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Abstract. We consider Trigonometric series with real exponents λk:

+∞∑
k=1

xke
iλkt.

Under an assumption on the gap γM between λk, we show the inequality

2π

γM (2− cM )

M∑
n=1

|xn|2 ≤
∫ π/γM

−π/γM
|
M∑
k=1

xke
iλkt|2dt ≤ 2π

cMγM

M∑
n=1

|xn|2

and we show for a class of problems that the limit as M → +∞ leads to the Parseval’s equality.
The role of constants cM in the above formula is one of the key points of the paper.
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1 Introduction

In this paper we establish direct and inverse inequalities involving Trigono-
metric series

∑+∞
k=1 xke

iλkt under assumptions that ensure Parseval’s equality as
a limiting case.

The inequalities are here obtained for finite M - sums
∑M

k=1 xke
iλkt, then we

investigate the behavior of the constants c1,M , c2,M and of the gap γM appearing
on them, as M → +∞.

c1,M

M∑
k=−M

|xk|2 ≤
∫ π/γM

−π/γM
|

+∞∑
k=−M

xke
iλkt|2dt ≤ c2,M

M∑
k=−M

|xk|2. (1.1)
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The method used here takes into account the arguments in [2]. In that paper
the author is interested to obtain estimates for the single coefficient xk in the
critical time T = π/γ. However many of his arguments have to be adapted to
the proofs of this paper. The role of the function k in (2.13) is also inspired by
[2], as well as the choice of the polynomials P and Q: here we introduce a new
couple of polynomials R and S helpful to define the constant cM , that appears
in the main result of the paper (see formula (2.2) in Theorem 2), and whose
limit as M → +∞ gives the expected result. During the development of the
theoretical part of the paper, we had in mind an application that we describe
in Section 3. In the application we prove Parseval’s equality in the limit.

For any fixed M ∈ N and any set (xk)
M
k=−M ∈ C2M+1, we consider gM : R→ C

defined by

gM (t) =

M∑
k=−M

xke
ikt. (1.2)

The orthogonality of the set {eikt}Mk=−M in L2(−π, π) leads to the identity

∫ π

−π
|gM (t)|2dt = 2π

M∑
k=−M

|xk|2. (1.3)

For any g ∈ L2(−π, π), the limit as M → +∞ gives Parseval’s equality,∫ π

−π
|g(t)|2dt = 2π

∞∑
k=−∞

|xk|2, (1.4)

valid for any sequence (xk)k∈Z such that
∑∞

k=−∞ |xk|2 < +∞ with

g(t) =
∞∑

k=−∞
xke

ikt. (1.5)

Let (λk)k∈Z be a sequence of real numbers. We consider

fM (t) =

M∑
k=−M

xke
iλkt, f(t) =

∞∑
k=−∞

xke
iλkt, (1.6)

and we investigate the problem to find inverse and direct inequalities, that is

c1,M

M∑
k=−M

|xk|2 ≤
∫ π/γM

−π/γM
|fM (t)|2dt ≤ c2,M

M∑
k=−M

|xk|2, (1.7)
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where γM , c1,M , c2,M are real positive constants. The novelty of this note is to
establish inverse and direct inequalities as (1.7) with accurate estimates of the
constants c1,M , c2,M . The estimates narrow, as M → +∞, to the equality∫ π

−π
|f(t)|2dt = 2π

∞∑
k=−∞

|xk|2. (1.8)

However we are unable to give general conditions under which the theorem
holds. We give an application of general interest to support the validity of the
estimates we obtain.

As a reference in this study we recall Ingham’s theorem with explicit con-
stants on non-harmonic Fourier series (see [1], see also the Young’s textbook [6],
and [3].)

Here we recall Ingham’s theorem. The result is largely used in control theory
and it is the basis of the Fourier series method in observability problems. The
explicit constant on the right hand side of formula (1.9) may be deduced from
[3] pg 63 by a change of variables. For the explicit constant on the left hand
side of formula (1.9) we refer to [1] pg. 369.

Theorem 1. Assume the following gap condition: there exists γ > 0 such
that

λk+1 − λk ≥ γ.

