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SPECTRAL  GEOMETRY OF SUBMANI FOLDS

M.Barros and A.Ros

PREFACE. These notes reflect the lectures given by the first au-
thor at the University of Lecce in June-July 1984. The work deals
with geometry of Laplacian's spectrum of submanifolds in the conplex
projective space. The second part contains a new way to study this
subject given by the second author in his Ph. Dr. (Ganada, 1982).
This idea can be extended to other symetric spaces.

The first author vould like to express his hearty thanks to Prof.
D.Perrone for his kind invitation to visit the University of Lecce.
Also he would like to thank Prof. bp.Perrone, Prof. G De Cecco and
Prof. R Mrinosci for their kind hospitality at Lecce.

For convenience t0 the reader we give the content of this pager
as fallovs:
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2. Some problems related with the spectrum of a Riemannian mani-

fol d.

The inverseprobl em

Basic formulas in theory of submanifolds.

Spectral geometry of submanifolds in Euclidean space.

Submani folds of a Kaehlerian manifold.

Extrinsic characterizations of some conplex submanifolds in

the conplex projective space by aits spectrum

8. The standard inbedding of the conplex projective space in Eu-
clidean space.

9. A new vay to study spectral geometry of submanifolds in the
conplex projective space.

10. The volune of a ninimal submanifold in the conplex projective
space.

11. The first eigenvalue of a mnimal submanifold in the conplex
proj ective space.
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12. Parallel conplex submanifolds of the conplex projective spa-

ce.
13. Conplex submanifolds of the conplex projective space which a-
re bi-order.

14. Parallel conplex submanifolds and bi-order conplex submanifo-
lds of the conplex projective space are very close.

15. Tae first and the second eigenvalues of conplex submanifolds
in the conplex projective space.

16. Applications.

1. INTRODUCTION. Let o be a very regular bounded domain With ni-
» boundary 3o in &4 (for d=2, one can think of o as a vibrating men-
.rane fixed along ag). The vibrations of « are the functions F:axR—
—R (p,t)—F(p,t) With

.1 AF + 3%F/3t2 = 0 F/(3axR) = 0

. d 2 2 ; : d
beinga= - | 2/ax{ (the Laplacian in R7).
i=1

It is inportant to study solutions of the type F(p,t)=Ff(p).e(t)
with f:g—sR and g:R—sR. FOr these sol utions one obtains

(1.2) Af/f = - 0"e =

where x nmust be constant and it is very related to the frecuencies
of our vibrations since e" + 26 = 0. That is a good reason to be in-
terested in the spectrum of n,

(1.3) Spec(e) = (02N (<A g e v id €A peeid gt ot}

consi sting of all a's (real numbers) such that there exists some f#0
Wi th af=af, f/80=0. Each » witten in Spec(a) as many tinmes as its
multiplicity indicates. Being multiplicity of » = dim( £f/af=f}.

Despite its sinplicity and its phisical background, Spec(g)is
almost  unknown. For exanpl e spec(q) is known when o is a ball or a
rectangular parallelopiped and few other n.

A natural and very old problem is the follow ng: Let ?, and 2
be two pl ane regi ons bounded by curves I and Iy respectively and
consider the eigenvalue problens:
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af = afin 2,
(1.4) , ;
1‘:0|nan1 g =0 inan,

89 = g insz2

Suppose that for each neN the eigenval ue ‘n for o, is equal to the
eigenvalue w, for 2, : Are the regions 2, and 8, congruent inthe
sense of Euclidean geometry?.

This problem is called the inverse problem because it is well-
known that: If is an isometry of the plane then Spec(¢(a))=Spec(a)
for any domain g in R2.

The inverse problem was firstly posed for Bochner and Bers said
about it that it can be posed in the following amusing way: Can one
hear the shape of a drun?.

O course this problem is still unsolved but it is clear that
the spectrum of n contains an ordinate information about the geone-
try of n. spec (n)is like a "secret code" of information about the
geonetry of nwhich we need to discover.

To be less greedy than asking to hear the conplete shape of a,
one can ask only deduce fromspec(a) sone information on the geome-
try of n. For exanple : one can hear the area of a. This is an old
probl em posed by H.A.Lorentz (1910)whi ch was sol ved by H Weyl. In
fact he proved

(1.5) [imN@G)/x = vol(a)/(2x)

where n()) is the nur?b-;; of eigenvalues less than .

The length of 39 is also a spectral invariant and therefore we
can prove that: You can hear the shape of a circular drum In fact
if L denotes the length of aq, the classical isoperinetricinequali-
ty states

(1.6) 1% 5 4xvol(a)

with the equality holding if and only if n is a circular disk.

This result joint the facts than vol(g) and L are spectral inva-
riants allow us to prove that : You can hear the shape of a circular
drum

The spectral problem appear in mny parts of mathematics and phy-
sics: statistical nmechanics, diffusion theory, quantum statistics
etc. (see [28]).
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In this paper we are interested in the spectral problem but for
free vibrating nenbranes, that is, for Riemannian manifolds which
are c” , conpact, connected and vithout boundary. A1l mnifolds in
this paper are assuned to have these properties.

2. sove PROBLEMS RELATED WTH THE SPECTRUM OF A R EMANNIANN MA-
NIFOLD. Let M be a conpact, connected, without boundary Riemannian
mani fol d (along this paper we will onit these properties),(also all
geometric objets are assumed to be c®). W will denote by g the me-
tric tensor of M As usual c®(M) (respectively AP(M)) will denote
the real valued functions over M (respectively the exterior p-forms
over M). A(M) will be the Gassmann algebra over M d (respectively
§ ) will denote exterior derivative (respectively the coderivative).

The Lapl ace-Bel tram operator of (M,g) is defined over a(M) by

(2.1) A A (M)=—>A (M) Alw) = (dé+6d) (w)

it is clear that the degree of & is preserved by a.

In particular we are interested in the Laplacian acting over fu-
nctions. In this case various definitions exist for a (of course eq=
uivalent), ve recall some of them

(a) Suppose N=dimM, if meM and feC®(M), We choose an orthonor-
mal set of geodesics {vq) i=l,..., n paranetrized by arc length and
passing through m at t=0, then

noo 2
.2) @£)(m) = = J (d°(f.y;)/d t7)(0)
)

1
(b) Last definition is obviously equivalent to the folloving one,
first we consider the Hessian of f like the symmtric 2-times cova-
riant tensor over M given by
(2.3) Hess f(X,Y) = XYf = (vXY)f X,Yey (M)
x(M) being the Lie algebra of vector fields over M then
n

2.4) Af = -Trace(Hess f) = - | Hess f(E{,E;)

i=1
wher e {E{} i=1,...,N is a local orthonormal frame of vector fields.
For other definitions of .see [9].

The canonical measure of (M,g) will be denoted by dv. one defines
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a pre-Hlbert structure over C”(M) by taking

(2.5) <f,g> = ¥ f.gdv for a1l f£,geCc™(M)

tne completed of Cc™(M) with respect to this inner product is L<(M).
An eigenvalue of 4 is a real nunber ) such that af=xf for some non-
trivial function fec™(M). The set of all eigenvalues of A will be ca-
1led the spectrum of (M,g) which will be denoted by Spec(M,g).

Since a iS elliptic, Spec(M,g) is discrete and the multiplicity
of each i, that is, dimv, = dim {fcC™(M)/af=rf} is finite. In parti-
cular, since M 1s conpact, dimvV,=1 (VO consists only of constant
functions). Therefore

2

(2.6) Spec(M,g) = {0=a <A .. A < h pueidnS L L )

As it is well known, the deconposition ZVX,)\eSpeC(M,g) is ort-
hogonal with respect to (2.5). Moreover [ V is dense in c®(M) (in
L2—sense).

Simlarly the spectrum of a acting over exterior p-forms will be
denoted by specP(M,g). one has

(2.7) specP(M,g) = (pxo...px0<px1...px1<...+w}

From Hodge theory one has:

(i) If n denotes tne dinension of M, then Specp(M,g)=Specn'p(M,g)

(ii) 0 belongs to specP(M,g) if and only if the pth Betti nunber
of M is non-zero (being this Betti nunber the multiplicity of 0 in
Specp(lvl,g} '

Now one can put the followi ng general problems: Gven a Rieman-
nian mani fold (M,g), one has Spec(M,g) which only dependes on the
Riemannian structure

(1) what 1s the behaviour of the elenents of spec(M,g) ?

(2) what information can one obtain from Spec(M,g) about the ge-
ometry and tne ropology of (M,g) and M respectively?

These kind of problens and others related are known under the
general nanme of Spectral geonetry.
Now, we will briefiy treat about sonme of this problens:
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(A) How to determine Spec(M,g) for a given Riemannian manifold?
This problem is very difficult and we only know a few about it:
- W can conpute the spectrum of a Riemannian product from the spec-
trums of the factors.
- We can also relate the spectrums of two Riemannian nmanifolds con-
nected by neans of a Riemannian subnersion with totally geodesic fi-
bers.
- If dimvel and L denotes the | ength of (M,g) then one has

(2.8) Spec(M,g) = (41'2n‘2/L2 Wi th neNj

each eigenvalue with nultiplicity 2 except Ap=0- Therefore, when M
1s 1-dimensional, the spectrum characterizes the R emannian structu-
re and even A does.
- The spectrum is conpletely known for (Sn,go), the n-dinmensional
sphere endowed with its canonical Riemannian structure. This is also
true for conmpact symmetric spaces of rank one with their canonical
structures.

The spectrum is, in sonme sense, also conpletely known for symme-
tric spaces and some honmpgeneous spaces, at least in theory,[36].
- Consider a flat torus M=R™/a where s is any lattice of R", endowed
witn g /n g, being the canonical metric on R" (this metric has no
prcblems in going to the quotient since it is invariant by transla-
tions). & put

(2.3) A* = (E,cRn/(g,n)gZ, for all nea}
tne aual lattice of a. Then
(2.10) Spec(Rn/A,gO/A) = {4ﬂ2|£|2/55[\*}
the miltiplicity of 4:2|¢|° is the number of nea*with |n]°=|¢|°.
(B) Since it 1s very difficult to conpute Spec(M,g), one nust
obtain estimates of eigenvalues by neans of geonetrical invariants
of (M,g).
The more important results in this direction have been obviously

obtained for the first non-trivial eigenvalue. Now we recall sone of
them

The first result 15 due to A Lichnerowicz [33] and M GObata [38]
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THEOREM2.1.-Let Mbe an n-di nensi onal Ri emanni an manifold, (n>1).
Suppose there exists a constant kso such that the Ricci curvature
S of Msatisfies s3kg (g being the metric tensor of M). Then:

(a) a,3(n/(n-1))k (Lichnerowicz)
(b) a,=(n/(n=10)k if and only if (M,g) is isometric to (s",g,)
(Obata).

This estimate of Lichnerowicz-Chata was extended later by RC
Reilly ([44]) to manifolds with boundary where he treated the Diri-
chlet boundary value problem (au=F(wwith u=0 in aM) under the a-
ditional assunption that aM has non-negative mean curvature.

There exist some classical papers due to Faber-Krahn, Polyéa-
Szegd, Payne, \Minberger etc. ([8])which give estimtes for the
first eigenvalue of a domain a in R", For instance an estimate due
to Faber-Krahn for the first eigenvalue of a vibrating nenbrane e
inR%is
12
the equality holding if and only if o is a disk. Here j is the fir-
st zero of the first Bessel's function.

The estimate of Faber-Krahn can not be extended to Riemannian
manifold, in fact one has the follow ng exanples:

- Consider the flat torus R%/4 where ais the lattice of R® of len-
gths (t,1/t). Its area is 1, but for small values of t, a =4rt?
iS close to zero.

-Consider two spheres E, and E, connect ed by neans of a cylinder
of radius r and length L. One defines a function of neasure zero f
such that: f is constant k over E,, f is constant-k over E, and f
is linear over the cylinder being constant over its sections. Then
one obtains

(2.11) A T jz/vol(n)

1

lvf|2/]f|2 < 4nr/(Lvol(M)) (v£ being the gradient of f)
but the inequality of Poincaré gives

JM|vf12dv >,x1) £2qv  for a1l f with measure zero
M
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tnerefore one obtains the following estimate

(2.12) A, € 4nr/(Lvol(M))

1
this estimate, for small values of r, is close to zero while vol(M)
isclose to 2vol(S2,go).

