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INTRODUCTION. Given two locally convex spaces E,F, and
a set g of bounded subsets of E, let %(E,F) denote the space of
all linear continuous maps from E into F, provided with the
topology of uniform convergence on all sets in . This treatise

is mainly devoted to the study of the following question:

If the dual space E%'/ (I=55//(E,]K)) and F both have some property
[P, does then ,ﬁfﬂ(E,F) also possess this property (at least under
reasonable additional hypotheses)?

For cumpleteness properties I’ ,A.Grothendieck has given a
positive answer (under mild restrictions) to this quest ion
[15;p.9_}, whereas for the property of being a Schwartz space,
D.J.Randthe gave a positive answer (see [17:;p.353,1.Thm]).
- In this treatise we will mostly be interested in properties
which are invariant under the formation of <certain final
locally convex topologies, in which case the above problem
is closely relatedt o the quest 1on whether the functors
fﬂ(E,.) and /’”(.)(,,F)are compatible withthe formation
of certain inductive and projective limits, respectively.
Therefore the search for such compatibility statements will be

part of our investigations.

In section one we first recall some fundamental facts
about the spaces o(/;”(E,F) and then investigate under what

hypotheses the canonical continuous linear injections
¢ 1@1 %(E’Fl) ’ %'(E’lgl Fl) and
¥: 1@1 %(EI:F) + £, 0L E JF), respectively,

are topological isomorphisms.
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In the special case that | is countably infinite and that co
incides with the system g of all bounded subsets, these hypotheses
are  just the  “countable boundedness condition” (cbc) for
E and the “countable neighbourhood condition” (c¢nc) for F,
respectively. Both these properties as well as the property (fsb)
of having a fundamental sequence of bounded sets, are investigated
in the first part of section two. By making use of these
properties we f ind hypotheses for a pair (E,F)of locally
convex spaces which yield that a subset # in :fb(E,F) (:=ZH(E,F))
is bounded if and only if there exists a bornivorous barrel
U in E such that #(U) is bounded in F.

Furthermore, carrying on the  compatibility investigations
of section one we show:

A locally convex space E satisfies (cbc) if and only if the
canonical map ¢ : n%N Zb(E,Fn) > fb(E,n%NFn) is a topological
isomorphism for every sequence (Fn)ne]N of Hausdorff locally
convex spaces, and a Hausdorff locally convex space F satisfies
(cnc) if and only if the canonical map v: née)INil{)(En,F)*%(n&NEn,F)
is a topological isomorphism for every sequence (E ) an oOf

locally convex spaces.

The methods used in the proofs give rise to examples of the
following kind: Even for rather 'nice'" spaces E,F the spaces

;’fb(E,cp) and ﬁfb( w,F) need not even be countably quasibarrelled.

These results show that a decent behaviour of S’b(E,F)
can only be expected if E satisfies (cbc) and F satisfies (.cnc) ,

which leads us <close to A. Grothendieck’'s famous question

[14;p.120]:
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If E is a metrizable local ly convex space and F a DF-
*
) space, is then ,Yb(E,F) again a DF-space?
Unfortunately, this problcm remains unsolved; nevertheless

the contents of the sections three to -five of this tscatise

are meant to be contributions to its solution.

In contrast to problem (%) ¢ 1s  well knorn that for two
DF-spaces G,Ft h e projective tensor product G @ﬂ I 1s again
a DF-space. In section three we recall under what circumstances
the natural continuous Llinearinjection £l @y F > 2 (B )

carries the DF-space property of E') frF over to i/’b(E,F).

t
Section four 1s devoted to the following special casec o f

problem (*): Let E be a Banach space and F=indF_ an LB-space.
n-+
What can be saidabout i/’b(E,F)? In particular, is the canonical

map

o:ind & (E,F )+ % (E,indF )
n-> b n b n-> n
a topological isomorphism?

We obtain - roughly speaking - the following results.

(1) For every LB-space F the space r—(fb(ll(l),}:) 1s a DF-space.

2 If F = indF_ is a retractive LB-space, then
n+

! 1 1 . .
¢ 'éid&pb(l (1),Fn) > ft’b(l (D), rlllld F)

is a topological isomorphism.
(3) For every 1 < p < @ there exist reflexive LB-spaces ind F n
such that o indi’b(lp,Fn) - ,‘/’b(lp,inan) i s notn—;pen.
n-+ n-+
In section five -which is to a large extent dual to section

four -we investigate another special case of problem (*):
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Let F be a Banach space and E be a Fréchet space, represented

as the projective limit projEn of a project ive sequence of
+n
Banach spaces En (nelN) .

What can be said about ipb(E,F)? In particular, is the canonical

map
y:ind Z’b(En,p)+5fb(proj E.F)
n- <1

a topological isomorphism?
We present the following results:

(1') For every Fréchet space E the space 3{)(}3,1""(1)) is a DF-space.

(2) If E = projEn is a quasinormable reduced projective limit
“in
of a sequence of Banach spaces En’ then the map

Yo |n2d c?b(En,l“’(I))+$b(E,l (1)
is a topological isomorphism.

(2”) Let E = projEn be the strict projective limit of a sequence
“n
of Banach spaces (i.e. the <canonical projections E +En
(neN) are all surjective) and let F be a Banach space
with the A extension property for some ) > 1. Then
Yoo £ + &£
: ;1n+d b(En,F) b(E,F)

is a topological isomorphism.

(3') For every 1 < q < o there exist reflexive Fréchet spaces

E = projB  suh that ¥ : ind%, (E 1Y > L (E 1Y s not
+ 1 n -~ n
open.
Furthermore, a detailed description of strict projective limits

of a sequence of Banach spaces is worked out.

1 would like to thank Prof. Dr. W.Roelcke, who for years

patiently encouraged me to write such a piece of work. Next
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spent numerous hours of discussions with me on this subject,
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NOTATIONS AND TERMINOLOGY

Let E be a locally convex space. By ?/O(E) we denote the
filter of all zero-neighbourhoods in E and by <(E) the system
of al 1 bounded subsets of E. E denotes the topological dual
of E and E* its algebraic dual. For a dual pair < F,G>we denote
by o(F,G), B(F,G), t(F,G) the weak, the strong, and the Mackey
topology on F, respectively, whereas by B*(F,G) w e denote
the topology on F of uniform convergence on all B8(G,F)-bounded
subsets of G. We will write ES,Eb,and Eh* instead of (E,o(E,E')),

(E, B(E,E')), (E,B*(E,E')), respectively, and use similar notations

for E’ instead of E. For a subset A in E we denote by TA its
absolutcly convex hull , by [A] its linear span, and by A°:=
{feE": /f(x) < 1 for all xeA | its polar. A subset A ¢ E is called
total in E if its linear span [A] is dense in E. - Given a

1 inear subspace L ¢ E, we denoteb y E/L the corresponding

quotient space provided with the quotient topology.

Locally convex spaces are not tacitly assumed to be Hausdorff.
Thus we will speak of pseudometrizable Ilocally convex spaces
E (which means that JIIO(EJ has a countable basis) and of seminormable
spaces E (which means that E has a bounded and absolutely

convex zero-neighbourhood).

K stands for one of the scalar fields IR or (I,]Rj denotes
the set of (strictly ) positive real numbers, and IN = {1,2,3,...}

the set of positive integers.

A map f : E > F between two locally convex spaces E, F

is called a topological isomorphism if f is a linear homeomorphism
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onto F. Thus a topological isomorphism is by definition always
surjective. If a map f : E + F has the property that the induced
map E o+ f(E), x » f(x), is a topological isomorphism (where
f(E) carries the relative topology induced by F), then we

will call f a topological isomorphism onto its range.

Given a family (E, ) of locally convex spaces, we denote

1€1
by 12151 the corresponding product space provided with the

product topology and by 1@IE1 its locally convex direct sum.
Pt 13151 + Ep ,(xl) el » Xk, denotes the canonical projection
. el =k
and J_ @ E_ s VQE . X ((gle) el (where ¢ w0 if T ) stands
for the natural injection ( «el). If E, = E for all 1el, we
write El instead of 1lé[IE. We also use the notations © for
= 1 ?f K.
IKIN ne]N]K and or n%N

Let E be a linear space. If (xl ) 1s a family in E such

el
L = 1§KX1 o I (A ) el

is a family of subsets in E such that 0OeA, (1el), let Zlef\ =

that K:={1el: XI#O}iS finite, let )

Al. Finally, it (El) is a family of linear

o z
Kel.K finite 1€k 1el
spaces and A, a subset of E, containing 0 (1el), we will sometimes

i z i -
use the nOtatlonlelA’ instead of 1)éIJl(AI) (_lIeIIAlnlg}IEI) clfeBIEl.

As far as the general locally convex terminology is concerned,

we follow J.Horvath [16—] and G.Kdthe [20,21].
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§1. THE SPACE ipﬂ(E,F)

Let E and F be locally convex spaces, and let %(E,F) denote
the vector space of allcontinuous linear maps from E into F.
Let # be a subset of the set #(E)of all bounded subsets of E.
By Y"/”(E,F) we denote the space Y(E,F) provided with the topology
of uniform convergence on all sets in ./, and we use the abbrevia-
tion E/ instead of £, (E,K). Clearly, ifﬁ(E,F) is a locally

M
convex space. The sets

# (M, U):={Te £ (E,F):T(M) ¢ U} (M e #,Ueq (F))

form a subbasis of ?/O(,Y);/% (E,F)); they form a basis of Q/O(,_?}[(E,F)),
if 4 is stable wunder finite wunions. It should be mentioned
that the notation W (M,U) is not without ambiguity since neither
E nor F occur in the symbol. Nevertheless we will sometimes
use this notation, when it will be <clear from the context

which spaces E,F are under consideration.

Importarit examples of sets # are, for instance,

the set @(E) of all finite subsets of E; we write y—‘s(E,F)
and E instead of ‘Y@(E) (E,F) and E'@/(E) = (E',0(E'"3E)),
respectively;

the set V(E) of allcompact subsetsof E;

the set O(E) of gal] bounded subsets of E; we write _Eﬂb(E,F)
and El') instead of 1@(5)(E,F)and E'@(E) = (E',B(E',E)),
respectively.

Since w (M,U) is closed in ,Sf’S(E,F) for every M ¢ E and every

closed subset U ¢ F, we obtain that d[/o(gM(E,F)) always has

a basis consisting of sets which are closed with respect to
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pointwise  convergence. The identity map %(E,F) + yS(E,F)

is continuous if / covers E.

First of all we will collect some elementary  statements
about the interrelations between the formation of =S,P/{(E,F)
and initial or final locally convex topologies. Straightforward

proofs will be omitted.

(1.1.) (See G.Kéthe [21;p.151].)

Let E be a locally convex space and #c %(E).
(a) For alllocally convex spaces, F,Gand all Se #(F,G) the
canonical linear map
£, (B, F) » £, (E.G), TwS oT,
is continuous.
(b) Let G be a locally convex space and F ¢ G a linear subspace.
Then the canonical injection
%(E,F) +> ,E/J’”(E,G), T=»J T,
induced by the inclusion map J:F - G, is a topological
isomorphism onto its range.
(c) For every family (F, ) of locally convex spaces, the map

tel
G E L F) - LG EED T e (PeT)
is a topological isomorphism.
(I'n fact, since the map is bijective, it suffices to compare
subbases of v, of the demain space and the range space;
this can be donein the usual way: KIGII( PKOW(M,lgIUI)):
= Lo MU (Me#, Ue % (F ) (ieD), where {1el:U,#F }is

finite).)
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(d) Whenever a locally convex space F carries the initial
topology with respect to a family (F1 )161 of locally, convex
spaces and linear maps S, : F -~ F , (1el), then g’%(E,F) carries
the initial topology with respect to

YLEF) » £,y(EF ), T =8 0T, (L El).

(In fact, this statement follows easily from (b) and (c).

Remark: The question what happens if F carries a final locally
convex topology (e.g., if F is a direct sum or an inductive limit)
is more involved and will be dealt with later; see (1.11),(2.10),
(2.11),(4.2),(4.7),(4.8),(4.12),(5.16)(d).

(1.2) (See G.KSGthe [21;p.147].)

Let F be a locally convex space. Roughly speaking, we want

to find a connection between spaces ¥, (E,,F)and ¥ (E,,F)
M1 jfz 2
with respect to 1 inear cont inuous maps E1 + Ez. Now clcarly,
one cannot say anything unless the systems ,/ﬁi behave w e | |
under continuous 1 inear maps. Thus we will for the moment
assume the following situation: Let 4 be a functor from the

category of locally convex spaces into the category of sets,
which assigns to every locally convex space E a subset #(E) ¢ 4(E)

such  that T( # (E)) ¢ #(F) for all locally convex spaces E,F

and all Te£(E,F). (The systems %(E), V(E), £(E) and many
others arise from such a functorial concept.) It will cause
no confusion with our previous notations if we write ,?;”(E,F)

i ,EF) .
instead of %}{(E) (E ,F)
(a) For all locally convex spaces E,H and every SeY(E,H)

the canonical linear map:
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(b)

(c)

S. Dierolf

2y (H,F) » £YEF), T » TS,
is continuous.
(In fact, let Me.,@(E) and Ueﬁz/O(F), Then S(M)e  (H) and
#w (S(M),U) » S cw(M,U).)
Let E be a locally convex space, let L ¢ E be a linear
subspace, and let Q : E + E/L denote the quotient map.
Assume that for every M e # (E/L) there exists a finite
subset 4 ¢ J (E) such that TQ(u 43> M. Then the canonical
injection

LB/LF)+LJEF), T +T 2 Q,
is a topological isomorphism onto its range.
(In fact, by the injectivity and continuity of the map,
it suffices to show that for every Me_#(E/L) and U = TUe J[/O(F)
the set w (M,U). Q is a zero-neighbourhood in the range
of the map. Choose . ¢ . (E) according to the hypothesis.
Then # : = Neﬁﬂ w(N,U)e a]/o(gﬂ(E,F)) and whenever T - Q ew ,
then T(M) ¢ T(rQ(u) ¢ TyT,(T+>Q)N) ¢ Tu = U.)
For every family (E ) el of locally convex spaces, the
map
,Y‘,/”( 1@IE1’F) M 1%1“9/9//(151’”’ T (T JI)IGI !
is a topological isomorphism.
(In fact, it again suffices to show that for every Me///(lgIE1 )
and U= Ue Q,(F), the set 1reII( % (M,U) o J, ) belongs to
Uy ( 121 %(EI,F)). By the continuity of the projections
P, Kﬂléf?. e * E1 (1el), we have that P, (M)e M(E‘I) (v El).
Moreover, as M is bounded in @;E, , the set K:={1 el:P, (M) ¢{0}}

is finite. Now put #, :=#(P, (M), g V) ¢ £ (B, ,F)
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(1 €I). Then 121 woe 4 (1 fl},(E1 ,F)) and whenever

(T1)1el € 151”13 nd (x) eMclg)IEl,then

tel
1 L. T -
T (0 = & T (0 + léI\KTI(X1) € 1gK cara x U+{0}c U = U;

hence (T,) e 121( ¥ (M,U) o J) )

1el
(d) Let E be a locally convex space carrying the final localiy

convex topology with respect to a family (E . of locally

1 el
convex spaces and linear maps S : E, * E - Suppose that
for every M e #(E) there exists a finite subset K c¢ |
and for every 1 ¢ K a finite subset#, ¢ .#(E ) such that
Mc I:LeJKSI(\fM/I) .

Then f/,l(E,F) carries the initial topology with respect
to ,GF(E,F)—»YM(EI Y, Te Tos,  (1el).

(In fact, if YA(E)cC {0? then {';,(E,F) carries the coarsest
topology and there is nothing to prove. Thus we may assume
that VYA(E) ¢ {'(T}E. Since for every xeEN{0} and every vyeE
there is Te#¥ (E,E) such that T(x) = y, we obtain by the
functorial properties of # that #(E) covers E. Now one
deduces from the above hypothesis that 15181 (E,) is dense
in E, whence 1%181 (E )= E (as E carries the final locally

convex topology); now the assertion follows from (b) and (c).)

Remark: T h e question what happens if E carries an initial
topology (e.g., if E is a product space or a projective limit)
is again more involved and will be dealt with later; see (1.12),

(2.13). (2.14). (5.2). (5.3), (5.7), (5.8). (5.9); (5.15).

Whenever E,F are linear spaces, f a linear functional on

E and yeF, we denote by f 8 y the linear map
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f @y : E >F, x "»f(x)y.
The following well-known proposition (see G.Kothe [21:;p.132 (2')])
stablist i !
establishes a connection between .E;/(E,F)and the spaces ]3”
and F.
(1.3.) Let E,Fbe a locally convex spaces and let 4 ¢ O(E).

(a) For every y € F\{T)—} the map

¢: E' > E,F),f=f @& ,

8 Zy (ELF) y
is a topological isomorphism onto a topologically complemented
subspace o f %”(E.F).

(b) Assume that Y is total 1n E. Then for every feE'\N{0}

the map
v:F + &, (B,F), yo f Ry |
is a topological isomorphism onto a topologically complemented
subspace of %/,,(E JF) .
proof. Clearly, ¢ and y are both linear, continuous, and
injective.

(@ Let P : F =~ F be a continuous linear projector such that
P(F) = [yJ For every Te#(E,F) there exists a unique
fT € E such that P o T = fT 8 y. The map

% :%;,[(E,F) > E//'/ S I
is linear, continuous, and é°<l> equals the identity map;
consequently, ¢ o9 : %”(E F) -r,?;{(E,F) is a linear continuous
projector onto ¢(E'), which finishes the proof of (a).
() Since f#0 and U4 is total in E, there is xeud such

that f(x) # 0. The map

VL, (B.F) » F T » —f%—;TT(x) ,
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is linear, continuous and vy . y equals the identity map:
consequently, yoy is a linear continuous projector onto y(F),

which finishes the proof of (b).

Thus, as E/'{ and F can be looked upon as complemented subspaces
o f ,?;”(E,F),any reasonable property that £, (E,F) might have,
belongs also to E?/i and to F. In this situation one may ask
what can be said about the converse implication.
(1.4) Question: Given two locally convex spaces E and F, such
that R! and F both have a certain property (IP), does then

M

%(E,F) also possess this property (at least under reasonable

additional hypotheses)?

One has following classical result of this type due to

A.Grothendieck [15;Intr.;p.9]:

THEOREM. Let E and F be two Hausdorff locally convex spaces such

t hat %(E,F) = Y(E,Fs) . (This assumption is satisfied,if,for

instance, E is a Mackey space.) Moreover let Mc B(L) satisfy

VA - E.

If E! and F are complete, then also % (E,F) is complete.
A M

Remark.The hypothesis that Y4 = E cannot be dropped as

the following example shows.

Let E denote a product lgIEl of Banach spaces which contains
the space ¢ as linear subspace. Then g is not complemented
in E as E is a Baire space and ¢ is not. Let #:={BC E:B
is finite and Bc ¢} and put F:=¢. F is clearly complete; moreover,
the Hausdorff locally convex space associated with E”' (i.e. ,the

B
guotient %/{0}/” ) is topologically isomorphic to @'Qz({,vb:w,
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hence complete. E, being a Baire space, is certainly a Mackey
space. We will show now that Y//,(E,F) is not even sequentially
complete. In fact, choose an increasing seqguence (Ln)ne]N of finite
i i i = V)
dimensional linear subspaces of ¢ such that [0) n(—:lNLn'For
every neNlet Tney(E,F)be such that T,(E) = Lnand Tn(x)zx
f 11 Th i | | C h
or a xeLn. e sequence (Tn)ndN is clearly a Cauchy sequence
n 4, (E, F) . Assume that (T ) o convergesto a map T in %, (E.F).
= \J = = i i i

Then T(x) x f or all xrde“.rgJ ) F, which is contradictory
to the fact that ¢ is not complemented in E.

One would like to have the above theorem of A.Grothendieck also

valid’'for other completeness properties such asquasicompleteness,
sequential completeness, local completeness, instead of completeness
itself (cf. G.K6the [21; p.143]). In order to provide a general
statement  covering all the above cases,w e will introduce

the following abstract concept.