Then for any fixed T > 0 the following inequality holds for all square summable
sequences (xk)k∈Z ∈ C :

4T

π

(
1− π2

T 2γ2

) ∞∑
k=−∞

|xk|2 ≤
∫ T

−T
|
∞∑

k=−∞
xke

iλkt|2 dt ≤
(

4T +
4π

γ

) ∞∑
k=−∞

|xk|2

(1.9)

Remark 1. To get positive constants in (1.9) we need

1− π2

T 2γ2
> 0 ⇐⇒ T >

π

γ

Ingham’s theorem does not generalize Parseval’s equality since if
T → π we obtain

4

(
1− 1

γ2

) ∞∑
k=−∞

|xk|2 ≤
∫ π

−π
|
∞∑

k=−∞
xke

iλkt|2 dt ≤ 4π

(
1 +

1

γ

) ∞∑
k=−∞

|xk|2

As γ = 1

0 ≤
∫ π

−π
|
∞∑

k=−∞
xke

iλkt|2 dt ≤ 8π
∞∑

k=−∞
|xk|2.
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2 The result

To simplify, we assume that k ∈ N, the arguments used here can be adapted
to k ∈ Z. Let

fM (t) =
M∑
k=1

xke
iλkt. (2.1)

The main result of the paper is the following

Theorem 2. We assume that the sequence (λk)k∈N is increasing and it
satisfies a gap condition

∃γM > 1 such that λk+1 − λk > γM , ∀k ∈ {1, 2, . . . ,M − 1}

Then there exists a positive constant cM < 1 such that

2π

γM (2− cM )

M∑
n=1

|xn|2 ≤
∫ π/γM

−π/γM
|fM (t)|2dt ≤ 2π

cMγM

M∑
n=1

|xn|2 (2.2)

Proposition 1. Assume that

lim
M→+∞

cM = 1 and lim
M→+∞

γM = 1

then Parseval’s equality holds∫ π

−π
|f(t)|2dt = 2π

∞∑
n=1

|xn|2.

The proof of the proposition follows from formula (2.2).
Proof of the theorem 2. Let j, q ∈ {1, 2, . . . ,M}, and set

µj,q = λj − λq

with µq,j = −µj,q.
We consider the integers mj,q uniquely defined by the relations

mj,q =


bµj,qγM
c if q < j ≤M

−mq,j if j < q,

0 j = q, q ∈ {1, . . . ,M}.
(2.3)

The sequence of integer numbers m1,q,m2,q, . . . ,mM,q is strictly increasing, for
any fixed q ∈ {1, . . . ,M}. It is useful to observe that, by the definition (2.3),
the numbers mj,q and µj,q have the same sign for j 6= q, and for j > q we have

γM
µj,q
≤ γMmj,q

µj,q
≤ 1, (2.4)
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We denote by IM the set {(j, q) ∈ {1, 2, . . . ,M}2 : j 6= q} and we consider the

polynomials

R(u) =
∏

(j,q)∈IM

( u

µj,q
− 1
)

S(u) = u
∏

(j,q)∈IM

( u

γMmj,q
− 1
)
. (2.5)

We set

cM = lim
|u|→∞

uR(u)

S(u)
=

∏
(j,q)∈IM

γMmj,q

µj,q
(2.6)

We see that
R(u)

S(u)
= cM

P (u)

Q(u)
, (2.7)

with

P (u) =
∏

(j,q)∈IM

(
u− µj,q

)
Q(u) = u

∏
(j,q)∈IM

(
u− γMmj,q). (2.8)

Assuming simple roots, we look for the decomposition

cM
P (u)

Q(u)
=
B0

u
+

∑
(j,q)∈IM

Bl.q
u− γMml,q

. (2.9)

we find the coefficients B0 = 1 and

Bl,r = cM
P (γMml,r)

Q′(γMml,r)
= cM

γMml,r − µl,r
γMml,r

∏
(j,q)∈IM ,(j,q) 6=(l,r)

γMml,r − µj,q
γM (ml,r −mj,q)

(2.10)
By the previous computation we get

1 +
∑

(j,q)∈IM

Bl,q = cM (2.11)

To end the proof we observe that for every (l, r) ∈ IM each Bl,r is negative.
Indeed since

γMml,r < µj,q ⇐⇒ γMml,r < γMmj,q

all the factors
γMml,r−µj,q

γMml,r−γMmj,q are positive, on the contrary
γMml,r−µl,r
γMml,r

is negative,

then for every (l, r) ∈ IM each Bl,r is negative.
Hence by (2.11)

1− cM = −
∑

(j,q)∈IM

Bl,q =
∑

(j,q)∈I

|Bl,q| (2.12)
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We are going to define the functions k, whose Fourier transform verifies the
properties:

k̂(λn − λq) = k̂(µn,q) = 0, ∀n 6= q, k̂(0) = k̂(µq,q) > 0.