These exanples prove us that in a possible |ower bound of Ao
must participate other geometrical invariants apart fromthe vime
and the dianeter.

After the work of Lichnerow cz and obata, J. Cheeger ([12]) obta-
ined a | ower bound of 5 by a constant which is involved in a certa-
in type of isoperimetric inequality.

In [1)T.Aubin gave a | ower bound of A in terms of the followng
elenents: a lower bound of the volune, an upper bound of the diame-
ter, a lower bound of the sectional curvature, an upper bound of the
Ricci curvature and a lower bound of the injectivity radius.

It seems obvious to relax the dependency of the Aubin estimte
on the geometric quantities. In this sense, S.T.Yau ([60] showed
that one can estinate \ from bellow by a lower bound involving the
following elements: a lower bound of the volume, an upper bound of
the diameter and a lower bound of the Ricci curvature. Mreover, ba-
sing on an upper bound of A obtained by S.Y.Cheng ([21]),Yau con-
jecturedthat one should weable to drop the dependency of the vol u-
me in the last estimate. Therefore by combining wWith cheng's result
this would give the best possible estimte of S for a general com
pact Riemannian manifold.

This conjecture was solved byP.Li ([31])).H s method depended
bassically on a gradient estimte of the first eigenfuctions. In pa-
rticular, for conpact Riemannian manifolds with non-negative Ricci
curvature, he obtained A12n2/(4d2), d being the di ameter of the ma-
nifold. Because for these kind of spaces, the upper estimate of
Cheng is >\1snw2/d2, n being the dinension of the manifold. one has
the following estimation of ., for a conpact R emannian manifold

1
with non-negative Ricci curvature

(2.13) 12740 < x, ¢ mn?/a?



Spectral  geonetry of  submanifolds

Recently, P.Li and s.T.vau ([32]) extended the above estimates
to conpact manifolds with boundary:

(a) For Dirichlet boundary valued problem the estimate also de-
pends on the lower bound of the nean curvature of M.

(b) For Neumann boundary valued problem they need to assume that
the second fundanental form of aM is positive senidefinite.

When one considers a acting over exterior p-fornms, there exist
some interesting estimtes of PM, in this way one can see for ins-
tance [24],(42],[51].

(c)Tofind the regularities of the eigenval ues sequence in the
infinity (to study the behaviour of the spectrum in the linit).

Thi s probl emhas been intensely studied and one has sone satis-
factory answers for it. The central idea can be explained as follows:
Gven a conpact Riemannian manifold. one consider the function
(2.14) z(t) = ] &Nt \ sspec(M,g)

(the same probl emcan bel_c%nsi dered for specP(M,g)).

The function z(t) is well defined for each t>o (by neans of the
fundamental solution of heat equation) and its behaviour when t—o*
is conpletely described by the well-known asynptotic expansion for-
mula of  Mnakshisundaram Pl eij el - Gaf f ney
(2.15) Te A (4nt)"n/2(a0+a1t+a2t2+....)

1 t-o+
the coefficients ay i nvol ving only Ri emanni an invariants of corres-
ponding degrees. For exanple, one knows a few coefficients:

= vol(M
a, vol(M)

a, = 1/6 p dv

1
!
ay = 1/360 |y (2/RI%-2181%+55%)dv

where R,S and » denotes respectively the Riemannian curvature tensor,
the Ricci curvature and the scalar curvature (see for instance [9]).
The coefficient a, has been computed for T.Sakai [49].

Ju

3. THE INVERSE PROBLEM As we said before, one can think in the
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following problem Can one hear the shape of a mnifold? (manifolds
are considered like vibrating nenbranes because they are not boun-
dary). This problem can be fornulated with respect to the injecti-
vity of a map whose image looks too formidable today (to seethe fi-
rst problen). In fact one considers the map

Spec:{Riemannian structures)-—»RN
is it injective?.

W know that the injectivity of this map is false in general.In
fact Wtt discovered in i two lattices p, and a, in R1® which a-
re not isometric but with the same nunber of elements of any given
norm Therefore the two corresponding flat torus have the same spec-
trum .10 and they are not isometric [35].

In 197, M.Kneser,[29], obtained the same result for two flat
torus of dinension 12.

Recently, M.vVigneras, [58], obtained two surfaces of Poincaré (
that is, surfaces with constant curvature -1) whi ch have the same
spectrum but they are not isonetric.

Since these exanpl es have a di screte character, an open problem
is to decide whether or not the exists a nontrivial famly (M,g(t))
of Ri emanni an structures over Mwith spec(M,g(t))=Spec(M,g(0)) for
every t (isospectral deformation). In this sense, V.Guillemin and
D.Kazhdan ([25]) showed that under certain conditions, every isos-
pectral deformation of a negatively curved Remannian mnifold is
isonetric (and sothe deformation is trivial).

Por Kaehlerian isospectral deformations, one knows thatthe com-
plex projective space CP'" with its canonical Kaehlerian structure
does not adnmit non-trivial Kaehlerian isospectral deformations,[9],
(here Kaehl eri an deformations means that each metric in the defor-
mation nust be Kaehlerian with the fixed conplex structure). In the
same WAy M.Barros,[3], showed that the conpl ex quadric of conpl ex
dinmension 3 with its canonical Kaehlerian structure (which i s obtai-
ned from the fact that it is a conplex hypersurface of cp%) does not
adnit non-trivial Kaehlerian isospectral deformation.

Also, we can think of some special cases Of injectivity, for ins-
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tance, one can study the followi ng problem wh. manni an manifol-
ds can be characterized by its spectrun?. It is ir that the fir-
st candidate to be characterized by its spectrum . st be the sphere

with its canonical metric. Mwny authors obtained partial answers to

the followi ng problem If Specp(M,g)=Specp(Sn,go) for some p, then

(M,g) i's isonetric to(sh,g)) 2.

For instance (Sz.go) is characterized by its spectrumover func-
tions ([9]). s.Tanno ([56]), by using the spectrum of .acting over
1-forms gave an affirmative answer to the above problem for n=2,3,
16,...93.

Qther candidate to bhe characterized by its spectrum is the com-
plex projective space CP" endoved vith the Fubini-Study netric 9o
which, as it is well-known is the corresponding nodel in Kaehlerian
geometry W th constant positive hol omorphic sectional curvature.The-
refore the corresponding problem is : Let (M,J,g) a Kaehl eri an mani-
fold and assume that specP(M,g)=specP(cP?,g ), can ve say that (i,
J,g) is holonorphically isometric to (CP“,Jo,go)'? (here J  denotes
the canonical conplex structuré over CP").

Probably the nost conplete ansver to this problem was obtained
byB. Y. Chen and L. Vanhecke, ([20]), which gave an affirmative ans-
wer to the above probl emwhen'p=2 and n#8.

An inportant contribution to this problem was obtained by M,Ba-
rros and B.Y.Chen, ([5]): Let Q, be the conplex quadric of conplex
dimension 2. In general Q, is defined extrinsically as a conplex hy-
persurface of CP'+ and after linear submanifolds it is the nost im-
portant submanifold of cp"”, (it will play an inportant role in th-
i s paper), then

THEOREM3.1.- Let (M,J,g) be a Kaehler surface vith spec(M,g) =
spec(Q,,g,). I'f (M,7,g) satisfies one of the follow ng conditions:

(1)the arithnetic genus a(M)31 or
(2) the Hrzebruch i ndex t(M)<0 or
(3) the Eul er characteristic x(M)»4

then (M,J,9) i s hol onorphical ly isometric to (Q,,J,.9,).
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Proof.- W will denote by S (respectively s ) the Ricci tensor of M
(respectively of o,) and by , (respectively po) the scalar curvatu-
re o w(respectively of Q,). Each assuption (1), (2) or (3) implies
an integral inequality for w and Q, in terms of their corresponding
quadraticsinvariants. For instance (3) inplies

2 2 2 2
3.1 [utRP -alsP + Hav JQQ{|R°| —41s, P +p2rav,

therefore combining this inequality with the equality a2=ag where
a, (respectively ag) denotes the correspondi ng coefficient i N the
M nashi sundaran-Pleijel -Gaffney asynptotic expansion for M (respec-

tively for q,), one obtains
2.2 2, 2
(3.2) JM(ZISI +p0 ) dv g J02{2|s°| +og) dvy

W recall that in general |s1%502/4 and the equality holds if
and only if (MJ,g) is Einstein. Then by using this fact joint (3.2)
and the fact that o, is Einstein (and so , is constant) joint the
Schwartz inequality, one can prove that (M,Jg) is an Einstein Kaehler
surface. Now we use a well-known result due to HDonelly, ([22]) to
prove that (M,g) is a symetric space which nust be sinply connected
because its Ricci tensor is definite positive, ([30]). Therefore (M
J,g) is a Hermitian symetric space. If it is ireducible, it nust be
cp® ([27]) but this contradicts every assunption (1),(2)or (3).Thus
(MJ,g) is a reducible Hermtian symetric space and so the Rieman-
nian product of two conplex projective lines and holonorphically i-
sometric to(Q,,J,.9,).

Remark.- (1) For general dinmension, the problem of obtaining intrin-
sic characterizations of Q, by its spectrum looks fornidable today.
(2) q, is the first space characterized by its spectrum which has
not constant curvature (in the correct sense).(3) The above result
has inportant consequences, for instance, (05,0 :9,) is conpletely
characterized by its spectrum anong ai1 rational surfaces. Also a-
nmong all t opol ogi cal reduci bl e Kaehl er surfaces. In these cases, a(M
=1 and t(M)=0, respectively.

There exists other inportant contributions to the inverse prob-
lem to see for instance [43] and [57].
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4. BASIC FORMULAS IN THEORY OF SUBMANI FOLDS. Now we will recall
sone fundanental facts in theory of submanifolds (a fundamental re-
ference for that is [13].

Let M™ and ®"*P be two Riemannian manifolds with dinension n and
n+p respectively. W will denote by v and v the Levi-Gvita connec-
tions of M and M respectively. Now we assune that f:M—sM is an iso-
metric inmersion, then for any point x¢M one has: The tangent space
of Mat x, T M; the normal space of Mvia f at x, (T;M)f (sonetines
we will omt f£) and the connection v* deternined by f in the normal

vector bundle T'M. Also x(M) will denote the Lie algebra of vector

fields tangent to M and xl(M) the space of vector fields normal to

Mvia f.

As it is well-known, the nost inportant geometric object associa-
ted to f is its second fundanental form g, which is well defined via
the Gauss equation

(4.1) o (X,Y) = vV, Y=-v,Y

XTTYX
for all X,Yex(M).That iS, o(X,Y) is the normal conponent of EXY.Pro—
perties of symmetry and bilinearlity of ¢ are well-known.

The Weingarten endonorphisms of f are defined by neans of Wein-
garten's formula

(4.2) AX = vye-v

£ xE"Vx5

for all X,Yey(M) and gey(M)~ That is AX S, up the sign, the tan-

gential conponent of st,.

one has the relation

(4.3) g(A.zX'Y): 9o (X,¥),e ) for all X,Yex (M) and cex (M)~

g denoting the netric over M and M.

The mean curvature vector of f is a vector field HEX(M)L given

by
n
(4.4) H=(1/n)}
i=t
wher e {E;} 1=1,...,n, denotes an orthonormal basis for the tangent

space of M at the corresponding point.
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One can define the covariant derivative of ¢ by

4.5) (90),(Y,2) = vy o(Y,2Z)=0(v,Y,2)=0 (Y,7,2)

X
for all X,Y,Zey(M).
- If o=0, the isometric immersion f is called totally geodesic.
- |If H=0, the isonmetric imersion f is called minimal.
- If voe=0, the isonetric immersion f is called parallel.

W will use the following sign for the Riemannian curvature R
of M (the same for others curvatures)

(4.6)R(X,Y,Z,W) = g(([vx,vy]—v[x Y] )Z,W) for all X,Y,Z,Wey(M)
The equations of GCauss and Codazzi for the curvature are given

by
(4.7)R(X,Y,2,W) = R(X,Y,Z,W)+g(o(X,Z),0(Y,W))=g(o(X,W),s(Y,Z))
(4.8) (R(x,v)2)" = (v6) 4 (Y,2)=(v0 )y (X,2)

in both equations X,Y,Z,Wex(M) and % denotes the normal component.