(1.5) Let & be a functor from the category of locally convex
spaces and continuous linear maps into the category of sets

and maps, which satisfies the following two conditions:

(a) For every locally convex space E the set &(E)i s a subset

of the power set #?(E)of all subsets of E.

(b) Whenever E, F are locally convex spaces and Te¥ (E,F),

then (T) : (E) » &(F)satisfies o/ (T)(A)=T(A) for all Ae/ (E).

In other words: & assigns to every locally convex space E
a set &/ (E) of subsets of E such that T(& () c¢ & (F) for
all TeZ (E,F). (Compare with the functor 4 introduced in (1.2)

which is a special case of the above notion.)
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(1.6) Definition. Let g be a functor as described in (1.5). and

let E be a locally convex space.

A subset D ¢ E is called an d-complete subset of E, if for every

Ae &/ (E) the intersection AnD is contained in a complete subset of D,
E is called an o -complete locally convex space, if E is

an &-complete subset of itself.

A subset D ¢ E is called .w-closedin E, if A™DEc D for

all A e&(E).

(1.7) Remark. Letg be as in (1.5).

(@ A locally convex space E is &-complete if and only if
zE
A

(b) An o#-closed subset D of an & -complete locally convex

is complete for every Aew (E).

space E is d-complete in E.

(¢) An  d-complete subset L of a locally convex space E which
is also a linear subspace, is an &-complete locally convex
space.

(d) Arbitrary products of d-complete locally convex spaces
are again &-complete.

Proof. (a) If A is contained in a complete subset D, then

E

Eis a closed subset of the complete subset D&,

A

E

(b) Let Ae o (E). Since iE s complete, also A nD” is complete

and clearly AmDc AAD E ¢ D.
(c) holds since by (1.5) every Aes (L) belongs to d(E).

(d) Let (E, ) .y be a family of &-complete locally convex
spaces and let Aes ( ,I;E, ). Then, by (1.5). the set P, (A)

belongs to «(E ) for every 1 eI. Now, by (a), P_,(A_) is a complete
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subset of E (1eI). Thus I. P, (A) is a complete subset of

1 1€1

, ILE  which contains A.
el™

(1.8) PROPOSITION. Let & be functor a described i n ( 1 . 5)
Let E,F be locally convex spaces such that ¥ (E,F)= £L(8,F) and
let /ﬂc&?(g) satisfy UM = E

| f and F are d-compl ete, then also,ﬁ/(E ,F) is @-conplete.

v
proof. If a locally convex space G carries the coarsest
topology, then also ,?ﬂ(E,G) carries the coarsest topology. Thus,
by (1.1) (c), we may assume that F is Hausdorff. - Let Aeﬂ(%(E,F)).
We have to show that A is complete or - equivalently (see
[26;0.45]) - that every Cauchy net (T, ) el in A converges
in ‘%ﬂ (E,F).
Let (T, )1 el
where FE carries the product topology, is continuous since

be a Cauchy net in A. The inclusion %(E,F) > FE,

U#=E . By (1.7) (d) the product space F° is &-complete.

Therefore (T, ) converges in pE to a map T : E +» F, which

1el
is linear as F is Hausdorff.
Next we will show that T is continuous. Because of L(E,F) =

,?(E,Fs)it suffices to show that f-TeE' for all feF'. Let

feF'. The map £, (E,F) » %‘ , S w» f o 8, is linear and continous
by (1.1)(a). Moreover, %is d-complete, whence (f°T1)161
converges in Eﬂ to some geE'. In particular, (f-T,) , . converges

to g in ]KE provided with the product topology. On the other

hand, by the continuity of f, the net (f » T, ) converges

1 el
to fo T in KE. Therefore fo T = g, Wwhence f o T is . continuous.

Finally, since q/o(,gf”(E,F)) has a basis consisting of #_(E,F)-
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closed sets and (T ) g CONverges to T in ,CfS(E,F), we obtain

that (T1) tel converges to T in %(E,F).

(1.9) In order to show that Proposition (1.8) has many applications,

we give a list of completeness properties which are of type" &/-complete'.
complete: put d(E) : = 2(E)

quasicomplete: put #(E) = #(E) ;

p-complete:  put &/ (E):= { AcE; A is precompact } ;

gN

sequentially complete: put A (E):= {{ xn:neIN}: (Xn)'ndN e
is a Cauchy sequences in E};

convex compactness property (in the sense of A.Wilansky [305p.134]):
put & (E):= {IK: K is a compact subset of E } ;

metric convex compactness property: put o (E):= {r Ki K is a
compact and pseudometrizable subset of E};

locally complete (in the sense of “Mackey sequentially complete',see
P.Dierolf [10]):
put d(E):= {I( {x :neN}): (Xn)nelNeElN converges to zero)
(or d(E):= {{x,:ne N} (x) oNE EN is a local Cauchy sequence}).

(1.10) Remark. Semireflexivity does not behave well in the
situation of (1.4). In fact, the Banach space fb(lz,lz) contains
an isometric copy of 1 ® and is thus not semireflexive. This
example shows that i/’b(E ,F) does not inherit separability from

Et') and F.

We  will insert now two more compatibility statements of
type (1.1)(c) and (1.2)(c) (cf. G.Kéthe [21;p.151 (12);p.148 ( 5) ;
p.149 (8)]), which are less obvious than (1.1) and (1.2).
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CONVENTION. Let E be a locally convex space and MR (E) .
We introduce the notation M- {uN: el is finite}.
Then, for every locally convex space F one has ,S?//{(E,F) =

%(E,F) and the sets ¥ (M,U) (Me &4, Ue.A{)(F)) form a basis of
A&, (E,F)).

(1.11) PROPOSITION.Let E be a locally convex space, let .# c<@(E),

and Jet (FJ be a family of Hausdorff locally convex spaces.

el

(a) The canonical map

J 0 1@1%,(}3’[:1)*3%(]3’1@1[:1)’ (TI)IEI "1%1‘]10 L
i s linear,ontinuous, and injective.

(b) Let E satisfy: There exists a total subset X c¢cE such that

N {o x_:nelN} ¢ f(E).

N
v, . 3 * n'n
(Xn)nelN € X (pn)neﬂ\le(]R+)
Then ¢ is also surjective.

(c) Assume that 1 is countable and that U is total in E.

Furthermore let #=Z(E) be such that (compare Definition (2.1))

(%) M e W

(Mn)nzjl\le /ilN (annelN é ®*) IN &N Pn My

Then © 91 %, (BJF) » £ (E, @ F ) isopen.

Proof. (a) Linearity and injectivity are obvious; continuity follows
from (1.1)(a).
(b) Let Te ¥ (E, &F ). Assume that for every finite subset

K ¢ 1 we have that T(E) ¢ F:= Jy(Fy). Then we inductively

L
1ekK
find an increasing sequence (K ) g O0f finite subsets of I

and a sequence (xdheny N X such that T(xn)eFKn+l AN FKn (here
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we use that FK is a sed linear subspace in 121F1 as all F,

are Hausdorf f) . Let Rj)]N be such that B:= {p nxn:neII\I}

o) nene ¢
is bounded in E. Then T(B) is a bounded subset of F,, , hence
contained i n some Fy (again using the fact that iaNlln F_ are
Hausdorff), which iSm a contrcdiction to T( pmxm)¢FKm, Thus
T(E) ¢ FK for some finite subset K ¢ 1, whence T=0((P> T)
e o( @ 4(E,F ).

(c) we may assume that 1 = IN. Since the hypotheses of (c) imply

161)6

those of (b), the map @ is surjective.

Let v e 2,( 9%y (E,F )). There are sequences (M) ej{']N
and (Vn)ne]N € nréN .W/O(Fn) such that nEN ﬂ/(Mn,Vn) c U .By hypothesis
there is ( pn)nelN e (RI)IN such that: N: = nkf)i]anMn e N .

Now ,Zy WM,V )2 Sy #(N, e Vi )and | JIye,V, belongs to % (@ F)-
Thus it remains to prove that #f(N,nZdenvn) c ¢(nZ€m w (N, pnvn))'
Let Te w (N,nZdN V). By the -surjectivity of @ , therei s
(Tnen € nfy L(E.F)such that 2J oT = T. For every neN
and xeN one has T (x) = P (T(x))ep V , whence Tne#f (N, IO
Remark. The hypothesis that all spaces F, be Hausdorff is
essential for (b) and (c). In fact, every linear map T:E "1@1{_0}F1
is continuous; thus, if E is infinite dimensional and if for
infinitely many 1el the space F, is not Hausdorff, we easily

find Tey (E’lgIF\) which does not belong to the range of ¢ .

Statements in (2.11),(2.12),(2.15) (a) will show that the
other hypotheses of (b) and (c) are also indispensable (and

even sharp). Cf. also (2.10).

Naturally, our next aim will be to prove a statement "dual"
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to (1.11) ,i.e., to investigate spaces of the form &

o0 C 8B F)
For this purpose it will be convenient to start from a functor
M as described in (1.2) rather than to consider systems

Moe BOIE), M cB(E) (Lel).

(1.12) PROPOSITION. Let (El)lel be a family of locally convex spaces

and F be a Hausdorff

locally convex space. Moreover, | et

M be a funct or as descri bed in (1.2), i.e., M/ assigns to

evéry locally convex space E a set JM(E) c

for all Te¥# (E,G).
L ) &9

AB(E) such that T#(E))cH(G)
(We will again write .,g:” (E,G) instead of

(a) The canonical map
Yo 0%y (B > L (ELE). (T gp ™ (ETye Py

is linear, continuous, and injective.

(b) Let F satisfy the following condition:

There exists a coarser Hausdor f f locally convex topology

@ or F such that

N
Updnen L2y (BB N (o) gy & ®ON neNnUn® % (F)-

Then y is also surjective.

(c) Assume that ] is countable. Let /VC.@(IIeIIEI) be such that
m

¢ 5  4(E ).and let F satisfy th
Tl M e for 11 (Ml) 1eIe1g1 ”(El) an e satisfy e

foll ow ng condition (conpare with Definition (2.1))

*) 3

(Un)ne]N £ %o(p) N (an)nst

(]Rf)]N nr(-;?l‘lan UIl € %O(F)'

i . ) ] . i i .
Tthen Y ! 121 %’”(EI,F) 24/(161 E, ,F) is open
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Proof. (a) Linearity and injectivity are obvious; continuity
follows from (1.2)(a).
(b) Let T ¢ Z( 1gIE1 ,F). Assume that for every finite subset
H . .
K ¢ 1 we have that T( | 1 g E1 ) ¢ { 0} . Then we inductively
find a sequence ( 1(n))ndNin I'satisfying i(n) # 1(m) (n#m)

and a sequence (xn) € n&\lEl(n] such that T(Jl(n) (xn))#o

nelN
(neN) (where J¢ ¢ E¢ * 1g1 131 denotes the canonical injection
U .
(xel)). I n fact, whenever K ¢ 1, the set e KJ1 (El) is total
: . P u —
in IIeII\ KEyo consequently, if T( 1eI\KJ1 (B, )) = { o} then
T(lgI\KE‘) = {0} since F is Hausdorff.

For every nelN there is Une y}/O(F,@)such that T(Jl(n} (xn))¢Un.

N

* 1= N
Let (Un)ne]N € (R+) be such that U: ne]NgnUneW/O(F). The sequence

, whence T(J\(m)(gmxm))e

NS

(Jy (ny (04%,))pen CONVETgES to zero in JLE,

e Uc omUm for large m which 15 a contradiction to T(Jl(m

Thus T( 121\KE1 )= {0 } for some finite subset K ¢ 1, whence
—_— ° s

T = ¥Y((Tedy), op) € ¥ 8 4(E,F)).

(c) We may assume that I=IN. Since the hypotheses of (c) imply

those of (b), the map Y is surjective.
I o
Let (e %o(n(gN%(En’F))' There are sequences (Mn)ndN € nejN M(E )
N 3 (")
and (vn)nelNe J]/O(F) such that 2y W(Mn‘vn)c U - .By
hypothesis there i s (Un)nelN e (Rj)]N such that V::n‘e‘mgnvne €, (F) .

(*) By the functorial properties of /# we have that {0} ¢ #(E)
for all locally convex spaces E. We thus may assume that
OeMnfor all nenN.
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Since homotheties are 1linear and continuous, the functorial
properties of # imply that onMne ./%(En) (nelN), whence N:=nléNchne/V.
Now néN ¥ (M V)5 néN w(o M.V),and it-remains to prove
that % (N,V) ¢ ¥( In# (o M .V)). Let Te #(N,V). By the surjectivity
of ¥ there is (T)hen € nfn i"(En ,F) such that nZdNTnv Pn=T.
For every neN and XEollyln one h a s Tn(x) = T(Jn(x))eT(N)cV,
whence T e W(onMn V) .

Remark. The hypothesis that F be Hausdorff is again essent ial
for - (b) and (¢). In fact, if F carries the coarset topology,
then every linear map uIsII E1 +» F is continuous, not only those

which vanish on E1 for a suitable finite subset K ¢ 1.

1g1 K
Statements in (2.14). (2.15), (2.12) (@ will show that
the other hypotheses of (b) and (c) are also indispensable.

Cf. also (2.13).
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§2. THE PROPERTIES (fsb). (cbc), AND (cnc)

The aim of this section is to investigate the question
whether Yb(E,F) inherits f r o m E]') and F such properties as
being barrelled, bornological , or quasibarrelled. Here the following
three properties of locally convex spaces will play an important

role.

(2.1) DEFINITION. A locally convex space E is said to
(a) have (fsb) (= fundamental sequence of bounded sets) if
there exists an increasin sequence
q q (Bn)ne]N
of absolutely convex bounded subsets of E such that
v Bc B
BE4 ( E ) néN n
(such a sequence (B will be called a fundanental
q ( n)nelN
sequence of bounded sets in E );

(b) satisfy (cbc) (= countable boundedness condition) if

U.p B e# (E).
(Bn)nng‘@ (E)]N (pn)neu\lg(]R:)IN neNPn®n® (E)

(c) satisfy (cnc) (: count able nei ghbourhood condition) if
v N 3 N N
U new € %, (E) (0,) hene (IRi)]N neN “n’n® % (F)-.

(Cf.(1.11) and (1.12); the countable neighbourhood
condition has been defined by K.Floret (in [135p.222])
and others.

(2.2) Remarks.

(a) we recall that A.Grothendieck [145p.63/64] has called

a locally convex space E a DF-space, if E has (fsb) and if

E is countably quasibarrelled (i.e., every bornivorous intersection
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of a sequence of absolutely convex zero-neighbourhoods in E

belongs to %O(E)).

. g IN
Every DE-space E satisfies (cnc). In fact, let (Un)ndNe@o(E)

and let be a fundamental sequence of bounded sets

(Bn)nelN
in E. We may assume that every Un is absolutely convex. For
nelN let o 0 be such that B c onUn.Then nfgm onUn is bornivorous
(as (B LN is increasing) hence a zero-neighbourhood in E.
(See also K.Floret [13;p.223] .)

(b) Seminormable spaces clearly have (fsb) and satisfy (cbc)

as well as (cnc).

Moreover, a locally convex space E with (fsb) satisfies
(cbe) if and only if Eb* is seminormable. In fact ,if (Bn)neIN
is a fundamental sequence of bounded sets in E and if (pn)ne]Ne(_Rj)]N
is such that B:= ‘o B e B (E) = @(Eb*) , then the closed absolutely

convex hull of B is a bounded zero-neighbourhood in Eb*'

Let 1 be an uncountable set; consider the Hilbert space

12(1) and denote by B its closed unit ball. The sets
eB + 12(1\ K) (é>0, K c Icountable)

form a basis of 6110(12(1),9*) for some locally convex topology
g on 12(1). One easily verifies that J is stronger than the
weak topology 0(12(1),12(1)) and strictly coarser than the
norm topology. Moreover, (12(1), g)is a DF-space. (In fact,
any bornivorous intersection V of a sequence of g-zero-neighbourhoods
contains B for some ¢ > 0 and 12(1 N\ K) for some countable subset K ¢ 1.)
Consequently, (12(1),3‘) has (fsb) and satisfies both (cbc) and (cnc) without

being seminormable.
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(c) Pseudometrizable locally convex spaces satisfy (cbc) (J.Horvéath
[16;p.116,Prop.3]). Moreover, for a pseudometrizable locally
convex space E on has:

E has (fsb) = E is seminormable == E satisfies (cnc).

(The f irst equivalence follows from G.Kothe [20,p.393 (2)],
the second is easy to verify.)

(d) Let E be a locally convex space. Then the following statements
hold.

(a) Ey satisfies (cbc) = Epx satisfies (cnc);

(B) Et') satisfies (cnc) &= E satisfies (cbhc);

(y) B is metrizable = E has (fsb);

(6) EI’) has (fsb) = Eb* is pseudometrizable.

All four equivalences follow by elementary duality arguments.
From (y)and (g¢) one obtains

(E) E has (fsb) e Epx has (fsb) and satisfies (cnc).

We will insert now a brief study of the stability properties

of (fsb),(cnc), and (cbc).

(2.3) Clearly, (fsb) is stable with respect to the formation

of linear subspaces and countable direct sums.

On the other hand, (fsb) fails to be stable with respect
to uncountable direct sums (consider a linear space of uncountable
dimension provided with the strongest locally convex topology)
and to countable products (consider ). The completion of
a space with (fsb) need not have (fsb) (the completion of
(9, 0( p,w)) is topologically isomorphic to the topological

product KR). A locally convex space E need not have (fsb)
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even if it contains a linear subspace L such that L and E/L
have (fsb) (see [273p.27,3.4 Example]). Furthermore, the

following example shows that (fsb) is not inherited by quotients.

Let (E,9) be a locally convex space of countably infinite
dimension such that every bounded set in (E,g)has finite
dimensional linear span and such that (E,7) contains a dense
linear subspace L of infinite codimension. Such a space can
be obtained as a suitable linear subspace of I,Amemyia's and
Y.Komura's separable incomplete Montel space (see [1] and
(18]).Let @ be a metrizable but not normable locally convex
topology on the quotient space E/L, and let Z denote the initial
topology on E with respect to the identity map E » (E,7)and
the quotient map E + (E/L.®). By [27:p.22,2.9 Lemma], the quotient
topology Z/L is equal to % . Thus (E,%) is a locally convex
space with (fsb) (the bounded sets in (E,%) have finite dimensional
linear span and the dimension of E is countable) admitting
the quot ient space (E,Z)/L=(E/L,% ) which clearly does not
have (fsb).

(2.4) The property (cnc) is stable with respect to the formation
of linear subspaces, quotients, completions, and countable

direct sums (see K.Floret [13:p.223, Proposition]).

On the other hand, (cnc)i s neither stable with respect
to countable products (consider ¢ and use (2.2)(c)) nor with
respect to uncountable direct sums (in fact, in order to show
that r@R K does not satisfy (cnc) it suffices by '(2.2)(d)(g)

to prove that Il(IR does not satisfy (cbc); as (cbc) is clearly



On spaces of continuous linear . . . 175

stable with  respect to 1linear subspaces, it is sufficient
to show that ( ¢, o( ¢,w)) c ]](‘R does not satisfy (cbc) which

clearly holds).

We finally show: Let E be a locally convex space containing
a linear subspace L such that L and E/Lsatisfy (cnc). Then
also E satisfies (cnc).

In fact, let Q : E =+ E/L denote the quotient map and let

(Un)nelN € %O(E)IN. We may assume that Un = Ty, (nelN). Then
there are ( p ) v € (R:)‘N and V €% (E), v = TV, such that
wnLc QueU,-Moreover, thereare ( oy)pene [l,co)N and
We @/O(E) such that Q(W) ¢ H’QNQHQ(V N0

Now W ¢ nf;]N(gn(v NU )+ L) whence

w OV ¢ n@N( gn(VﬁUn)+Lr\(V+ o, V)) ¢ n-’(__}N( o (VAU )+ cn(L N(V+V))

a) N
N CN IR o U )c Ay (on+ 0,00,

(2.5) The property (cbc) is stable under the formation of
linear subspaces and countable products (the latter statement
follows via (2.2)(d)(e)from the stability of (cnc) under
countable direct sums and f rom the fact that the strong dual
of a product coincides .with the locally convex direct sum

of the strong duals of the factor spaces).