Inspired by the Ingham paper [2], we can set as k function the following

k(ξ) =

{
1 +

∑
(j,q)∈IM (−1)mj,qBj,qe

imj,qξ if |ξ| ≤ π/γ.
0 if |ξ| > π/γ.

(2.13)

The Fourier transform of the function k is

k̂(u) =
1

2π

∫ π/γM

−π/γM

(
1 +

∑
(l,q)∈IM

(−1)ml,qBl,qe
iml,qξ

)
e−iξudξ =

1

π

[
sin πu

γM

u
+

∑
(l,q)∈IM

(−1)ml,qBl,q
sin( π

γM
(u− γMml,q))

u− γMml,q

]
=

1

π

[
sin πu

γM

u
+

∑
(l,q)∈IM

Bl,q
u− γMml,q

sin(
π

γM
u)

]
=

1

π

[
1

u
+

∑
(l,q)∈IM

Bl,q
u− γMml,q

]
sin

π

γM
u =

=
1

π
cM

P (u)

Q(u)
sin

π

γM
u =

1

π

R(u)

S(u)
sin

π

γM
u

Then

lim
u→0

k̂(u) =
1

γM
.

Moreover, since the function
sin π

γ
u

Q(u) is regular in all the zeros of the polinomial

Q(u), and P (λj − λq) = 0 for (j, q) ∈ IM , it follows{
k̂(λj − λq) = 0 ∀(j, q) ∈ IM
k̂(0) = 1

γM
.

(2.14)

Moreover we have the estimate

k(t) ≥ 1−
∑

(j,q)∈IM

|Bj,q| = cM (2.15)
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k(t) ≤ 1 +
∑

(j,q)∈IM

|Bl,q| = 2− cM (2.16)

Therefore∫ π/γM

−π/γM
k(t)|fM (t)|2dt ≥

(
1−

∑
(j,q)∈IM

|Bj,q|
)∫ π/γM

−π/γM
|fM (t)|2dt =

cM

∫ π/γM

−π/γM
|fM (t)|2dt (2.17)

and∫ π/γM

−π/γM
k(t)|fM (t)|2dt ≤

(
1 +

∑
(j,q)∈IM

|Bj,q|
)∫ π/γM

−π/γM
|fM (t)|2dt =

(2− cM )

∫ π/γM

−π/γM
|fM (t)|2dt (2.18)

By the properties of k̂, see (2.14)

∫ π/γM

−π/γM
k(t)|fM (t)|2dt = 2πk̂(0)

M∑
n=1

|xn|2

we get the estimate

2π

γM (2− cM )

M∑
n=1

|xn|2 ≤
∫ π/γM

−π/γM
|fM (t)|2dt ≤ 2π

cMγM

M∑
n=1

|xn|2. (2.19)

3 Application

3.1 Perturbed wave equation

At first, consider the one dimensional interval, (0, T ), T ≥ 2π, and the wave
equation with Dirichlet boundary conditions:

ftt(x, t)− fxx(x, t) = 0 in (0, π)× (0, T ),

f(x, 0) = f0(x) in (0, π),

ft(x, 0) = f1(x) in (0, π),

f(0, t) = f(π, t) = 0 in (0, T )

(3.1)
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The solution of (3.1) is given in terms of Fourier series by

f(x, t) =
∑
k∈Z∗

xke
ikt sin kx.

The system (3.1) is the dual observability problem of the exact controllability
boundary control problem for the wave equation, the observation functions are
fx in x = 0, or/and in x = π. We have

fx(0, t) =
∑
k∈Z∗

kxke
iλkt fx(π, t) =

∑
k∈Z∗

(−1)kkxke
iλkt.

We write g � h if there exist two positive constants α, β such that αg ≤ h ≤ βg.
With this notation we have

‖fx(0, t)‖2L2(0,T ) �
∑
k∈Z∗
|kxk|2 ‖fx(π, t)‖2L2(0,T ) �

∑
k∈Z∗
|kxk|2.

Due to the orthogonality of trigonometric polynomials, T = 2π gives

‖fx(0, t)‖2L2(0,T ) = 2π
∑
k∈Z∗
|kxk|2.

However Ingham’s theorem does not include the critical time T = 2π as γ = 1.
We consider the wave equation with a perturbation of zero-order.