1 .
If R denotes the curvature tensor of ¢*, that is,

(4 9) RL(X,Y)E = ([ V;,V;]‘V-[Lx,y] )e

then the equation of Ricci is

X,Yex (M) and CeX(M)-L

(4.10) R(X,Y,6,n) = R (X,Y,£,n)=-g([A A 1X,Y)

£
for all X,Yex(M) and C.nex(M)L.

5. SPECTRAL CGEOMETRY OF SUBMANIFOLDS IN EUCLIDEAN SPACE. If M is
a Ri emanni an mani fold, for each A eSpec(M,g), We consider its corres-
ponding ei genspace vy and recall that D Vie is dense in c*(M).

For each feC™(M), we denote by £y the projection of f onto the

subspace V. (t=0,1,2,....), then one has the follow ng spectral de-
conposi tion
f= T £ in 1°- -
(5.1) AR L -sense (Aft )‘tft)‘
i N particular, since dim Vo1, £, i S constant.

Now we assume that v:M"—E"ls an isometric immersion of M in
ar. mdinmensional Euclidean space. W will denote by D the canonical
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connection over E™. If A is the Laplacian of i acting over CT(M) one
can extend A to E™-valued functions over Min nacural wvay, if
F:M—E™ with F=(F,,...,F ) with respect to a fixed basis on g™, then
one puts

(5.2) AF = (AF.',...,AFm)

it is clear that this definition does not depend over the chosen La-
sis in E™. Moreover if a denotes a fixed vector in E™, one has

(5.3)48<a,F> = <a,sF> <,> being the Euclidean inner product.

In particular, if we consider y:M—E™, from (5.1) and (5.2)
one get
7 m .
(5.4) Vo= tzowt; vy i M—E with Bhp = b,
this sequence is convergent coordinate to coordinate inthe i --- -
se over C7(M). Moreover Yo is constant and it is called the graviry

center of .
(5.5) vo = (voron) | yaay
H
Since the decomposition | k v, is orthogonal, one has too

(5.6) Jw<mu,wv > =0 for uiv

Now we will establish a very interesting theorem due to T.Taka-
hashi ([541), but before we will consider tne following

LEMMAG5.1 .- Lety:M"—t™ an isometric immersion of an n-dimensional
Riemannian manifold 1n the Euclidean space. if H aenotes the mean
curvature vectc .y, then

(5.7) ety = -nH

Proof.- Let a be a fixed vector in £" and consider <a,y>:M'—sk. If
X,Yex (M), direct computations give us

(d<a,p> ) (X) = X(<a,v>) = <a,x>

(Hess <a,y>) (X,Y) = XY<a,y> = (v,Y)(<a,v>) = <a,D

¥ Y> = <a,v,Y> =

X X
=<a,o(X,Y)>



16 M Barros - A Ros

now frcm (2.4), one has
n n
—4<a,p> = -£ Hess<a,¢>(Ei,Ei) = <a,ig1a(Ei,Ei)> = <a,nH>
because last formula is true for every a in the Euclidean space, one

obtains (.7).

It is easy to prove the following relations

¢ = = = T
(5.8) Ay = -nH = I )‘twt
t21
(5.9) o = 1k for all ken
by Mttt

Definition.- Let 4 a finite subset of N W will say that the isome-
tric imersion y:M—E™ is of order , if v,=0 for all teN-(wu(0}).
In particular if w=(uy and ¢ is an isometric imersion of order ,
we will say that y is of order u, These isonetric immersion or the-
ir corresponding submanifolds have been called by B.Y.Chen ([16])
submanifolds of finite type. According the number of elenents in g
we will use the termnology: mono-order, bi-order,...

Since our manifolds are assumed to be conpact, we will give the
conpact version of Takahashi's theorem

THEOREM 5.2.- Let y:M'—»E™ be an isometric imersion of an n-dimen-
sional kiemannian manifold in the Euclidean space. Then y is of or-
der u, for some ux! (mono-order) if and only if y is nminimal in so-
me hyperspnere of E™. Moreover if y is of order u, then xuzn/r2 be-

ing r tne radius of the corresponding hypersphere.

proof.- Suppose that ¢ is of order u, for some ux1, then

(5.10) Vo= WO+Wu with Awu = Auvy
Now from (6.7) and (5.10) one get
(5.11) Au(w—wo)=-nH

First we will prove that (M) is contained in some hypersphere
S of center V- Let X be any vector field tangent to M then
XY=y by> = 2y, %> = —2(n/x J<H, X = 0

If we denote by o' (respectively ) the second fundamental form

of Min S (respectively of S in £") and bty H' (respectively #) the
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mean curvature vector of M in S (respectively of S in E™), then
n
(5.12) H= H4+ (1/n)i=X1E(Ei,Ei)

From (5.11) we see that H is normal to S then (5.12) inplies
that H'=0 and so Mis nmninmal in S

The converse is trivial.

Let r be the radius of S and t¢=@ -v,)/r a unit vector normal to
S. Since A£=—(‘l/r)I, from (5.12) one get

(5.13) H= —(w-wo)/r2
now from (s.11) and (5.13) one obtains that i =n/r®.
Remark.- The above result proves us that the spectrumof a Riemanni-

an manifold M containes information about the possible radius of
spheres in which M admts a mniml isometric inmersion.

In order to finish this section we will give two results ([16],
[47]).The first one can be looked |ike a formal generalization of
the situation which we have found in Takahashi's theorem The second
one will be very useful along this paper.

PROPOSITION 5.3.- Let :M"—»E™ be an isometric irmmersion, then the
following conditions are equivalents:

(i) yis of order  for some finite subset w of N, wWith #(w)=k>1.

(ii) There exists real nunbers ay,a;,...,a,_, such that
(5.14) Xy = ao(w—vo)+a1w+...+ak_1Ak‘1w
2 being the center of gravity of w
Proof .- Suppose 0={Uy, .., ) and consider the el enentary symetric
functions SpreeSy of (Aul ,...,xuk)_ From v=wo+wu1+...+wuk one has
v =" w4l foranr
41 % k "k

So some direct conputations give us

ko _ k-1, . k-2 k-1

870 = 5087 w-s,at bt 1) sy (V-vg)

k-1 .
Conversely, assumne Akvzao(w—wo)+a1w+...+ak_1A vfcr certain
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real nunbers ag,a;,...,a,_4» from (5.4) and (5.9) one obtains

k _ ) k-1
T oaSy = ay Te +a, ] Ay +...4a I 2, w, and
L -
us uw 0u21u 1u31)‘uu k1u>,1 u u
k k-1 —
u£1(xu—ao—a1xu—...-ak_1xu v, =0
2

since this sequence i S L°-convergent, for any teN, t31, we apply

I vy ,=>dv to last formula and so
(xt-ao—a1xt—...—ak_1x¥‘1)1h;vt,vt>dv =0

which inplies that v=0 for ai1 ty1 except at nost for k different
values of t (just for the solutions of the equation X -aj -a x-..-

k=1
-ak_—])‘ =0) .

PROPCSI TION 5.4.-Let v:M"—E™ be an isometric i nmersion. For any
two natural nunbers k,t>1, one has

JM{ <Ak+t0.v>—s1<Ak+t'1w,v>+s2<Ak+t'2v,v>+- ..

+(—1)ksk<Ato,v>}dv » 0

s_being the el ementary symmetric functions of (qseeenny ). The equa-
lity holds if and only if vis of order (1,2,...,k}.

Proof.- From (5.9) and direct conputations, one has:

Ak+tv—s1Ak+t-1v+52Ak+t_2v+.- -+(-ﬂkSkAtv -

t _
= u£1xu(xu—x1)(xu—x2)...(xu—xk)vu =

= ] xt(xu—x1)...(x RIA]

u u u
uxk+1

By appliying 5] <v,->dv to the last fornula, one get
M

k+t-1 k+t-2

k
k+tv,v>—s1<A + Vo ¥>+5,<h Vyv>+.m o +(=0) sk<Atv,w>)dv -

JM{<A

= 7 xt(x -x1)...(xu—xk)JM<vu,vu>dv >0

- ua&+1 uu
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and the equality holds if and only if y =0 for allucN with usk, th-
at is, if and only if vis of order (1,2,...,k}.

6. SUBMANIFOLDS OF A KAEHLERIAN MANIFOLD. Let (M,J,g) be a Kaeh-
lerian manifold with conplex structure J. Wth respect to a Rieman-
nian manifold, nov one has an aditional structure J and so it seens
natural to study submanifolds in M according their behaviours with
respect to J.

In this sense, the first kind of submanifolds of a Kaehler ma-
nifold, vhich has been studied, is the fanmily of conpl ex submanifo-
lds. If Mis a submanifold of (M,J,g), Mis called conplex if its
tangent space at any point is J-invariant

(6.1) J(T,M) = T M for all xeM

inthis case J can be induced over Mand so, Mis already aKaehle-
rian manifold. Therefore, ve will say Kaehler submanifolds.

[f a submanifold ™ of (M,J,g) satisfies
(6.2) J(T M) < T  for all xeM

then M is called a totally real submanifold. The famly of totally
real submanifolds of a Kaehlerian manifold has been studied for
many authors too.

Let Mbe a real hypersurface of a 2m-dimensional Kaehl eri an ma-
nifold, then one can choose a |ocal unit, normal vector field ¢ and
so, one can put

(6.3) TXM = <ng>®D(X)

where D(x) denotes the orthogonal complement of <Jgy> in TXM and it
is obvious that it is the greatest holonorphic subspace on T M.

W see that a real hypersurface of a Kaehlerian manifold is ne-
ver a Kaehl erian (respectively, totally real) submanifol d. By exten-
ding the behaviour of a real hypersurface with respect to the com-
pl ex structure of a Kaehl erian manifold, A Bejancu ([107])defined
the concept of CR-submanifold of a Kaehlerian manifold as follows:

A subnani fol d mof a Kaehl erian manifold (M,J,g) is called a CR-sub-
manifold if it admits a pair of distributions (D,D'L) such that
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(1)p* is the orthogonal complement of D
(2) Dis hol onorphic and p'is totally real.

It is obvious that Kaehler submanifolds, totally real suybmani-
folds and real hypersurfaces are CR-submanifolds.

Take M=cP"*P, the (n+p)-dimensional conpl ex projective space

endowed of its canonical conplex structure J, and the Fubini-Study
metric g, of holonorphic sectional curvature 1 Let M be a Kaehler
submani fol d of cP™P with conpl ex di mension n. W choose an orthonor-
mal basis of vector fields over CPn+p{E1,...,En,JE1=E1*,...,JEn=E
L L N T L which is adapted to M Ve will use
the following convention on the range of indices unless otherwse
state:

n*

- % .
a,b,..=1,...,n i*={a if i=za
i,J.k.P,S,ﬂ,-...n,1*,...,n* a |f i:a*
a,B,=1,...,p A‘(,={c¢“‘if A=a
xyl‘y:‘],---vpy’l*t"'!p* Qa If A=a *

W also use the follow ng nonenclature:

v= the Levi-Civita connection of M

o= the second fundanental formof Min cp™tP

v*= the normal connection over T'M (the normal bundle of M in
cp*P

A= the Wingarten endonorphism of wmin cp™*P,

The nornal bundae T M of M is holomorphic and we will denote by
J the complex structures over T'M and also over TM since cP™P s
a Kaehlerian mnifold, the Gauss equation inplies
(6.4) o (JX,Y) = ¢(X,JY) = Jo(X,Y) for all X,Yex (M)
therefore one has

€
as consequence M is ninimal (Every conplex submanifold of a Kaehle-

rian manifold is minimal).
If R denotes the curvature tensor of M the Gauss equation is:

(6.6) R(X,Y,2,W) = g(o(X,W),0(Y,Z))=g(a(X,2),a(Y,W))+(1/4){g(X,W)
g(Y,2)-g(X,2)g(Y,W)+g(JX,W)g(JY,Z2)-g(JX,Z)g(JY,W)+2g(X,JY)g(JZ,W)}

4
(6.5) AJC _JAE and JA, = -AJ for all gex (M)



Spectral geonetry of submanifolds 21

Now the Ricci curvature S of Mis:

6.7 sx,v) = 2L g(x,v) - | 9(Ax,v),
X

and the scalar curvature p of Mis:

(6.8) p = n(n+1) = Iclg,

where |¢| denotes the length of the second fundamental formo ,
2 _ 2 _ Ao

(6.9 lo|< = tr%AA = i\;’)\hijhij ,

o(E. ,Ej) =7 hiij;)‘. Finally, theholomorphic sectional curvature

determined by a unit vector x of M is given by:

(6.10) H(x) = 1 = 2|o(x,%)]2 .

