The Theorem of Klee on The Density of Support Points

Nick Stavrakas

 $Department \ of \ Mathematics \ and \ Statistics, \ University \ of \ North \ Carolina \ at \ Charlottenstarks@uncc.edu$

Received: 16.11.2015; accepted: 24.3.2016.

Abstract. A new proof is given of the theorem of Victor Klee which states that the support points of a closed, convex, and locally weakly compact set in a real Hausdorff locally convex topological vector space are dense in the boundary of the set.

Keywords: Convex, Klee, Support Point

MSC 2000 classification: 32F27

Some years ago Klee asked in [5] if a non-empty bounded closed convex subset K of a real Banach space B must have any support points. Bishop and Phelps in [2] answered affirmatively. The proof of the latter used Zorn's Lemma on a set of cones where the cone construction was suggested by the ingenious technique they used to show every Banach space is subreflexive [1] and both of these results have since become part of the foundation of Functional Analysis. Phelps [7] gave a new proof of Klee's theorem (Theorem 2 of [7]) stated in the abstract using a generalization the support cone construction used in [2]. The proof given here avoids the cone contruction and the explicit use of Zorn's Lemma employed by Phelps (Lemma 1 and Theorem 2 of [7]) and is a natural extension of the an \mathbb{R}^n proof "translate a convex body in the complement of K and intersect K " [10, p.84]. We use the known basic results referred to as Propositions where S is a real Hausdorff locally convex topological vector space.

Proposition 0.1 ([8]). Let $A \subset S$ be a convex set with non-empty interior and let *B* be a non-empty convex set disjoint from the interior of *A*. Then *A* and *B* can be separated by a closed hyperplane.

Proposition 0.2 ([8]). Let $A \subset S$ be a convex set with non-empty interior. Then every boundary point of A is a support point of A.

Proposition 0.3 ([8]). Let $A \subset S$ be a closed set. Then every convergent net in A has its limit in A.

Proposition 0.4 ([4]). A topological space X is compact if and only if every net in X has a subnet convergent to a point in X.

http://siba-ese.unisalento.it/ © 2016 Università del Salento

Theorem 0.5. (Klee) Suppose K is a non-empty convex, closed and locally weakly compact set of a real Hausdorff locally convex topological vector space S. Then the support points of K are dense in the boundary of K.

Proof. We may assume S is the closed linear hull of K so K is not contained in a closed hyperplane of S. Also if $int(K) \neq \emptyset$ then every boundary point of K is a support point of K by Proposition 2 and we are done so we may assume $int(K) = \emptyset$. Let $k \in K$ and there exists a closed convex neighborhood P_k of k with $P_k \cap K$ weakly compact. If M_k is a closed convex neighborhood of k let $N_k = M_k \cap P_k$ and then $N_k \cap K$ is weakly compact with $k \in N_k \cap K$. As $int(K) = \emptyset$ and K is closed choose $y \in int(N_k \sim K)$ and without loss of generality we may assume $y = 0_v$, the origin. Since K is closed there exists a closed convex neighborhood $N_{0_v} \subset N_k$ with $0_v \in int N_{0_v}$ and $N_{0_v} \cap K = \emptyset$.

For each real $\alpha, 0 \leq \alpha \leq 1$, let $N(\alpha, k) = (\alpha k + N_{0_v}) \cap N_k$ and then either $N(\alpha, k) \cap K \neq \emptyset$ and $N(\alpha, k) \cap K$ is weakly compact or $N(\alpha, k) \cap K = \emptyset$. Let $\theta = \inf \{\alpha, 0 \leq \alpha \leq 1 | N(\alpha, k) \cap K \neq \emptyset\}$ and θ exists as $N(1, k) \cap K \neq \emptyset$. We assert $\theta < 1$. If φ_n is a sequence of reals with $0 < \varphi_n < 1$ and $\varphi_n \to 1$ then as $(k - \varphi_n k) \to 0_v$ there exists a positive integer M such for all $n \geq M$, $(k - \varphi_n k) \in N_{0_v}$ for otherwise 0_v is in the boundary of N_{0_v} , contradiction. Thus $(k - \varphi_M k) \in N_{0_v}$ and so $k \in (\varphi_M k + N_{0_v})$ which gives $k \in N(\varphi_M, k) \cap K$ and as $\varphi_M < 1$ the assertion follows and $\theta < 1$.

