideal of Zgy is generated
by forms of degree < 4, but not of degree < 3. Outside S the scheme-theoretic
base locus of |Zz(3)| is the union of all lines spanned by 2 of the points of S.
Outside S the scheme-theoretic base locus of |Z7(2)| is the linear span of S.

Proof. Since Z C V, we may assume n = r, i.e. V =P" (Remark 1).

Part (i) is well-known. The case r = 1, s > 2 is also obvious, by the cohomol-
ogy of line bundles on P'. Hence we may assume r > 2, s > 2 and use induction
on the integer . We assume that Proposition 1 is true for all pairs (s', ') with
1<7 <rand1<s <7 +1. For any (s,7)-scheme Z we have hz(0) =1 and
hz(1) = r + 1. Since S is linearly independent, we have h'(Zg(t)) = 0 for all
t> 0.

(a) Assume s < r. Let H C P" be a hyperplane containing S. We have
ZNH = Zg g and Resy(Z) = S. From the residual exact sequence (1.1) and
the inductive assumption we get h'(Zz(t)) = 0 for all t > 3, h}(Zz(2)) =
BMH, Tyom 1(2)) and (T7(2)) = B (Tzmyr(2)) +7+ 1 — 5. The inductive
assumption gives h'(H,Zznm 1 (2)) = s(s—1)/2. Hence hz(2) = deg(Z) —s(s —
1)/2 = s(r+1)—s(s—1)/2. We also get that outside S the base locus of |Zz(t)|,
t = 2,3, and of |Zznp(t)| are the same. By the Castelnuovo-Mumford’s lemma
the homogeneous ideal of Z is generated in degree < 4. It is not generated in
degree < 3, because |Zz(3)| has a one-dimensional base locus.

(b) Assume s = r+ 1 > 3. Since V = P", S spans P" and every quadric
hypersurface of P" has as its singular locus a proper linear subspace of P", we
have h%(Zz(2)) = 0 and hence hz(2) = (T;FQ) and h'(Zz(2)) = (r +1)? —
(Hf) =(r+1)r/2 =s(s—1)/2. Fix p € S and set S" := S\ {p}. Let H
be the hyperplane spanned by S’. We have Z N H = Zg i and Resy(Z) =
2p U S". We have h%(Zapus(1)) = 0 and so h'(Zopusr(1)) = s — 1. We have
Resy (2p U S') = 2p. Since hl(Zy,(z)) = 0 for all z > 0 and S’ C H is linearly
independent, the residual exact sequence of 2p U S’ with respect to H gives
hY(Zopus(t)) = 0 for all ¢ > 2. Hence (1.1) and the inductive assumption gives
hY(Zz(t)) = 0 for all t > 3. The scheme-theoretic base locus of |Zz(2)| is V =
P". The scheme-theoretic base locus E of |Zz(3)| contains the union 7 of all
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lines spanned by two of the points of S, which in turn contains Z. Since Z
is zero-dimensional, we have h'(Z,Zznm z(3)) = 0 and so the restriction map
H°(0%(3)) — H°(Oznu(3)) is surjective. Since h!(Zz(3)) = 0, the restriction
map H°(Opr(3)) — H°(Oznu(3)) is surjective. Therefore EN H is the scheme-
theoretic base locus of |Zznp 1 (3)] in H. By the inductive assumption we get
EnNH =T outside 5.

Now we check that Eieq = T. If = 2, then this is true (even scheme-
theoretically), because h®(Zz(3)) = 1 and so |Zz(3)| = {T'}. Now assume r > 3
and that this assertion is true for lower dimensional projective spaces. Fix ¢ €
P\ T. Let S” C S be a minimal subset of S whose linear span contains ¢. Since
S is linearly independent, if S7 C S and the linear span of S7 contains ¢, then
S1 2 S”. Since ¢ ¢ T, we have #(S”) > 3. Take 3 distinct points p1, p2, p3 of
S"” and let H;, i = 1,2, 3, be the linear span of S\ {p;}. Since any two points
of S are contained in at least one of the hyperplanes Hy, Hy or Hs, we have
T C Hy U Hy U Hs. Since each point of S is contained in at least two of the
hyperplanes H;, we have Z C Hy U Hy U Hs3. Since p; € S”, i =1,2,3, we have
q ¢ H; and so ¢ ¢ (Hy U Hy U Hs3). Thus q ¢ Fyeq. Hence Eroq = T.

To conclude the proof of (ii) it is sufficient to prove that E is reduced outside
S. For any set B C P" let (B) denote its linear span. Fix p € T\ S and call
p1 and ps the points of S such that p is contained in the line ¢ spanned by
{p1,p2}. Since £ C T, it is sufficient to prove that ¢ is the Zariski tangent space
T,E of E at p. Assume the existence of a line R C T,FE such that p € R and
R # (. Let Sg C S be a minimal subset of S whose linear span contains R.
Since S is linearly independent, any B C S with R C (B) contains Sg. Set
« = {(Sg). Since R ¢ T, we have o > 3. Let G be the set of all h € Aut(P")
such that h(u) = u for all v € S. Note that g(Zgy) = Zgy for all g € G.
Set G, :={g € G : g(p) = p}. G, acts transitively on the set A of all lines
L C (Sg) such that p € L and Sg is the minimal subset of S whose linear span
contains L. Since G, acts transitively on Ag, each L € Ap is contained in T}, E.
Since T,E is closed, it contains all lines L1 C (Sg) such that p € L;. Hence
(changing if necessary R) we reduce to the case v = 3. Assume for the moment
{p1,p2} C Sgr and write S = {p1,p2,ps}. Set II := (Sg). E NII contains
T NI, i.e. the 3 distinct lines of the plane II spanned by 2 of the points of Sg.
ENII 2 T'NII, because T, E contains the line ({p, p3}) and so the scheme ENII
contains the tangent vector of ({p, ps}) at p. Since T'NII is a cubic curve, we get
Il C E. Hence Eyeq # T, a contradiction. Now assume Sg N {p1, p2} = (. Since
p € £, we have (Sg) N ¢ # 0 and so Sk U {p1,p2} is not linearly independent, a
contradiction. Now assume §(Sr N {p1,p2}) = 1. Since p € ¢, we get { C (Sg)
and hence {p1,p2} C Sg, a contradiction. QED

Remark 3. Let X be an integral projective variety with dim(X) > 0, £ a
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line bundle on X and V C HY(L) any linear subspace. Take a general p € Xreg
and a general tangent vector A of X at p. We have dim(H%(Zo ® L)NV) =
max{0, dim(V') — 2}, because (in characteristic zero) any non-constant rational
map X --»P", r > 1, has non-zero differential at a general p € Xig.

Lemma 1. Let V. C H°(Opn(2)), n > 2, be any linear subspace such that
dim(V) > n+ 2. Let L C P" be a general line. Then dim(V N H°(Z,(2))) =
dim(V') — 3.

Proof. Since two general points of P™ are contained in a line, we have dim(V N
HY(Z1(2))) < max{0,dim(V) — 2}, without any assumption on dim(V). Let B
denote the scheme-theoretic base locus. Since dim(V) > n+2 > h%(Opn (1)), we
have dim(B) < n —2. Hence BN L = () for a general line L. Let f : P"\ B — P",
r = dim(V) —1, be the morphism induced by V. We have dim(VNH"(Z.(2))) =
dim(V)—2 if and only if f(L) is a line. Assume that this is the case for a general
L. Since any two points of P" are contained in a line, we get that the closure
I of f(P"\ B) in P" is a linear space. Since I" spans P", we get I' = P". Hence
dim(V) =r+1 <n+ 1, a contradiction. QED

Remark 4. Let Z C P", n > 2, be a general union of £ schemes Z5 1. We
have k general lines L;, 1 < i < k, of P" and on each L; a general subscheme of L;
with 2 connected components, each of them with degree 2. Set T' := L1U- - -U L.
We have h°(Zz(2)) = h°(Zr(2)), where T C P" is a general union of k lines. If
n =2, then h%(Zr(2)) = 0 if k > 3 and h0(Zr(2)) = (*;) if k = 1,2. If n > 3,
then h(Zr(2)) = max{0, ("+?) — 3k} ([7]).

Fix an integer d > 3. If n = 2 assume 4s < ds+ 1 — (851) for all s with
2 < s < min{k,d+1}. Note that the family of all schemes Z has a degeneration
Z' in which Z’ has k connected components W;, 1 < i < k, with W; C L; and
(Wi)rea @ general point of L;. In the terminology of [2] each W is a collinear jet.
By semicontinuity we have h®(Zz(d)) < h%(Zz/(d)) and h*(Zz(d)) < h'(Zz (d)).
Hence either h%(Zz(d)) = 0 or h'(Zz(d)) = 0 ([2]).