On the other hand, (cbc) is neither stable under uncountable
products (in (2.4) we proved that ]KIR does not satisfy (cbc)),
nor under countable direct sums (consider, for instance,¢),
nor under completions ((12, 0(12,12)) satisfies (cbc) but its

completibn ((12)*, c((lz)*,lz))i s  topologically isomorphic
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. 2
to Kdlml :JK]R, thus does not satisfy (cbc).
The following example will show that a locally convex space

E which does not satisfy (cbc) may contain a linear subspace
such that L and E/L satisfy (cbc).

We first recall: KR 1s topologically 1somorpnic to the

- a space of infinite dimension 1n which every

completlon

of (¢, o(¢,w))
bounded set has a finite dimensional linear span. Consequently,
whenever Z is a locally convex topology on lK]R stronger than

the product topology , then (]K]R,g’)does not satisfy (cbc).
- Let (E, ) denote the space ]](]R provided with the product

topology. By what was said above (E,7) contains a dense linear

subspace. L which is topologically isomorphic to (1 2,0 (12,12)),

hence satisf ies (cbc) . Let # be a metrizable locally convex

topology on the quotient space E/L. Then, according to [27:;p.22,2.9
Lemma], the space E endowed with the initial topology # with
respect to the identity map E -+ (E ,4) and the quotient map
E -+ (E/L,%), provides the announced counterexample since =
because of 27 - it does not satisfy (cbc) where-as (L,Z|L) =
= (L.7IL) and (E/L,2/L) = (E/L%) both satisfy (cbc).

Finally, the following example shows that (chc) is  not

stable with respect to quotients.

Let E be a linear subspace of 1 containing Co such that

dim(E/co) is countably infinite, and let 4 denote the norm
topology induced by (17, ||_,) on E. Since dim(E/c ) is 'countablé,
the quotient space (E/co, 3‘/co) has a separable weak dual (it
is containedi n w )Consequently, there exists a metrizable

weak topology 2 on E/c, which is coarser than the norm topology Z/¢,.
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As 2 is metrizable and clearly nonnormable. there exists an
increasing sequence (B) heN of absolutely convex closed bounded
subsets o f (E/c0.3) such that Bn does not absorb B__; (neN)
and such that B1 is a zero-neighbourhood in the normed space
(E/co_.f/co). Let % denote the strongest locally convex topology
on E/cg satisfying @]Bn: PZan for all neN. By W.Roelcke
[25:;p.64 Thm.4] the sequence (B heN is a fundamental sequence
of bounded sets in (E/co,@). which implies that (E/co,@) does
not satisfy (cbcy.

L et % denote the initial topology on E with respect to the
identity map E =+ (E,c(E,ll))= (E,o(l‘”,ll)lE) and to the quotient
map E +(E/c,¥). A s cois dense in (E,o(E,ll)),[27;p.22,2.
Lemma] yields that the quotient topology 32"/(:0 is equal to %.
Thus our example will be completed if we show that (E,#) satisfies
(cbc). I n fact, since (‘9‘/c0)|B1 o) @}Bl, we obtain by W.Roelcke
[25;p.74,Lemma 8] that T/c 0¥ . Consequently, g>7-> 0(5,11),
As Q(E,O(E,ll)): R(E,7) and (E,9) is normed, we obtain that
(E ,Z) satisf ies (cbc) .

After this deviat ion we returnt o the investigat ion of
spaces Yb(E,F). ‘Our next aim is to say something about the

system of all bounded sets in «Sf’b(E,F).

Let E,F to locally convex spaces. As in section one w e
define w(A,C):={ Te ¥ (E,F):T(A) c C }whenever A ¢c E, C ¢ .F.
A subset # c¥ (E,F) belong to @(fb(E,F)) if and only if for
every Be# (E) the set s#(B) := Téij(B) belongs to #(F).

In fact, ¥ed (% (E,F)) = '
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H P w(B,U =
Be%(E)  Ue'w,(F) °, >0 ¢ Ppy YD

H#(B) c PB U e v #(B)e# (F).

Y. f .
BeB(E) UL (F) oy 720 U Be & (E)

Moreover, for every Ue%o(Eb*) and every Be&?(F) the set

w(U,B) belong to Q(Yb(E,F)), as U absorbs all the sets in

#(E). The following proposition provides conditions on E

and F under which every #e 2 (1b(E,F)) is contained in . ¥ (U,B)

for suitable Ue %O(Eb*) and Be £ (F). It is clear that such

a statement cannot be valid without some hypotheses (consider

H:={1d},where 1Id is the identity map of a quasibarrelled

but not seminormable locally convex space).

Cf. also the localization principlei n A.Defant, K.Floret

[85p.6 ff].

(2.6) PROPOSITION. et E and F be locally convex spaces and

let one of the following conditions be satisfied

(a) E has (fsb) and F satisfies (cbc);

(b) Eb* satisfies (cnc) and F is pseudonetri zabl e;

(c) E satisfies (cbc) and F has (fshb);

(d) Eb* is pseudonetri zabl e and there exists a locally convex
topology @& on F coarser than B*(F,F") such that B(F,%)= #(F)

and such that (F,®) satisfies (cnc).

Then

v ) #(U) e®B(F).
HeB (£,(E.F)) Ue @ (Eys)

Pr oof . Let HeRB (gb(E’F))'
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(a) Let (Bn)nelN be a fundamental sequence of bounded sets
in E. Then for every nelN the set An:= #(Bn) is bounded in
- : N
F. As F satisfies (cbc) there is ( pn)nelN e (R¥) such that

N U = T U i i

A: Pne]N pnAn belongs to B(F). U neJanBn is a bornivorous

barrel in E, hence a zero-neighbourhood in Bb*' For every

Te# one has T(U) ¢ A, whence S(U) e #(F).

(b) Let (Vn]ndN be a basis of 01/0(F), Vn=fvn (nelN). For every
neN the set Un:=TQ3’K T'l(vn)i s a bornivorous barrel in E,

hence belongs to %O(Eb*). As Eb* satisfies (cnc), therei s

N a2 N = N

(On)nelN e (RY) such that U: nelNGnUne%o(Eb*)‘ A'“neNOnVnC|ear|y
belongs tc £ (F) and #(U) ¢ A.

(c) Let (B ) N be a fundamental sequence of bounded sets in F such that B = ﬁn

(nelN) . For every neN the set Vn:=TQ.9f’T-1(Bn) is closed in E and absolutely convex.

Assume that for every neN there is A e # (E) such that v_does
not absorb An' As E satisfies (cbc), thereis ( pn)ndNe(Rj)]N
= U ( . i i H
such that A ne]anAneg (E). Since s#(A)is bounded in F, there
is meN such that #(A) ¢ B,s in particular #(p A ¢ B,

hence pmA’n c Vm which is a contradiction.

Consequently. there i S nebuch that VvV is bornivorous and

hence belongs to U,(Eys). Clearly H#(V )i s containedi n

Bn and therefore bounded in F.

(d) Let (Un)nelN be a basis of @ (Eys).

Assume that for every nelN there is V€ %4,(F,%) such that VvV,

does not absorb Jf(Un): As (F,%)satisfies (cnc), there is
N =

(°n)ndN ¢ (R¥)™ such that V.—nfgwonvneflzo (F, %) ¢ fllo(Fb*)

Thus TQ#T'I(V) contains a bornivorous barrel in E, whence
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there is m such that -Yf(Um) c V. In particular, #t[nl) ¢ h.r”\m.
which is a contradiction.

Consequently, there IS nelN such that # (U ) is bounded in (F, 7)

and hence in F.

Remark. Comparing the four hypotheses of (2.6) with each other.

one notices: the following condition

(a) Et‘) and F satisfy (cbc);

is implied both by (a) and by (b) (use (2.2) (d), ( ¢ : and ( a)) ,

and the following condition

(8) EY satisfies (cnc) and there exists a locally convex topology
% on F coarser than 8*(F,F') such that A (F,%) - ‘A(F) and

such that (F,®) satisfies (cnc);

is implied both by (¢) and by (d) (use (2.2)(d)(c)).

Naturally one would like to know whether the conclusion of

(2.6) remains valid if only ( o« ) or ( g) are satisfied. We do

not know an answer to this question. In fact,we do not even

know a locally convex space E satisfying (cbc) such that Eb*

is not pseudometrizable.
As a corollary of (2.6) we obtain the following statement
(cf. (1.4)).

(2.7) PROPOSITION. et E and F be locally convex spaces such that

EB and F both have (fsh). Then also .?b(E,F) has (fsb). Moreover,

if iS a fundamental seqguence of bounded sets in
(An)ne]N a
E! and if is a fundament al sequence of bounded
b - Bplnen a
sets in F then the sets W(A",Bn) (nelN) form a f undament al
n

sequence of bounded setsin 2b(E,F).
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Proof. It sufficesto prove the last assertion. And this one follows
immediately from (2.2)(d)(6) and (2.6)(c).
The following statement can be regarded as another contribution

to (1.4).

(2.8) PROPOSITION. Let E and F be locally convex spaces such that
Eb

. N
Proof. Let (Wn)neTN € 61/0 (Yb(E,F)) . For every nelN there are

and F both satisfy (cnc ). Then also -Y’b.(E,F) satisfies (cnc).

Bne A(E)and Une oyo(F) such that W(Bn,Un) c #. As E satisfies

(cbc) by (2.2)(d)( B ), and as F satisfies (cnc), there are
N

(pn)nem’ (o) hene (RY)™ such that Bi= o Bed( E ) and such

that U= 00U e q (F).

fn
#(B,U)e 4, (% (E.F)).

g o
Nn_ __1n n _n : ~ a) .
NOWndN #/njnelN Pn W(Bn’Un) ° nelN W(pan’cnUn)DW(n\éanBn’newonUn)_

(2.9) PROPCSITION. Let E , F be locally convex spaces and
assune that one of the foll ow ng conditions is satisfied:
(a) Ey is metrizable and F satisfies (¢che);

(b) El') satisfies (chc) and F IS pseudonetrizable.

(Both hypotheses inply that El!, and F satisfy (cbc).)

Then _gﬂb(};‘,p) satisfies (cbc).

Proof. If (a) is satisfied. then (2.2)(d)(y ) and (2.6)(a)
yield that the sets  (U,B) (Ue %O(Eb*),Beg (F)) form a fundamental
system of bounded sets in ,Y’b(E,F). - If (b) is satisfied,
then the same statement follows with the help of (2.2)(d)(a)
and (2.6) (b).

Now let (An)ndN be a sequence in B( g’b(E,F)). For every
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neN therea r e Une 6110(Eb*)and B e # (F) such that A, ¢C W‘(Un,Bn).

Since Eb* satisf ies (cnc) and F satisfies (cbc), there are
N :

(o )nen: (opdpew€(RIT such that U:=fh o U e % (Ey.) and

Bi= Uyo B B(F).

p p
) n n - v .
Now nelN o.nAn ¢ neN on w(U,.B) ¢ neN W(GnUn' ann) ¢ w(U.,B) ¢

e%(fb(E,F)).

Remark. We do not know whether the implication

By

is always true?

and F satisfy (cbc) = ,?b(E,F) satisfies (cbc)

We would like to mention that our structure theorem (1.11)

has the following corollary (in the special case I=N and #=#4=%).

(2.10) PROPOSITION. Let E be a locally convex space satisfying
(cbc). Then for every sequence (Fn)ndN of Hausdorff iocally convex

spaces, then canonical map
o @y L (ELF)) > A (E GF) s (T ey + ndnInThe
is a topological isonorphism
The following statement will show that the hypothesis for
E to satisfy (cbc) is indeed essential.

(2.11) PROPOSITION. tet E be a locally convex space ‘containing

a linear subspace L such that L 'does not satisfy (¢ ¢cbc ). Then

. ® ' °
U 5 nelNEb _’fb(E’V)’ (fn)nelN i né‘IN ‘]n fn’

is not relatively open (i.e.,not an open nmap onto its range).

Moreover, if L has no quotient t opol ogi cal | y i somorphic to



—
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x
¢, then fb (E,9) is not countably barrelled )L contains

a total bounde set, then "Zb (E,9) IS not even countably quasibarre

lled. (A locally convex space containing a total bounde.

set in particular does not admit ¢ as a gquotient.)

Proof.There exists a.sequence (B.) e in Z(L) ¢ #(E) such that

; _ N
nk(_:JN pan i s unbounded for every sequence (pn)neme(R+) d

Let us first assume that ¢ :  @E > B (E,¢) is relatively
open. Then there exist B= TBe# (E) and Ue # _(9). U= I(, such
that #':= @(H%N Et')) N {Te¥ (E,9):T(B) ¢ U} c néN ‘]n o B;, wher e

I, °Br°1:=Un°f: feBr"l} (nelN) .

NOW +there is kelN such that Bk is not absorbed by B. Fix o > 0

such that z:=(¢ eU. Since pB ¢ B = B°°, there is feB®

knp )nelN

and xeB, such that f(ex) >1.

k
The map f & z : E + ¢ , ¥y » f(y)z, clearly belongs to ¥

Consequent | y there Is a sequence (f ) o € Iy B 7  GE'
such that f @ z = gz J of ., hence pf=Py o(f82)=P) ~( ZpJ *f )=

= f (where Py ¢ + K denotes the projection onto the k'th

k
coordinate). This is a contradiction, as xeBk, f eBy, and

of(x) = f(px) >1.
Next choose an increasing sequence (Yn)nelN of finite dinensional

i near subspaces of ¢ such that ¢ = SNVn- For every neN |et
c

U = Ue 2, ( 9¢) be such that Yn

o u, and u, # cp. Then for

(*) A locally convex space G is called countably (quasi)barrelled
if every absorbent (bornivorous) intersection of a sequence
of absolutely convex zero-neighbourhoods is itself a zero-
nei ghbour hood.
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every neN the set #i=w(B.U) is a closed and absolutely

convex zero-neighbourhood in Ly (E.0). Put ¢ :=n(21N ;-

If L has no quotient topologically isomorphic to ¢, then
for every Te @ (E, ¢) the subspace T(L) is finite dimensional,
hence contained ‘in Un for alln > n(T); from this we clearly
obtain that y is absorbent in #(E,¢) (recall that B c L for
all nelN).

If L.contains a total bounded set A, then ¥ is even bornivorous.
I n fact, let # c £, (E,F) be bounded. #(A) is bounded in
o, whence dim[ #(A)] <o . Therefore there is n( # ) e IN such
that #(L) c [X(A)] c Yn(”
there is a > 1 such that # c « ngn(m w(B ,U), we obtain that

) c Yn c Un (n >n (s#)).Since

K cay .

Now the proof will be finished if we show that y¥¢ U, (%, (E, cp)).
Let us assume the contrary. Then there is Ce# (E) and V =pVe A, (%)
such that #(C,V) ¢ y . Again there is meN such that B is
not absorbed by C”“. Choose ue¢ \ Um and ¢ > 0 ‘such that gueV.
Since oBm ¢ C°°, there is geC° and yeBmsuch that g y) > 1.
S:=0g @ u e ¥ (E, cp) belongs to #(C,V) as geC°and oueV.
Therefore Sey ¢ W(Bm,Um) which is not true as yeB and S(y) =
= og(y)u= goy)u ¢ Uy Thus v¢% (% (E.9)).

(2.12) Remarks

(@) Let I be a set such that card I >_card IR. We showed in
(2.4) that E:=]I(I does not satisfy (cbc). Moreover [0,1]I is
a total bounded set in K'. Thus we obtain from (2.11) that

£y, (E,9) is not countably quasibarrelled. hence neither bornological
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nor barrelled, though EI') and ¢ both carry the strongest locally
convex topology. It should be ment ioned that this example

also shows that in (1.12)(c) the countability of [ is essential.

I n fact,psatisfies (cnc), but the spaces @, £, (K, » = @;¢
and ffb(IKI,q)) are not topologically isomorphic (though the
map Y from (1.12) is an algebraic isomorphism) since the first
space is barrelled and the second is not.

In order to obtain some more applications of (2.11),let X
be a reflexive nonnormable Fréchet space admitting continuous

norms (e.g., X=¢ or &). Then E:=Xt‘) is a quasibarrelled nonnormable
DF-space, hence does not satisfy (cbc) by (2.2)(b). As E has
a total bounded set, (2.11) and (1.1)(c)yield that fb(E,F)
is not countably quasibarrelled whenever F is a locally convex

space containing 0 as a topologically complemented 1inear

subspace.

(b) Let E be the linear space ¢ provided with the weak topology
0(E, w). Then E does not satisfy (cbc), and E does not admit
a quotient topologically isomorphic to ¢ (= ( ¢,8 (¢, w))), as
all quotients of E carry a weak topology and 8 ( ¢,w ) is not
a weak topology. Heﬁce, by (2.11), ,S?b(E,qJ ) is not countably
barrelled. On the other hand, we will show that gb(E, 9) is
bornological (hence quasibarrelled and hence countably quasibar-
relled).

I ' n fact, let (e ) 4y be an algebraic basis in E. The map

6 £ (B9 > T m(Te)) g

is a topological isomorphism onto its range (where oN carries
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the product topology), since every bounded set in E has a
finite dimensional linear span. Moreover, let T : E » ¢ be
linear. Then T is continuous if and only if dim(E) < « . In
fact, if T is continuous, then T(E) carries a weak topology

because E does so, and any linear subspace of ¢ carrying a

weak taqpology i s finite dimensional. - On the other hand,
if dm T(E) < ® , then T has a representation of the form
1.<n§m £,8 2z, where f eE* = E' and z e ¢ (lgﬂs_ﬂ}), and is
therefore continuous.

Consequently, (% (E, 9) = ((yn)newapmzdim[yn:ndN] < =} Dq,(]N);:
() pay € N (neN:iy 40} is finite).

Consequently, 8 ( ¥ (E, 9) (and hence -?b(E, cp)) is bornological

by a result of H.Pfister (in V.Eberhardt [11;1_6 Korollar b]).

(c) Let E:=]K[]R}:={(xr)reRe]leR:{rdR:xr;éO} is countable }
be provided with the relative topology induced by the product
topology of KR, Since for every countable subset 1 ¢ IR the
space K!is metrizable and hence satisfies (cbc), we obtain
that

veElN El

{p_x_:nelN}le# (E).
(x ) (p) € (R:) N nn
n’neN n’nelN

Consequently. by (1.11)(b), the canonical linear map
®: @\B' *Z(E.¢) is abijectionand by (1.11)(c),

¢ n%N E; + .‘fb(E,q;) is open. - On the other hand, E does not
satisfy (cbc) because ]K]Rdoes not satisfy (cbc) (see (2.4))
and as every Be#% (JK]R) is contained in the closure of a suitable

bounded subset 0 f n([lp‘]. Consequently, (2.11) implies that
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o J £ 1
n@N Eb > b(E,(P) is not open.

(b) The space ¢ does not satisfy (cbc), thus by (2.11) the map
@:n@N w > ,fbw, @) is not relatively open (recall that w= ?p)e
Furthermore, ¢ is not surjective as the identity niap ¢ =+ ¢
does not belong to the range of ¢, However, by (1.2)(c) ENCHD) is
topologically isomorphic to n&\lfb@(’w)=ngl\1 ¢ = wp (see G.Kothe [21,p.153:(14)])
and hence bornological and barrelled. Thus in (2.11) the additional hypotheses
on L cannot be dropped.

Now we will give a similar treatment to (1.12) and begin
with the following corollary of (1.12).