We assert that if $N = int(N(\theta, k)) \cap K$ then $N = \emptyset$. If $\theta = 0$ this is true since $N(0,k) = N_{0_v}$ and $N_{0_v} \cap K = \emptyset$. Suppose $\theta > 0$ and the assertion is false. Then there exists $k_1 \in N$ with $k_1 \in int(N(\theta, k))$. Since $k_1 \in int(N(\theta, k))$ there exists δ with $0 < \delta < \theta$ such that if $\lambda \in [\theta - \delta, \theta + \delta]$ then $\lambda k_1 \in int(N(\theta, k))$. Let $k_2 = (\theta + \delta)k_1$ and as $k_2 \in int(N(\theta, k))$ we may write $k_2 = \theta k + n$ for some $n \in N_{0_v}$. Then $k_1 \in (0_v, k_2) \subset (0_v, \theta k + n]$ and so there exists a positive $\beta < 1$ with $k_1 = \beta k_2$. Then $k_1 = \beta k_2 = \beta(\theta k + n) = \beta \theta k + \beta n$ and as $\beta < 1$ we have $\beta n \in N_{0_n}$. Thus $k_1 \in N(\beta \theta, k)$ contradicting the definition of θ because $\beta\theta < \theta$ and the assertion is established and so $int(N(\theta,k)) \cap K = \emptyset$. Since $int(N(\theta,k)) \cap K = \emptyset$, Proposition 1 implies the existence of a continuous linear functional f and a real β with $f(N(\theta, k)) \leq \beta$ and $f(K) \geq \beta$. The definition of θ implies for every $\delta \in (0, 1-\theta)$ that $N(\theta + \delta, k) \cap K \neq \emptyset$. For each $\delta \in (0, 1-\theta)$ choose $x_{\delta} \in N(\theta + \delta, k) \cap K$. Define a binary relation \succeq on $\{x_{\delta}\}$ by $x_{\delta_1} \succeq x_{\delta_2}$ if $\delta_1 \leq \delta_2$. Then $(\{x_\delta\}, \succeq)$ is a net and since $\{x_\delta\} \subset N_k \cap K$ the net $(\{x_\delta\}, \succeq)$ has a convergent subnet by Proposition 4 as $N_k \cap K$ is weakly compact. Without loss of generality we may suppose $x_{\delta} \to x \in K$ and the net of numbers $\delta \to 0$. Since $x_{\delta} \in N(\theta + \delta, k) \cap K$ we may write $x_{\delta} = (\theta + \delta) k + n_{0,k}^{\delta}$ for each δ where $n_{0_v}^{\delta} \in N_{0_v}$. Since $x_{\delta} \to x$ and $\delta \to 0$ then the net $\{n_{0_v}^{\delta}\} = \{x_{\delta} - (\theta + \delta) k\} \to 0$ $(x-\theta k)$ and so $(x-\theta k) \in N_{0_v}$ by Proposition 3. Let $n = (x-\theta k)$ and then $x = (\theta k + n) \in (N(\theta, k) \cap K)$. Then $f(x) = \beta$, $f(K) \ge \beta$ and $K \not\subset \{z | f(z) = \beta\}$

so x is a support point of K. For any $k \in K$, as M_k is any closed convex neighborhood of k, and $N_k \subset M_k$ we conclude the support points of K are dense in K and this completes the proof. The approach here was suggested the work of Cel [3] and by the author's proof [9] of Krasnoselsky's Lemma for weak compacta in a real Hausdorff locally convex topological vector space which answered a question of Valentine [10, p. 84] of extending this Lemma for weak compacta to locally convex spaces.

References

- E. BISHOP AND R.R. PHELPS: A Proof That Every Banach Space Is Subreflexive, Bull. Amer. Math. Soc., 67, (1961), 97-98.
- [2] E. BISHOP AND R.R. PHELPS: The Support Functionals Of A Convex Set, Proceedings Of Symposia In Pure Mathematics, Vol VII, (1963), AMS Providence R.I. 27-36 (V.L. Klee Editor).
- [3] J. CEL: A Representation Formula For Weakly Compact Starshaped Sets, Note Di Mathematika, 19 (1999), 207-212.
- [4] J. L. KELLEY: General Topology, D. Van Nostrand, N.Y., (1955).
- [5] V.L. KLEE: Extremal Structure Of Convex Sets II, Math Zeit., 69 (1958), 90-104.
- [6] V.L. KLEE: Convex Sets in Linear Spaces, Duke Math. J., 18 (1951), 443-466.
- [7] R.R. PHELPS: Support Cones And Their Generalizations, Proceedings Of Symposia In Pure Mathematics, Vol VII, (1963), AMS Providence R.I. 393-402 (V.L. Klee Editor).
- [8] H.H. SCHAEFER: Topological Vector Spaces, Macmillian, N.Y. (1966).
- [9] N. STAVRAKAS: Norm Averaging And Krasnoselsky's Lemma, Bull. Polish Acad. Sci., 44 (1996), 103-117.
- [10] F.A. VALENTINE: Convex Sets, McGraw Hill, N.Y. (1964).