Notation Let A C P" be a plane. Fix 3 non-collinear points p1, ps, p3 € A.
Let L,R C A be lines with L N {p1,p2,p3} = {p3} and R N {p1,p2,p3} =
{p2}. Let Z[8] C P™ denote any scheme projectively equivalent to (2p;, A) U
(2p2, A) U (2ps3, L). Let Z[7] C P™ denote any scheme projectively equivalent to
(2p1, A) U (2p2, A) U{ps}. In both cases p3 is called the vertex of Z[8] or of Z[7]
and L is called the vertex line of Z[8]. Let Z[5] C P™ (resp. Z[4] C P™, resp.
Z'[5] € P") denote any scheme projectively equivalent to (2p1, A) U (2p2, R)
(resp. (2p1, A) U {pa}, resp. (2p1, A) U {p2,p3}).

Lemma 2. Fix integers n > 2, d > 3, x > 0 and ¢ > 0 and a zero-
dimensional scheme T' C P™ such that either h®(Zruw (d)) = 0 or Y (Zrow (d)) =
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0, where W C P" is a general union of x + ¢ schemes Z3o. Let Z C P" be a
general union of x schemes Zs 2 and c schemes Z[8]. Then either h°(Zryz(d)) =
0 or hl(zruz(d)) =0.

Proof. We use induction on ¢, the case ¢ = 0 being true for all x by assumption.
Assume ¢ > 0 and set e := h?(Zp(d)) — 9z — 8c. First assume e > 0. Let Z' C P"
be a general union of x + 1 schemes Z3 9 and ¢ — 1 schemes Z[8]. The inductive
assumption gives h(Zp_z(d)) = e—1 and h'(Zryz (d)) = 0. Since Z is general,
we may find Z’ with Z’ > Z and h'(Zryz (d)) = 0. Thus h'(Zruz(d)) = 0. Now
assume e < 0. We need to prove that h®(Zruz(d)) = 0. Decreasing if necessary
¢ we may assume e > —7. Let £ C P" be a general union of z schemes Z32 and
c¢—1schemes Z[8]. Let A C P" be a general plane. Let U C A be a general scheme
Zs3 5. Note that (' UE)NU = 0 even if n = 2. The inductive assumption gives
hY(Zrue(d)) = 0, h%(Zrue(d)) = 8 + e and h°(Zrupuy(d)) = 0, i.e. U imposes
8 + e independent conditions to H(Zrug(d)). Let U’ be a minimal subscheme
of U with h%(Zrupuy(d)) = 0. If U’ € U, then we may find Z[8] 2 U’ and
so h%(Zruz(d)) = 0. Now assume U’ = U. We need to find a contradiction.
Write U = Uy U Uy U Us with U; = (2p;,U) and pi,p2,p3 general in A. If
8 + e < 6 we use Remark 3 and that U contains 3 general tangent vectors.
Assume 8 + e = 7. We get h°(Zrupuy, (d)) < h°(Zrugp(d)) — 2 for at least one
index i, say h(Zrupuu, (d)) = h°(Zrue(d)) — 3; then we use Remark 3 and that
we may find Z[8] C A containing U; and 2 general tangent vectors of A. Now
assume 8+ ¢ = 8. In this case we first get h°(Zrupuv,uu, (d)) = h°(Zrup(d)) — 6
for some i # j and then apply once Remark 3. QED

2 Proof of Theorems 1 and 2

Unless otherwise stated from now on a 2-point means a planar 2-point.
For all positive integers n,d set uq, := L(":d) /6] and vq,, = (”:d) — 6Ugp-

We have
n+d

d
Note that if Z C P" is a disjoint union of z schemes Z3 2 we have h%(Oz(d)) <
hO(Opn (d)) if and only if 2 < ug,. If d > 2 and n > 2 from (2.1) for the integers
dand d — 1 we get

6ugn + vin = < >, 0<vgn<5 (2.1)

(2.2)

n+d-—1
n—1

6(ud,n - ud—l,n) + Vdn — Vd—1,n = <

From (2.2) we get that ugn—1 = Ugp — Udg—1, and Vgp—1 = Vgn — Ug—1p if
Vd,n > Vd—1,n» while Udn—1 = Udn — Ud—1,n — 1 and Vdn—1 = 6+ Vdn — VUd—1,n if
Vd,n < Vd—1,n-
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Proposition 2. Fix integers n > 2 and k > 0. Let Z C P™ be a general
union of k schemes Zs .
(a) Assume n = 2. If k = 1, then h°(Tz(2)) = 1. If k > 2, then
PO(T(2)) = 0.
(b) Assume n = 3. If k = 1, then h°(Zz(2)) = 5. If k = 2, then
h%(Z7(2)) = 1. If k > 3, then h%(Zz(2)) = 0.
(c) If n > 4, then h%(Z7(2)) = max{0, ("3?) — 5k}.

Proof. Let W be any scheme of type Z22 and let A be the plane containing
W. We have h%(A,Zw,.4(2)) = 1 (the only conic of A containing W is a double
line) and hence h'(A,Zw,a(2)) = 1. Hence h%(Zz(2)) > max{0, ("5?) — 5k}
and h'(Zz(2)) > k. Let J be the line spanned by {p1,p2} := Wieq. We have
RO (Zw (2)) = H°(Zp(2)), where B is the union of (2p;, A) and any degree 2
scheme with ps as its reduction, contained in A and not contained in J. Therefore
it is sufficient to prove that a general union Z’ of k degree 5 schemes projectively
equivalent to B satisfies h%(Zz(2)) = max{0, (”;&) — bk}, except in the case
(n,k) = (3,2). B is a scheme Z[5].

If n = 2, then the result is obvious. Now assume n = 3. If k = 1, then Z
is contained in a plane and from the case n = 2,k = 1 we get h'(Zz(2)) = 1.
If k = 2, then h%(Zz(2)) > 1, because Z is contained in a reducible quadric.
Let Ay, Ay be the two planes containing the two schemes Z35 of Z and call
N; C A; the scheme Z39 contained in A; and let L; be the line spanned by
(Ni)red- Fix p € A1\ L1. By the case n = 2 we have h°(A1, Iy, ugp},4,(2)) = 0.
Taking p = Ay N Ly we get that fj4, = 0 for each f € H°(T(2)) vanishes on
Ajy. Similarly fi4, = 0. Hence |Z7(2)| = {41 U A2}. The case k = 2 obviously
implies the case k > 3.

Now assume n > 4 and that Proposition 2 is true in P*~!. It is sufficient to
do the cases k = L(”f) /5] and k = [(";2) /5] and in particular we may assume
that & > [(n+ 1)/3]. Fix a hyperplane H C P".

(i) First assume n+1 = 0,2 (mod 3). Write n+1 = 3a+2b with a € N and
0<b<1. Let A;, 1 <i<a-+b, be general planes. If 1 <i <a, let L; C A; be
a general line and let p;; be a general point of L;; set {p;o} := L; N H and let v;
be the connected zero-dimensional scheme with p;o as its support and contained
in the line H N A;. For i = 1,...,a set B; := (2p;1, A;) Uv;. Each B; is a degree
5 subscheme of A; projectively equivalent to the scheme B described in the first
paragraph of the proof. If b = 1 set Ly11 := Agr1 N H, fix two general points
Pa+11 and pgi12 of Lat1, and set Bay1 := (2pa+t1, Aat1) U vgt12, where vg419 is
a degree 2 zero-dimensional scheme contained in A,1, not contained L, and
with p,y12 as its support. Let E C H be a general union of k — a — b schemes
Z[5]. Set F := EUJ™? B;. We have Resy (F) = U, (2pi1, A;) UG with G = (

(2

if b= 0and G = {par11Upati12} if b = 1. Thus k' (Zres, (r)(1)) = 0,7 = 0, 1. Set
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G :=0ifb=0and G’ = (2pa+11, La+1) U {pat12} if b = 1. The scheme F N H
is the union of E, G’ and a general tangent vectors. The inductive assumption
gives that either h°(H,Zg i(2)) = 0 or h'(Zp u(2)) = 0. If %(Zp.u(2)) = 0,
then we get h’(Zp(2)) = 0, proving Proposition 2 in this case. Now assume
hY(H,Zg u(2)) = 0. If b = 0, then it is sufficient to use Remark 3. Now assume
b = 1. By Remark 3 we have h%(H,Zg e 1(2)) < max{0,h°(Zg u(2)) — 2}
and to prove the proposition in this case it is sufficient to exclude the case
RO (H,Zpuer 1 (2)) = h°(Zg.u(2)) —2 > 0, i.e. the case in which a general line
of H imposes only 2 conditions to |Zg g (2)].