(2.13) PROPOSITION.Let F be a locally convex Hausdorff space

satisfying (cn c’). Then for every sequence of locally

(En)ndN

convex spaces the canonical map
Voo n&n L By B » B (O INEL B (Tn)nelN v ngNTHOPn !
is a topological isomorphism

(2.14) PROPOSITION. ZLet F be a locally convex space contdining
a linear subspace L such that the quotient Sspace F /L  does

nots satisfy (cnc). Then
Yoo oy F +,S£’b(w,F), Opdnen " ndN Pn f Yp o

*
is not relatively open (i.e., not an open nmap onto its tange),()

(*) This. map Y is nothing else than the map ¥ from (2.13)
applied to the case E <K (n eN), where gb(:n(,F)and F are
identified via t he canoni cal topological 'isomorphism
.Y’b(||<,|:) +F T o T(1).
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Mor eover, if F /L contains no subspace topologically i sonor phi ¢
to W , then yb(w, F) is not countably parrelled. If F/L adnmts
conti nuous norns, then J’b (w,F) is not even countably gquasibarrelled.
(A locally convex space adnmitting continuous norms in particular

does not contain ( as a subspace.)

‘Proof. We may at once assune that L is closed in F. -

There exists a sequence (Un)ne]N in “4,(F/L), Un I'U  (neN),
such that neN o0y i s not a zero-neighbourhood in F/L for
every sequence ( o). € RN Let Q : F » F/L denote the
quotient map and put Vn:=Q'1.(Un) (nelN). Furthermore, let (en)neIN
denote the sequence of unit vectors in .

Let us first assume that v : 2@y F » %, Ler) 1s open onto
its range. Then there exist Bel (w) and U e @,(F), U = TU,
such that v (n%N F) n % (B,U) ¢ nélN Pn '} Vn (where Pn 8 VvV :=
{Pn 8 Y 'Y € Vn})'

Now there is keN such that V, does not absorb U. Fix 0 >0

k
such that [P, (x)] <p for all xeB. Since % U ¢ v, there
is z € % U\Vk. Then the map Pk ® z : o =+ F clearly belongs
to w(B,U) and to the range of Y . Consequently, there Iis

a sequence (yn)nelN e (I Vn)nn@N F such that Py Qg = nélNPnQyn’
whence z=(Pk @ z)(ey) = (nélN P& Yo) (ey) = Yy - This is a

contradiction as gz ¢ Vk and ykevk.

Next let “/Vn1= ﬂ/({en} ,Vn) = {(TeZ ( w ,F):T(en)evn}(ne]N).
Then for every neN the set v, is a closed and absolutely
convex zero-neighbourhood in ,st( w,F), hencei n Zp (w sF).

A
Put #: HeN -
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If F/L does not contain y , then % is absorbent in #(y,F).
In fact, for every Te 2Z(w,F) the space Q(T(w)) is then finite
dimensional; consequently, there is n(T)eN such that T(e )elL
for n > n(T). Therefore Te W (nin(T)) which implies that

T is absorbed by w .

If F/L admits a continuous norm, then % is even bornivorous.

In fact, let # c :'fb( w ,F) be bounded and let V= TV ¢ U, (F/L)
satisfy o ¢V ={o}. As w is a barrelled space, the set

# 1s equicontinuous, hence ther=s is n(#)e N such that Q(T(ﬂéngffKDC
¢ V. for all Tex ., This implies that Q(T(e )) = 0 (Te # ,
n>n( g )) whence Hc ", for all n>n( #). Since #c g Ifanf) #,
for some >0, we obtain that # absorbs ¥,

Now the proof will be finished if we show that # ¢ %O(Yb(w ,F)).
Let us assume the contrary. Then there are Ce# (w) and We %O(F)
such that w(C,W) cw . There is melN such that Vm does not
absorb W. Fix g > 0 such that [P (x) < o for all xec. Since
1 . 1 .

= Wwo¢ Vo there is w e 5 W\Vm. The map Pm 8 w w + F clearly
belongs to w (C,W), hence to W ( {em} ‘Vm)' But this cannot

be true as (Pm ] w)(em) = w ¢ V . Therefore ¥ ¢ 0110( E’b(w,F)).

(2.15) Remarks.

(a) let F be a linear space of dimension not less than the
cardinality of R and let F be provided with the strongest
locally convex topology. We showed in (2.4) that F does not
satisfy (cnc). Moreover, F clearly admits continuous norms.
Thus we obtain from (2.14) that :fb( w,F) 1is not _countably
quasibarrelled, hence neither bornological nor barrelled,

although @ (= ¢) and F both carry the strongest locally convex



190 S. Dierolf

topology.

As in (2.12) (a) we would like to mention that the above example

also shows that in (1.11)(c) the countability of 1 1s essential.

I n fact,wsatisfies (cbc), but the spaces g £ (v ,K) =  @no
and ‘fb(“”r@lR K) are not topologically isomorphic (though

the map ¢ from (1.11) is an algebraic isomorphism) since the

first space is barrelled and the second is not.

In order to obtain some more applications of (2.14),let
F be a nonnormable Fréchet space admitting continuous norms.
Then F does not satisfy (cnc), whence by (2.14) and (1.2)(c),
S’b(E,F) is not countably quasibarrelled whenever E is a locally
convex space containing w (see also A.Grothendieck [15:Chap.II,

p.92, Prop.14]).

(b) Let Fi= {(x ) gy € & : {nelN:xn;éO }is finite } be provided
with the relative topology induced by w on F. F does not satisfy
(cnc) as it is metrizable and nonnormabl e. Consequently, by
(2.14), the space ,Z’b(w,F)is not countably barrelled. )
- On the other hand, we will show that .Sfb(w,F) is bornological
(hence quasibarrelled, hence countably quasibarrelled).

I n fact, for every neN let P : F =+ K denote the projection

onto the n'th coordinate. Then by (1.1) ,(c) and (b), the map

N

0 1 (w,F) » Ly L (0K =@ =oN,Tw (P oT) g0

is a topological isomorphism onto its range. Thus it is sufficient
to show that 0( £(w,F))is a bornological subspace of @IN.
By a result of H.Pfister quoted alreadv in (2.12)(b), we must

(*) As dim(F) is countable. F does not contain was a linear subspace.
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only show that o (¥ (w,F)) D “’(N)::{(yn)neﬂ\le q:lN: {nelN:yn#O}is finite).

N -
Let (£ ) en € (9" and let n eN be such that f = 0 whenever

n>n. Then Ti= 5 —fB @ e : w > F (where e =(8 ), neF
(nelN) a s usual) 1dnear and cont inuous and (PheD(x)=f (x)
(nelN,xe w) . - Indeed, one even has the equality 0( &% (w,F))=

(wt'))(]N), as F does not contain w as a subspace.

(c) Let F:=]K(]R) = {(ar)reR e iR {reJR:ar#O} is finite };then
‘/'::B(IK(]R),IIJR)i s the strongest locally convex topology on F.

Let Y:= G(B(GR),H([]R]) (see (2.12)(c)).

We showed in (2.12)(c) that for every sequence (Xn)l’ldNin

R

k®] there i s ( on)naNe(R:)leuch that {px :neN} is bounded

in (]](lIR]’ U(]K[]R] ’IK(]R))).

From this we obtain that for every sequence (Un)ndN in %O(F,@)

there is (O e (IR:)” such that 7. o0 nUn belongs to

n)neJN nelN
U F, ).

Consequently. by (1.12)(b), the canonical map y: Fs>2(w, (F,7))

ngN
is a bijection. - On the other hand, (F,7) does not satisfy
(cnc). Therefore V: nQN (F,7) +-Y’b(w,(F,ﬂ')) is not open by

(2.14).

(d) The space wdoes not satisfy (cnc), thus by (2.14),the

map V¥ nglN w + ."fb(w ,w) is not relatively open. Furthermore,

¥ is not surjective as the identity map w + w does not belong
to the range of ¥ . However, by (1.1) (c) , the space .Sfb(w,w)

i i i i I - =
is topologically isomorphic to neN Ly Cw ,H()-nIé]N 9 =we and
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hence bornological and barrelled (see G.Kéthe [215p.153,(13)]).

Thus in (2.14) the additional hypotheses on F/L cannot be

dropped.
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§3. CONNECTI ON BETWEEN gb(E,F) AND THE PRQJECTI VE TENSOR PRCDUCT.

From the Proposition (2.11) and (2.14) we obtain that a generally
decent behavi our of EZ’D(E,F) can only be expected if both spaces Et‘)
and F satisfy (cnc). So the abstract investigations contained
in section two led us close to A.Grothendieck's tamous question
(145p.120, quest'ion 7)]:

If E is a netrizable locally convex space and F a DF-space

is thenﬁé’b(E,F) again a DF-space?

This problem.- which 1 could not solve = nmav rather naturallv be

extended to the following question:

(3.1) Let E and F be locally convex spaces such that Et'J and F both

have (fsb). If in addition, E' and F bcth have sone property (P),

b
does then Yb(E,F) al so posses (P)?
(In order to verify that (3.1) is indeed an extension of G othendieck's

question, locall (2.7) and take (P):="countably quasibarrelled").

The exanples (4.7),(4.8),(4.9),(5.9),(5.11) will show. that (3.1)has
a negative answer for (P) e{barrelled, quasibarrelled, bornological,

ul trabornol ogi cal ).

At this point we would like to recall the follow ng well-known
result (cf. G.Kothe [21:p.186,(7)] and H Jarchow [17;p.335, Z.Thmj)

and its consequences.

(3.2). Lenma. Let E and F be locally convex spaces .such that
E; and F are both DF-spaces. Let (Wn)neN he a seanence of absp

lutely convex zero-nei ghbourhoods in .?b(E,F) such that Wz:n'gN”ﬁ

absorbs allsets D@B: ={fey: f eD yeB} (D e@(Et')),Beéa(F)).
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Then there is Ae W(E) and Ve @O(F) such that A&V ¢ w .

For the sake of completeness we will give a proof, which
presents G.Kothe's methods of proof in a somewhat condensed form.
Proof. For every nelN there are Pné @O(Et')) and Qneouo(F) such that
Pn 4] Qn c 'IVn
(a) For every Be 4% (F) the set vB(W)::'ft—:E':fEﬂB ¢w} belongs to «110(56).
In fact, let Be®(F). For every neN, the set B(Wn):={feE':f@Bc wn}
is absolutely convex andv belongs to %O(EI;)' as PHQQ c w‘n
and Qnabsorbs B. Since B(-;V)=n':3‘JN B(y//n)and Et‘) is a DF-space ,
it suff ices to show that ﬁ(ﬂ/) is bornivorous. Let De # (Et'))‘
Then Wabsorbs D & B, whence i'a(«ﬂ/) absorbs D.

(b) For every De3 (Ep) the set 6(%:={yeF:Dﬁy ¢} belongs to U (F).
I'n fact, let De(E;). For every neN the set f)(wﬁ): = {yeF: D@y c '}
is absolutely convex and belongs to “,(F), as Pn %] Qn c W’n
and P absorbs D. Since D(#):ﬂf;Nf)(%) and since F is a DF-

space, we must only show that ﬁ(ﬂ/) is bornivorous. But this

follows from. the fact that # absorbs D & B for every BeZ(F).

(c) Let (Bn)neN be a fundamental sequence of bounded sets
in F. Then according to (a), for every neN the set En(y)=

= { feE':f @ Bn c %} belongs to Q/O(Et')). Since El’) sat isf ies
. N . v .
(cnc), there is ( Dn)ndN e (Rf) such that U"nr::IN pan(W)

belongs to Uy (Et;) i

1
h
c Bn(“IV) e Bn cw for every neN. Moreover, U 8 V ¢ ¢ . Thus

v
. : i i 1
V:={yeF:URy ¢ ¥ } is bornivorous as U8 B, ¢ oan(ﬂ/)@;h Bnc

the proof will be finished if we show that V is the intersection

of a sequence of absolutely convex zero-neighbourhoods in
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F.

Let (D), be @ fundamental sequence of bounded sets in E{.
Then, for every nelN, the set An:=U n Dn is bounded in E{ and,
according to (b),t he absolutely convex sec Vn3=?\n( w ) =
={yeF | An R vy cw} belongs to %O(F). Moreover [fh V =
{y e F: ngN An 8 v cwr={yeF: (&) An) Rycwl=V.

(3.3) PROPOSITION. Let E and F be locally convex spaces such

t hat Et')and F are both DF -spaces.
If the canonical inclusion El') & F = fb(E,F) is almst open (i.e.,
for all Ae# (E) and Ve Qlo(F) the set (AR V) - where t h e

closure i s taken in .fb(E,F) - i s a zero-neighbourhood in
S’b(E,F) , then fb(E,F) is also a DF-space.

In particular, if E is a metrizable locally convex space and
F a DF -space such that E or F are nuclear, then yb(E,F)
is a DF- space. (By H.Jarchow [17, p.491,3 Thm] ametrizable
locally convex space is nuclear if and only if its strong

dual is nuclear.)

Proof. The first statement follows easily from (3.2). In fact,
let # be a bornivorous intersection of a sequence ( Wn)new
of absolutely convex zero-neighbourhoods in fb(E.F). According
to (3.2) there are U e %, (E) and V e % (F) such that
U 8 V ¢# , which implies that ¥ e 2,( £, (E,F)). Because
of Wec n{;:N Wn c anN 2 ¥, = 2W we obtain that ¥ 1is a zero-
neighbourhood in ,S.pb(E,F).

For the second statement let us assume that E is metrizable

and that E or F are nuclear. We will show that then the natural
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inclusion map

J: El')

8, F + % (B.F)
is a topological isomorphism onto a dense linear subspace
of  # (E,F). Then, in particular, the map J is alnost open,
and thus the second statement will follow fromthe first.

Let us mention first that, for all locally convex spaces X,Y,
the e-temsor product X; & Y is by definition a topological
subspace of the space Z of all those linear operators T:X"» Y
whose restriction to B°° is g(X",X')-continuous for all Be @ (X),
provi ded with the topol ogy of uniformconvsrgence on {B°°:Be%& (X)}.
A nonment's reflection shows that the restriction mp Z » i’b(x,Y),
T » T|X, is a topological isonorphismonto its range. Therefore.
also the inclusion X{ 8.Y » .S?b(x,Y) is a topological isonorphism
onto its range. MNow, since E or F are nuclear and. E is netrizable,
we have that E; or F are nuclear, whence the identity map
Bl 8; F » E} & F is a homeonmorphism by [17:p.345,4.Remark]
and the symmetry of @, and @., respectively.

Taking all this together we obtain that J : By 4, F » £ (E.F)
is a topological isonmorphism onto its range. Thus it remains
to showthat E' @ F is dense in % (E,F).

If E is nuclear, E has the approximation property [17;p.483,2.Cor.]
whence E' @ F is dense in Zp (E,F) where 2:={P ¢ E: P preconpact)
(see [173p.398,1.Thm.]). By the nuclearity of E one has #= a(E).
whence E' & F is dense in gb(E‘,F), - Let ys finally assune
that F is nuclear. Just as before one obtains that F' @ F
is dense in % (F,F). Let T e% (E,F), Be® (E), Ue @y (F).
Then there i s SeF'RF such that (Id-8)(T(B)) ¢ U ST belongs to E'&F,
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as it has finite dimensional range, and (T-S o T)(B) ¢ U. Thus

again E' @ F is dense in ¥, (E,F).

Remarks. (@) In his note [2;Thm.4] the Usbekian mathematician

V.A.Bal akliets has stated (wittout a proof) the following

theorem. Let E be a Fréchet space and H a DF-space such that

(1) F((EH):={TeZ (E,H):dim T(E) ¢ =} is dense in .‘i’b(E,H):

(ii) The sets Co {f 8 y:feB° yeW} (B e Q(E), wwzo (F)), where
“Co” denotes the convex hull, form a basis of a//o(?(E,H)),
when #(E,H) is provided with the relative topology induced
by ,%’b(E.H).

Then fb(E,H) is a DF-space.

SO. our Proposition (3.3) provides a proof for the result

of Balakliets.

(b) If the canonical inclusion Eg ﬁ" F > .i’b(E,F) is almost
open and if Ey 8, F is barrelled (resp. quasibarrelled), then
also El') R. F and a?'b(E,F) are barrelled (resp. quasibarrelled),
as can easily be derived from the properties of a continuous
and almost open linear map. Since the e-tensor product of
two Banach snaces is seldom barrelled (cf. the end of (4.9) ),
there are Banach spaces B and F such that the above inclusion
is not almost open. Furthermore. since the projectfve tensor
product of two Dbarrelled (resp. quasibarrelled) DF-spaces
is barrelled (resp.auasibarrelled) (see G.Kothe [21; p.186,(8)1),
Example (4.7) and Proposition (4.10) will also show that the
inclusion E @y F = ..‘fb(E,F) need not be almost open even if

Ey. F. and .Sfb(E,F) are DF-spaces.
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We would like to add another statement about the rdlation

between z’b(E,F) and the projective tensor product.

(1.4) Remark. Let E and F be locally convex spaces such that
F is quasibarrelled and such that for every TeZ (E,F{) there
is Ue /710(E) such that T(U)e #(F). (These hypotheses are satisfied
if. for instance, E and F are metrizable. see (2.6).)

Then the map o : (E @, F)j ~+ £,(E.F)), e(f)(x)(y):=f(*‘af'y)

(xeE, yeF), is a continuous surjective isomorphism.

Let R:(E 5." F){ » (E 8;F)[, f»f (E gF), denote the canonical

continuous suriective isomornhism.

Then the following statements hold.

(a) eis open if and only if the sefs T (A®B) (Ae Z (E), Be#(F))
(the closure being taken in E @; F) form a fundamental
system of bounded sets in E @ F. :

(b) 8« R is open if and only if the sets T (A®B) (Aéﬂ (B),
Be# (F)) (the closure being taken in E §"F) form a fundamental
system of bounded sets in E &gF.

Proof. Let Ae# (E) and Ue % (F)). Then thereis Be # (F) such

that B° ¢ U; now D: =A@B is a bounded subset in E & F. Whenever

fedD® (¢ (E Q4 F)'), then ef)(x) e B° c U for all xeA. This
proves that 6 i§ (correctly defined and) continuous’. @ is
clearlv iniective. - Let Te .‘Z(B,Ft')), and let Ue %O(E) be such

that T(U)eQ(Ft')). F being quasibarrelled. there is Ve %O(F) ,

such that V°O2T(U).g:E x F » K, g(x.y):=T(x)(y), i s bilinear

and continuous as |g(x,y)| < 1 whenever (x,y) e U x V. Thus

g gives rise toe a continuous linear functional fe(E 84 F)',

and clearly e (f) = T. Therefore © is also surjective.
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(@ ¢ is open if and only if for every De @ (E®, F) there are
Ae # (E) and Be # (F) such that o(D°)> {Te .Sf’(E,F"J):T(A) cB°},
or -equivalently -« such that D° >(A8B)°,i.e., D°°c T(A®B).

(b) is proved just in the same way.

(3.5) cCorollary. Let E and F he metrizable locally convex
spaces such that fb(E’Fﬂ,) is bornological. Then the metrizable
locally convex spaces E @n F' and E ﬁ'“F are distinguished and
the sets I (A8B) (Ae # (E), Be® (F)) (where the closure is
taken in E 5“ F) form a fundamental system of bounded sets

in E §,F, (Cf. G.Kéthe [215p.185, last line].)

Proof. E énF being metrizable, the strong dual (E 511 F)l') admits
a finer LB-space-topology # , namely 4 = B((EQ,F) ', (E&;F)") .

The map ©@eR: ((E §“F',m +,¥’b(E,Ft')) from (3.4) is a continuous
isomorphism. Yb(E,Ft')) is complete (see A.Grothendieck's Theorem
after (1.4)) and bornological by hypothesis. Thus A.Grothendieck
[15;p.17,Thm.B] implies that 0o R:((E 8, F)',9) = 2, (B.F})
is a topological isomorphism. Cohsequently, 0o R (ERy F)y ?
*-‘?b(E,Ft')) and 8: (E 2 F)y» g’b(E,F{)) are topological isomorphisms.
Thus E e F and E ﬂ“ F have both a bornological strong dual
and are consequently distinguished.