The following two lemmas are well-known (any-way their proofs

are verydirect):

LEWA 6.1.- Let M" be ann-dimensiond complex submanifold of cP"*P,

then:

(6.11) |S|2= %n(n+‘|)2— ‘(n+1)|c‘j2 +.trd {Ai)z,
)
6-12) IRI% = 2n(n+1) - 410l * + 2 (traa)?,
Ap
(6.13) -3alal2 = |vol?+ H2101%- 2tr(] Af)2 - (trA)‘Ap)z.
A Au

LEWA 6.2.- Let N™ be a Kaehler manifold of conplex dinension m,
then:
(6.14) 1(m+1)m|R|Z » om|sPy 2|

Mor eover :
(i) the first equality holds if and only if N has constant holomor-
phic sectional curvature.
(ii) the second equality holds if and only if N is Einstein.
From (6.8), (6.11) and the second inequality of (6.13) one get
(6.15) tr ( zAf)2 by % o|4,
Py

the equality holds if and only if M is Einstein.

A'so we will consider the following result due to B. Y. Chen and

K. Qgiue [19]:
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THEOREM 6.3.- Let M be an algebraic hypersurface of degree d in
cP*1 Then we have

n+2)

5 —(n+2)d+d2} vol(M)

(6.16) Mf,|R12-4ts|2+2} dv = 2n(n-1){(

7. EXTRINSIC CHARACTERI ZATIONS OF SOVE COWPLEX SUBMANI FOLDS
IN THE COWPLEX PRQIECTIVE SPACE. In section 3 we gave two interes-
ting results about the so called "inverse problem" for the conplex
quadric of small dinmension. These results was intrinsic.

In order to study the inverse problem for any conplex quadric
one firstly nust solve the following special problem Let M" be an
n-dinensi onal Kaehl er submanifold of cp"*9 such that specP(mM,g) =
= spec”(Q_,9,) for some p, is it true that Mis congruent to Qn 2.

O course, here the Kaehler structures over M and Q, are the indu-
ced structures like conplex submanifolds of cP™9. In this sense,
we will call extrinsic characterization of Q, by its spectrum to a-
ny answer of the above problem

Sone partial answer to this problem have been obtained, | 2 1,

[3 ), @],[5), we will give here sone of them

"THEOREM 7.1,(5]).- Let (M,J,g) be an n-dinensiona] Kaehler manifold

with specP(M,g)=specP(Q,,9.) for _some p (p=0,1,...,2n). If (M,],g)

can be holonorphically 1sometrically imbedded in cp™ for some m

then (M,J,g) is halonmorphically isometric to (Q,.J,.9.)-

Proof.- The main idea of the proof 15 to use some arguments of Al-
gebraic Geometry in order to reduce oyr problemto consider conpl ex
hypersurfaces. In fact, because (M,J,q) 1s hol onorphically 1sometri-

cally imbedded 1n some cP™, from 4 well known result due to Chow,
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M is a nonsingular algebraic variety. As wusual, we shall identify M
with its imge in cpP™.

Let L be an (m-n)-dimensional linear subspace of cP™ and let
be the nunber of points in MnL. From the dinmensional theory for al-
gebraic manifolds, one obtains that » does not depend on the choice
of L, if L is in general position;x iS called the degree of M More-
over from a classical theorem due to W.Wwirtinger,[59], onée has,

(7.1) vol(M) = a(4am)™/n!

On the other hand, since Q, is an algebraic hypersurface of de-

gree 2 in ¢cp™', we have

(1.2) vol(Q.) = 2(4m)"/n!

and so r=2 because the volume is a spectral invariant. That is, Mmis
an algebraic submanifold of degree 2 in cP™. Now we use another well

known result due to w.Barth,[7], to obtain Mis contained in an (n+1)
di mensional linear subspace of CPm. Therefore, from theorem 6.3, one

has,

2 2 2 _ 2 2. 2
(7.9 jM{|R1 415145 dv = jo (IR, 12-41s 124021y

n
Now we use the coefficients of M nakshisundaramPleijel-Gaffney

formula joint the Schwartz inequality and the Einsteinian character
of Q, to obtain

[e]

(7.4) [M{anS|2—p2;dv <0

but this fornmula joint lemma 6.2 inply that mis Einstein. Finally
one uses a well-known result due to B.Smyth,[52], to conclude (M,J,q)
is holomorphically isometric to (Q,,J ,9,)-

VWen one only assumes that M is imersed, the extrinsic charac-
terizations are weaker that the above case. In a direct attack, it
seems natural to try find spectral invariants for Kaehler submani-
folds of CP™ in terns of elements close to the inmersion (for ins-
tance, in ternms of the second fundamental form). In this 1line one
has the follow ng:
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specP(M,,g,)=specP(M,,9,) for_some p, then one has

LEWA 7.2, & Let M, and M, be two Kaehler submenifolds in cp™. If

2 2

(750 [ @lve,1%-als, 121k, 1Prav, = [ (21voy1P-a1s,1%-
J

M,‘ M2

2
—|R2| }dv2

This result allows us to give some extrinsic characterizations
of conplex quadrics by its spectrum for instance:

THEOREM 7.3.[5].- Let (M,J,g) be an n-dinensiona] Kaehler nanifold
(n25) with Spec2(M,g)=Spec2(Qn,gﬁ). 1f (M,J,g) can be holomorphica-

11y isometrically immersed in CP™, for some m then (M,J,g)iS ho-
lomorphically isometric to (Q,,J,.9,)-

Remark.- Since the spectral invariant obtained in lemma 7.2, already
only depends on the volume and the total scalar curvature, one can
characterize the Veronese inbedding (see 12.2) by its volume and

its total scalar curvature (which are two spectral invariants) a-
mong all parallel Kaehler submanifolds of the conplex projective
space,[6]. In particular this inbedding is characterized by its spec-
trum anmong all the above submanifolds.
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8. THE STANDARD |MBEDDING OF THE COWPLEX PRQIECTIVE SPACE IN
EUCLIDEAN SPACE. In this section we wll describe with some details
a very nice isometric immersion of the conplex projective space in
a Euclidean space which will play an inportant role in this paper.
W will call it the standard inbedding. This inbedding has been used
for some authors to study different problems,[17],[34],[46],[50],
[53] etc.

Let ¢™' pe the usual (m+1)-dimensional conpl ex Euclidean space
endowed with the usual inner product < z,w> = Real zwtfor z =

(zO z.), W= (wo,..,wm) in*c™’ (w neans conjugate and e transpose).
Yoo

¢™! can be considered like vector space and so cP™ is defined as the
set of all conplex lines of c™'. Let End(¢™") be the space of all

conpl ex endonor phisms of ¢™ ',

one defines a mapping @:CPm—o End(C as follows: If g7 is a
conplex 1line of c™', then o(m):c™'—s c™" 15 sinply the orthogonal
projection over 1 . One notices the following facts on ¢ :

(1) ¢ i S one-to-one

(2) (6(1))2 = o(m) for ax1n ¢ CPM
(3) rank (o(m)) = 1 for all m¢ cp™
(4)

o(n) is self-adjoint with respect to the inner product on
Cmﬂ

m+1 )

, for a1l m ¢ cP™.

m+1
)

Conversely, any elenent in End(C satisfying conditions (2), (3)

and (4) is the orthogonal projection over sone conplex line of sl
Moreover, in this context, condition (3) is equivalent to

(3)' Trace (¢(m)) = 1 for all g . cP™.

Remark.- | f the honmbgeneous coordinates of 1 ¢ CP™ are
(zguw Zzy) for a chosen basis on AT then o(m) with respect to such

basis is given by

1 -t
z .z

(8.1)

=t
7.2
Consider the space of all Hermitian matrices of order m41

(8.2) HM(m+1,C)= (A ¢ gl(m#1,C) A°= A}
which is a linear subspace of g1(m+1,C) with dinension (m+1) 2
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0n HM(m+1,C) one defines the metric

(8.3) g(A,B) = 2TraceAB for all A, B ¢ HM(m+1,C).
Ve define the following subset of HM(m+1,C)
(8.4) cP™ = {Ae HM(m+1,C) AA = A and Trace (A)= 1)

LEMA 8.1.- cp™ is a submanifold of HM(m+1,c) which is diffeonorphic
to the honogeneous space U(m+1)/U(1)xU(m), U(m) being the unitary
group of order m

Proof.— If A ¢ CPM it is a Hermitian matrix and so there exists P in

U(m+1) with
o (Mo
PAP = I
m

From (8.4), one obtains that hy=1 for a fixed index and hj =0, i#j.
Therefore, we can assune

1 1
PAP™ = 0, ) = B
‘0

Ve yill say that B is the origin of cP™ and so we can look cp™ like
the orbit of B under the U(m+1)-action over HM(m+1,C) given by

(P,A)  PAP™! for all (P,A) in U(m+1)xHM(m+1,C). Moreover it is easy
to see that the isotropy subgroup of B is U(1)xU(m) which proves the

| ermm.

For a11 A cP™, we denote by TA(CPm) the tangent space of cp”"
at A identified by neans of ¢ with a subspace of HM(m+1,C). Similarly
We have the normal space at A T;(CPm). Then one has

LEMVA 8.2.- For each point A ¢ CPm, one has
T, (CP™) = ( X ¢ HM(me1,C) / XAAX=X |,

Tj\(cp’% = (Z¢ HM(m+1,C) / AZ = ZA }.

Proof.- Let o:I —sCP™ be a curve wWith o(0) = A and o' (0) = X then
a(t)a(t) = oa(t) and so a'(tlal(t) + al(t) o (t) = &' (t), iN particular
when t=0, one g@et XA+tAX=X which proves the first inclusion.

Because for each P in U(m+1) the mapping HM(m+1,C)-—sHM(m+1,C) given
by A PAP” Ys an isometry, it is enough to establish the equality
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at the origin B ¢ cP™. Mreover, it is easy to see that
dim{Xx ¢ HM(m+1,C)/ XB + BX =X} = 2m, which proves the first equality.
the second equality can be proved using a direct argunent.

Remark.- The vector fields along cP" given by A-A and A——1I
(where 1 denotes the identity matrix of order m+1) are obviously
normal to cP™. Also the vector fields given by A-AQ+ QA- 2AQA
are tangent to cpP™ for al1 Qin HM(m+1,C).

The following relations admit a direct proof

AXY = XYA

AXA = 0
(8.5XX(I-2A) = -(I-2A)X

(1-20)° = 1

I-2A)XY = XY(I-2A)
for a11 A¢ CP"and X, Y ¢ 1,(cP™), and they will be very useful
along this paper.
LEMWA g8.3.- Let D be the Levi-Civita connection of uM(m+1,c), § the
induced connection over cp™, ; the second fundamental form of
¢ :CP™—HM(m+1,C), ¥ the normal connection, & the eingarten
endonorphism and H the mean curvature vector, then

(8.6) FgY = A(DyY) + (DyY)A = 2A(DyY)A

(8.7)  3(X,Y) = (XY +YX)(I-2A)

(8.8) 942 = DyZ + 2A(DyZ)A = (Dy2)A - A(D,2)
(8.9) KX = (X2-2X)(I-2A)
(8.10) = (I (me1)A)

where X, Y are tangent vector fields of cP™, Z is a normal vector
field of cP™, A any point of cP™ and the above formulas are computed
at A

Proof.- Assunme § and 5 defined respectively by (8.6) and (8.7).
Take A e cP™, X ¢ TA(CPm) and Y ¢ x(cP™). Leta:I—cP™ be a curve
with «(0) =A and «'(0) =X. Since Y(t) ¢ Tq(t)(CPm) one has
a(t)Y(t) + Y(t)alt) = Y(t), therefore




28 M. Barros - A. Ros

_ dy(v) _
DyY = —at—(O) = XY + YX + A(DXY) + (DXY)A

where we put Y by Y(0). Hence
o(X,Y) = (XY +YX)(I-2A) = (DXY—AGDXY)—(DXY)A)(I_ZA) =

= - A(DLY) + (DyY)A- 2A(DXY)A ) + DyY = DyY - Y.