First assume n = 4. We have a = b = 1 and it is sufficient to prove that
h%(Zz(2)) = 0 when k = 3. Since k —a—b = 1, we have h’(H,Zg ;(2)) = 5 and
so h°(H,Zpyr,m(2)) = 2 for a general line L C H by the case n = 3 of Lemma
1.

Now assume n > 5 and b = 1. We have h'(H,Zgp,u,u(2)) = 0 for a general
degree 5 scheme U C H projectively equivalent to B by the inductive assump-
tion. Since the base locus of |Zy7(2)| contains the line spanned by Uyeq, we get
h(H,Zgpue(2)) = h°(H,Zg g (2)) — 3. Apply a times Remark 3.

(ii) Now assume n = 0 (mod 3). Write a :=n/3—1. Let A;, 1 <i < a+2,
be general planes. If 1 <1 < a, let L; C A; be a general line and p;; a general
point of L;; set {pi2} := L; N H and let v; be the connected zero-dimensional
scheme with p;o as its support and contained in the line HNA;. Fori=1,...,a
set B; := (2pi1, A;) Uv;. For i =a+ 1,a+ 2 set L; := A; N H, fix two general
points p;; and pio of L;, and set B; := (2p;1, A;) U vi2, where v;o is a degree
2 zero-dimensional scheme contained in A;, not contained L; and with p;s as
its support. Let £ C H be a general union of k — a — 2 schemes Z[5]. Set
F:=FEU Ufif B;. We conclude as above using Remark 3 and twice Lemma
1. QED

Proposition 3. Fiz integers n > 2 and k > 0. Let Z C P" be a general
union of k schemes Zao and one planar 2-point.
(a) If n = 2, then h°(Zz(2)) = 0.
(b) Assume n = 3. If k = 1, then h°(ZTz(2)) = 2. If k > 2, then
hY(Zz(2)) = 0.
(c) Assume n > 4. Then h®(Zz(2)) = max{0, ("JZFQ) — 5k — 3}.

Proof. Part (a) and the second half of part (b) follow from Proposition 2. As-
sume n = 3 and k = 1. Write Z = U U M with U a (2,2)-scheme and M a
planar 2-point. Since h°(Zy(2)) = 5 (Proposition 2), we have h°(Zz(2)) > 2.
Let N be the plane spanned by M and let L be the line spanned by U,eq. Fix
a general p € N. For a general Z we have UNN = () and L N N is a gen-
eral point of N. Since L is in the base locus B of [Z ) (2)], we have N C B.



88 E. Ballico

Since h0(Zy (1)) = 1, we get h®(Zzup,3(2)) < 1 and so h°(Zz(2)) < 2. Now
assume n > 4. Proposition 2 gives h%(Zz(2)) > max{0, (";2) — 5k — 3}. By
Proposition 2 and Remark 3 it is sufficient to do the case k = L(”;ﬂ) /5] and
only for the integers n > 4 such that (";2) = 3,4 (mod 5). Fix a hyperplane
HcP'If n+1=0,2 (mod 3) we use part (i) of the proof of Proposition 2
taking as £ C H a general union of one planar 2-point and k£ — a — b scheme
Z[5]; if n = 0 (mod 3) we use part (ii) of the proof of Proposition 2 with as
E C H a general union of a planar 2-point and k — a — 2 schemes Z[5]. We
explain now why this construction works. In the proof of Proposition 2 we con-
structed a zero-dimensional scheme W C P" for which we proved that either
hO(H, Twrm.u(2)) = 0 or RX(Zwrmu(2)) = 0, deg(Resg(W)) = n + 1 and
Resg (W) is linearly independent. Thus A (Zges, o) (1)) = 0, i = 0,1. Resg (W)
does not depend on the scheme E C H and so it is the same as in Proposition
2. Assume n = 5¢ + 1 with ¢ a positive integer. We have (";2) = 5k + 3 and
so we need to prove that h'(Zz(2)) = 0, i« = 0,1. So we need to prove that
h'(H, Twnm,u(2)) = 0, i = 0,1. We have the inductive assumption in H to han-
dle E and then we continue as in steps (i) and (ii) of the proof of Proposition
2. QED

Lemma 3. Let G C P2 be a general union of 3 planar 2-points. Then
hY(Za(2)) = 0 and h°(Zg(2)) = 1.

Proof. Let A be the plane spanned by G, .q. Keeping A fixed and moving G
among the union of 3 planar 2-points with support on A we see that for a general
G the scheme GN A is a general union of 3 tangent vectors of A. Remark 3 gives
h'(A,Zgna(2)) = 0. Since Resa(G) = Grea, we have h%(Zpes,()(1)) = 1 and
hl(ZResA(G)(l)) =0. QED

Proofs of Theorems 1 and 2. First assume n = 2. Since any two points of P"
are collinear, in the case n = 2 of Theorem 1 (resp. Theorem 2) Z is a general
union of 2k (resp. 2k + 1) general 2-points of P2, The Alexander-Hirschowitz
list ([1], [4]) gives Theorems 1 and 2. We assume n > 3 and that Theorems
1 and 2 are true in P"~!. To prove Theorem 1 is sufficient to do the cases
k= L(":d) /6] =uq, and k = [(”:d) /6]. Let H C P™ be a hyperplane.

(a) Assume d = n = 3. Since uz3 = 3 and v33 = 2, to prove Theorem
1 it is sufficient to prove that h'(Zz(3)) = 0 if & = 3 and h°(Zz(3)) = 0 if
k = 4. First assume k = 3. Let Y C P? be a union of 3 schemes Za.2 such that
one of them is contained in H and that each of the other ones have a point in
its support contained in H and that Y is general with these restrictions. The
scheme Y N H is a general union of one scheme Z3 2 (call it §) and 2 tangent
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vectors. We obviously have h'(H,Z3 (3)) = 0 and hence h'(H, Zynpm,u(3)) = 0,
i = 0,1, by Remark 3. Hence it is sufficient to prove that h' (ZResy (v)(2)) = 0.
We have Resy (Y) = U UU; with U; spanning a general plane A; and U; union of
a general 2-point (2P;, A;) of A; and a general point ¢; of the line A;NH. We have
W (Z(apy, a1)0(2P2,4)(2)) = 0 (Lemma 3) and so h%(Z(op, 4, )0(2r,4)(2) = 4.
The scheme (2P, A1) U (2P, A2) does not depend on H. Since any two points
of P3 are collinear, moving H we may assume that (qi,¢2) is a general element
of A1 X AQ.

Since hO(IA1U(2P2’A2)(2)) = hO(I(QP%AQ)(l)) =1 and ¢ is general in A, we
get h2(Ziap, a1)u@Py, An)uiq} (2)) = 3. Since h®(Zap, a,)u@Ps, A0) g1 uas (2)) =
W (Zap, A2)0(q,3 (1)) = 1, we obtain that h%(Zap, 4, )u2Ps, 42)0{a 10{ee} (2)) = 2,
i.e. we have hl(IResH(y)@)) =0.

Now assume k = 4. Since two general points of P” are contained in a scheme
Z32 and v33 = 2, the case k = 4 of Theorem 1 follows from the case k = 3. For
Theorem 2 it is sufficient to do the cases k = 2 (true because Z is contained
in a general disjoint union of 3 schemes Z9) and k = 3 (we use that a planar
2-point contains a tangent vector, Remark 3 and that vz 3 = 2).