Furthermore, with the help of (3.4) we obtain the rest of

the assertions.
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§4. COUNTABLE INDUCTIVE LIMITS

In (1.11),(2.10),and (2.11) we investigated the question.

under which circumstances the canonical map

n@IN ’%}b(E’Fn) M g’b(E'n@lNFn)
is a topological isomorphism. Our next aim is to extend these
investigations to the case of countable ‘inductive limits instead

of countable direct sums.

(4.1) Let F be a linear space and let ('Fn)ndN be an increasing
sequence of linear subspaces of F covering F. Moreover, let
each F be provided with a locally convex topology such that

for every nelN the inclusion Fn b F is continuous, and let

n+l
F be endowed with the strongest locally convex topology such
that all inclusion maps I, : Fn + F are continuous (nelN).
Then we will call F the locally convex inductfve limit or
simply the inductive :imit of the increasing sequence of locally
convex spaces (Fn)n@N and write F:innfl Fn.

Moreover, we will call an inductive limit F = in»d F

regular, if for every Be#% (F) there exists nelN Isluch that B ¢ Fn

and B el (Fn);

retractive. if for every Be#(F) there exists nelN such that
B ¢ F, and such that F and F_  induce the same relative
topology on B;

strict, if for every neN the inclusion Fn+ Pn~1 is a topological
isomorphism onto its range, or - equivalently - if for every

neN the inclusion In:Fn + F is a topological isomorphism
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onto its range. (Cf. G.Kéthe [20:p.3222].)
An inductive limit F = ind F_ of an increasing sequence of
Banach spaces (Fﬂ)neN willll-) be called an LB-space. Inductive
limits Fii_’nd Fn of DF-spaces F]n (neN) are again DF-spaces,
whence, in particular, every LB-space is a DF-space (cf.G.Kdothe

[205p.402,(4)]).
(4.2) Remarks. Let E be a locally convex space and let F=ind F_
n->

be the inductive limit of an increasing sequence of locally

convex spaces (F ). a- The for every neN. the canonical linear

injections

LEF) > H(EF ) TwI gy T, and

FUEF) » KEF T+ I 0T,
(Ini1,niFy *+ kg, and 1, 0 F o+ F  denoting the inclusion
maps) are continuous by (1.1)(a). Via theseinjections we

may simultaneously identify & (E,F ) (neN) with linear subspaces

of Z(E,F), and then form the inductive limit ind & (., F ).
n=>

The inclusion map

0rind F(B.F)> L E indF)

n -+
is continuous and satisfies ¢ (T) = I - T whenever TeZ(E,Fn)
(nel) .

(a) Assume that the inductive limit F = ind F_is not regular.
Then there exists a bounded sequence (xr:";mew in F such that
for every neN, either {x,:meN}is not contained in_Fn or this

set is contained but unbounded in Fn.
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Let 151 denote the space ]K(]N):= {(an) eﬂ(lN:{neN:an#O} is finite 1},

neN
provided with the norm

1

Il s B > R (o) nay * odwlegl-

1

T ¢ E° + F, (a) .n * ngNanxn‘ is linear and maps the closed

unit ball B in ]El into I‘{xm:melN} which is a bounded set in F.
Thus T belongs to .Z?(]EI,F), but clearly T does not belong
to the range of §¢.

(b) Assume that for every bounded subset J# in .‘Z’b(E,'F) there
is  Ue QIO(E) such that X(U) is bounded in F. (By (2.6) this

hypothesis is satisfied if, for instance, E is pseudometrizable

and F is a DF-space.) Let the inductive limit F = ind F_  be
regular. Then ¢ is surjective (i.e., a continuousni::lentity
map), a n y subset wc#(E,F) is bounded in # (E,F) if an d
only if it is bounded in ind #,(E,F ), and the inductive limit

n-+
r‘1ln-fl -"fb(E.Fn) is regular.
Proof. All three statements will be proved if we show that
every bounded subset of .?H(E.F) is containedin some -Q’b(E,Fn)
and bounded there. | f Jed ( Yb(B,F)).them there i s Ue W/O(E)
such that B:= M#(U) belongs to B(F); by the regularity of

inan. there is neN such that B belongs to Q(Fn) i c.onsequently
n -+

every T € (c # (U,B)) maps E continuously into Fn. and the
set # is a bounded subset of .‘l’b(E,Fn).

(¢) Assume that for every bounded subset # in -Y,’b(E.F) there
is be '?ln(E)such that H(U) is bounded in F. Suppose that

the inductive limit F = inan is retractive. Then for every
“ne
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bounded subset # in .sfb(E,F)the spaces ind S’b(E,Fn) and
n"
«fb(E,F) induce the same relative topology on »# , and the

inductive limit ind YbeE,Fn) is retractive.
n=+

Proof. Since every retractive inductive limit is in narticular
regular, the three conclusions of (b) are valid. Thus it suffices
to show: for every neN, every Ue#,(E) and every Bed® (F))

the spaces ,‘[b(E,Fn)and Yb(E,F) induce the same relative
topology on % (U,B) (={Te.¥’(E,Fn):T‘(U) c.B}). But this statement

follows immediately .from the subsequent Lemma (4.3) and (1.1)(b).

(d) If the inductive Ilimit F = ind Fn is strict, then also

n-+
ind & (E,F ) is a strict inductive limit.
n-+

Proof. It suffices to prove that for every neN the relative
topology induced by .gb(E,F) on -?(E.Fn) coincideswith the
original topology of .?’b(E,Fn). This statement again tollows

from Lemma (4.3) and (1.1)(b).

(4.3) Lemma . Let F be 4d linear space and let # and 4 be two
locally convex topologies on F. Let A ¢ F be an absolutely
convex subset such that 4]A ¢ %|A. Then for every locally
convex space E and every bornivorous subset X ¢ E the space
.Q’b(E,(F,g‘)) induces a coarser topology on ¥#:={Te¥ (E,(F,%)) N

NY(E,(F,9)):T(X) ¢ A} than .‘Z’b(E,(F,@)).

Proof. Let W € %O(fb(E,(F,y))) ,be given. Then thereare

Bea(E) and Ue ”?lo(F,.ﬁ) such that {Te Sf’b(E,(F,ﬁ')):T(B)c Ulecw .
Since X is bornivorous, we may assume that B e X. Because

of J]A ¢ #|A, there is Ve @,(F.9%) such that V NA ¢ U. Now
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y:={Te $(E,(F,#%)):T(B)c V}Ibelongs to qlo( ,sfb(E, (F,#%))).
If Teyn# , then T(B) = T(B)NT(X)c VNAc U, whence Te # .
Since s is absolutely convex. the assertion of the lemma follows
with the help of G.Kéthe [20:p.265,(5)].

From (4.2),(b) and (c), we obtain the following corollary.

(4.4) Let E be a pseudometrizable locally convex space; let

F = inan be the inductive limit of an increasing sequence
n+

of locally convex spaces (Fn)ndNand assume that F is a DF-

space. Let one of the following two hypotheses be satisfied
(@ The inductive limit ind F is regular. and «Yb(E,F)i S
n-+ n
bornological;
(b) The inductive Ilimit ind F is retractive. and gb(E,F)

n-)
is a DF-space.

Then the .canonical map & : ind -‘Z’b(E,F) + .Y’b(E,ind F ) is
N+ n n-+ n

a topological isomorphism.

(In the case (b) we use the fact that every DF-space is "lokaltopo

logisch”, i. e. carries the strongest locally convex topology

agreeing with the original topology on each bounded set, see

G.Kdthe [20,p.398,(7)].)

Even if E is a Banach space and F = ind Fn is a regular
n-»>
LB-space, the map ¢ : i n d 4 (E.F )+ £ (B, ind F)needn o t
n-+ n+
be a topological isomorphism, as we Wwill see with the help

of the following proposition.

(4.5) PROPOSITION. et El:= K™ be provided with the norm

L, s K® SR () o ala,l (cE(4.2)(a).
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Moreover let F be a locally convex space containing an increasing

sequence (Bn)nelN of absolutely convex bounded subsets Bn (nelN)

such that the following two conditions are satisfied.

( a) The sequence (an)ne]N is a fundamental sequence of bounded

sets in F
(b) vea¥ (F) Be B°(F) ndn UNB ¢ By
Then gb(lEl,F) is not bornological.

If in addition, F is a DF-space and all ]2,n are closed in F (neN),

then .‘fb(lEl,F) is not gquasibarrelled.
(*)
locally complete (see

1

Moreover, §f F is supposed tO be

(1.9)), then the same statement hold with [
1

the Banach space 17

replaced by

Proof. Let A denote the closed unit ball in E!. For every
neN let #:= {T ¢ @' ,F):T(A) ¢ B }. Since every bounded set
. 1 : - -

in -‘fb(JE ,F)is absorbed by some #.,the set w:= ‘4 w,
is bornivorous in .‘!’b(lEl,F). Moreover, # is absolutely convex
as (Bn)neIN is increasing.

Suppose that # is a zero-neighbourhood in i/’b(lEl,F). Then
there is U = TUe#,(F) such that @:={Te% @E!,F):T(A) ¢ U
is contained in w . On account of (b) there exists a bounded

sequence (x); gy in U such that x ¢B_(neN). The map T.xk®™ & F,

(*) i n addition

—
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(@)ien ” nin ap X, is linear and T(X) ¢ Tix_ :neN} ¢ U. In
particular, T belongs to L"(lEl,F) and hence to # . On the
other hand, T((énm)mdN) =X, ¢ B, whence T(A) ¢ B and T¢ ¥,
(neN). Consequently, T¢# , a contradiction. Therefore % does
not belong to 4/0(,$f’b(151,F))and i”b(IEl.F) is not bornological.
Now we postulate that F is a DF-space and that B, is closed
in F for all neN. Then the closure % of w in ff’b(lEl,F)i s
a2 bornivorous barrel in ,% F 1, F).
Suppose that # is a zero-neighbourhood in ffb (El,F). Then again
there is U = TUe® (F)such that #:={Te L ELE)TA) ¢ U)
is contained in %—fi , and there is a bounded sequence (X)) heN
in U such that xn ¢ B, (nelN). For every neN there is V =TIV ¢ # (F)
- A il . . .
such that X, ¢ Bn+Vn. V. neN( 5 Bn+vn) is bornivorous in
F on account of (a) and since the sequence (Bn)nelN is increasing.
Consequently, V is a zero-neighbourhood in the DF-space F,
and ¥ = {Te zﬁ(]El,F):T(A) ¢ V }lis a zero-neighbourhood in

,Sf’b(lEl,F).Therefore uc %1{/+ V.

@) is i isfi
Now T:K *  F (an)neIN ed n%—:]N a X, s linear, satisfies
T(A) ¢ F{xn:ne]N} ¢ U, and thus belongs to ¢ . Because of
. . 1
U c %W + ¥ = nLeJN (%— w, ot ), there is neN and Se 7 ¥, such
that T-Sey . In particular, (T-S)(A) ¢ V = % Bn + Vn, whence

1 1 1 _ .
Xn € T(A) C S(A) + —2- Bl’l + VH c 7BI’1 i 7Bn + Vn - Bn"'vn, WhICh
is a contradictionto the choice of X, and V- Therefore w is
not a zero-neighbourhood in _‘/’b(lﬁl,F) and £ E.F)is not
quasibarrelled.

Finally, if F is locally complete, then .,Sf’b(lEl,F)and
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Yb(ll,F) are topologically isomorphic (cf. P.Dierolf [lo]).

The following statement is a variant of (4.5).

(4.6) PROPOSITION. Let F be a locally convex space containing an

increasin sequence of bounded Banach disks such that
g q (Bn)neIN

(a) Every bounded Banach disk in F is absorbed by sonme Bn

(b) For every U e 07/0(F) there exists a bounded Banach disk

C in F such that ( ¢ [ and such that C¢Bn for every nelN

Then .i/’b(ll,p) is not ultrabornol ogical .
(Remark: Every LB-space F contains an increasing sequence
of bounded Banach disks satisfying (a). cf. A.Grothendieck
[15;p.16,Thm.A] .)

1.

Proof. Let A denote the closed wunit ball in 1 For every

neN l et Fn denote the Banach space ([Bn] Pp ), where pg denotes
n n
the Minkowski functional of Bn' Then we have the LB-space

ind Fn and the continuous identity map J:ind B+ F. Moreover,
n-+. n-+ '
by (4.2). we have the continuous inclusion maps

. ; 1. 1

ind gb(ll,pn) o £, (17, ind F) 5 £ 07.F).

n-» n-

Both maps ¢; and o, are surjective. In fact, i f Te® (ll,F),

then T(A) is a bounded Banach disk in F, hence contained in

some an.Szl1 + F. x = T(xj, belongs to .Z’(ll,Fn)and

©,( 0,(8)) = T. By A.Grothendieck's closed graph theorem [15;
p.17,Thm.B], the space -Y’b(ll,F) is ultrabornological if and

only if the map 0, o 0 is open (recall that the spaces .?b(ll,Fn)

1

(neN) are Banach spaces whence ind .?’b(ll,Fn) is an LB-space).

n~+
Thus it suffices to show that ¢, 09 is not open.
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. 1 . .
For every nelN let Wn._{Te.SZ’ (1°,F):T(A) ¢ Bn}. Then W"nkélN ¥y

is an absolutely convex zero-neighbourhood in ind ffb(ll,Fn).
n-

Assume that ¥ 1s a zero-neighbourhood in ffb(ll,F). Then
there is U = TU e 4 _(F)such that %={Te £(11,F):T(A)c U}
1s contained i n w . By hypothesis there exists a,bounded Banach
disk C ¢ U such that C ¢ B, for allneN, Choose x €Cv B (nelN) .
Since C is a bounded Banach disk, there is Te ¥ (11,F)such

that T(( § x_ (neN). T belongs to # as T(A) =

mn'neN) = *n
mn)mem:nell\l})c r{xn:nelN}c I'U = U. But T does not belong

to # as x, e T(A) ~ Bn for every nelN. This contradiction shows

T(T{(s

that % is not a zero-neighbourhood in ﬁ—pb(ll,F) and that

¢, - ¢, is not open.

2 1

Next we will describe a class o f LB-spaces F satisfying
the hypotheses of (4.5) and thus obtain a negative answer
to question (3.1) for P e{barrelled, quasibarrelled,bornological,

ultrabornological).

(4.7) Example.

Let (xn,rn)nGJN and (Yn‘sn)neIN be two sequences of Banach

*
spaces ( )such that for every nelN
(a) Yn is a linear subspace of Xn and s_ > rnlYn;

(b) {y ¢ Yo ios (¥) < 1 }is closed i n (Xn,rn).

Moreover, let (Z,].1) be a normal Banach sequence space,i.e.,

(*) r and sh denoting the norms on xn and Yn, respectively.
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]KGN) c z ¢ ]K]N algebraically, the inclusion (Z, [. ) «— ® is
continuous, and whenever (a, ), €Z, (bk)kelN e ¥ are such

that |b | < |a | (keN), then (b)), qy e Z and I(by)y pl<lCa)y gl

Thus for every melN the pro’jection
Prm P Z ) Zs 0 Dy (ak)de »(bk)de where
by t=ay (k¢m) and b, :=0 (k>m),
is norm-decreasing. Moreover. since every norm on the scalar

field X is a multiple of the absolute value, there exists

for every kelN a positive number G such that

”(Skla)lelN“ pklal for all aek.

Let ussuppose that - i n addition- the following hypothesis

is satisfied

(c) whenever a = () ken € ]](]N satisfies ||Prm(a)[|5 1 for all
melN, then a belongs to Z and Jaf < 1.

Remark: Condition (c) is satisfied for a normal Banach sequence
space (Z,|. 1) if the norm |. | has the Fatou property in the
sense of A.C.Zaanen [31:p.446,Def.]. The spaces 1P (1 <p <=
and their diagonal. transforms are normal Banach sequence spaces

satisfying condition (c), whereas c, does not satisfy condition (c).
Now. for every nelN the linear space
Fnzz{(xk)keIN e I X xkgn Y, o ((rk(xk))k<n,(sk(xk))k>n)ez}

is a normed space with respect to the norm

(xk)de lad " ((rk(xk))km’ (sk(xk))kil‘l) “ .
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Let
Bn:={(xk)keN € Fn . “((rk(xk))k<n’(Sk(\(k))k;n” <_ 1 }

denote its closed unit ball. Then Fn c F and B, ¢ B

n+1 n n+1
since Sp 2 iy, (nelN). Thus we may form the inductive limit

i . . . T .
F: Irll’lg Fn' The canonical injection F-t kelN(Xk’rk) IS continuous.
In fact, given n,kelN, then the k'th projection Pk : Fn > X

(Xl)le]N Xy is continuous as |](r1(xl))1<n,(s](x1‘))1>n)il >

§ -
" ( klrk(xk))ldN" - pkrk(xk) ((Xl)ldN € Fn)'
We will prove now that every set Bn is closed in the product
space L (X,,r,), hence closed in F = ind F_.
P keN Pk Tk g i

Let neN, and let ((xlgl)))kelN)leN be a sequence in B, converging
to some element (xk)de in kgIN(Xk'rk)’ For every k>n and leN
we have that 1 > ”(6kmsk(x£\1)))mdN” = pksk(x{,l)). since the set
{er k(y) < p— }is closed in (X k) on account of condition

(1)
(b) and since (x )le]N converges to Xy in (Xk,rk),we obtain

that xkeY and sy (%) <_—5kffor all k >n.

k
Thus - in view of condition (c) - it remains to prove that
T () ) s (S X)) cpeam» ()4 o) ) < 1 for allm > n.

Assume that there m > n such that

"((rk(xk))km'(Sk(xk))nsk<m’(0)k>m)">1+€ for some ¢ > 0.

Since for every n <k <m, the set x \ {er sp(y) < sy (x})- }

mpk

is open i n (Xk,rk) and contains x, there is 10eJN such that

sk(xﬁgl))>sk(xk) - for all 1 » 10 andn ¢k < m.
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Moreover we may assume that in addition

1 i
rk(xli ). X)) < m—zk for all 1 > 1 and k<n. Now fix 1 , 1_. Then

1> 100y S s G ) eans (00, 0 0 >

"((rk(xk) - rk(x]((l) - Xk))k<n’(max{0’sk(xk) - m—zk_})njkjm’(o)bm)” >

O () g en» (590 papem (s ) | - kgnn(ajkrk(xﬁl)—xk))JdNn-

z € -z (1)_
- n_kim"( ij mpk)de" >1+ ¢ k<npk1’k(xk Xk) " ne<ken pk

>

o
o™

W’U

_y 7 _ . . ..
K<n @ n<k5mn‘§‘ = 1, which is a contradiction.

i i B I
Thus Bn is closed in the Fréchet space kelN(xk‘rk) for all
neN. Consequently each of the normed spaces F is a Banach
space and the LB-space F=inan is regular (since the closure
n+ -

rWnF (nelN) form a fundamental sequence of bounded sets in

F ., see G.Kothe [20; p.402,(4)]).

In the case that (Yksk) is a topological subspace of (Xk,rk)
(i.e. 'Sy and’ Ty induce the same topology on Y ) for all keN,
we get in the above way strict LB-spaces F=ind Fn of the type
which V.B.Moscatelli constructed in [23]. « I n contrastt o
this case we will suppose that - from now on - the following

“opposite” condition is satisfied

(d) The norm s, generates a strictly stronger topology on
Y, than the restriction rlek for every keN.
we will show that the sequence (Bn)nelNin the DF-space

F satisfies hypothesis (b) of (4.5).
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In fact, by (d), every space Y _contains a sequence (x(“‘m))mdN
such that sn(x(“’m)) = 2 and rn(x(n,m)) < % (melN) .