So it is enough to prove that Y is tangent to cP™ and §(X,Y) is
normal to cp™ which is trivial.
In order to prove (8.8) and (8.9) we take a normal vector field 2

over cP™, then «(t)Z(t) = Z(t)a(t) and soO

x

XZ + A(DyZ) = (DXZ)A + ZX, and

“ _ _ d
AZX = (XZ-ZX)(I-2A) = vxz - DyZ.

Now from Weingarten formula it is enough to prove that T\ZX is tan-

gent to cP™ and G;z is normal to cP™, but it is also trivial.
Finally, to prove (8.10), it is enough to prove that at the origin
B of cp" and use the argunent that the mappings A —p pAP”| are

isonetries of HM(m+1,c) for all P in UM(ma1). Then one takes the

orthonormal basis {51""Em’51*""5m*} of T, (CPT) given by
k
0..010..0 040..010..0
k = 2k k¥ 72 1 0
0
0
t hen, a direct conputation proves that
B o= o = > (I- (m+1)B).

2m

ol 1
LEMWA 8.5.- Let f be the diffeonorphism obtained in lemma 8.1. Then

f is already an isonetry when one considers on U(m+1)/U(1)xU(m) the
metric of Fubini-Study with holonorphic sectional curvature ¢ =1
and on cpm the netric indueed via ¢ from the Euclidean netric on
HM(m+1,C).

Proof.- Since both metrics are U(m+1)-invariants, it is enough to
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prove that the diferential of f at the origin is a linear isonetry
between the corresponding tangent spaces

f: U(m+1)/U(1)xU(m) ——oCP”,] f([P]) = PBP ™.
If o = [I], one knows that

0 a m
T ( U(m+1)/U(1)xU(m) ) = [( _t )/ aeC’ )
° =a 0

and the Fubini-Study metric of holomorphic sectional curvature c=1
is given by

0 a 0 b ( ab* 0
90 (—Et O) ’(—Bt 5 )) = 2 Trace ( o 5tb )

W take a curve o:I — U(m+1) With «(0) =1 and

0 a
a'(0) = _at o/

and consider g:I— U(m+1)/U(1)xU(m) given by g(t) =[a«(t)] . Then

dfo( o Z) = (£08)'(0) = (a(t)Ba(t) ' )M0) =
-a

—t t 0 -a
= o'(0)Ba (0) + a(0)Ba0) = _3t o and so

( ( 0 a) ( 0 b) (aBt 0 )
g dfo -zt o/ dfo _Bt 0 = 2 Trace 0 3t
which proves the |emm.

LEMA 8.6.- Let J be the natural conplex structure over

U(m+1)/U(1)xU(m). The induced conplex structure over CP™ yia the
di ffeonorphism f is given by

J(X) = V=1 (1-24)X for a11 X in TA(CPm).

Proof.- W will prove the fornula at the origin. AsS it iS well-known
the conplex structure J at the origin of U(m+1)/U(1)xU(m) is given

() e )

a 0 a 0

0 a
if(_—t O)e T_(cP™, the induced conpl ex structure is

0 a\._ x “1f0 ay_. 5 0 -a =
j(ét O)_ ae,.J.(af,) (_t )_ )

a- o it 0
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0 a
= V3 (I—2A)(5t o) .

The following proposition gives some geometrical properties of
the inbedding ¢ :cP™— HM(m+1,c) which will be very useful.

PROPOSI TION 8. 7 The i sonetric i mersiong:cP™—s HM(m+1,c) sati sfies
(a) It is an U(m+1)-equivariant i SOMetriC imbedding.

(b) 5(JX,JY) = 5(x,¥) for_ai1 x, Y in T,(cP™).

(c) %5 =0, that is the inbedding is parallel.

(d) It is mniml in a hypersphere of center (1/m+1)I and radius

Y 2m/(m+1) . As consequence it is nono-order and the order is one.

Proof.- (a) It is an imediate consequence from|emm 8.1and 8.5

if we recall that u(m+1)-equivariant means that every isonetry of

cP™ determined by the elements of uU(m+1) can be obtained as the res-

triction to cP™ of some isonetry of HM(m+1,C).

(b) It follows from(8.5), (8.7) and | emm 8. 6.

(c) Let XYY, be three vector fields tangent to cp™, then by

using (b) and the fact that cP™ is Kaehlerian, one get
(7)) ¢ (JY,,JY,) = (F6),(Y,,Y,).

As consequence (ﬁa)X(Y,JY) = 0 for a11 X,Y tangent to cP™. Now from

Codazzi's equation one has

(73),(x,x) = 0 for a11 X tangent to cP™, which proves (c).
(d) Let A be any point of CP', then

1
m o+

_ 1 1 _ om
1) = 2Trace (A—mI+(m+1)2 ) =5
This proves that CP™ i's contained in a sphere S of center —_1

. m+1
and radi us vV am/(m+1) .
Moreover the mean curvature vector g of cP™——»HM(m+1,C)in Ais
given hy

g(A - I,A-

m+1

_ 1 _ m+1 _
HA = 2——m—(I"(m+’|)A) = " Dnm (A T I)

which proves that f{A is normal to S at A therefore the nean curva-
ture vector of cP™ in sis trivial.

From the Takahashi's theorem ¢ is mono-order, of order u > 1, wWith
A, = dim cP™/(radius $)% = m41. But the first ei genval ue of cp™
iSm+1, then y =1.
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W wll finish this section by given tw technical |enmas which
adnit a direct proof

LEMA 8.8.- For the inbedding ¢ :CP™—s HM(m+1,C) one has:

(8.11) g(+ 5(X,Y),5(V,W)) = $g(X,Y)g(V,W) + 7 {g(X,W)g(Y,V) t

+ g(X,V)g(Y,W) + g(X,Jw)g(Y,JV) + g(X,JV)g(Y,JW)}

_ 1 1
(8.12) KE(X,Y)V = 3g(X,Y)V + 7 g(Y, V)X +g(X,V)Y+g(JY,V)JX +

g(JXx,v)JY 1L
(8.13) g(s(X,Y),I) = O.

(8.14) g(s(Xx,Y),A) = - g(X,Y).

LEMVA 8.9.- Let X, Y be two orthonormal vectors in T,(cP™). Then

(8.15) g{o(x,X),a(X,X)) = 1,
(8.16") 3 < g(a(x,x),5(Y,¥)) ¢ 1.
If one has g(x,Jy) = 0, then

{8.17) g{(a(X,X),a(Y,Y)) =
(8.1773 g(&(X,Y),a(X,Y)) =

1
H
U
7 -

9. A NEW WAY TO STUDY SPECTRAL GEOMETRY OF SUBMANIFOLDS IN THE
COWPLEX PRQJECTIVE SPACE. The theorem of Takahashi (theorem 5.2)
gives a very nice spectral characterization for mniml submanifolds
of a sphere. But it inplicitly depends on the standard immersion of
the sphere in the Euclidean space (as the geometrical |ocus of points
havi ng constant distance to a fixed point). Let s™1(r) be an (m-1)-
di nensi onal sphere of radius r in E", if <,> denotes the Euclidean
metric on g™, then

" T(r) = ta ¢ E"/ <a,a> = ry,
Consider the inclusion i:s™"(r) —s&™ or standard inbeddi ng. If u"
denotes an n-dimensional (conpact) Riemannian manifold, then M ad-
mts a mniml isometric immersion «tin Sm”(r) if and only if the
isometric imMMersion y=i.t:M* — g™ has the sinplest spectral beha-
viour, that is, it is nono-order of order u
VS ovg ot v
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with
1
= — (M).dv,
Yo vol(M) JM‘,

and sy = Moreover , = n/r?.

vy

This results sugests us [46] to consider the following way to
study spectral geonetry of submanifolds in the conplex projective
space. First, it seems natural to try to find a good isonetric im-
mersion of cP™ in a Euclidean :space, say for instance

o:cP"— N
and so study submanifolds M in cP™ (<:M"—cP™) by | ooking the spec-
tral behaviour of the isometric immersiony=s .1 M—s V. OF cour-
se this idea can be extended to other symmetric spaces (see for
instance 7.
Inthis sense, we will use the isonetric inbeddi ng ¢:cP™—HM(m+1,C)
defined in the last section.
For example, one can put the following problem which is formally .
like in the theorem of Takahashi: Assume that .:M®—scpP™ is an
isometric imersion of a Remmnnian manifold M" in cP™. Using
6:CP" — HM(m+1,C) one can see M"like a submanifold.in the Eu+.
clidean space HM(m+1,C)

v:M? — s HM(m+1,C).

The spectral behaviour of y nust be closely related to the geometry
of the imersion .:M"—scP™. 1Is the ninimality of . equivaient to
the sinplest spectral behaviour of y (to be mnono-order)?
W will see in section u that this problem is not true because if
Mis a Kaehler submanifold of cP™, then it is minimal. On the other
hand , we will prove that the only conplex submanifolds for yhich v IS
nmono-order are totally geodesic and so linear varieties.
Therefore a nore solid first problem is: Totry to study the subma-
nifolds «:M"—scP™ such that the corresponding isometric imersion
v :M® —» HM(m+1,C) i S nono-order ( of order us1).In section u,
we will classify a1l CR-nminimal submanifolds in cP™ satisfying Iast
condition. As we will see the solution obtained indicates that
conplex submanifolds adnit a nore involved behaviour with respert
to the spectral character of  and so we will study in a second pro-

blem conplex submanifolds in cP™ whose isometric immersion v is
bi - or der.
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1o. THE VOLUME OF A MINIMAL SUBMANIFOLD IN THE COWPLEX PROJECTI-

VE SPACE. W recall that a submanifold t:M—sCP" is called a Cr-
—submanifold if it admts a pair of complementary distribution
(D,D7) such that D is hol omor phi ¢ and DT s totally real. In general
we will denote M by M°™*9 where 2n indicates the real dinension of
D and q the dinension of ot
Gven a submanifold <:M" —»cP™, one consider ¢ :M"—» HM(m+1,C), where

=¢.1. Let H' be the normal conponent to cP™ of the mean curvatu-
re vector of y. W will start this section by giving the best posi-
ble estimation for the length of H',[17],[46].
LEWA 10.1.- (a) Let_ M" be an n-dinensional submanifold of cpP™, then

n+1

(10.1) = < g(u*H) s B .

2n

Moreover, the first equality (respectively the second equality) holds
if and only if Mls totally real (respectevily n is even and M is
Kaehl eri an).

(b) I'n particular if M2n+q is a CR-submanifol d of cpm, then
2
(10.2) g(u,uh) = w '
2(2n+q)
Proof.- Take any point A in M and an orthonormal basis B,y . E ) of
TAM, then trivially one has 0
L1
H = o 1i1 G(Ei’El)
Now we use lemma 8.9 to obtain
db L 1 ~ ~
g(H ,H) = A ¢ g(o(E;,E;),s(E,,E.)) _ n+1 . 1 2
n2 1] 171 J ) 2n 2n2~IjE Q(EiyJEj) .
Define the endomorphism P on T,\M by <PX,Y > = <JX,Y> for a11 x,y in
TAM, t hen
LN | 1
(10.3) g(H ,H )_W+mg(}>,m.

Because P 1s nothing but the tangential component of j, one has
(10.4) 0 < g(P,P) ¢ n,

where the first equality (respectively, the second equality) holds
if and only if Mis totally real at A (respectively, n 15 even and
M" 15 Kaehl erian at A). Now (10.1) follows from (10.3) and (10.4)

and the equalities (10.1) are also characterized.
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(p) If M°™ %5 a CRsubmanifold, at any point A in M one can choose
and orthonormal basis of TAM, say for instance {(Eys . EbJE .00 JE
Fooo. ,Fq) wher e {E,,..,E ,JE;,..,JE ) span D, and {F1,..,F‘P) span

D: . Now we use lemma 8.9 and a direct conputation like in the

proof of (a)to obtain (10.2).