(b) Assume d = 3 and n > 4. To prove Theorem 1 is sufficient to prove
the cases k = L(";ﬂ) /6] and k = ((”;3) /6]. Fix any k disjoint schemes B;
projectively equivalent to Zjo. Let A; be the plane containing B; and let L;
be the line spanned by the reduction of B;. We assume that L; N L; = () for
all 4,4 such that ¢ # j. Since (g) = 15 and (”;2) > 20 for all n > 5, we
may write (";2) = bz + 4a with a,x non-negative integers and 0 < a < 4.
Now we check that K > = 4+ a. Assume k < x + a — 1. Since a < 4, we get
5k < bz +5a — 5 < (”;2) — 1, contradicting the inequality 6k > (";3) — 5.
Let G C P" be a general union of x schemes of type Zs2 and let S C H be
the intersection with H of the lines associated to each scheme Zs 5. Since G is
general, these x lines are x general lines of P™ and so S is a general subset of
H. Fix a general planes A;, 1 < i < a, and let B; C A; be a general scheme
of type Z; 2 with the restriction that one of the points of (B;)eq is contained
in HNA;. Let E C H be a general union of k — a — x schemes Z2 of H.
Set Y := GUEUJ.,B;. For all i = 1,...,a the scheme Resy(B;) is a
general union of a 2-point of A; and a general point of the line A; " H. Let M
be the union of the reduced components of U{_;Resy(B;). Since any Z; is a
degeneration of a family of general planar 2 points, by Proposition 3 we have
P (Zresy (vy\m(2)) = 0 and s0 k% (Zges,y (vy\m(2)) = a. Resg(Y) \ M does not
depend on H. Since a < 4 < n, any a points of P" are contained in a hyperplane.
Hence, writing M = {q1,...,q,} with ¢; € A;, we may assume that (q1,...,¢q)
is a general element of x{_; A;. As in step (a) we get h'(Zpes, (v)(2)) = 0,
i = 0, 1. Hence it is sufficient to prove that h°(H, Tsuynm)(3)) = max{0, (";2) -
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6(k—a—2x)—x— 2a} = max{0, (”;3) — 6k}. Since S C H is general, it is
sufficient to prove that h(H,Zyny(3)) = max{0, (";3) — 6k + x}. We have
either h'(H,Zp (3)) = 0 or h°(H,Zg u(3)) = 0 by step (a) and the inductive
assumption. Therefore we may assume that h'(H,Zg g(3)) = 0. Use Remark
3. To check Theorem 2 for d = 3 and n > 4 we leave to the reader at least 3
options. We may add in H one more planar 2-point or add it outside H using
the integers x’,a’ with (”;2) = 3 + 52’ + 4a’ or insert with its support on H,
but not contained in H so that in the residual we have a general point (taking
integers z”,a” with (";2) =1+ 5x" + 4a” and whose intersection with H is a
general tangent vector).

(c) Assume d > 4 and n > 3. We prove Theorem 1 for (n,d). By steps
(a), (b) and induction on d we may assume that Theorems 1 and 2 are true in
P™ for the integer d — 1. In all cases for Theorem 1 it is sufficient to do the case
k= L("Zd) /6] and k = [(”Zd) /6]. In particular we assume 6k > (":er) —5.

(c1) First assume that vg_1, is even. Write (”+Z_1) = 6x + 4a with z,a
non-negative integers and 0 < a < 2. Since 6k > (”:d) — 5 and a < 2, we have
k> a+z. Let G C P" be a general union of x schemes Z5»>. Fix a general
planes A;, 1 <i < a and let B; C A; be a general scheme of type Z3 > with the
restriction that one of the points of (B;)yeq is contained in H N A;. Let £ C H
be a general union of k — a — = schemes Z 5 of H. Set Y := GUEUJ;_, B;.
By Remark 3 and the inductive assumption on n, we may assume that either
hO(H,IYQHVH(d)) =0or th, (IY(‘]H’H(d)) =0.

Claim 1: We have h'(Iges, (v)(d — 1)) = 0.

Proof of Claim 1: Since deg(Resy (Y)) = ("Jr:f*l), it is sufficient to prove
that h'(Zres, (v)(d — 1)) = 0. For 1 < i < a write B; = (2pi1, Ai) U (2pi2, Ai)
with p;o € A; N H. We have Resy(B;) = (2pi1, 4;) U {pi2}. The inductive as-
sumption gives h!(Zg(d — 1)) = 0. Hence Claim 1 is true if a = 0. Now assume
a = 1. By the inductive assumption we have h°(Zgup, (d — 1)) = 0. By the
inductive assumption for Theorem 2 we have h'(Zgap,,,4,)(d — 1)) = 0. Since
" (Zeu@pn,an(d—1)) > 0 and h°(Zgup, (d—1)) = 0, A is not contained in the
base locus of |Zg(2p;,4,)(d — 1)|. For a general H we may assume that pi2 is
a general point of A;. Hence hl(IRCSH(y)(d —1)) = 0. Now assume a = 2. The
inductive assumption gives h!'(Zgup, (d — 1)) = 0 and hence by semicontinuity
W (Zau@p, A 0(par,45) (4 — 1)) = 0 and 50 2% (Zaupry,41)u(2pa1,42) (d — 1)) = 2.
The scheme G U (2p11, A1) U (2pa1, A2) does not depend from H. Since any two
points of P™ are collinear, moving H we see that we may take as (pa21,p22) a
general element of A; x Ay. Hence ho(IGU(QPH’AI)U(QMLAQ)U{]M}(d —1))=2if
and only 4; is in the base locus of |Zgy2p,1,4,)U(2ps1,42)(d — 1)|. By monodromy
for general A, As if one of them is in the base locus, then so is the other
one. But in this case we would have h(Zgup,uB,(d — 1)) = 2, contradicting



Zero-dimensional scheme 91

the inductive assumption. Now assume hO(IGu(2p117A1)U(2p217A2)u{p12}(d —-1)) =
1= hO(IGU(2p11,A1)U(2p21,AQ)U{pm,sz}(d —1)). Since po2 is general in Ay, we get
1= hO(IGU(Qpn, ANU{p11}uAs (d — 1)). The inductive assumption for Theorem 2
gives h%(Zau(2pyy, 41 0B, (d — 1)) = 0, a contradiction. QED

(c2) Now assume that vg_;, is odd. Let I' C P" be a zero-dimensional
scheme and let p be a general point of H. By the differential Horace lemma to
prove that h'(Zryx (d)) = 0 (vesp. h°(Zruk (d)) = 0 for a general planar 2-point
K C P" it is sufficient to prove that h!(H, Zirnmyuip),a(d)) = hl(IReSH(F)Uv(d—
1)) = 0 (cesp. K°CH. Zrunyopp.in (@) = B Ty (A1) = 0), where v € H
is a general tangent vector of H with p as its support ([3]). Instead of K we may
use a general Zs 9. Instead of v we get a scheme B C A with A general plane
containing p, deg(B) = 5 and B a disjoint union of the general planar 2-point
of A and a general tangent vector of the line AN H. Let B D B denote the
scheme Z3 7 containing B. Since v4_1,, is odd, ("Jrfffl) is odd and so we may
write (”+g_1) — 5 = 6x + 4a with x, a non-negative integers and 0 < a < 2.
Since 6k > (":d) —5,and a < 2, we have k > x+a+1. Let G C P" be a general
union of x schemes Z3 5. Fix a general planes A4;, 1 <¢ < a and let B; C A; be a
general scheme of type Z3 2 with the restriction that one of the points of (B;)yed
is contained in HNA;. Let A1 be a general plane. Let B,11 be a general scheme
Z3,2 whose reduction spans the line A,41 N H. Let & C H be a general union
of k—x —a—1 schemes Zzo of H. Set Y :=GUEU Ufill B;. By the inductive
assumption on n either h®(H, Ziynmuipy(d)) = 0 or h'(H, Ziynmuipy(d)) = 0.
Therefore it is sufficient to prove that h*(Zges,, (vyup (d—1)) = 0,3 = 0,1. Let v
(resp. ) be the union of the connected components of Resy (Y) U B’ contained
in H (resp. not contained in H). Note that 5N H = (). 8 is a general union of
a 2-point of A and several Z3 5. The inductive assumption for Theorem 2 gives
hY(Zz(d—1)) =0, i.e. h°(Zz(d — 1)) = deg(7y). The scheme 7 is a general union
of a tangent vector of H N A and a points of H. Since N H = (), by Remark 3
we have h%(Zzu,(d — 1)) = max{0, h°(Zs(d — 2))}. Even when d = 4,5 we have
h%(Zz(d—2)) = 0 by the inductive assumption, because deg(8) = ("ﬁﬁfﬁl) —a—2
and 0 < a < 2.

(d) To conclude we need to prove Theorem 2 for (n,d). By Remark 3
and Theorem 1 for (n,d) it is sufficient to do the case k = L("Zd) /6] and
(":d) =3,4,5 (mod 6). If Vg—1,, is even we make the same construction as in
steps (cl) taking instead of E a general union E’ C H of k — x — a schemes
Z39 and a planar 2-point. The case considered in (c2) is easier: take the planar
2-scheme outside H and define x,a by the relations (n+zfl) — 3 = 6z + 4a,
0<a<?2. QED
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3 General unions of schemes Z3 5

Consider the following assertion Hg,,:
Assertion Hg,: For all z,y € N either h%(Zz(d)) = 0 or h'(Zz(d)) = 0
for a general union Z C P" of x schemes Z32 and y schemes Z 5.
For all positive integers n, d set ag, = L(”:d) /9] and by, = (”+d) —9a4p.