Let (MM s L X(n’m))jem (n,meN).

jn g
1 (n,m) = (n,m)
Then I( Gjn pn“sn(x ))jeN [I=2 whence z € 2B,\B  and
1 (n,m) il (n,m) 1
o 5n o, T (x ))jeN" < q Whence : € mbp.y for all

n,melN.
Let U be a zero-neighbourhood in F. Then for every nelN there

is m(n) ¢ N such that ﬁBml ¢ U. Thus the sequence (z(n'm(”)))nGN

is containedi n 2B10U, hence bounded, and Z(n,m(n))¢Bn for
all nelN, We have proved that (Bn)ne]N satisfies hypothesis
1

(b) of (4.5). Now (4.5) implies that the space £y (1 JEViD s

not quasibarrelled, and that the canonical continuous 1 inear
bijection
¢ ind £ F )% L indF ) (see (4.2) (b))
b n b n
n- n+
is not a topological isomorphism (as ind ,th(l]',Fn) is an LB-
n- .

space and Yb(ll,ind Fn) is not even quasibarrelled).
n-—»>

Remark.

(1) In (47) we menaged to realize the hvpotheses of (4.5
in a regular LB-space F; in fact, instead ot (4.5)(b). the
space F constructed in (4.7) satisfies the (fermallvi stronge:

condition

3 v v .
Bes (F)  Ue @ (F) neN Bl e B .

Coreliars  (1.12) will show that retractivc LB-spaces neve
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satisfy the hypotheses of (4.5).

(2) In order to show that (4.6) has applications different
from those of (4.5) we will consider the following variant
of the above example.

Let (Xn’rn)nFJN’ (Yn’sn)ne]Nbe given as before in (4.7)
such that (a) and (d) are satisf ied.
Then Gpi=tCx)kan € kin¥k ¥ 1lnYic (i ean (i g0y, decd
is a Banach space with respect to the norm

(] (n) ; (xk)keIN + sup {r, (x; ) tk<n }U{s, (x, )ik > n ).

The inclusion G, » G is norm-decreasing (neN) and one may

+
form the LB-space G::iad Gn’ which is in general not regular
(we mention without ;I)l;oof that G.Kéthe's incomplete LB-space
[205p.434/435] is of the above type). The Banach disks

Bn:= {xeGn: “x"(n) & 1} (nelN) are increasing and satisfy (4.6) (a)
Using the same double sequence (z(“’m))(n,m)de]N asin(4.7)
one easily shows(taking C:=281) that (4.6)(b) is also satisfied.

Thus by (4.6). the space fb(ll,G) is not ultrabornological.

(3) Given two locally convex spaces E,F, the canonical inclusion
E") QE F ~» =.E’b(E,F)
is a topological isomorphism onto the subspace

# (E,F):={Teg E,F)idim T(E)<=} of & (E.F). (%)

(*) See H.Jarchow [17:p.330, 4. Prop., and p.344].
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A. Def ant and W Covaerts [9:Thm.19 and Prop.4_'| have shown that
- whenever Ep is an %4, -Banach space and F is a quasibarrelled
DF-space - then Ey
Together with our Exanple (4.7) these results show that the

QSF (and hence ?b(E,F)) are quasi barrelled.

spaces fb(E,F) and 9b(E,F) may behave quite differently.
The following exanmple complements (4.5) to (4.7).

(4.8) Exanple. For every nelN |et

(n) k (i,k) eIN xN, i <n
ajp ¢ o= whenever _
’ 1 (i,k) e INx N, i>n.
Mreover, let 1 <q <p<®. For every neN |et

N, 1
e K G541 (1, k) i © 1P N) }

Fai= {0 (4, 5)eN x N
‘ ai,k

be provided with the norm

X5 (i,K)eN x N » "(%)xik)(i,k)ew alp
%,k
where |. I, denotes the usual norm on 1P@ x IN). Then F is
a Banach space topologically isonmorphic to 1P, one has Fr1 c Fn+1,
and the inclusions Fn > Fn+1 ® l(lN x N are continuous for all
neN. The inductive limt F:=ind F is a co-echelon space of
order p (in the terninology gf~> K D Bierstedt. R G Mise, WH
Sumrer s [5;1,2] the space F is a space of type kp-).For every

nelN the set



o
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Bt = 105d (i, i aoan®Fn 1Oy i (Lo ey < 1)
i,k
is closed in ]K]NXIN (as it was proved, for instance, in (4.7));
consequently the LB-space F = inan is regular. Since B ¢ B
n-+
(neN), the sequence (nB ) v is a fundamental sequence of
bounded sets in F. Moreover, if 1 < p < » , then ga]] F_ and

hence F are reflexive.
Let E9:=19 if <= and EY:=c_if q =
Wer Will prove that the space Yb(Eq.F) is not quasibarrelled.
From (45) and (47) we got such a statement only for the
case q = 1.)
Let A denote the closed wunit ball in EY. For every neN let
1= a g A = i i
]Bn' {Te¥(E~,F):T(A) c Bn} Then W naN }Bn is a bornivorous
barrel in Yb(Eq,F) (the closure being taken in i”b(Eq,F) ) d
Let ys assume that e # (%, (E9,F)). Then thereis U=TUe % (F)
such that Y:={Te ¥ (Eq,F):T({\) c Uj}ec %W , and thereis a

sequence (m(n))ndNe ]N]N such that nEN m(%)- B, cU.

+DN
x(“):=( 5. m(p+Dp .

i,n+l Sk.m(n+1)+1 mm)) (ioae  Pelongs to

1
ZB1 a ﬁ"lTI’WD'Bnﬂ .but not to Bn I n fact, for all n. meN

1 m+1
Py Sinet Somel "m0 (o analp -
i,k

1

an) Sim+l Skomel T (i,meaanlp =
i,

=1 ( = n+l e]1,2] and

e

! . .
M1y % ne18k,me1 (LK) eNaN!p *

a4k

1
m
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q I (n) . ;
For every sequence (an)ne]NeE the sum nin@nX is well-def ined

; N q . (n)
in ¥ and belongs to 17(MxN) since [xj, 228, ne1k.m(ne1)+1

Because of 19NxN) ¢ 1P@NxN) ¢ F,, the map T:E9 5 F,
(m) _defi i -
(an)neIN g n%JNanx , is well-defined and linear. | f a-(an)ndNeA,

then |T(a) ||p < |T(a) llq < 2. whence T(a) e 2B Thus T(A) c 2B

1
and hence Te £ (E%,F). Moreover, T(Aﬁ]]((]N)CnZdN{a x(M g <1l}ec

1

1 _ "o
c nE:INW Bhog € Us whence T(A) = T(Am]KON)) ¢ U= u. Thus

T edc %W . Sincex(n)¢Bn: B_nF,therei sV =TV e# (F)

such that x(n)¢Bn+ Vn (nelN). V:= B, * Vn)is bornivorous

e
nelN*2
and therefore a zero-neighbourhood in the DF-space F.

¥v: = {Se¥ (EY,F):s(A)c V 1} belongs to W/o(i’b(Eq,F)),thus

1 1 1
Te 7‘#/ ¢ (7 My B)*+ ¥ . Consequently, thereare neN and SGZIBn

such that (T-S)(A) ¢ V ¢ %Bn + Vn, whence T(A) ¢ S(A) + %ann c

¢ B+ V. -On the other hand. (M e T(A) (B,+V, ) which

is a contradiction. Thus .Yb(Eq,F) is not quasibarrelled,
and the canonical map ¢ : ind «i’b(Eq,Fn) +-2"b(Eq,F) is not
n-»>

a topological isomorphism.

If p=q=2, we get an example of an LB-space F = ind F_  such
n-»

that every Fn is topologically isomorphic to 12 and such that

.fb(lz,F) is not quasibarrelled.

In view of (4.5) to (4.8) one may ask whether a (negative)
solution to the problem

If E is a Fréchet space and F a barrelled DF-space, is
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then é"b(E,F) barrelled?

can be obtained in an easier way than via (4.5 and (4.7).
Indeed, one can find Banach spaces E and normed barrelled
spaces F such that the normed space ,Sf’b(E,F) is not barrelled

as the following example shows.
(4.9) Example.

Given two locally convex spaces E, F, let Fb(E,F) denote
the space of all Te ¥ (E,F) such that dim T(E)< « , provided
with the relative topology induced by %, (E,F). By H. Jarchow
[17:p.330,4.Prop., and p .344] the space fib(E,F) is topologically

isomorphic to Et') 8.F. (Cf. Remark (3) after (4.7):)

If E ,F,G are locally convex spaces such that F is a dense
linear subspace of G, then the canonical injection ‘?b(E,F) *yb(E,G)
ident if ies 9b(E,F) topologically with a dense linear subspace
of fb(E,G).I n fact,the above map is a topological isomorphism
onto its range by (1.1)(b). For the density it obviously suffices
to show: whenever Be# (E), U e %,(6), xeG, and feB° c E' are
given, then there is yeF such that (f 8 x - f & y)B) c U;

but this statement is certainly true - just choosey e FNn(x-U).

Now let E be an infinite dimensional Banach space, and
let F be a barrelled normed space such that every bounded
Banach disk in F has finite dimensional Ilinear span (or -
equivalently - such that for every Banach space Z and every
Te & (Z,F) the dimension of T(Z) is finite). An example of
={ (x) en€l  i{x, neN }is finite }

such a space F is the space mg:

provided with the supnorm (see J,Batt, P.Dierolf, J.Voigt [3]).-
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Furthermore, M.Valdivia [29] showed that every separable Banach
space contains a dense hyperplane in which every bounded Banach
disk has finite dimensional 1 inear span . Since barrelledness

is inherited by hyperplanes, every such hyperplane is another

example.

Assume. that fb(E,F) is barrelled. Let F denote a completion
of F. Then .S!’b(E,F) = fb(E,F)is a dense linear subspaceof
9b(E,}N=), consequently, fb(E,F) and hence Ef,ﬁe F are barrelled.
From H.Jarchow [17;p.486,3.Prop.] we now obtain that for every
1 < P < othe Banach space F fails to be an Sp-space with
approximation property. Furthermore. by H.Jarchow [17;p.430]
every infinite dimensional Banach space with an unconditional
basis is an s -space for some pe[l,].

Taking all these observations together, we get many examples

of the announced Kind;

In view of (45) to (4.8 one would Ilike to know whether
S’b-(ll,F) is a DF-space whenever F is a DF-space. In fact,

one has the following result.
(4.10) PROPOSITION. et 1 be a set and let El:z K(1):-
{(xy) o1 € Kl {iel:x # 0} is finite) be providedwith the norm
. (1)
1y ' K + R, (x1)161+1§1|x1|.

Then for every DF-space F the space .Z’b(lEl,F) is again a

DF- space.

Proof. Let F be a DF- space  and let (B,) e Pe a fundamental

sequence Of bounded sets in F, Bn = I‘Bn c Bn+1 (neN). Moreover, let
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A denote the closed unit ballin ]El. Then the sets

B, = {Te ,Y(E1‘,F) :T(A) ¢ Bn } (neN) form a fundamental sequence
of bounded sets in ,i/’b(]El,F). Thus it remains to prove that

i"b(]El,F) 1s countably quasibarrelled.

Let ( Wn)ne]N be a sequence of absolutely convex zero-neighbourhoods

. 1 N ” . .
in Yb(ﬁ ,F) such that W"neﬂ\l Wy s bornivorous. For every

neN choose op > 0 such that Py By ¢© Zn—il w . Then neZan*an

is containedi n %W . - Moreover, for every neN, there is an

absolutely convex zero-neighbourhood Vn in F such that

W .
n

of =

¥ = {Teﬁ”(lEl,F):T(A) c V,te

U :=(

N L oopBp)*V, is absolutely convex and belongs to %,(F) (neN)

m<n

and U:=nf(_:‘NU is bornivorous in F. I n fact, i f meN, then
n
o mBn € Uy for alln > m, whence B, is absorbed by U. Consequently,

U is a zero-neighbourhood in the DF-space F.
We will show that #:={TeAE!,F):T(A)c Ulc ¥ -

Let Te# and let neN. By (e, ) .y W€ denote the family of .unit

_ ; 1
vectors e, = (6§ ) in E* (1el). For every el the element
T(e ;) belongs to U and hence to Url = m_é_nmem + V. Consequently,

there exist bl n € Bm (m <_n) and v, € Vn such that

Tle) = niy ol Yy
For every m < n the linear map
(D
T K YFo (a)op ™ (Ep @ by no

1
satisfies T,(A) ¢ rg_ = B ,whence T e ZE"F) and T, ¢ B

m m m*
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- M - ] -
Moreover T mEn ‘“me belongs to ¥, since (T o 0 T.)(A)
= T{(T- m%nmem)(e1 ): 1el } =F{Y 1 e I ¢ \n' Consequently,
z : b L 4 7 A
Te nonfnBy * % C g% g ¥y ¢ ¥ Thus wc Oy, whence

w is a zero-neighbourhood in ,iﬂb(IEl,F)).

Remark: A.Defant oaserved that - wusing essentially the same
methods as in the proof (4.10) « one can show the following
stament:

. *
If F 1s a quasinormable ) locally convex space, then

L' has the same

Yb(lEl,F)i s algquasinormable (wheve [
meaning as in (4.10)).

1 and let % be

proof. Let A denote the closed unit ball in E
a zero-neighbourhood in i"bﬂEl,F). Then thereis Li ¢ u](O(E)such
that %:={Te 2@ F)TA) ¢ U} ¢ #

SInce F is quasinormable, there is V = TV ¢ U (F) such that
for every ¢ > 0 one f inds a bounded subset B(e) in F such that

V c e U+ B(E).

V:={Tei/’(]E1,F):T(A)C vV} belongs to az/o(,?’b(lEl,F)).

Let ¢ >0 be given. Choose B = TIBe # (F) such that V ¢ ¢ U+B.
Then B:= {T¢ g’(]El,F):T(A) c Blis bounded in s’b(lEl,F) and
vcelU+B ,

I'n fact, let Te¥ and pute :=(3$

lK)Kelelﬁl (v El). Then for

every 1€l one has T(e,)eVwhence thereare u,elU, b, eB such

(*) A locally convex space F is called quasinormable if

Uw () Ve al(F) e>0 BdaE YV eTUH
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that T(el) = eu+ b,.
w1l

S + R (al)lel
to B,since {b :1€el)is a bounded set. Moreover,

M a b, belongs to #@®1,F) and hence

%(T—S)(A) cr{u i tel} c U, whence T=c(2(T-5))+Se e+ .
A variant of (4.10) is the following

(4.11) PROPOSITION. ret F bpe a DF-space containing an increasing
sequence (C_) eN of bounded Banach disks such that the c¢losures
n-n

E-n (neN) for a fundamental sequence of bounded sets in F

(This hypothesis s satisfied if F is a locallycomplete DF-
space or if | is an LB-space (cf.G.Kothe [203p.402,(4)]).)

Let 1 be a set.Then ,‘i’b(ll(l),F) is a DF-space.
Proof. We must show that ,?’b(ll(I),F) is countably quasibarrelled.

Let (#),any Pe @ sequence of absolutely convex zero-neighbourhoods

. 1 oA . .
in “(/b(l (I),F) such that L4 =N W’n is bornivorous. Let A

denote the closed unit ball in 11(1), and for every nelN let
%’n:= {Te Z(ll(l),F) : T(A) ¢ Cn }. Then there exists a sequence

( Pplpen © (Rj)]N such that nZeJN bp € C %W . Moreover. choose

5 . 1 . 1
vV =TV e @, (F)such that 1/n.-{Te££’(l (I),F):T(A) ¢ Vn}c7~tl/r1

(neN). Then Un:=(mén°mcm)+ v, s absolutely convex, belongs
D n - - - -

to ozzo(F) (neN),a n d U'"ne]N u,is bornivorous (since PuCnc U

for all n > m), hence' a zero-neighbourhood in the DF-space

F. The proof will be finished if we show that

PR - 1
U= {Teg(1H(1),F):T(A) ¢ 3 We T %,

n

Let Te% and neN. By (e ) . We denote the family of unit

vectors in 11(1). For every 1el there exist (c, m Jne © mgn Cm
_ 1 -

and v, € Vn such that T(e ) = 7(mgno ©oom t V1)'

As C, is a bounded Banach disk, there is T e (11(1),F)such
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that T (e ) = ¢ m ( 1eI). Moreover, T,A) c 990(1+€ )Cm c2C

1

(m<n). 8:=2T- nin eI, satisfies S(A) c l"Vn=Vn. Consequently,

1 m

Sl 1oz z 1
T= 720nen onTy*S) € 20(nen? o €)% %) Cpenrm %n* %0 © 2 Y

1
2

+

7/?1 c“ﬂ;l.
(4.12) corollary. Let 1 be a set and let ]E1:=]K(I) be provided

with the norm Foyg e k(D 4R, (a)) 1()Ella1| as in (4.10).

el 7
Moreover, let F be a DF-space which is the retractive inductive
1 imit indF of an increasing sequence (F ) LeN of locally

n-»
convex spaces.
Then the canonical injection ind -?’b(lEl.Fn) +$b(]131,1=)i S
n-+
a topological isomorphism.

If in addition, F satisf ies the hypotheses of (4.11), then

also the canonical injection i n d -‘Y’b(ll(l),Fn)+ -S?b(ll(l),F‘)
n-+
is a topological isomorphism.

In particular, if F = ind Fn is a retractive LB-space, then
n+
also ,ﬁ’b(ll(l).F)i S a retractive LB-space, hence barrelled

and bornological.

Proof. All the statements follow at once from (4.10) resp.

(4.11) and (4.4),(4.2)(c).
Another rather curious consequence of (4.10) is the following

(4.13) PROPOSITION. Let F be a DF-space and et (Bn)ne]N be
an increasing sequence of bounded, absol utely convex, and

closed subsets of F such that (an) is a fundamental sequence

neN

of bounded sets in F

Then every null-sequence in F is residually contained in sonme Bm .
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Proof. Assume that the assertion does not hold. Then there
exists a null sequence (xn)nelN in F such that for every melN
the sequence (Xn)neIN does not rcsidually lie in Bm. Then

we find an increasing sequence (k(n))ne]N in IN such that

Xk (n) ¢ B, f or allnN.Put Yn =%k (n) (neN) a n d choouse

Vn =T Vne @/O(F) such that Yn ¢ B + V. (neN). Moreover. let

1 ) i i (s
E - denote the space K provided with the norm |. | 1 (u“ neN” néN‘an|‘

and let A denote the closed unit ball in ]El, as usual.

o 1 . [l B H
Let ]Bn.-{Te F(E ,F):T(A) ¢ Bn}(nelN).Then ¥ oiep oy B ds

a bornivorous barrel in fib(]El,F) (cf. the proof of (4.5)).

. ]
For every meN the linear map T —: E° » F (a)

@ y

5
n;inan n’
maps A into r{yn:neIN} and is thus continuous. Moreover, tlie
sequence (Tm)mdN converges t0 zero in ,‘{’b(El,F).I n fact,
the sets Y :={Te & (El,F):T(A)c V) (V=TVe#_(F))f o r m a
basis of qzo(-‘fb(lEl,F)) and T ey whenever {y :n>m}c V.

Now , S’b(lEl,F)isa DF-space by (4.10). (Tm) is a null

meN
sequence, and ¥ is a bornivorous barrel in Yb(lEl ,F) . Consequently,
by G.Kothe [203p.398,(8)], there i s meN s uc h that T e#

for all m > m_ . As U:s NG B, + V) belongs to % (F) (same

proof as i n (4.5)), %U:= {Te¥ (IEl,F):T(A) ¢ U} belongs to
%o(fb(El,F)),whence Tm e %ngN]Bn+U ,i.e. therei s noelN,

0
1 2 . 1
Ny 2Ny such that TmO €3 ano +9 : Therefore TmO(A) c 3 BnO +
+ (% Bn + Vo ) = Bn +Vn , which is a contradiction to
o 0 0 0
y. € T (AN (B + V_ ).
n, Mo b ng
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Remark: We do not  know, whet her in (4.13) the closedness

of the sets B (neN) can be dropped.
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15. A CLASS OF FRECHET SPACES

In (1.12),(2.13), and (2.14) we investigated the question,

under which circumstances the canonical map
ngNgb(En’F) > yb(nneNEn’F)

is a topological isomorphism. One of our aims in this section
will be to extend these investigations to the case of countable
projective limits instead of countable products, a concept

which is in some sense dual to that studied in section four.