LEMA 10.2.- Let M?"*9 pe a CR submanifol d of cp™ and 5, the res-
triction of the second fundanental form of ¢:CP™"—p HM(m+1,C) to
the tangent bundle of M Then

- ~ 1 2
(10.5) g(oM,oM) = z {(2n+@)“ +4n + 3q .

The proof is again an imediate consequence of lemma 8.9.

COROLLARY 10.3.- Let M°"*9 pe a OR-submanifold of cP™. penote by ,
the scalar curvature of M and by H (respectively by o ) the nean
curvature vector {respectively the second fundanental form) of M in

cP™. Then ﬁ
(10.6) o = w + (2n+q)%g(H,H) - |olZ.
Proof.- It 15 easy to see that

b= (2ne«q)2g(H,H) + (2n+q)2g(H'L,HJ') - |o|2— IGMI2

Now (10.6) follows from 1ast fornula joint formulas (0.2) and (10.5).

In order to obtain an estimate for the volume of any miniml subma-
nifold of cP™, we start by recalfing the following proposition [14]

PROPOSITION 10.4.- Let M™ be an n-dinensional subnmanifold in the
Euclidean space Em, t hen

(10.7) MiH'Indv 2 cp
where H' denotes the mean curvature vector of M and om the volume of
the n-dinensional unit sphere. Moreover the equality in (o.7) holds
if and only if Mis inbedded as the standard sphere in a (n+1)-di-

. X m
mensi onal afin subspace of E .

Now we obtain the following theorem,[46])
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THEOREM 10.5.- Let M™ be an n-dinensional ninimal submanifold of cp™,
t hen n
(10.8) vol(M) > ¢ 2 )_2

n\n+2

Proof.— Because Mis ninimal ince™, H is essentially the mean cur-
vature vector of Min HM(m+1,C). Therefore from o1 and (10.7)
one get (10.8).

If M=s® = cp' it is obvious that the equality in (10.8) follous.
Conversely, assume that equality in (10.8) holds, then one obtains:
(i) fromthe equality in (10.7), M is inbedded as a standard sphere
of certain radius Rin an (n+1)-dimensional Eucli dean space, and
(ii) fromequality in the second part of (o.11, n is even, say
n=2k and M2k_1s a conplex submanifold of ce™.

In particular M" = s2X(R) nust be a Kaehl er manifold and so k=l .
But vol(M?) = R2c2 and so fromthe equality in (10.8) one get R=l.
Furthemore M° is already a CR-mniml subnmanifold of cP™ and so
from (w.6) one get v= 2- |c|2, which inplies that o= 0 and the
proof is finish.

Remark.- The stimate obtained in the last theorem has been inproved
by B. Y. Chen (see [17]).

11. THE FIRST EIGENVALUE OF A MiniMAL SUBMANIFOLD IN THE
COWPLEX PROJECTIVE SPACE. The main purpose of this section is to ob-
tain an upper bound for the first eigenvalue of a mniml submanifold
of cp™. The estimate obtained will be the best posible.
W start be solving the following problem : Let M®™*9 be a CR-minimal
submani fol d of ¢p™ (::M— cP™) then M can be looked as a submanifold
of a certain Euclidean space ( y:M—s HM(m+1,C), v=¢.1). From
Takahashi's Theorem it seenms natural to ask: Wen M is mniml in
some hypershere of HM(m+1,C) ?. The conplete solution to this problem
is given in the following theorem [46]

THEOREM 11.1.- Let. M°"*d phe a CRninimal submanifold of cP™. Then M
is mniml in sone sphere of HM(m+1,c) if and only if either:

(a) g=0 and M%Ys a totally geodesic conpl ex submanifold of cP™,or
(b)n=Oand M¥ is a totally totally real submanifold of cp™ for

whi ch there exists a totally geodesic conpl ex submanifold cpq_g_f cp™
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such that My is a totally real submanifold of cp9.

Proof.- First we prove the sufficient condition . Let M°™ be like in
(a), then M nust be some |inear variety CP' and so it adnits an
isometric i mbeddi ng ¢:CP" —s . HM(n+1,C) which is certainly ninimal

in a sphere ( see Proposition 8.7). Suppose now that MY is in situa-
tion (b).For each point Ain M9, one takes an orthonormal basis
{E,,..,E b in T,M, then {(E ,..,E 2JEy s JEQ) is an orthonormal basis
of TACPq‘ If H' (respectively o) denotes the mean curvature vector
(respectively the second fundanmental form) of y:MT—sHM(q+1,C)

and because «:M¥ —»cP9 is minimal, then

g =1 (II WELED) = 1Y s B
Now from proposition 87 and lemm 8.3, one obtains

q q ~
[ 1 g + o . ,JE. =H, =
HA = ?q( i:E G(El’El) i:IX G(JE]_ J 1) ) A

=-§%(I— (qg+1)A) = = Lha-_1)for a1l Ain M

2q q+
As M3 i s immersed through cPd in a sphere of HM(q+1,C), whose center
is JTI, last formula proves us that M must be minimal in such a
sphere.
Now we will prove the necessary condition. Assune that M°"*9 is a
CR-nininal submanifold of cP™ which is ninimal in sme sphere, say
S of HM(m+1,C). Let.Q be the center of S, it is clear that one can
assume that Q is a diagonal matrix, otherwise one uses the repeated
argument of the isometry of type A—s PAPT fOr sme P in u(m+1).
Let u' be the nean curvature vector of y:M—sHM(m+1,C). Because M
is mniml in §,H' nust be normal to S at each point of M and so
H'=h(A-Q) Where h is a non-zero constant and A denotes any poi nt
of wmin which is computed H'.
On the other hand and because M is mnimal in cP™, H' 15 also normal
to cP™ at each point A in M Therefore one get Qe T,(cP™ at each
point A ¢ mConsequently Mis contained in the |inear subspace L
of HM(m+1,C) defined by

L=¢AeHMm+1,C) / AQ= QA Y,

Suppose
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Then

=~ g

) such that A% = Ay and L Tracea, = 1} |
i=1

cP™n L :{<—1LT/§£

Because each Ai is a Hernmitian matrix wth Ai2 = A then for a1l A
in M there exists a index j ¢ {1,..r}) such that TraceAj = 1 and
Trace A; = 0 i Therefore

cP™nL = { such that A?:Aj and Trace Aj = 1}

But M is connected and so |t must be contained in sone component Of
cP™ L, that is M ¢ cpk, k <m On the other hand M is also nininmal
in the great sphere S L. Therefore the problem is reduced to study
CR-miniml submanifolds of CP' which are minimal in a sphere of
HM(r+1,C) whose center is aI, with a ¢ R and 1 being the identity ma-
trix of order r+1.

The nean curvature vector H' of Min HM(r+1,C) is nothing but H

because M is mnimal in CP', then
1 1

H =—2n—'+qLU(E E)
which joint lema 8.8 inply

(11.1) g(Hl, A-al) = -1.
. . L
Now by using (10.2), (@1.1) and since H =H'= h(A-aI), one Qet

2
h= -g(H-L,HJ-) - - (2n+g)“ +4n +q

2(2n+q
and so 5
(11.2) g(A-al,A-al) = - 1 = _2(2n+q)” for alx Ain M

h (2n+q)2+ 4n+q

Notice that formula (u.2) gives us the radius of the sphere S..
On the other hand

(11.3) g(A-al,A-al) = 2-4a+2a2(r+1).

From @1.2) and (11.3) one get the following equation
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(11.4) (r+1){(2n+q)2+4n+q}a2 - 2((2n+q)2+4n +qta + 4n+q = 0,

and so one has
(11.5) (2n+q)2 > r(4n+q) and 4nq > 5nq,
which inplies n=0 and g=r (case (b)) or q=0 and n=r (case (a)).
The following lemma can beloolced as a special case of a formila

due to R C Reilly [45]. Any way we obtain it by using a nore sinple
method, [47].
LEMWA 11.2.- Let q,:Mn———oEN be an isometric immersion of a Riemnnian

manifold in the Euclidean space. If H' denotes the mean curvature
vector of y and A the first eigenvalue of M then

(11.6) nfﬁ(ﬁ',ﬂ') dv - avol(M) > 0.
Proof.- First one takes k=t=1 in proposition 5.4 to obtain
2
- d
(11.7) JMQ( A%y, v) dv M JMg(Aq;, ¥) dv > 0,

the equality holding if and only if v is of order 1.
Now it is not difficult to see that

(11.8) Ag(y, ) = =2n+2g(y, av) = =-2n(1+g(H", ),

where we used formula (5.7).
From (5.7) and (1.7) one get

.

nszg(H‘,H') dv + Mn]y\%(H',\p) dv > 0,

whi ch combined With (11.8) gives us (11.6).
COROLLARY 11.3,[ 17].- Let m" be a minimal submanifold of cp™, Then

n+2
MLt
Moreover the equality holds if and only if n is even and M- CF“/Z
inbedded in cP™ as a totally geodesic conplex submanifol d.

(11.9)

Proof.- Since M' is ninimal in cP™, the nean curvature vector of M

in HMm ,C) is H. Furthermore, from (410,19,

Lot n+2
g(H ,H ) 5

now (11.9) follows from (10.1) and (1.6).

A
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Assume now i, = (n+2)/2, then one has the seé:oad equality in (o.1)
which inplies that n is even, say n= 2k and M“ "is a conpl ex subma-
nifold of CP™. Moreover one has equality in (ui.6) gives us that

.‘,:M2 —» HM(m+1,C) is of order one, in particular it nust be mono-
order and so from Takahashi's theorem y is minimal at sonme sphere

in HM(m+1,C), from theorem 1.1 it is totally geodesic.

Using the same nmethod B. Y. Chen,[17], showed the follow ng

PROPOSI TION 11.4.- Let M™ be a ninimal submanifold of RrP™ (the m-
dinensional real projective space wth sectional curvature 1). Then

Mo g 2(n+).
Moreover the equality holds if and only if M? is a RP" inbedded as
a totally geodesic submanifold in Rp™,

PROPOSI TION 11.5.- Let M™ be a ninimal submanifold of QPm ( the m
dinensional quaternion projective space with quaternion sectional
curvature 1). Then

n:d
1 2

Moreover the equality holds if and only if n is a mitiple of 4 and
Mis a (;Pn/4 inbedded in QP™ as a totally geodesic submanifol d.

X

A

CORCLLARY 11,6, (46 |.- Let M4 he a CRninimal submanifold of cp™.
Then

2
(2n+q)” + 4n+q .
(11.10) Ao S —2(2n+q)

Moreover if the equality holds, then either: (a) g=0O and MM s a
totally geodesic conplex submenifold of CP™, or (b)n=0 and M? is a
nmniml totally real submanifold of some cpd _Totally geodesic com-
plex submanifold in cp™.

Proof.- The formula (.00 is an immediate consequence from (11.6)
and (10.2). The equality in (1.10) holds if and only if the corres-

ponding immersion y:M— HM(m+1,C) is of order 1, in particular it is
mono-order and so from theorem 11.1 one obtains the second part.

CQROLLARY 11.7, (46 J.— Let M°"*9 phe a CRninimal submanifold of cP™
which 1s mniml at sone sphere of HM(m+1,C). Then
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i2n+q)2+ 4n + q
—2(2n+q)

Proof.- If R denotes the radius of the sphere in which M is mniniml
then for Takahashi's theorem one get

e Spec(M , gl

(2n+q)/R2 ¢ Spec(M,qg).
Moreover formuha (u1.2) gives us that

2 2(2n+q

2
R™ = )

(2n+q)2+4n+q ‘
CORCLLARY 11. 8,[46],[23].- Let u°" pe a conpl ex submanifold of cp™.
Then

X n+1.

2n

<
1 =
if and only if M is totally geodesic.

Moreover the equality holds

COROLLARY 11.9,[46].- I_.g_t_pﬂ be a miniml totally real submanifold
of cP™.

(i) If there exists a linear subvariety cpY such that MY is a tota-
11y real submanifold of cp9, then (q+1)/2 ¢ Spec(M,q).

(11) LL r,= (gq+1)/2,then there exists a linear subvariety cpd Oi__CPm

»
such that M is a totally real submanifold of ¢pY.