We have
n+d

Qad’n + bd,n = ( d

), 0 < bgn <8 (3.1)

If d > 2 and n > 2 from (3.1) for the integers d and d — 1 we get

(3.2)

n+d-—1
g(ad,n - ad—l,n) + bd,n - bd—l,n = ( >

n—1

From (3.2) we get that ag,—1 = agn — @d—1,n and bgn—1 = bgn — bg—1, if
ban = ba—1n, While agpn1 = agn —ag-1, — 1 and bgp1 =9+ bgp — bg—1,n if
bd,n < bdfl,n-

Our original aim was the construction of exceptional cases for general unions
of these zero-dimensional schemes and a prescribed number of lines. See Lemma
6 for one such case.

In the next section we prove Hgs for all d > 5 and give the list of all
exceptional cases in P3 for d = 3,4 (Theorem 3). We list the possible values
h%(Zz(d)) if d = 3, n = 4 and Z is unions of Z3 o (Proposition 4).

Lemma 4. Fix integers n > 2 and k > 0. Let Z C P™ be a general union

of k schemes Z3 5.

(a) If n = 2, then h°(Zz(2)) = 0.

(b) Assume n = 3. If k = 1, then h°(Zz(2)) = 4. If k = 2, then
h%(Zz(2)) = 1. If k > 3, then h°(Zz(2)) = 0.

(c) Assumen = 4. If k =1 (resp. k =2, resp. k > 3), then h°(Zz(2)) =9
(resp. hO(Tz(2)) = 4, resp. h°(Tz(2)) =0).

(d) If n > 5, then h°(Zz(2)) = max{0, (";2) — 6k}.

Proof. Let W be a Z3 »-configuration of Z and A the plane containing W. Since
HY(Zw (2)) = H°(Z4(2)), we have h%(Zz(2)) = h°(Zr(2)), where T is the union
of the planes containing the Z32-configurations of Z. T'is a general union of k
planes of P". Thus parts (a) and (b) and the case k = 1 of parts (c) and (d) are
obvious.

Now assume n = 4 and k > 1. If T} and T, are general planes, then every
quadric hypersurface containing 77 U 15 is a cone with vertex containing the
point 71 N T,. Taking the linear projection from the linear span of Sing(7T") we
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get part (c), (in the case k = 3, because h(P,Z3(2)) = 0 for any degree 3
scheme 3 C P1).
Part (d) follows from [5, Theorem 3.2] applied to T'. QED

Lemma 5. Let T C P be a general union of one Za2 and 3 lines. Then
hY(Zr(3)) = 0. If Z is a general union of one Za 5 and 3 general collinear degree
4 schemes, then h'(Zz(3)) = 0.

Proof. Write T' = B Ll R with B zero-dimensional and R a union of 3 general
lines. Note that |Zg(2)| is formed by a unique quadric, which is smooth and in
particular that h'(Zr(2)) = 0. Let H C P3 be the plane spanned by B. Since
RN H is a general union of 3 points, we have h'(H,Zrnmg u(3)) = 0. Use that
Resy(T) = R, h'(Zgr(2)) = 0 and the residual exact sequence of T and H. The
statement for Z follows from the one for T', because h?(0z(3)) = h°(Or(3)) and
H(Tyw (3)) = HY(ZL(3)) for any line L C P? and any zero-dimensional scheme
W C L with deg(W) = 4. QED

We found the following counterexample if we also add lines.

Lemma 6. Let T C P? be a general union of one Z32 and 2 lines and
let Y C P3 be a general union of one Zso and one line. Then h'(Zr(3)) = 1,
hY(Z7(3)) = 4 and h'(Zy(3)) = 0.

Proof. Write T'= BU RU L with B a Z3 2-scheme and R, L lines. Let H be the
plane spanned by B. We have Resy(T) = RU L and hence h%(Zpeq 2 (2) = 4.
Since h°(H,Zz,,(3)) = 1 and RNH is general in H, we have h®(H, Zynr,(3)) =
0. The residual exact sequence of T and H gives h®(Zr(3)) = h°(Zes,, (1)(2)) =
4. Since h°(Zr(3)) = 4, we have h!(Zr(3)) = 1.

Take Y = BUR. We have h'(Zyng.u(3)) = 0,4 = 0,1 and hence h*(Zy (3)) =
hY(Zr(2)) = 0.

Proposition 4. Let Z C P", n > 2, be a general union of k schemes Z3 3.

(i) Assume n = 2. We have h°(Z(3)) = 1 and h*(Zz(3)) =0 if k = 1,
and h%(Zz(3)) =0 if k > 2.

(ii) Assume n = 3. We have h%(Zz(3)) = 11 and h'(Zz(3)) = 0 (resp.
hY(Z7(3)) = 4 and h*(Zz(3)) = 2, resp. h%(Zz(3)) = 1 and h'(Zz(3)) = 8, resp.
h%(Zz(3)) =0) if k = 1 and hl(IZ( )) = 8 (resp. k = 2, resp. k = 3, resp.
k>4).

(iii) Assume n = 4. We have h'(Zz(3)) = 0 if k < 3, h®(Zz(k)) = 0 if
k>5 and h%(Zz(3)) =1, h'(Tz(3)) =2 if k = 4.

Proof. Proposition 1 gives |Zz(3)| = |Zr(3)|, where T is the union of the 3
lines spanned by each pair of points of the reduction of any Z3o C Z. Part (i)
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and all cases with k£ = 1 follow. Now assume n > 2 and k& > 2. The values of
h'(Zz(3)) in parts (ii) and (iii) are uniquely determined by n, k and the values
of h%(T£(2)).

(a) Assume n = 3. We have (g) =2-9+2. Let Ay, A, A3, A4 be general
planes and B; a general union of 3 lines of A;. We have h"(Z4,,4,(3)) = 4. We
fix A; and B;. For a general As, the line A1 N Ay is a general line of A;. For a
general By the set Bo N (A; N Ag) contains a general point of A3 N As. Hence
hY(A1, Ip,u(Byna,)(3)) = 0. In the same way we get hO(AZ-,IBm(Biji)(?))) =0
for all 4 # j. Hence hU(IBIU32(3)) = hO(IAluA2(3)) = 4, hO(IgluB2U33(3)> =
hO(Za,04,045(3)) = 1. Therefore h°(Z(3)) = 0 if k > 4.

(b) Assume n = 4. We have (?7)) =3-9+8. Let H C P* be a hyperplane.
Let A;, 1 < i <k, be general planes. Let E; C A; be a general reducible conic.
Set L; ;= A;NH and T} := E; U L;.

Claim 1: We have h'(Zp,up,um,(2)) = 0,4 =0, 1.

Proof of Claim 1: Since h%(Opg,um,uE,(2)) = 15, the claim is equivalent
to prove that a general union of 3 reducible conics is contained in no quadric
hypersurface. We degenerate Fo U F3 to F':= F} U Fs Uwv; Uwvg with Fy U Fy C
H, F; U Fy a connected nodal union of 4 lines with arithmetic genus 1, F}
and F5 reducible conics, v; and vy tangent vectors not contained in H and
supported at the two points of F1 N Fy. Set Y := FU E;. We have HN F =
FrUF, and YNH = Fy UF, U (E; N H) with HN Ey two general points of
H. Hence h°(H,Zynp u(2)) = 0. We have Resy(Y) = E; U (Fy N Fy). Since
h(Zg,(rinm) (1)) = 0 for general E1 and Fi U Fj, a residual exact sequence
gives Claim 1. QED

Since h'(H,Zp,ur,015(3)) = 0, Claim 1 proves the case k = 3. Now we
check the case k = 4 and hence all cases with £k > 4. We will also prove that
h9(Zy(3)) = 1 for a general union of 4 planes and so h%(Zz(3)) > 0 if k = 4. Fix
a general p € L. We take as A4 a general plane containing p and let Ty C A4 be
the union of 3 general lines. Set Y := T} UT, UT5UTy. Take G € |Zy(3)]. Since
p ¢ Ty, G D Ay AsNAg and A3NAy are general points of As and As, respectively.
Hence A U A3z C G. Since Ay N A; ¢ T, we also get Ay C G. Although T3 U Ay
is not general, W := A; U As U A3 U Ay is a general union of 4 planes. Hence
to prove the case k = 4 it is sufficient to prove that h%(Zy/(3)) = 1. Taking
into account the 6 points A; N A, 1 < i < j < 4, show that h°(Ow (3)) = 34
(use 4 Mayer-Vietoris exact sequences to check that h'(Ow (3)) = 0). Hence
hO(Zw (3)) > 1. Let M C P* be a general hyperplane containing A4. Since
Respy (W) = A U Ay U Ag, Claim 1 gives hO(IReSM(W)(Q)) =0.WnNnM is
the union of A4 and 3 general lines. Hence h®(M, Zyynas(3)) = 1. The residual
sequence of M gives h®(Zy/(3)) < 1. Since h®(Zy(3)) > 0, the proof of the case
k = 4 is finished. QED
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4 General unions of schemes 73, and 755 in P3

The aim of this section is to prove the following result.