(5.1) Let (E ), g Pe a sequence of locally convex spaces;
for all m,neN, m > n, let P : B, » E be a continuous linear
- nm n

map such that Pnn equals the identity map and ana P o= Pnl
(1 > m >n). Then we call the pair ((E ) gy (Popdpn.n) @ Projective
sequence, and the space E:= { (xn)nelNenIENEn:mgnan(xm)=Xn 1.
provided with the relative topology induced by t h e product
topology of [InE.. is called its projective limit and denoted
E = proj E_.
p«r{ o
The canonical projections E » En’ (Xm)meIN" X will be denoted
by Pn (neN).
Furthermore. we will call a projective limit E=proj E, of
“n
a projective sequence ((E ), > (Poo0 o)
reduced, if P,(E) is dense in E for all neN, and
strict, if P :E + E_ is surjective and open for all neN.
(Recall that a projective limit E = proj E_of a projective
< n
sequence  ((B ) > Pridpsg) IS strict if and only if all

.
the maps P B B are surjective and open (m>n).)

nm
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(5.2) Remarks. Let ((E ) g (P ) ) be a projective sequence

m>n
of locally convex spaces, let E be its projective limit,
and let F be a locally convex space. For all m,neN, m>n,

the linear maps

Jon + % (B F) + Ly ELE), T » T 0 an, and

I, 0 LB LF) » HEE), T w TP,

are continuous by (1.2)(a). Thus we may form the inductive
limit liln Jmn(.st’b(En,F)) (in the sense of G.Kothe [20;p.220])
and obtain the canonical linear and continuous map
L lim Jmn( '(fb(En’F)) *’fb(a-p;c)j EH’F)’ ‘yclm = ‘]m(mdN)’
where Im : .S/’b(Em,F) + liﬁ}m Jmn( .t’b(En,F)) denotes the canonical
map .
(a) Assume that the projective limit E = proj E is reduced
<n
and that F is Hausdorff . Then the maps Jn and Jmn are injective
for all nelN, m > n. Via these injections we may simultaneously
identity .Y’(En,F) (neN) with linear subspaces of Z(E,F),
and the inductive limit lim J (_{Pb(E ,F)) may be considered
> mn n
as the inductive limit of the increasing sequence of locally
convex spaces ( gb(En’F))ndN in the sense of (4.1) ; the canonical
map from above
vy : ind % (E_,F) + & (proj E_,F)
n+ b(Fn-F) e
then becomes a continuous inclusion map.
() Let E be the reduced projective limit of a projective
sequence (B paw Pomdmon) ©F locally convex sbaces and

let F be a locally complete Hausdorff locally convex space



On spaces of continuous linear... 227

such that for every bounded subset # in .,Sf’b(E,F) therei s
U e, (E) such that # (U) is bounded in F (cf. (2.6)). Then
Y is surjective, any subset H ¢ £ (E,F) is bounded in

,Q’b(E,F) if and only if it is bounded in riln*d Jb(En,F),and

the inductive limit ind Yb(E ,F) is regular.
n-+ n

Proof. What we have to show is the following:every # €& (%, (E,F))
is contained in some —‘fb(EnF) and bounded there. By hypothesis,
gives #e @ (,Sf’b(E,F)), there is | ¢ W/O(E) such that B:= T#(U)
is bounded in F. Now there is nelN and an open zero-neighbourhood
1(v). The set B:= {TeZ (E_,F):T(V) ¢ B}

is a bounded subset of _S/’b(En,F); thus it remains to show

vV in E such that U:Pn

that }chn(lB).

Let Tes# . Because of T(ker Pn) c TU) ¢ B and since B s
bounded in the Hausdorff space F, the map T vanishes on ker Pn.
Consequently. there exists a linear m a p S:Pn(E)+ F such
that SoPn=T.Clear1y, S(VﬁPn)(E)) c T(U) ¢ B. Since P,(E)
is dense in En and since B is a closed, bounded Banach disk
in F, the linear map S admits a linear extension 'I‘ i En + F
such that T(VnPn(E)c B, whence Tis continuous and

T(v) ¢ T(VAP_(B))c B . Thus TeB and Jn('T) = i"opn =S P =T

(c) Let E be the reduced projective limit of a projective

sequence ((En)ndN‘(an)m>n) of locally convex spaces and
let F be a locally complete Hausdorff locally convex space
such that for every bounded subset # in g’b(E,F) therei s
Ue @O(E) such that H#(U) is bounded in F. Moreover assume

that the following condition is satisfied
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nZN Ue%g (En) mgn B ﬁj(Em) BEJj(E) an(B) C U+Pn(B).

Then for every boundcd subset .# in -Wb(E,F) the spaces ind .fb(En,F)
n+

and fb(E,F)induce the same relative topology on » , and

the inductive limit ind fl’b(En,F) is retractive.
n-»
Proof.Let wye g (yb(E,F)) be given. Because of (b) and its

proof there are nelN, Ue %O(En) , and A = TAe # (F) such that
/chn(]B)where 1B:={Te.<[(En,F):T(U)c A L

Now, by hypothesis, there is m > n such that

Bed'(E) pe#(E) Inn(B) ¢ UP(B).

The proof will be finished if we show that .‘?b(Em,F) and ,Z’b(E,F)

induce the same topology on B.

Let y be a zero-neighbourhood in -Sf’b(E,F). Then there are

Be B (Em), V=TV eJ?/O(F) such that W > {Teﬁf’(Em,F):T(B) c V }
1

and we may assume that A ¢ 7V- By hypothesis thereis Be® (E)

’

such that P__(B)c U+ P (B).
v ITE ,%’(E,F):T(é) c % v }is a zero-neighbourhood in .?b(E.F).

and it remains to show that Vm(]BoPn) C W o Pm.

Let Te ¥n (B o Pn) . Then there is SeB such that T=S °Pn =
SOano P,- Because of (S uan)(B) c S(U)+S(PH(B)) ¢ A+T(B) ¢

1 1 f o =
cC v+ VeV, we obtain that S aneW whence Te ¥ Pm.

(d) Let E be the reduced projective limit of a projective

sequence ((En)ndN‘(an)mE_) of locally convex spaces E  (neN),

and let F be a Hausdorff locally convex space. Assume that

for every neN and every Beé&(En) therei s Ae O(E) such that
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Pn(A)DB. Then the inductive limit ind y‘b(En,F)i s strict
n»

and the spaces S’b(Em,F) and fb(E,F) induce the same topology

on #(E_,F) for every meN.

Proof. Let meN, Be # (Em), and U = Ve, (F) be given. Then there
is Ae# (E) such that Pm(A) > B.

Now w':= {Te ¥ (E,F): T(A) ¢ U }belongs to J//O(;g*b(E,F))a n d
#O(L(E,F) P C{T 0P :Teg (E,F),T(B)c U},

In fact, if SeY(EmF) satisfies SoPm e y, then
S(B) ¢ S(Pm(A) c (Sva)(A) cL=1.

Consequently, .,Sf’b(Em,F)and. Eb(E,F) induce the same topology
on ,%’(Em,F), which finishes the proof.

(5.3) rRemark. Let E be a Fréchet space and let ((En)neﬂ\i‘(an)mzn)

be a projective sequence of Banach spaces E (nelN) such that

).

E is the reduced projective limit of the sequence ((En)neH\J’Lan)m_Zn

Let F be a locally complete Hausdorff DF-space. Then bv (5.2)(b),

the canonical map v : ind &Ly (E_ ,F) =+ £ (E,F) 15 bijective.
n->

Moreover, it follows from (5.2) (b) that ¢ 1s a topological

isomorphism if ?b(E,F) 1s bornological.

Next we will assume that in addition E 1s quasinormable
(see the remark after (4.10)). Then for everv neN and
U =TU e ag/o(En) there is m»>n and an open \ ¢ JZ/O(Em) such that
for every € >0 there exists Be4 (E) such that P[;‘l(\')caPr_‘l(L'%B,
which implies that

P @A) ¢ lp (vp (E)E"‘) P " ¢ Ll ™
nm ‘€ e ‘nm’' m ¢ nm('m()) ¢ < n(m()) c

™ |
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E E
-1 1 n T n 1
c Pn(F‘n ) + g B) c U+Pn(€B) c 2U+Pn(EB)'
Thus the hypotheses of (5.2) (c) are satisf ied, and we obtain

that the inductive limit ind yb(En'F) is retractive; furthermore
n+

(5.2)(c) implies that the canonical continuous linear bijection

¥y : ind ¢, (E_,F) & (E,F)
n-» b n ” b

is a topological isomorphism whenever ,Sf'b(E,F) is a DF-space

(here we use that DF-spaces are 'lokaltopologisch", see (4.4)).

Our next aim 1is to describe a certain class of Fréchet
spaces which are «closely related to (5.2)(d). We will do
this with the help of the following two proposition, whose
final formulation has been suggested by K.Floret and whose

proofs can be found in [35].

5.4) PROPOSITION. Let ((En) ndN’(an)mzn) be a projective sequence

of Banach space En (nelN) such that its projective limt

E = prgj En is reduced. Then the followng statenents are
+n

equivalent.

(a) The maps an PEL En are surjective for all m > n;

(b) For every nelN and every BeQ(En) there exists A e #(E)
such that Pn(A)BB.

(c) For every nelN and every Beﬁ(En) there exists A e B (EB)

E

such that Pn(A) n 5 B.

(d) The inductive linmt ind(En)t" is a strict inductive limt.
n-+>

Furt her mor e, if one of these conditions is satisfied, t hen
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the canonical map y: ind(En)l'] > EIIJ is a topological isonorphism
n+

(5.5) PROPOSITION. Let E be a Frichet space. Then the following

statements are equivalent.

ist j ti f B h
(a) There exists a projective sequence ((En))neN’(an)m_n) o anac

spaces E n (nelN) such that

(i) E = proj E_ and the projective limt Pproj E_is reduced;
«n +>n n
(ii) ((En)ne]N‘(an)mzn) satisfiss the conditions (a) to (d)
in (5.4).
Th exi st a decreasin sequence of l'inear
(b) ere q q (Ln)ndN

subspaces of E and B+= TB €4 (E) such that the sets Ln+ % + B

(nelN) form a basis of 51/0(13).

(c) There exist a decreasing sequence (Ln)neIN of linear subspaces

of E and a sequence

(B)pen '" #(E), B, = TB (neN), such

basi f d
that the sets Ln+ Bn (nelN) form a basis o %O(E)

(d) There exist a decreasing sequence linear subspaces

(Ln)ne]N of
of E and a sequence (Bn)ndN in I(E. Bn = I‘Bn (nelN).

E

such that the sets L +B ™ (neN)formabasis of g (E).

(5.6) Remarks,

(a) In [33:;Thm.1] (seea | s o [34; Thm.2]) D.N.Zarnadze h a d
proved that a Fréchet space satisfies (5.5)(d) if and only
if it is the reduced projective limit of a projective sequence
of Banach spaces satisfying (5.4) (d). Moreover, in [34;Remark 2]
he had asked whether (5.5)(d) and (5.4)(a) are. equivalent.
S.F.Bellenot and E.Dubinsky [4] call a strict projective
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limit of a projective sequence of Banach spaces a "quojection".

(b) Let E be a Fréchet space satisfying one of the equivalent

conditions in (5.5). Then the following statements hold (cf.[35]).
(a) E is quasinormable and hence distinguished;

(8) E is a Montel space if and only if E is finite dimensional
or topologically isomorphic to g (See D.N.Zarnadze

[33;p.825].)

(yy E is reflexive if and only if E is the projective Ilimit
of a projective sequence of reflexive Banach  spaces.
Consequently, if E is reflexive, then E is totally reflexive
(i.e. all quotients of E are reflexive). (See A.Grothendieck

[14;Prop.10].)

We would like to take the opportunity and mention that
the formulation of Proposition 10 in A.Grothendieck [145p.100]

is not correct:

Let E1:=¢m(:=ngmm) and E i=e (n>1). If K ¢ N is finite,

then Exs either topologically isomorphic to ¢ ,9¢w , or

i

nek n
owx ¢ , |If follows from a result of V.Eberhardt (Beispiele
topologischer Vektorraume mit der Komplementarraumeigenschaft,
Arch.Math. 26(1975),627-636,1.2 Satz) that ¢ , ¢uw and QWX ¢

are all totally reflexive. On the other hand, it is well
known that IE = gu X wg has a non-reflexive quotient (G.Kothe
[20;p.120]). A.Grothendieck's result is clearly true for
every sequence (E ) o of Fréchet spaces, and his proof was
meant for that case only, since he used the theorem of Banach-

Dieudonné in- his proof.
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(c) The twisted Fréchet spaces constructed by V.B.Moscatelli
in [23] all satisfy (5.5)(a).
(d) Let F:inan be a strict LB-space. Then there is

n-—+

B)en € nan a,(F ) n B(E)) such that B ., n F = B =TB

for all neN. The sets U := Ip:  (nem) forma basis of @ (F).

= U ] - TV
Mor eover, B: TN Bn belongs to U, (F) Let V= Ty G@O(F) be
—— F!
1 1 o _ 1 o.pe -
such that 3B ¢ V ¢ B. Then Un ¢ —(V N FJ° = 5 (Vo+F?) S =

_ 1 ° o
= (Vo + Fr)c 2U  (neN).

This proves that the Fréchet space Fl') satisfies condi tion
(5.5)(b).

(e) Let E be a Fréchet space satisfying one of the equivalent
condi tions in (5.5). If E admts a continuous norm  then

E is a Banach space as follows imediately from (5.5)(b).

For Fréchet spaces satisfying one of the equival ent conditions

in (5.5 we can prove the following structure theorem

(5.7) PROPCBITION et E ve a Fréchet space and et ((E)); g (Prpp )

be a projective sequence of Banach spaces such that an:Em > En is surjective

for all m >n and such that E is equal to the projective 1imit
proj En.

«n

Moreover, let F be a Banach space with the A extension property

for some X > 1 (i.e. for all Banach spaces (X,|.]) and closed
linear subspaces .11 Y) each |inear continuous map
TY » F has a continuous l'inear extension 'VI‘ : X+ F such

that ||T| <M|T] (see HE Lacey [22;p.86])).
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Then the canoni cal map ¥ : i n d gb(En‘F) * Yb(E,F) defined
n > '
in (-5.2) is a topological isomorphism and gb(E,F) is a strict

LB- space.

In particular, for every Fr échet space E satisfying one of
the conditions of (5.5) and every Banach space F wth the

A estension property, the space ,Y’b(E,F) i s a bornological
DF-space

Proof. Clearly, for every nelN, the canonical projection

Pn . E En is surject ive, and the projective sequence

(B pens Prmdm>n)  satisf ies  (5.4)(c). Therefore, by (5.2),
(b) and (d), the map vy is a continuous linear bijection and

the inductive limit ind -‘fb(En,F) is a strict LB-space. Thus
n->
we have only to show that Y is open.

Choose € n%N( %O(En) n;%(En))such that P . (B ;)=

(Bn)nelN

n
= Bn = I’Brl f or allneN,and let A denote the closed unit
ball in F. Let W e @, (ind £ (E . F)) be given. Then there

n-»
is a decreasing sequence ( o) N € (R:)N such that

By o (% (B_.A)e P ) c ¥ #) where w (B ,A)i={Te (E ,F):T(B ) c A}
(neN). B:=E A (nHeN —%;Bn) is a bounded set in E and

v = {Te¥ (E,F):T(B) ¢ —%XA} belongs to azzo(fb(E,F)). Thus

it suffices to show that ¥ cY(w).

Let Te ¥ . Then there are keN and Se Yb(Ek,F) such that r=SoPk.
. -1 1 ' 1

We first show that S(nf:\k)Pnk (Tan)) ¢ 5% A

-1, 1
N 1 T
Let x, e  OP pan)_ hen for every n<k, the element
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1

x =P, (x,) belongs to —p—H—Bn. Moreover, because of Pl , (B, ,)=B,
(leN) ,we inductively find a sequence (x;); , e ;T kaBl
such that Bl,1+1("141) = x (1 > k). Because of pp > n

1 -
(1> k) we have that x e 31—31 (1>Kk), whence x:=(x)); gy ©

1
€ bmle]N—Bl’

1
Because of Tey” we get that S(xk) = T(x) e —xA.

Let us now consider the space E which is a Banach space

<k
with respect to the Minkows-ki functional of the set I 1.
ngk ey 1
: I ; : P, ;
J Ek + n<kEn’ X + (P k(x))n K 1S linear and injective
-1

and J B) Since F has the X-extension

n 1o y_
(_<k B ) n<k nk( p

property, there exists a linear map éankEn* F such that

v _ 4 1
§«J = S such that S(n_ngn B )c A

For every n < k let J : B, 1<1(E denote the natural inclusion.

Then T :=§ . J belongs to g # (B ,A) (n<k)a n d T=n§an‘=Pn

since T((xn)neN)=S(xk)=é((Xn)n<k) = S( 2 (x;))

n<k n
= n_§k(S ¢ Jn ¢ Pn)((xl)lew) = n__%k(Tn ° Pn)((xl)lelN )

Thus Tengk(pnﬂ/(Bn.A)oPn) c ¥Y( w).

1 would like to thank K.Floret for eliminating a superfluous

sling from a former version of the above proof.

I n contrastt o (5.7) we. have the following proposition
(recall  that the Banach spaces 1” (I) have the 1 extension

property, see H.E.Lacey [22:;p.89]).
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(5.8) PROPOSITION. Let E be a metrizable locally convex space
containing a decreasing sequence (Un)ne]N of absolutely convex

zer o- nei ghbour hoods such t hat

(a) the sets -IlT Un (neN) form a basis of U, (E);

B+U.
™ B (E) Ud% (E) ndw “n # B
Then the space fb(E,]_m) is not gquasibarrelled.
Consequently, i f in addition E is the projective limit

T0]j of a rojective sequence , (P of normed
Pﬂj1 E proj q (CE) eN (nm)m_>n)

spaces, then the canonical mp Y lim Jmn(’fb(En’l ) *,g’b(E,lm)

(see (5.2)) is not open.

Proof. Let A denote the closed unit ball in 1%, and for every

neN put Wn:={Te¥(E,l°"):T(Un)c A t.Then the set y:=Uu W

n
(where the closure is taken in .‘t’b(E,lm) is clearly a bornivorous
barrel in .?’b(E,lm).
Assume that # is a zero-neighbourhood in fb(E,l“’),Then
there is B= TBe 2 (E) such that v 1={TeL(E,1°):T(B)c Al is

contained i n %'W . According to hypothesis (b) there exist

U = TU e %O(E), a sequence (Xn)ndN € n]}alNUn and a sequence

() hen in (B + %U)" such that fn(xn) > 1 for every nelN.

T : E » 1% x » (fn(x))nelN’ is linear and continuous because
the  sequence (fn)neN is equicontinuous. Moreover, T(B) cA
whence T ¢ ¥ ¢ %ﬂ/.

U ¢ U for

The set D:={xn:neN} is bounded in E, since xje N K
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alln > k. Thus @:={SeZ (E,1%):5(D) ¢ 3 A} belongs to 7, (£,.17))

and T 617 nkeJ]NWn +9

Consequently there is neN and R € 12- ", such that T-Re%

hence T(xn) 5 R(xn) + %A ¢ A, which is clearly a contradiction
to fn(xn)>1.

Next we will construct (a class of) Fréchet spaces E satisfying
the hypotheses of (5.8). The construction of these Fréchet’

spaces is rather dual to the construction of the LB-spaces

of (4.7).

(5.9) Example.
Let (Xn’rn)nem and (Yn’sn)ne]N be two sequences of Banach
spaces such that for every nelN

(a) xn is a linear subspace of Yn and r,2 s IX s

(b) the set {xeX :r (x) <1}is closed i n (Y ,s).
Moreover, just as in (4.7), let (Z |. 1) be a normal Banach sequen
ce space, i.e.]KGN) czc IKIN algebraically,the inclusion (Z,|1.||)¢]1<N

is cont inuous , and whenever (ay ), qeZ, (b, ) lmTNelKi1 are such is
continuous, and whenever (ak)kelNez’ () ken € };/]N are sychthat

byl < lay | (keN), then (b gy eZ a n d §b, <) . F or
every keN thereisp >0 such that [(8y a)) yii= p,|a| for all

aek (cf. (4.7). Moreover, let condition (c) in (4.7) be satisfied.