Proof.- (i) It follows fromcorollary 11.7 because in this case n=0.
(ii) It follows from the second part of corollary 116.

12.PARALLEL COWPLEX SUBMANIFOLDS OF THE COWVPLEX PRQIECTIVE
SPACE.- In last section we knew that the only conplex submanifolds
of cpP™ which are nminimal in some sphere of HM(m+1,c) are totally
geodesic and therefore, under conditions we are assuming in this pa-
per, they are linear subvarieties. Consequently these submanifolds
are the unique conplex submanifolds of cP™ whose corresponding iso-
metric imersions y:M —p HM(m+1,C) admt the sinplest spectral be-
haviour (they are nono-order).

After totally geodesic conplex submanifolds, parallel conplex
submanifolds ( that is, conplex submanifolds with parallel second
fundamental form) are the nore sinple conplex submanifolds. There-
fore it seems natural to study the spectral behaviour of
v:M—s HM(m+1,C) when M is a parallel conmplex submanifold of cp™.
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In this section we study parallel conplex submenifolds of cp™ which
are Einstein. First we will give some exanples of such kind of sub-
mani fol ds which are not totally geodesic

12.1. The complex quadric.- Consider the imbedding ¢:CP" "' —sHM(n+2,C)
given in section g. The standard projection of ¢"*2_;0; over cp*!

; ; . _ n+2_
is given as follows: For a1l Z'<ZO""Zn+1) e C {0}
z1---b ¢(z) = (1/22H)2" .2
On CP'+' one consider the honpbgeneous coordinate system (ZO""ZnH )

determined from the above projection. As we know the conplex quadric
is defined by Q, = ((z5,..,2, ;)¢ cp*tly zzf: 0.0, is a conplex
hypersurface of CP™*'Which is holomorphically isometric to the Her-"
mtian symmetric space S0(n+2)/S0(2)xS0(n). In order to identify Q1
in HM(n+2,C) by neans of the inbedding ¢ one notices that

3 Zit

o(A) = A = (1/22%)z%z and al = (1/z'z‘) (122

1)2

n+1

for all1 A¢ cP . Therefore

0, = (Ae Pt aat = 0.

W also recall that Q, has parallel second fundanental form Moreo-
ver a well-known result due to Smyth,[52], affirms that the only
Einstein conplex hypersurfaces ( of course conplete) of the conplex
projective space are (up congruence) linear subvarieties and

conpl ex quadrics.

12.2 The Veronese inbedding.- Let sk(cnﬂ) be the conplex vector
space whose elenents are honpogeneous polynomals of degree k over
™1 penote by Sfé its dual space. If d=dim S, -1, one considers t he
conplex projective space cpY over st . For each point z . ¢ , one

can define F(z) ¢ st by

F(z):8, —C F(z)(p) = P(z) for all polynomals P ¢S
It is clear that F(xz)(P) = xkF(z)(P) for all , ¢C. It proves that
F:Cnﬂ—v.sﬁ defines a rational mapping £:cP'—-scpd which gives a
hol onmorphic i nbeddi ng.
I'f one considers over cP® the Fubi ni-Study metric wWith constant ho-

lonorphic sectional curvature 1, <then the standard metric via f

K
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induces over CcP"tne Fubini-Study metric with constant hol omorphic
curvature c= 1/k. In particular when k= 2, the isometric inbedding
£:cP"(1/2) —cpd has parallel second fundanental form and it is

called the Veronese inbedding.

12.3. The Segre imbedding.- One starts by taking the tensorial pro-
duct mapping

Cn+| X 8+| __D(n+1®cn+7 = chm+n+ms+1
defined by (z,w) —» 2Qw.
If %, yeC, then (xz,pw) — rp(z@®w) and so this mpping induces a
hol onorphic one which 1s already holonmorpnic inbedding from cP"xcp™
1n CPMMMM - rpis inbedding s called the Segre imbedding. If one
takes on CP"™ ™™ the Fubini-Study netric with holonorphic sectional
curvature one, the induced netric over cpxcp™ is the Riemannian
product of the Fubini-Study metrics on CP* and cP™ both with holomor-
phic sectional curvature one. This inbedding is also parallel. Mo-
reover CP"xCP™ 1s Einstein if and only if n=m

12.4.The Pliicker inbedding.- Consider the conplex Gassmannian of

2-dimensional pl anes, G(2,n,C) = (1 ec“+2/ nis a 2-dinensional
conmpl ex plane . If A2(Cn+2) = ¢*2, c"*2 one defines
2
"™y A(c™2) by (z,v)—z AW.

If (z,w) and (Z,w) are two basis of the same elenent TeG(2,n,C)
then 2 4 = detf? g) zaw, with get(2 5 )# o0,

where 2 = az + bw, v = < +dw. Consecuently the above mapping induces
a holonmorphic inbedding from G(z,n,C) incez®(n+1)=1" |t is called the
Pliicker inbedding. The induced netric over G(2,n,C) from the Fubini-
Study nmetric with holomorphic sectional curvature one via the above
imbedding 1s nothing but the standard metric over the Gassmannian

and the inbedding 1s also parallel.

12.5. The rank two Hernitian symetric spaces M.= SO(10)/U(5) and
Mg = E/Spin(10)xT adnmit hol onorphic standard inbedding in op'?

and cp2® respectively which have parallel second fundamental form
They are obtained by using the representation theory of Lie groups

[ to see [37],[55]).
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The conplete classification for Einstein parallel conplex submanifold
in conplex projective space is consequence of results in [37]and
(55]. If Mis an Einstein conplex submanifold of a conpl ex projecti-
ve space then M is parallel if and only if Mis totally geodesic or
M is aninbedded submanifold which is congruent with the standard

of some of the submanifolds described before, that is, wth the
standard inbedding of some M;, 1<i <6, where

! n 1y, = . = n n' = g
M1 = CRal@VE M2 Qn' n_>3; M3 CP XCP M4 G(2,s,C), s > 3;

M5 = 50(10)/U(5) ; Mg = Eg/Spin(10)xT.

The first eigenval ue of M, 1<1<6, can be conputed by using the
fol l owingfact,[39]: If M is an Einstein honpgeneous Kaehler mani-
fold with positive scalar curvature ,, then x1 = ,/n, n being the
conplex dimension of M

In [36], T. Nagano give a theoretical nethod to compute the spectrum
of classical symetric spaces. |n particular one obtains the second
ei genval ue of Mo, 1 <i<d

Rerently S. Udagawa, ( "Spectral geonetry of Kaehler submanifolds of
a conplex projective space" preprint) conputed the conplete spectrum

of M, = Eg/Spin(10)xT, nanely
Spec(M6) = { 2m1(m1+m2+8) +m2(m2+1)/ My, My e zty =
=(O<x]=12<x2:18 R I
Table 1. Einstein parallel conmplex submanifolds

Submani f ol d n p p \i A2
M, =cP™() n in(n+1) In(n+1) $(n+1) n+2
My=Q, n23 n ! n? n n+2
M, = CPxCP" 2 n? 2n(n+1) N+l 2n+2
M,=G(2,s,C), 23 28 1s(s-1) 2s(s+2) S42 2s5+2
Mg =80(10)/U(5) 1 © 5 80 8 12
M6=E6/Spin(10)xT 16 10 192 12 18

In this table n denotes conplex dimension, p full conplex dimension,
p is the scalar curvature and A the i-th eigenval ue.
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13. COWPLEX SUBMANIFOLDS OF THE COWPLEX PRQIECTIVE SPACE
WHI CH ARE BI - ORDER. To motivate t he study of conpl ex subnmanifol ds
Min cp™ whose correspondi ng i mheddi ng y:M—s HM(m+1,C) i s bi-order,
we sall see what is the spectral behaviour of v when Mis the
conpl ex quadric

Q ={ae CP™/ Mt =001

I't is clear that the inbedding of Q,  in HM(n+2,C) is 50(n+2)-equiva-
riant. One takes the point Ce¢ Q, gives by

(C O) 1‘/1 cl
c=1y o where ¢ = 3\ 5
1t is not difficult to see that T, (Q )= (X eT,(CP xct +cxt=0,

Moreover by choosing an appropiate basis of T.(q,) one obtains the
nmean curvature vector of v:Q,—+ HM(n+2,C) at Cto be

n+1)/

n = a(I- (n+1)C-Ch

and since y i s S0(n+2)-equivariant, last fornula is true at any
point A Q that is,

1 t
(13.1) n 2—2—5—{1— (KH-‘])“" 14 b
. . . 1
Finally it is easy to see that v= by gt ¥y where v =51,
is the center of gravity of v .
v, = Ty - ‘gt) with By = ny, = Aqb,,
v, = bly+ VO = o1 With sy, =g, = (n+2)v,.

whi ch proves us that v:Q,—vHM(n+2,C) is bi-order of order (1,2;}.

Before give a conplete classification for conplex s'ubmanifolds
of cP™ whose corresponding inbeddings in HM(m+1,c) are bi-order, we
will give a few technical lenmas whose proofs can be obtained direc-
tly.

LEMVA 13.1.- Let " be a conpl ex submanifold of cp™P. If  denotes
the nean curvature vectoa of \u:Mn—-hHM([n+p+1,C), t hen

(13.2) n = In £1E(E1,Ei),

- 1 ““' l
(13.3) tn = (n+l)n + 5 To(a i0Ej 5 5

]

-
J

§(o(Ey,EsT,0(Ef,E5)).
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where s and 4 denote respectively the second fundamental formand the
Wingarten endomorphism of <:M"— cp"*P and {E;1is a local ortho-
normal basis of vertor fields over M

Remark.- One Nnotices that the vector fields aiong M defined by n
and snare normal to cP™P. Moreover if one puts

— A
' U(Ei,Ej) = L0 then @s.3) can be
witten as
B v E -1y ..h..Gg
(3.14) An =(n+1)n + 1ka 15‘1k° F k) i fjxuhthlao(Ex,Eu)

LEWA 13.2.- Let M" be a canpl ex submanifold of cp™*P and y:M"—
— HM(n+p+1,C). Then

(13.5) glw )
(13.6) glv
(13.7) (w an)= -(n+1)
(13.8) gln,n) = n2+n1 :
(13.9)  gn.am = BT 4 (/20 1012
3

_ (n+1) (n+1) 2 1 2.1 2,2

(13.10) g(an,An) =—— + 7 o]l + -n@E (TrAxAp) +?(§AX)

Let T, AM the normal space of «:M" — cP?*P at A and defme a
tensor T: T/;MXTAM —— R by T(e,v) = Tr(a A) for aii1 ¢ veTAM
The length of T is estimted in the following |enm.

LEMVA 13.3.- Let M" be a conol ex_submani fol d of cp™*P, then

(13.11) e <ITIC ¢ 1§|0|4-

2P
Moreover first equality holds if and only if T=kg (k being sone
constant and g the restricted netric over T M)

2 =ZM(1T1"(A)‘AH))2, |a|2 = ZATr Af.

Let G be the metric over the space of symmetric hiliinear forms on
TXM via the netric g over TZM. Since T and g belong to such space,

from the Schwartz inequality one has

Proof.- |T|

a(T,9)% < IT1?%]g1?

With|g|2 = 2p and G(g,T) =0, Thu9, _Tr'(T): Tr‘(AA Icl2
which proves the first |nequa||ty The equal ity hol ding if and only
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T=kg for some constant k. The second inequality is wee-known,[41].

THEOREM 13.4. 47 Let ™" be a full conplex submanifold of ¢cp"*P,
Then ¢:Mn—sHM(n+p+1,c) is of order {uy,u,) (for certain natural
nunber LPERRIPY if and only if

(1) M is Einstein, and

(2) T = kg for sone real nunber k.

Proof.- Assune v is of order {u;,u,}, then an=an+ b(yv-0Q) for
SOMe real nunber a, b where @ is the center of gravity of  and
its mean curvature vector.

If b=Q Az.‘, zasy, that is ay-ay= C (constant) which inplies that
v is mond-order and from Theorem 1.1 MYs totally geodesic,satis-
fying (1) and (2).

W now consi der b#0, because v, n and andefine vector fields along
M which are normal to cP™*P at each point of M one obtains that g
isin T;(CPn+p) for ai1 A ¢ M which proves that Mis contained in
the linear subspace L of HM(n+p+1,c) defined by

L = {A ¢ HM(n+p+1,C)/ AQ=0QA }.