For any c such that |c| < 1, we consider
ftt(x, t)− fxx(x, t)− c2f(x, t) = 0 in (0, π)× (0, T ),

f(x, 0) = f0(x) in (0, π),

ft(x, 0) = f1(x) in (0, π),

f(0, t) = f(π, t) = 0 in (0, T ).

(3.2)

The solution of (3.2) is given in terms of Fourier series by

f(x, t) =
∑
n∈Z∗

xne
iλnt sinnx

with

λn = sgn(n)
√
n2 − c2 = n

√
1− c2

n2
.

For large n we have

λn ≈ n−
c2

2n
.
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3.2 An application of the main result

For any real positive number a we consider the set of real numbers
λn(a) = λn n = 1 . . .M , with

λn = n− 1

an
λn+1 − λn = 1 +

1

an(n+ 1)
(3.3)

Then

λn+1 − λn > γM , ∀n ∈ {1, 2, . . . ,M − 1}

with

γM = 1 +
1

aM(M + 1)
(3.4)

IM =
{

(j, q) ∈ {1, 2, . . . ,M}2 such that j > q

}
and

I =
+∞⋃
M=1

IM

Then, with the same meaning of µj,q and mj,q of previous section we set as
previously

R(u) =
∏

(j,q)∈IM

( u

µj,q
− 1
)
. (3.5)

S(u) = u
∏

(j,q)∈IM

( u

γMmj,q
− 1
)

(3.6)

and can be determined as

cM = lim
u→∞

uR(u)

S(u)
= lim

u→∞

∏
(j,q)∈IM

(
u
µj,q
− 1
)

(
u

γMmj,q
− 1
) =

∏
(j,q)∈IM

γMmj,q

µj,q
. (3.7)

The aim of this section is to show

Proposition 2. Let cM be as in (3.7). Then

lim
M→∞

cM = 1.

To give the proof of the above proposition we recall some basic facts on the
notion of limit for generalized sequences
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3.2.1 Limits for generalized sequences

For any (j, q) and (r, s) belonging to I we write

(j, q) � (r, s) ⇐⇒ j ≥ r and q ≥ s.

The set I endowed with � is a partial ordered set, the set IM is a direct set
and the generalized sequence

(j, q) ∈ I → ajq

ajq + 1
∈ R,

is increasing and bounded in IM , with maximum value aM(M−1)
aM(M−1)+1 .

Lemma 1. With the previous notations

lim
M→∞

∏
(j,q)∈IM

(
1 +

1

aM(M + 1)

)
ajq

ajq + 1
= 1

Proof. We consider

∏
(j,q)∈IM

(
1+

1

aM(M + 1)

)
ajq

ajq + 1
=

(
1+

1

aM(M + 1)

)M(M−1)
2 ∏

(j,q)∈IM

ajq

ajq + 1

Since

lim
M→∞

(
1 +

1

aM(M + 1)

)M(M−1)
2

= e
1
2a .

The geometric mean theorem implies

lim
M→∞

( ∏
(j,q)∈IM

ajq

ajq + 1

) 2
M(M−1)

= lim
M→∞

aM(M − 1)

aM(M − 1) + 1

hence

lim
M→∞

∏
(j,q)∈IM

ajq

ajq + 1
= lim

M→∞

(( ∏
(j,q)∈IM

ajq

ajq + 1

) 2
M(M−1)

)M(M−1)
2

=

lim
M→∞

(
aM(M − 1)

aM(M − 1) + 1

)M(M−1)
2

=
1

e
1
2a

Plug the limits in the formula

lim
M→∞

∏
(j,q)∈IM

(
1 +

1

aM(M + 1)

)
ajq

ajq + 1
= 1

QED
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Proof of the Proposition.
We recall that

cM =
∏

(j,q)∈IM

γMmj,q

µj,q
.

Then we compute

γMmj,q

µj,q
=
γM [λn − λm]

λn − λm
≥ γM

j − q
(j − q)

(
1 + 1

ajq

) =

(
1 +

1

aM(M + 1)

)
ajq

ajq + 1
.

It follows

1 ≥ cM =
∏

(j,q)∈IM

γMmj,q

µj,q
≥

∏
(j,q)∈IM

(
1 +

1

aM(M + 1)

)
ajq

ajq + 1
,

the result will follow by the lemma 1

lim
M→∞

∏
(j,q)∈IM

(
1 +

1

aM(M + 1)

)
ajq

ajq + 1
= 1. (3.8)
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