Theorem 3. Take x,y,d € N with d > 3. Let Z C IP3 be a general union of
x Z3o and y Zas. We have h°(Zz(d)) - h'(Zz(d)) = 0, except in the following
cases:

(1) (d,x,y) = (3,2,0), h%(Z7(3)) = 4, ' (Zz(3)) = 2:
(2) (d,x,y) = (3,3,0), h°(Z7(3)) = 1, ' (Z2(3)) = §;
(3) (d,x,y) = (3,1,2), h%(Zz(3)) = 1, ' (Z2(3)) = 2;
(4) (d,x,y) = (3,2,1), h%(Z7(3)) = 1, W (Z2(3)) = 5;
(5) (d,z,y) = (4,4,0), h%(Tz(4)) =1, K (Zz(4)) = 2.

In this section we take n = 3. Let H C P? be a plane. Let U(z,y) C P3 be
a general union of = schemes Z39 and y schemes Zy . Let V(x,y) C P3 be a
general union of x schemes Z3 5 and y schemes Z[7] with vertex contained in H;
note that the latter condition is not restrictive if y < 3, because any 3 points of
P3 are contained in a plane. Set V(z) = U(x) = U(z,0) = V(z,0).

Lemma 7. Let Z C P3, be a general union of x schemes Zs 2 and y schemes
Zso. Then either h°(Zz(3)) = 0 or hY(Zz(3)) = 0, except the cases with y = 0
listed in Proposition 4 and the following cases with y > 0:

(1) (z,y) = (1,2) with h°(Zz(3)) =1 and h*(Zz(3)) = 2;
(2) (z,y) = (2,1) with h°(Zz(3)) =1 and h'(Zz(3)) = 5.

Proof. All cases with y = 0 are covered by Proposition 4. All cases with x =0
are true by Theorem 1. The case (z,y) = (0,4) covered by Theorem 1 shows
that h%(Zz(3)) =0 ifz +y > 4.

Assume x = y = 1. Let A be the plane containing Z3,. Fix a general
p e A. We have hi(A,IZ&QU{p}(ZS)) =0,7=0,1. Let B C P3 be a general plane
containing p. We take a general Z3 o C B such that (Z22)rea NA = {p}. Let L C
B be a general line with p € L. By the residual sequence of A and the differential
Horace lemma applied to the connected component of Z, o with p as its reduction
it is sufficient to prove that hl(I(quB)u(2p7L)(2)) = 0, where ¢ is a general point
of B. This is true for every ¢ € B\ L, because hl(B,I(2q,B)U(2p7L),B(2)) =0.In
all cases with 2 +y = 3 we have h%(Zz(3)) > 0, because Z is contained in x +y
planes.

Now assume x = 1 and y = 2; we want to prove that h°(Zz(3)) = 1 and hence
hY(Zz(3)) = 2. Let Z' C Z be any disjoint union of 3 schemes Z 5 contained
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in Z (with Z\ Z' a 2-point of a plane A). Theorem 1 gives h'(Zz(3)) = 0
and so h%(Zz(3)) = 2. Resa(Z’) is a general union of two schemes Z3 5 and
50 hO(Ipes,(2)(2)) = 1 (Proposition 2). Since Z \ Z’ contains a general point
of A and h®(Zges,(2)(2)) < h°(Z7(3)), we get hO(Zz(3)) < h°(Zz(3)) and so
B(T4(3)) = 1.

Finally, we consider the case x = 2, y = 1. Take Z” C Z with Z” union
of one Z3 9 and two Zs . Since h°(Zz(3)) > 1 and h°(Zz#(3)) = 1 by the case
(z,y) = (1,2) just done, we get h°(Z(3)) = 1 and hence h'(Zz(3)) = 5. QED

Proposition 5. Fiz xz,y € N. We have h%(Zy(;4)(4)) - B (Zy(p ) (4)) = 0 if

and only if (z,y) # (4,0).
We have h®(Zy4y(4)) = 1, h' (Zyay(4)) = 2 and h* (Zy(3,1)(4)) = 0.

Proof. By Theorem 1 we may assume x > 0. Since V' (z,y) is contained in = +y
planes, we have h(Zy(4)(4)) > 0. We first check that h"(Z;(4)(4)) = 1 and hence
h'(Zy(4y(4)) = 2. We degenerate U(4) to a general union Z’ of one Zzo C H
and 3 general schemes Z3 o such that exactly one of the points of their support
is contained in H. Z' N H is a general union of 3 planar 2-points and 3 tangent
vectors and so h'(H,Zzngp(4)) = 0, @ = 0,1. Since any 3 points of P3 are
contained in a plane, Resy(Z’) may be considered as a general V (0, 3). V (0, 3)
is contained in a union of 3 planes and so to prove that h°(Z;/(4)) < 1 (and hence
h(Zy4y(4)) = 1) it is sufficient to prove that h%(Zy (g 3)(3)) < 1. Fix U(0, 3) and
call Ay, As, As the 3 planes spanned by the connected components of U(0, 3).
Since any 3 points of P are contained in a plane, V (0, 3) has the Hilbert function
of U(0,3) U {Py, Py, P3}, where each P; is a general point of A;. By Theorem
1 we have h'(Zyo3)(3)) = 0 and so h?(Zy(93)(3)) = 2. Hence there is ¢ €
A1UA5U Az such that hO(IU(O,3)U{q} (3)) = 1. Thus |ZV(O,3)(3)| = {Al UAQUAg},
i.e. h%(Zy(03)(3)) = 1. Thus h%(Zy4)(4)) = 1. Since h%(Zy4)(4)) = 1 we have
PO (Zyy(zy)(4)) = 0 if © > 4 and & +y > 4. Now assume = < 3. To prove that
P Ty (z,)(4)) - BO(Zy(sy)(4)) = O it is sufficient to check the following pairs
(z,y): (1,4), (1,5), (2,2), (2,3), (3,1), (3,2).

(a) Take (z,y) = (3,2). We degenerate U(x,y) to a general union Z’ of one
Z3.2 contained in H, two Z3 2 with a point of their reduction contained in H, one
Z3 2 with a point of its support in H and a general Zs 9. Since Z'NH is a general
union of 3 planar 2-points and 3 tangent vectors, we have h'(H,Zznp g (4)) = 0,
i = 0,1 and so it is sufficient to prove that h°(Zges,, (2)(3)) = 0. Resg(Z') is a
general union of one Zs 9, two Z[7] with vertex in H and one Z[4] with vertex
in H. Since h°(Zy2)(2)) = 1 (Proposition 2), we have h®(Zy (2)) = 0 for a
general union of one Zs 3, two Z[7| with vertex contained in H and one Z[4]
with vertex contained in H. Since any 3 points of P3 are contained in a plane,
adding one vertex at each step we see that h®(Zres,, (2(3)) = 0if h*(Zp(3)) < 3,
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where E' is a general union of 3 Z3 2 and one planar 2-point. Theorem 2 gives
hO(Zg(3)) = 0.

(b) Take (x,y) = (3,1). We make the same construction taking now as
Z' a general union of one Z3 o contained in H, two Z3 o with a point of their
reduction contained in H, one Z 2 with a point of its support in H.

(c) Take either (z,y) = (1,5) or (z,y) = (1,4). We degenerate U(z,y) to a
general union Z’ of y—3 schemes Zj 5, one scheme Z3 5 contained in H and 3 gen-
eral Z3 o with one point of their support contained in H. Since Z'NH is a general
union of 3 planar 2-points and 3 tangent vectors, we have h'(H,Zznp z(4)) = 0,
i = 0,1, and so it is sufficient to prove that h%(Zpes,(z)(3)) = 0 if y = 5
and hl(IResH(Z/)(ZS)) = 0 if y = 4. Resy(Z’) is a general union of y — 3 Z
and 3 Z[4] with vertex contained in H. Let E be the union of the unreduced
connected components of Resy(Z’). E is a general union of y — 3 Zy5 and
3 planar 2-points. We degenerate two general planar 2-points to two disjoint,
but coplanar 2-points, i.e., to a scheme Z5>. In this way we degenerate £ to
a scheme E; to which we apply Theorem 2. Theorem 2 gives h!(Zg, (3)) = 0
if y = 4 and h%(Zg,(3)) = 0if y = 5 and so h'(Zg(3)) = 0 if y = 4 and
h2(Zg(3)) = 0if y = 5. Hence h®(Zges,,(21(3)) = 0 if y = 5. Now assume y = 4
and hence h°(Zg(3)) = 5. Recall that to prove this case it is sufficient to prove
that h(Zres,, (2 (3)) = 2, i.e. hO(Tpesy (21(3)) = h°(ZE(3))—3. Resp(Z')\Eis a
general union of 3 points of H. Hence h°®(Zges,, (7(3)) = max{2, h®(Zpuu(3))}-
We have h%(Zgur(3)) = h°(Zg(2)) < 1, because E contains 4 general tangent
vectors of P2 and another general point of P3.