Froma wel | -known argument .one can consi der Qto be di agonal . Moreo-
ver by using a similar argument as in the proof of Theorem 11.1, one
get

Q=H¢F'F|TI, 1 being de identity matrix of order n+p+l.
Therefore

(13.12) An= an + b(uj— #’TI).

Now we use sone technical argunents to see the behaviour of the se-

cond fundanental formg of y:M"—5cP™*P, Take r#s,s* and use (s.13)

and (8.14) to obtain

(13.13) 9(3(E,Eg),an) = ag(G(E,ES),n).

Now from (8.11), (13.4) and (13.13), one get

(13.14) !
1y . _—

Since any conplex submanifolds satisfies

(13.15) ] hihd . =0,
1
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! /\2X is diagonal. Now we apply

X

from (13.14) amd (13.15) one get that
Q(E(Er’Ep)’") to @3.12) to obtain

(n+1)2 1

1 opr pr _nel
2n tn ilxhirhir = ond b,
which proves
2
2 n+1 (n+1)
T — i — - Ty
(13.16) i A= [ 5—a nb 5 11

Finally from (6.15) and (13.16) one get M is Einstein.

In order to prove (2) it is enough to apply the same argument over
the normal bundle. The sufficient condition is essentially techni-
cal and no difficult.

The following corollary,[47], gives us precisely the eigenvalues

Ay and M corresponding to the order {u1,u2} in last Theorem
1

2
COROLLARY 13.5.- Let M" be a full conplex submanifold of cp"*P. If_
Mis Einstein and T = kg, then

(13.17) B {n+1+ pny 2 i\/(n+w-%§§|o|2>2 + % \012}

pn
are eigenvalues of M
Proof.- According last theorem one has

LU
n+p+1

glw,av) = ag(A,n) + bg(w, v =

1) for certaina, b¢R

’
n+p+1 I)
1

ag(n,n) + bg(n,v = Fpeyl)

An = an+ b(y-

glin,an)

Now we use lemma 13.2 to obtain

a = n+ + %| |2
pn+l ]2
2pn

Since v:M—» HM(n+p+1,C) is of order {(u,,u,}, one has

1
Vooomrprl = vy Yy

1 2
—2nn=xu vy + Ay Yy
1 1 2 2
2 2
-2NAn= A ¥ + A9
Uy Uy u2 u2,

whi ch joint (13.12) gives us
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2 2

A

U axu1 X“2 ax“z ) -0
2n 2ﬂ+b‘“u1+ o~ tb) Yy, TY

2

that is M and » are roots of the equation »2 - ax 4+ 2nb =Q
1 2

14. PARALLEL COWPLEX SUBMANIFOLDS AND BI-ORDER COWPLEX sUBMA-
NIFOLDS OF THE COWPLEX PRQIECTIVE SPACE ARE VERY CLOSE. In last sec-
tion we shown that conplex submanifolds of the conplex projective
space which are Einstein with T = kg have a good spectral behaviour
for their corresponding imnmersions in Euclidean space.They are just
the second step in the study of the Spectral Geonetry of conplex
submanifolds in the conplex projective space.

Now we Wi || see that these conditions are close to a sinple
behaviour of the second fundamental form

THEOREM 14.1,147].- Let M" be a complex submanifol d of cp”*P whose
inmersion is full.
(i) If Mis Einstein with T=kg, then

2 np(n+2)
(14.1) lol® > Spem

The equality holds if and only if vo = 0, with o# 0.

(ii) If |ol? = S_PM, {hen va = 0 if and only if Mis FEinstein
= p +n —
with T=kg.

4
Proof.- (i) If Mis Einstein, from (6.15) one has Tr ( | A?A)2 = é;'
From T =kg and lemma 13.3, one get ]T|2= I (Tr A)‘Au)z =§1§|a]4.

. Xl-l .
Now one uses last formulas in (6.13)to obtain

2 _ 2 n+2 2 2p+n
Lalol? = lvel? + 22200 pin o4,

T Znp
Since |c|2 i S constant and SO A|0|2: 0, one get
‘ 2p+n 2 n+2 2

2 —
lvol|® = opn )

whi ch proves (i).

(i1) It is clear that A!c|2=0, now from (6.13), (6.15) and lemma
13.3 one get

2 — 2.2 2 _ n+2 2
lvo|< = 2Tr (I,£) +)‘ZH(TI‘A)‘AU) - >=lal® >
1 4 1 4 n+2 2 _ n+2p 2 _n+2 2 _
7 ‘o|+2—p\o\ 5 lo|“ = 2np!c| 5 lo|® = 0.
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Remark.- If M is Einstein with T=kg and we assune that v = 0.with

o # 0, then from the above lemma one has

lo]2 = np(n+2)
T 2p+n
and so the eigenvalues in corollary 13.5 are
nég++pn+1)_‘ n+2 ¢ Spec(M).

As consequence, we will obtain a nice characteriization of the vVvero-
nese inmbedding. First we shall see the Veronese inbedding is of or-
der {1,2}.In fact, vo =0 and

|c|2 = n(n+1) = p = n(n+1)

Since p = In(n+1), We can wite
| ]2_ np(n+2)
ol = TZpn

Therefore from theorem 14.1, M is Einstein (well-known), T=kg and
the corresponding eigenvalues are
n(n+p+1) n+1 _ _

WS Topem s 2 T M Ay T2 T,

2

X
whi ch proves ys that tha Veronese inbeddi ng cp”(1) _cpn+En(nsl)
is of order (1,2} in HM(n+3n(n+1)+1,C).

LEMVA 14.2,(47].- Let M" be a conplex submanifold of cp™P whose
imersion is full. Suppose that M is Einstein with T=kg. Then

(14.2) n(n+1) 2 p.

Moreover the equality holds if and only if <:M"—scP™*P is the Vero-
nese inbedding.

Proof .- Because [T|2: 515 |o|4 one has

|R;2 = on(n+1) - 4}c|2+ % |o|4. On the other hand ; = n2(n+1)2+ |o|4—

2n(n+1)|c|2. Si nce %n(nHHRIZ > 02 and equality holds if and only
if M has constant holonorphic sectional curvature. One get
{Q(nﬂ) |4
2p

= 1}|o >0, that is p > In(n+1).

Moreover equality holds if and only if M has constant hol onorphic
sectional curvature. But with codimension Zn(n+1) we know that
©:M—» cP"*F nust be the Veronese inbedding, [11].
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15. THEFIRST AND THE SECOND EI GENVALUES OF COWPLEX SUBMANI FOLDS
IN THE COWLEY PRQIECTIVE SPACE. W already know that the first ei-
genvalue of an n-dinensional conplex submanifold M of cp™ satisfies:
A, & n+d and the equality holds if and only if Mis totally geodesic.
In this section we yill obtain a spectral inequality for conplex
submanifolds of the conplex projective space in ternms of the five
sinplest spectral invariants: dinmension, volume, total scalar curva-
ture, first eigenvalue and second eigenval ue.
W start by taking k=2 and t=l in Proposition 5.4 to obtain
(15.1) ’(M g( A3\p,w) dv - (x1+A2)ng(A2\u,w>dv +x1x2J g(ay,v) dv 2 0,

M

and the equality holds if and only if the immersion y:M—sHM(m+1,C)
is of order (1.2). Because ay=-2nn, one can wite from (5.1)

v
o

(15.2) 4n2Lg(An’n)dv-—4n2(>‘1+>‘2)JMg(n,n)dV—2n>\1)\2f g(n,y)dv >

M
THECREM 15.1,[47].- Let M" be a conpact Kaehler submanifold of cp",
t hen

(15.3) nin+l+(n+1-x

1) (n+1-a5) Jvol (M) > j p dv.
M

Moreover if the equality holds, then Mis Einstein with T= kg (if the
imersion is full).

Proof.- Inequality (15.3) follows from (5.2) joint |emma 13.2. If
equality holds, then v:M'—s HM(m+1,C) is of order {1,2yand so from
theorem 13.4 one obtains the second part.

C(]?(]_LARY15.2,[23],[471.—LitMrl be an n-dimensional conplex subma-
nifold of cp™, then x < n+l. Moreover equality holds if and only if
M is totally geodesic.

1

Proof.- I h proposition 5.4, one takes k=1, t=1 and k=1, t=2 respec-
tively to obtain

JMQ( £v,v) dv - MJMQ(A%W dv > 0, and

’

[ ( 3 >
}Mgk Ly, v) dv - MfMg( Ky, ) > 0.
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Both equalities occur if and only if y: M—dHM(m+1,C) is of order one.
Since gy=-2nn, Ais self-adjoint, using |lenma 13.2 one get

(15.4) 2n(n+7—x])vol(M) >0,
(15.5) 2n(n+1) (n+1-1,)vol (M) + 2}' lo]%dv > 0.
" 2
Now (15.4) inplies 1, > n+l. If the equality holds in (15.4), one
also has the equality in (15.5) whic¢h inplies o= 0.

COROLLARY 15.3, 47].- Let M" be a conplex submanifold of cP™. Suppose
t hat

1
(15-6) MOF avam [M" av

and M is not totally geodesic. Then

(15.7) Ay < n+2.

Moreover if the equality holds, then M is Einstein with parallel se-
cond fundanental form

Proof.- From (@5.3) and (15.6) one has

f
) > i 0 _

2 2 gm0 4 =

and so (n+1-1)(n+2-x,) > 0. Because M is not totally geodesic
Ay < n+1, then Ay < n+2 whi ch proves (15.7).

The second part is very easy.

n+l + (n+1=x,) (n+1-»x

1

Remark.- Notice that condition (@s.6) is natural because, for instan-
ce, every Einstein honmpgeneous Kaehler wth positive scalar curvatu-
re satisfies it.

16.  APPLI CATI ONS.
16.1.- Conplete intersections.- Let M" be a conplex submenifold of

cP"*P deternined by p polinomals P, ,..,p_ . If the Jacobian matrix
associated with P,,..,P over n_q(M) | nbe'ing the standard projec-
tion) is always of maximun rank, then we say that M'is a conpl ete

intersection. In this case one has the follow ng

THEOREM 16.1,[47].- Let M" be a conplex submanifold inbedded in cp"*P,
Assune _that M is a conplete intersection of p honogeneous polynonials

of degrees a.,..,a_. Then
1 Dl
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(16.1) (412 (n1=2y) 2 P = [ay.

Moreover the equality holds if and only if M = CP" or_M = Q n inbedded
canoni cal | y.

Proof.- For conplete intersections, the total scalar curvature was
computed by K. Ogiue, [41 1to be

(16.2) IMpdV = n(n+p+1- Zaaa)vol(M).

Now (16.1) follows from (15.3) and (16.2).

Assume equality in (16.1), then one has equality in (15.3) and so
from theorem 15.1 one get M nust be Einstein. In these conditions a
result due to J. Hano,[26], proves us that M = CP" (totally geodesic)
or M= Q (canonical inbedding). The converse is obvious.

16.2.— The inverse problem for Mi" Because all elenents in formlas
(15.6) and (15.7) are spectral invariants, one can prove the so
called inverse problem for M;. The following theorem was proved in
[47)except for Mg, which was recently proved by S. Udagawa ("Spec-
tral geonetry of Kaehler submanifolds of a conplex projective space"
preprint ).

THECREM 16.2.- Let_ M" be an n-dinensional conplex submanifold of cp™.
Assunme that

Spec(M) = Spec(Mi) for some i=1,..,6.

Then M is inbedded and it is congruent with the standard inbedding

of the corresponding Mi( of course Spec(M) means the spectrum of the
induced metric).

Proof.- First we notice from table 1 (by looking at the dinension

and ,, for instance) that spec(M;) = SPGC(Mj), i,j =1,..,6 inplies
i=j.

On the other hand, submanifolds M satisfy (15.6) and the equality
in (15.7). Since they are spectral equalities, if M has the same
spectrum of sone M, 1t must satisfy also (15.6) and equality in
(15.7). Therefore M is Einstein and parallel but it is not totally
geodesic (x1;é n+1). Consequently M is congruent with the standard im-

bedding of sonme M., j=1,..,6. Now first remark we did proves us the
t heorem J
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