Now, for all nelN, the linear space

Eni= t0ken € k I X X (Y () G5 dy,n) € 2
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is a Banach space with respect to the norm
(Yk)kem '*ll((rk(yk))k<n.(Sk(Yk))k>n)ii-
as has been proved in (4.7). Let
Bni= {0y e € By 0 1T D) (5 pog) | < 1)

denote t h e closed unit ball In
Then E ;¢ E ¢  IY,.B ;¢ B, and the inclusionsE , =

o En - kglN(Yk’sk) are continuous (nelN).

Let E:=n2NEn be equipped with the initial topology with respect

to the inclusion maps E =—>En (nelN). Then E is topologically
isomorphic to the projective limit proj E_ . hence a Fréchet
space. o

Let Un::BnnE (neN). Then the sets %Un (neN) form a basis

o f @lo(E).

Let us suppose from now on that in addition the following

condition is satisfied

(d) r generates a strictly stronger topology on Xk than

k
s |X, for every keN.

We will show that the sequence(Un)nstatiSfieS condition

(b) in (5.8). For this purpose it obviously suffices to prove

1
Un¢ m Un+1+ 7U1f0r all n,melN.

Let m,neNb e given, and let A(r):= {xeX :r (x)<1}, A(s):=
= fye¥ s (y) <1}

Assume that A(s) n X ¢ mA(r) + %A(S)- Then for every keN
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_ 1
2k+1

A(s)NX, ©  G(2mACr) + 211+1A(s)) =2m &) " = 2m A(),

A(s) hence

z A
we have that A(s) th C g<jk M ZJA(r) +

which is a contradiction to hypothesis (d). Consequently,

there exists x e A(S) nxn such that x¢m A(r) + %A(s), The

element ( 6kn Oix)kelN belongs to E and to B . since
n

108 %n s eyl = s,(x) = 1. Assume that (8 kn%nX)de €
em [, + %Ul' Then - by the monotony of |, | - there are
yeX , seY such that pix;)wz and such that ( o 1 (y) =)

8 T ) eyl € M and (0 s (2) (8, s (D))ol < 5. Thus

Y. e -MA(r) and z e =i-A(s)whence x= P (y+z) e mA(r)+3A(s)
o an n 2

which is a contradiction to the choice of x.

Thus we have proved that Un g m Un+1 + —%—Ul. Now, by (5.8),

the space ,fb(E,lw) is not quasibarrelled.

Remarks.

(a) We just managed to realize the hypotheses of (5.8). In
fact, instead of (5.8)(b), the Fréchet spaces E constructed

in (5.9) satisfy the (formally) stronger condition

ve#? (E) bed'E) nfw Yn U * B
Corollary (5.15) will show that quasinormable Fréchet spaces

E never satisfy the hypotheses of (5.8).

(b) For a nondistinguished Fréchet space E the space Yb(E,l"’)
is clearly never quasibarrelled (as it contains Et') as a complemented

subspace). Theref ore the examples which we obtained with
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the help of (5.8) and (5.9) are only interesting if we make
sure that we can get distinguished Fréchet spaces E with
Z’b(E,lw) non-quasibarrelled in that way. - Taking (Xn,rn),
(Yn,sn) (nelN), and (Z,|.l) reflexive, we obtain ref-lexive
Banach spaces En (nelN) (we do not prove this statement, cf.
also  V.B.Moscatelli [23;Thm.1 and its proof]) and hence a

reflexive Fréchet space E, which is in particular distinguished.

(¢ For a quasibarrelled space E the following statements

are equivalent:

(a) There exists a decreasing sequence (Un)ne]N of absolutely
convex zero-neighbourhoods in E such that (5.8),(a) and

(b), are satisfied.

(8) There exists an increasing sequence (B ) o of absolutely
convex o(E',E)-closed, B(E',E)-bounded subsets in F:= By

such that (4.5).(a) and (b), are satisfied.

proof. (¢ ) => ( 8). Let (U)) 4y according to ( ¢ ) be given,
and def ine Bhi=Uy (nelN). Then the sequence (Bn)ne]N satisfies
(4.5)(a). Moreover. let V = V°° e 0110(131')) be given. Then there
is U = TU e a]lo(E) such that U, ¢ ve o+ 2u (nelN), whence
Bn = UI"1 2 (V°+U)° and in particular anﬁ(V°uU)° = VNnJy°
(nelN)

(B) = (a). Let (Bn)ndN according to (8 ) be given. and define
Un:=B;1 (neN). Then the sequence (U)) qy satisfies (5.8) (a).
Moreover, let Be # (E) be given Then thereis A e @(E{)) such

that %B° NA ¢ Bn (nelN). We may assume that A=A°° (using

again the quasibarrelledness of E). Then Un=Br"1 ¢ (%B°mA)°
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(neN). Since B + %A“ c (%B“NA)°we obtain that Un¢B+%A°

(nelN).
Quite analogously one proves the following statement

(d) For a quasibarrelled space F the following are equivalent
(o) There exists an increasing sequence (B ) o of absolutely
convex closed bounded sets in F such that (4.5) ,(a)

and (b), are satisfied.

(8) There exists a decreasing sequence (Un)nelN of absolutely
convex  zero-neighbourhoods in E:=F{) such that (5.8),(a)

and (b) are satisfied.

(e) Let E be a nondistinguished metrizable locally convex
space. Then E satisf ies the hypotheses of (5.8). (Confer

however part (b) of this remark).

Proof, We have thut Rg(E' ,B'") is strictly stronger than g(E',E)

and that E! is a DF-space. Consequently, by G.Kothe [20;p.398,(7)],

b
there is Ue %O(E),U=U°°,such that Bg(E' ,E")|U°;8(E',E)}U°.

Let (An)nelN be a fundamental sequence of bounded sets in

By such that every A, is absolutely convex and 0(E',E)-
compact. There exists a sequence (pn)ndNe(RI)]Nsuch that
Benu°¢ nEJN oA, for allBe 2 (E). The sets B :=m§npmAm (nelN)
form an increasing sequence of o(E',E)-closed, B(E',E)-

bounded, absolutely convex sets in E, which obviously satisfy
(4.5)(a) as well as a condition which implies (4.5)(b) (Cf.
Remark (1) after (4.7)). Now we obtain the assertion with

the help of (c).
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Another method of combining the examples of sect ion four
with those of section five is based on the following simple

fact.

(5.10) LEMMA. cLet X,Y be Hausdorff quasibarrelled spaces. Then

the map

O L OGYD) A (VX)L T > Th )y,
(where we consider Y as a subspace of Y" in the usual way)
is a topolcgical i sonor phi sm
proof. If Te ¢ (X,Y})then T: (Yp)y, + X is continuous, thus
TtlY belongs to y(Y,Xt')), and ¢ is well defined.

Since the map LY XE) » ,Sf’b(x,Y,[')), S » Stix is the inverse
map to o , it suffices - because of symmetry - to show that
g is continous. But the continuity follows at once from

Be i Y
AGV@(X) BGY@(Y) Te;’(x,y{)) (T(A) ¢ = (B) < )

As an application of (5.10) we would like to mention the

following two examples.
(5.11) Examples.

(@ Let F be a reflexive DF-space such that ,iﬁb(ll,F)i s

not quasibarrelled (cf. (4.7),(4.8)). Then B::FI; is a reflexive

Fréchet space such that .,fb(E,lm) is not quasibarrelled.

(b) For every nelN let
k (i,k) e N xN, i < n
(n)._ whenever

[y

(k) € IN x IN, i> n,
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and let 1 < p <q <». For every n e N let

. N, . (n)
Eni= 0y 10 (4, k) emny e K @500 (4 k) enae L @D

be provided with the norm

),
G e * 1@ 0 G enndp
where |. | denotes the usual norm on 1PN .

Then E_ is a Banach space, E c E ¢ N and the inclusions

n+l

Entl < En are continuous (nelN). The projective limit E:=p£onjEn

is an echelon space of order p.

We will show that =.S!’b(E,lq) is not quasibarrelled.

In fact, if p=1, then E is not distinguished (see G.Kothe
[20:p.435]), whence E]; and hence fb(E,lq) are not quasibarrelled.
On the other hand, let pe(l,»). Then E is reflexive and its

strong  dual Et') is equal to the LB-space F constructed in

(4.8) with respect to p':= —g—i (see K.D.Bierstedt, R.G.Meise,
W.H.Summers [5;2.8 Cor.]). In (4.8) we had proved that

.?’b(lr,F) is not quasibarrelled whenever 1 < r < p. Because
o f 1 <p<aq< owe have that q:= q—?T belongs to the interval
(1,p']J. By Lemma (5.10) the space ,Q’b(E,lq) is topologically
isomorphic to fb(lq',F). Thus S’b(E,lq) is not quasibarrelled.

Finally, if g=eo . then by (5.10) the space ,sﬂb(E,lm) is topolo-
gically isomorphic to i"b(ll,F) and hence not quasibarrelled.

In order to prove a statement similar to that in (4.10)

we need the following simple fact.
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(5.12) Remark. Let F be a locally convex space a nd let I be ;
set. Let 17(F):={(x ) 1€I€FI:{XI: i ele B(F)?
be provided with the (locally convex) topology of uniform

convergence 0 n I.Then the sets Ulml‘}o (F) (Ce 47/0[F)) form a

basis of fg/o(lc’f (F), and the sets B! (Be 4 (F) form a

fundamental system of bounded sets in 1°1°(F).

Furthermore let - as in (4.10) - El: k(D) pe provided with

the norm (a)) . Then the map

tel ” 1eZI|a1|

H 1 > & g
0L ® LF) 2 L(F), T = (T((&e o)) eg »

is a topological isomorphism.

In fact, © is clearly linear and injective. Moreover, if
x = (x),¢; € 1;(F), then T:E! » Fo (@) g1 v E1a X belongs to
2@, F) and O(T) = x.

Let A denote the closed unit ball in El,Then A= r{(ém) trell

kel
and consequently we have the equivalence

T(A) ¢ U<=0(T) ¢ Ulnlf (F) (U=TUe 7_(F), Te¥ EL,F)).
This proves that 9 is a topological isomorphism.

Now, Proposition (4.10) immediately implies the following

statement.

(5.13) PROPCSI TI ON. et Fbpea DF-space and let | be a set.
Then the space 1?(1:) is also a DF-space.

(But = according to (4.7), (4.8) - there exist reflexive
LB-spaces F such that lm(F) (:=1;(F)) is not quasibarrelled

though it is a DF -space by (5.13).) = We would like to mention
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that according t o aresult of A,Marquina and J. M.Sanz Serna
(Barrelledness Conditions on cO(E), Arch.Mat. 31(1978),589-596)
the space co( F) is quasibarrelled whenever [ is a4 quasibarrelled
DF-space. This shows that the functors Fas I"(F) and Faw c (F)C

¢ 1® (F)) behave quite differently.

On the other hand, Proposition (5.13) is in accordance with
the following result of J.Schmets.

If F is a DF-space, then also cO(F) is a DF-space.

(More generally, J.Schmets proves: Let K be a compact Hausdorff

space and F a DF-space, then € (K:;F) is a DF-space.)
Next we will prove the following analogue to (4.10).
(5.14) PROPOSITION. ret E be 6 nmetrizable locally convex space
and fet ] be a set. Then ﬁ!’b(E,ll‘”J i's a DF-space.
(Here we use the notation 1‘1" = 1"I° (K) is the sense of (5.12).)
pProof.Because of (5.13) it suffices to show that the map
e:fb(ﬁ,l"f)n"f(}at')),T WP T

where P1 : 1"; + K denotes the projection onto the 1'th coordinate
(rel), is a topological isomorphism.
I n fact, this latter statement is true for spaces E which

are just quasibarrelled instead of being metrizable.
For every Te ¥ (E,1°1°) the family (P, » T) , _; is bounded in

E Consequently, 0 is well defined. Moreover, 0 is clearly

b
linear and injective. Given (f,),

T(x):=(f, (x))

1] ©
el © lI(Et')), the map T:E » lI‘

el (xeE), is well defined (since (fl) LEl 18

a fortiori bounded in E.) and linear. By the quasibarrelledness
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of E, t h e family( f ) | ] LS equicontinuous, which implies
the continuityof T . Since O (T)=(f { ), ;- we have proved
the surjectivity of © . Finally, for every B € I(E) we have
that

© Inge
0 ({Tefb(E,ll):sugﬂT(x)Hm < 1) =(B)" Nl (Ep).
X€

Consequently ¢ is a homeomorphism.
From (5.14) and (5.3) we immediately obtain the following

(5.15) corollary. Let E be a quasinormable  Fréchet space
and [ a set. Then :Zb(E,lof)i S a retractive LB-space, and

(P_ ) ) of Banach

for every projective seouence ((En)neJN’ nm’m>n

spaces Such that E 1s the reduced project ive limit projEn,
“n
the canonical map

y : ind fb(En,lI) "’S’pb(E’ll)

n>

is a topological isomorphism.
(5.16) Remarks.

(@& Let E be a Hausdorff locally convex space and G ¢ E a
dense linear subspace such that on E'=G' the topologies
B(E',E) and B (E',G) coincide . Then for every Hausdorff

locally convex space F the linear injection
£ (E.F) * £, (G.F), T »T|C,

is a topological isomorphism onto its range, since the hypothesis
about the strong topologies is equivalent to the following
condition

v 3 B AE
Be B (E) Aed (G) ¢
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Consequently, if F is complete, then Yb(E,F)and ,%b(G,F)

are topologically isomorphic.

Now, let E be a metrizable locally convex space, and let
G be a dense linear subspace such that G is distinguished.
Then B(E',E") *and B(E',G) are LB-space topologies and
B(E',E") > B(E',E) D B(E',G)whence B(E',E") = B(E',E) =
= B(E',G) (and also E is distinguished).

Combining these statements with (5.15) and the fact that
a quasinormable metrizable locally convex space is in particular
distinguished  (see  A.Grothendieck [14:p.108,Prop.14]), W e
obtain that for every quasinormable metrizable locally convex
space E and for every set 1 the space .S”b(E ,1‘;) is a bornological

DF-space.

(b) It should be mentioned that (5.15) can be derived directly
from (4.11). In fact, if E is a quasinormable Fréchet space,
then Ef; has a representation as a retractive LB-space ind Fos
whence .‘Zb(ll(l),EB) i s a retractive LB-space by n(*4.12),
and by (5. 10), the spaces Z’b(ll(l) ’El')) and ,?’b(E,l?) are

topologically isomorphic.

(We apologize for the disharmony of the notations 11(I)and
1;.)

(c) The hypotheses of (5.7) and (5.15) are incomparable.
I n fact, not every quasinormable Fréchet space E satisfies
the conditions of (5.5) (cf. (5.6)(b)(B)). On the other hand,
not every Banach space F with the ) extension property for

some A> 1 is of type 1. Indeed, the class of all Banach

T
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spaces with the 1 extension property consists precisely of
all spaces ¥ (K) where K is an extremally disconnected compact
Hausdorff space (see M.M.Day [6;p.123, Thm.3]). There exists
an extremally disconnected compact Hausdorff space K which
is not homeomorphic to the Stone-Cech compactification of
a discrete space (see Z.Semadeni, Banach spaces of continuous
functions, Polish Scientific Publishers, Warsaw 1971,p.432
and p.284; 1 would Ilike to thank E.Behrends for point ing

out this reference to me). On account of the Theorem of Banach-

Stone (M.M.Day [6;p.115]), V(K) is not of type 17.

(d) In connection with (4.12),(5.15), and (5.7) quite naturally
the question arises what an analogue to (5.7) for strict
LB-spaces would look like. Let us say for the moment that
a Banach space has the A lifting property for some ) >1
if for every pair (Y,Z) of Banach spaces with Y ¢ Z and every
Te¥ (X,Z/Y) there exists Se ¥ (X,Z) such that S$-Q=T (Q:Z + Z/Y
denoting the quotient map and such that S| < x|T|. Using similar

methods as in the proof of (5.7) one can show:

If E is a Banach space with the i lifting property for
some ) > 1 and F=ind F_ is a strict LB-space, then the canonical

n-»>
map

o indZ’b(E,Fn) +.‘£b(E,F)

n—+
is a topological isomorphism and .‘fb(E,F) is a strict LB-space.
However, accordingt o G.Kothe [19;p.188,(8)], every Banach
space with the 1 lifting property for some X > 1 is topologically

isomorphic to ll(I)for a suitable set 1. Thus the above
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statement is just a special case of (4.11).

The following remark will show that Proposition (5.8)
gives rise to a construct ion of nondistinguished Fréchet
spaces.

(5.17) Remark. Let E be a locally convex space and let P
denote the set of allcontinuous seminorms on E. According

to A.Pietsch [24] we provide the space

B} =)y 6B 1 nZnp(x,) < for every peP )
with the locally convex topology generated by the seminorms

ap 11{g} » R, %) en ™ odwP (%) (peP)

If E is metrizable. then clearly also 11{ E } is metrizable;

1 4B} s complete (A.Pietsch

if E is complete, then also 1
[24 ;p. 28,1.4]) . Moreover, we have the following statement
about the strong dual of ll{E}.

PROPOSITION. Let E be a quasibarrelled space such that E

has property (B) in the sense of A.Pietsch [24;p.30], (By loc.cit.
every DF-space and every metrizable locally convex space
have property (B).)

Then (,11{}3})t') is topologically isonorphic to lw(Ef))'

. 1 .
Proof. For every neN the map Jn B LB x m (8 Xy 1S
linear and continuous. Moreover, for every fe(l1 {E})', the

sequence ( f °J ) € (Et'))]Ni s equicontinuous and thus belongs

to lm(Eé).Consequently the map 3 : (11{5})6 + 1°°(Et"),
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fo (feJ neN’ mell defined and linear. & is injective,
1

00

(]N) I i 1 i
as E is dense in 1° {E} . Let (fn)nelN g 1 (Eb) be given.
As E is quasibarrelled, the sequence (fn)ndN is equicontinuous.
Therefore the map f : 1M} » K, ppen * 2N fa(xy)s is
well defined, linear, and continuous. Moreover, ¢ (f) = (fn)ne]N'
This proves that ¢ is surjective.

Let B = I'B e#(E) be given, and let Py denote its Minkowski
functional. Then B :i= {(x ) 4 € 11 (g} n [B]]N:néNpB(xn) < 1}
is obviously boundedin K (E) and ¢ B°) C (B°)]N.This proves

the continuity of ¢ .

We finally prove that ¢ is open. Let B¢ ll{E} be bounded.
Since E has property (B) of Pietsch, there is B= TB ¢ # (E)

such that

Be  {(x) e  LEWBN: mypp(x )1l

We show that (I>(IB°)D(B°)]anm(Et')) (which will finish the proof).
Let (f ) gy N (B°)]N N1 (B))be given. Then f : 11 {E} ~ K,
FC(x) ) =y £,(x,)» belongs to (11E}) " and to B°.

I n fact,i f (x)pen € B thenlf((xn)ne]NHfnZdN|fn(xn) <

néN pp(x,)) < 1, whence fe B °. Clearly, o(f) = (f ) an-

Now let E be a Fréchet space satisfying the . hypotheses

of Proposition (5.8). Then S?b(E,lm) is a DF-space by (5.14)
but not quasibarrelled by (5.8). As it was shown in the proof

o f (5.14),the spaces fé’b(E,lm) and lm(Bt')) are topologically
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isomorphic. By the above proposition, the space 1m(Et'))i s

topologically isomorphic to the strong dual of the Fréchet

1 1

space 1" {E}. Consequently, the Fréchet space 1 {E } is not

distinguished. . As was shown in (5.9), the space E may be
chosen to be ref lexive and separable. Thus, for a separable

and reflexive Fréchet space E the space ll{E}may benondistinguished,
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