(d) Take either (z,y) = (2,3) or (z,y) = (2,2). We degenerate U(x,y)
to a general union Z’ of one Z3 9 contained in H, one Z3 9 with a point of its
reduction contained in H, two Z3 2 with a point of its support in H and y — 2
general Zs 5. Since Z' N H is a general union of 3 planar 2-points and 3 tangent
vectors, we have h'(H,Zznm m(4)) =0, i = 0,1, and so it is sufficient to prove
that h?(Zres;, (21 (3)) = 0 if y = 3 and h'(Zpesy(2)(3)) = 0 if y = 2. Resy(Z')
is a general union of y — 2 schemes Z3 2, one Z[7] with vertex contained in H
and two Z[4] with vertex contained in H. Let E be the union of the unreduced
connected components of Resy(Z’). As in the previous step we reduce to prove
that h'(Zg(3)) = 0. To prove this h!-vanishing it is sufficient to do the case
y = 3. In this case F is a general union of 2 Z;5 and two planar 2-points
and hence U(0,3) is a specialization of it. Use the semicontinuity theorem and
Theorem 1.

(e) Now we check that h'(Zy31)(4)) = 0, ie. hO(Iv(gyl)(él:)) =1 We
proved that h'(Zy(31y(4)) = 0, ie. h%(Zy(31)(4)) = 2. Since y < 3 V(3,1)
has the Hilbert function of a general union 5 of 3 Z32 and one Z[7]. Assume
hY(Z5(4)) > 0, i.e. (since B D U(3,1) and deg(8) = deg(U(3,1)) + 1) assume
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H°(Z3(4)) = H*(Zy(3,1)(4)). Write U(3,1) = U U B with B the Zs5. Let A be
the plane spanned by B. A general (3 is obtained from U(3,1) adding a general
point of A. Hence HY(Zauy(3,1)(4)) = H°(Zy(3,1)(4)). Since Resa(U(3,1)) = U,
we get h?(Zy(3)) = 2. Since U = U(3,0), the case (n,k) = (3,3) of Proposition
4 gives a contradiction. QED

Lemma 8. Let Z C P? be a general union of 2 Zao and 3 planar 2-points.
Then h°(Zz(3)) = 0.

Proof. Let A’, A” C P? be general planes. Fix one Zs2, B C H, and call B’
a general Zs of A’ with the only restriction that one of the points of BJ_, is
general in the line A’ N H. Let D be a general planar 2-point of A” with Diyeq
contained in the line A” N H. Let G C P3 be a general union of 2 planar 2-
points. Set Z’ := GU BU B"U D. By semicontinuity it is sufficient to prove that
h(Z(3)) = 0. Since Z'NH is a general union of B and 2 general tangent vectors
of H, Theorem 1 and Remark 3 give hi(H,Zzng(3)) = 0, i = 0,1. Resy(Z’)
is a general union of 2 planar 2 points (i.e. G), a scheme Z[4] whose vertex is
a general point of H (i.e. Resy(B’)) and a general point of H (i.e. Resy(D)).
Since Resp(Resp(Z')) contains G, we have h(Zgesy, (Resy (27 (1)) = 0. Hence
B (Zresy (zyum (2)) = 0. Since Resy (D) is general in H, to prove the lemma it
is sufficient to prove that hO(IGuResH(B')(Q)) <1.

Since G U Resy(B’) contains 3 general planar 2-points, it is sufficient to
quote Lemma 3. QED

Lemma 9. Hs3 is true.

Proof. By Theorem 1 we may assume x > 0. We have a5 3 = 6 and b5 3 = 2. We
first check that h'(Zy(60)(5)) = 0. We specialize U(6,0) to a scheme Z’ which
is a general union of 3 general schemes Z3 o, 2 schemes Z3 o contained in H and
a scheme Z3 2 whose reduction contains a point of H. By the case n = 2 of
the Alexander-Hirschowitz theorem and Remark 3 we have h'(Zznz/(3)) = 0.
Since Resy(Z') is a scheme V(3,1), the last assertion of Proposition 5 gives
W (Zesyy (27(4)) = 0 and hence h* (Zy(6,0)(5)) = 0 and h°(Zy(60y(5)) = 2. Hence
K (Zy6,1)(5)) = 0 and h'(Zy(4,)(5)) = 0 if 2 + y < 6. We just solved all cases
with ¥ < 1 and hence now we may assume that y > 2.

First assume x # 5. Let F' C H be a general union of one Z3 2 and two Z3 o,
i.e. a general union of 7 2-points of H. Since hi(H,Zpu(5)) =0, i = 0,1, it is
sufficient to use that either hO(IU(I,Ly,z) (4)) =0or hl(IU(I,Ly,Q) (4)) =0 by
Proposition 5.

Now we prove that h?(Zy(59)(5)) = 0. Let E C H be a general union of two
Z3.9, i.e. a general union of 6 2-points of H. Fix general p;,ps € H. Let G C P3
be a general union of 3 Z3 . Let v; C H be a general tangent vector of H with
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(Vi)red = {pi}. An elementary case of the Alexander-Hirschowitz theorem and
Remark 3 gives h(H, Zpuuv,un.1(5)) = 0,7 = 0,1. Let B; C P? be a general Z 5
containing v; and let A; be the plane spanned by B;. Note that B; N H = v; and
Resy (B;) = {p;}U{20, A} with o general in As. Fix a general plane Ay C P3 with
p2 € A. Tt is sufficient to prove that hO(IGU(201,AI)U{QI}U(QO%AQ}U{QQ}(4)) =0. By
Proposition 5 we have h%(Zgu(20,,4,)0(200,45)(4)) = 2 (degenerate (201, A1) U
(202, A3) to a general Z;3). The scheme G U (201, A1) U (202, A2) does not
depend on H. Moving H we may assume that (q1,¢2) is a general element of
Ay x As. Hence it is sufficient to use that h°(Zgua,ua,(4)) = h°(Zg(2)) = 0 by
Lemma 4.

Lemma 10. Fiz an integer d > 6. Assume that Hq_1 3 is true. If d > 7
also assume that Hy_o 3 is true. Then Hgy3 is true.

Proof. Increasing or decreasing if necessary x or y it is sufficient to do all cases
with \(df’) — 9z — 6y| < 5 and all cases with y = 0. To cover all pairs (z,0)
it is sufficient to do the cases z = L(d'§3)/9j and z = [(d;rg’) /9]. Moreover, if
we take z = L(dgg) /9] (and hence we need to prove an h'-vanishing) we may
assume by 3 < 5 (otherwise we check h! = 0 for the pair (z,1)). If by_13 < ba 3,
then bg3 — bg—13 = bgo. If bg_13 > bg3, then bgo = 9 + bg3 — by_1,3. We
have bgo = 1 if d = 0,3,6 (mod 9), bge = 3 if d = 1,5 (mod 9), by = 6 if
d= 2,4 (mod9) and bgo = 0if d = 7,8 (mod 9). Let E C H be a general
union of a4 schemes Z3 5. We have h'(H,Zg g (d)) = 0, h°(H,Zp g (d)) = baz
and h%(H,Zg g(d — 1)) = 0. We have bg2 = 1. By Theorem 1 we may assume
x> 0.

(a) Assume bgo = 6.

(al) First assume x > aq2 and y > 0. Let £y C H be a general union of
E and one scheme Zs 5. Since h'(H, g, u(d)) =0, = 0,1, it is sufficient to
apply Hy—13 to U(z —ag2,y — 1).

(a2) Now assume x < aq2 and hence 6y > (d;ﬂ). Set w := 2|x/2]. So
w = if z is even and w = x — 1 if z is odd. Let F' C H be a general union of
w schemes Z3 2 and 3w/2 + 1 schemes Zs 5. Since h'(H,Zpp(d)) =0, i = 0,1,
it is sufficient to apply Hy_1 3 to the scheme U(z —w,y — 1 — 3w/2).

(a3) Now assume y = 0. Fix a general line L C H. Since h’(H,Zg p(d —
1)) = 0, the image of the restriction map H°(H,Zg u(d)) — H°(L,0OL(d))
has dimension 6. By Remark 3 for general tangent vectors v,v’ C L we have
hO(H, Zpuwuwm(d)) = 2. Hence h'(H, Zguwuwuw(d)) = 0, i = 0,1, for a general
tangent vector w C H (Remark 3). Call S the reduction of v Uv" and {q} the
reduction of w. Let M C P? be a general plane containing L. Let N C P3 be a
general plane containing the line spanned by w. Let G C P? be a general union
of x —ago — 2 schemes Z35. Let U C M be a general scheme Z3 5 containing
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S. Let V C N be a general Z3o containing ¢. Note that U N H = v U and
VNN = w and that Resgy(U U V) = S U W’ with W’ a scheme Z[7]. By
semicontinuity and the residual exact sequence of H it is sufficient to prove
that either h®(Zguwrus(d — 1)) = 0 or R (Zguwrus(d — 1)) = 0. Let W" c W’
be the scheme Zj5 contained in W’. We have W' = W” U {q}. Since G is
general and each point of P3 is contained in a hyperplane, G U W” has the
Hilbert function of U(z — aga —2,1). By Hy—13 either h®(Zguw»(d—1)) = 0 or
hY(Zguwr (d — 1)) = 0. Therefore we may assume h'(Zguwn(d — 1)) = 0. The
only restriction on W’ U S is that both S and the vertex ¢ of W’ are contained
in H. Since any 3 points of P? are contained in a plane, for a general S we
have h®(Zguwruggpus(d — 1)) = max{h®(Zeuw~(d — 1)) — 3,0} and so either
h(Zeuwrus(d — 1)) = 0 or b (Zguwrus(d — 1)) = 0.

(b) Assume bgo =3 and so d > 10 and d = 1,5 (mod 9).

(b1) Assume y > 2. Since (6@2) = 0 (mod 3), there are unique integers
a,b such that 9a + 6b = (d;ﬂ) and min{z,ag2 — 1} — 1 < a < min{z,aq2 — 1}.
Since x > 0, we have a > 0. Since 9x + 6y > (ngg) — 5 and y > 2, we have
y > b. Let F' C H be a general union of a schemes Z32 and b schemes Z5».
Since h'(H,Zpu(d)) =0, i = 0,1, it is sufficient to apply Hy_1.3 to the scheme
U(x—a,y—0).

(b2) Assume y < 1. Hence z > agz + 2. Since h°(H,Zg u(d)) = 3, we
have h'(H, Truwuiqt(d)) = 0,i= 0,1, for a general ¢ € H and a general tangent
vector v C H. Let G C P? be a general union of z — aqo — 2 schemes Z3 2
and y schemes Zso. Let L C H be the line spanned by v. Let M C P3 be a
general plane containing L and let N C P3 be a general plane containing tL.
Set {p} := vyeq. Let W C M be a general scheme Z[8] with p as its vertex and
L as its vertex line. Let U C N be a general scheme Z[7] with ¢ as its vertex.
Let W’ (resp. U’) be the Z3 9 scheme containing W (resp. U) and let W7 (resp.
Up) be the Zy5 scheme contained in W (resp. U). Since Resy(U’) = U, the
differential Horace lemma applied to H, ¢ and W’ shows that it is sufficient to
prove that either h!(Zguwuu(d — 1)) = 0 or h%(Zeuwur (d — 1)) = 0. Note that
deg(Uy) + deg(W’) = deg(U) + deg(W). The inductive assumption gives that
either h' (Zgur,uw (d—1)) = 0 (case 9z+6y < (“4?)) or h(Zaur,uw (d—1)) = 0
(case 9z + 6y > (d;rg)).

Assume for the moment 9z + 6y < (d§3) and hence h(Zguwuy, (d—1)) > 0.
Since h'(Zgup,uw(d — 1)) = 0, we have h'(Zauy,uw (d — 1)) = 0 and so it is
sufficient to prove that h°(Zguwuvr(d — 1)) < h%(Zeuwuy, (d — 1)). Since q is
general in H, G U Uy is a general union of x —ag—2 —2 Z32 and y + 1 Z32. U
is obtained from U; adding a general point of N N H; since for a fixed W we
may take as H a general plane containing L, moving H we may assume that U
is obtained from U; adding a general point of N. Hence h®(Zguwou(d — 1)) <



Zero-dimensional scheme 101

hO(IGUWUU1 (d - 1)), unless hO(IGUWUN(d — 1)) = hO(IGUWUUl (d — 1)), i.e.
unless h(Zguw (d —2)) = h°(Zauwuw, (d — 1)). The inductive assumption gives
R (Zauw, (d — 2)) = 0 and so h(Zguw (d — 2)) = 0, a contradiction.
Now assume 9z + 6y > (d§3). Therefore we have h®(Zguy,uw (d — 1)) = 0.

If h°(Zguu,uw(d — 1)) = 0, then we are done, because U; C U. Now as-
sume h’(Zgup,uw(d — 1)) > 0 and hence h°(Zguy,uw(d — 1)) = 1. Hence
R (Zauuv,uw, (d — 1)) > 0. Since v and q are general in H, GUU; U W is a
general union of x —ag2 —2 Z32 and y+2 Z3 5. The inductive assumption gives
h (Zauv,uw, (d—1)) = 0 and so (since bz = 3) A% (Zouv,uw, (d—1)) = (437) -
9 — 6y + 3. Of course, we get 9z + 6y < (d'§3) +2 and A% (Zauu,uw, (d—1)) < 2.
To get h°(Zguv,uw (d — 1)) = 0 (i.e. a contradiction) it is sufficient to prove
that hO(IGuUluwlu{O7ol}(d — 1)) = 0 for a general o € M and a general o' € N
(because G U Uy U W; does not depend on H, p (resp. q) is a general point
of NN H (resp. M N H) and hence varying H we may assume that (p,q) is a
general element of N x M and for a general line L’ through ¢ we may find a
hyperplane H' containing L' U {p} (the linear span of L' U {p})). This is very
easy and we write down only the less trivial case h®(Zguy,uw, (d — 1)) = 2 and
W (Zauv,uwiu(ey (d = 1)) = 1. We have h%(Zguu,uw,ufo,ry(d — 1)) = 1 if and
only if HO<IGUU1UW1U{0}(d -1)) = HO(IGUUlu{o}UN(d —1)). The latter vector
space is 0, because h®(Zgur,ugoy(d — 2)) < h*(Zauw, (d —2)) = 0.

(c) Assume by = 1.

(cl) Assume x > aq2 + 1. Look at step (b2). We use Z[8], but not Z[7].

(c2) Assume = < ago. Write w := z if z is even and w := z — 1 if z is
odd. We have (d;Q) — 9w =1 (mod 6) and 6y > (d'52) —9u. Let F' C H be a
general union of w schemes Z3 1, ((d'f) — 9w)/6 schemes Z3 5 and one point.
We have h'(H,Zp p(d)) =0, ¢ =0,1. If z is odd, we use the differential Horace
and reduce to prove that either h%(Zg(d — 1)) = 0 or h*(Zg(d — 1)) = 0, where
G is a general union of one scheme Z[8] and y — ((d;rz) — 9w — 1)/6 schemes
Z32. Use Hy_1 3 and Lemma 2. If z = w as G we take a general union of one
scheme Z[5] and y — 1 — ((df) — 9w — 1)/6 schemes Zs .

(d) Assume bg2 = 0. First assume z > a42. We use that h'(H,Zg p(d)) =
0,7 = 0,1, and apply Hq_13 to U(x — aqz2,y). Now assume z < aq2. Set
u=2xif ago —x is even and v = x — 1 if ago —  is odd. Since x > 0, in all
cases we have u > 0 and (d'f) —9u = 0 (mod 6) and 6y > (d;2) — 9u. Let
F C H be a general union of u schemes Z3 2 and ((ngz) — 9u)/6 schemes Z3 5.
Since h'(H,Zr(d)) =0, ¢ = 0,1, it is sufficient to apply Hg_1 3 to the scheme
Uz —u,y — ((*5?) — 9u)/6). QED

Proof of Theorem 3: Use Proposition 4 and Lemma, 7 for the case d = 3, Propo-
sition 5 for the case d = 4 and Lemmas 9 and 10 for the cases d > 5.
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