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EXISTENCE OF BOUNDED SOLUTIONS FOR SET-VALUED
EQUATIONS IN BANACH SPACES

G.ANICHINI-P.ZECCA

Sunto. Si considera il problema della ricerca di soluzioni
limitate, su intervalli non limitati, di problemi al contorno
per equazioni differenziali multivoche in spazi di Banach. La
determinazione di opportune stime a priori permettera di risolvere
11 problema dell'esistenza di soluzioni mediante teoremi di punto

fisso.

INTRODUCTION. Many papers deal with the problem of existence
of bounded solutions on an interval [ for differential equations
in Banach space (see e.g. [1].,[5].[6],[9]),[14] and references

therein).

in this paper our aim is to prove the existence of bounded

solutions for multivalued systems

j x(t) e Ax(t) + F(t,x(t))

X € S

where F is a4 convex-valued Caratheodory multivalued map, A the
infinitesimal generator of a bounded semigroup and S a subset

in a4 Banach space.

A problem of this type was solved in [5] in the case of finite-

dimensional spaces.

The approach reduces the problem of proving existence of solu-
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tions for (1) to the one of finding suitable a4 priori bounds.
Moreover, we will give an example of conditions on A and F which

will ensure the existence of such a priori bounds.

NOTATIONS. Throughout this paper, X is a real or complex Banach
space, J is an open interval of the real line, possibly unbounded,
C(J,X) 1is the vector space of all continuous mappings of J into
X, BC(J,X) is the vector subspace of C(J,X) of all bounded conti-
nuous mappings of J into X. If K ¢ J is a compact interval, the
topology on C(J,X) 1is defined by means of a family of seminorms
NK(x) = T:ﬁ(ﬂx(t)”): thus C(J,X) is a Fréchet space, i.e. a linear,
metric, locally convex, complete space. In such a space a sequence

{x } is said to be convergent if it is uniformly convergent on

compact intervals contained in J.

In the Banach space X we shall adopt the usual meaningofstrongly
measurable function, strongly continuous function, strongly integra
ble (i.e. Bochner integrable) function (see, for instance, [10]

for details).

Finally a set-valued function F : X > 2% 1s called upper semicon-
tinuous (u.s.c.) on X if for each xeX the set F(x) 1is nonempty,
closed and for each open set 0 ¢ X, F(x) ¢ 0, there is an open

neighborhood U of x such that F(U) ¢ 0.

1., STATEMENT OF THE PROBLEM AND SOME RESULTS

Let us consider the following multivalued boundary value problem

(MBVP)
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X e G(t,x)
(1)
X € S
for teJ, where G : J x X = ZX is a multivalued mapping and S is

a nonempty convex subset of C(J,X).

The problem (1) can be considered, under suitable conditions
on the functions and operators involved, a problem equivalent

to either of the following ones:

X € Ax + F(t,x)
(2)

where F : J x X +2X is a multivalued mapping obtained by 'shifting"
cthe given mapping G by means of a suitable linear bounded operator
A : D(A) c X=X,

or x e A(t,x)x + F(t,x)

(3)

X € S

where F is obtained as above and A(t,x) is a continuous operator
defined on J x D, where D is a locally closed subset of X, and

taking values on X.

In both cases, if y=y(t,x) is a selection of the multivalued
mapping F(t,x), there are results (see [3],[4] for problem (2),[7],
[13] for problem (3)) ensuring the existence of a solution of

the '"corresponding'" ordinary differential equation
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(2.1) x = Ax + y(t,x)
or
(3.1) X = A(t,x)x + y(t,x)

For the sake of simplicity, we will consider only one of the
previous cases in the sequel: then, by changing the hypotheses
needed to obtain a solution for (2.1) (or 3.1)), we will get the

other case.

So let us assume that:

HYPOTHESIS A: F(-: ,x) is a strongly measurable function J for
each xeX and F(t,-) is an upper semicontinuous (u.s.c.) function
on X a.e. for teJ. Moreover, we shall assume that each set F(t,x)
s nonempty, convex and compact and that there exists a function
o : J x J > o(t,u) € R measurable in t for each uelJ, continuous

and non-decreasing in u for all teJ such that

|F(t,x)| < o(t,[x]|)
and

[ o(t,|x]|)dt <+ = for all xeR".
J

HYPOTHESIS B: Assume that the following holds A:D(A) ¢ X=X
is the infinitesimal generator of a strongly continuous (at the
origin) (see [4]) semigroup T(t) of linear bounded transformations

over X such that D(A)NS#0. In the sequel we will assume SecD(A).

REMARK 1:If we are concerned with existence of solutions for

problem (3.1), then Hypothesis B must be changed in the following
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way: the operator A(t,x) is locally integrable w.r.t. t for each

xeX and (strongly) continuous in x for teld.

Then in order to prove the existence of a solution of (1) we
need the existence of integrable selections for the multivalued

mapping F(t,x) and this is given by the following "selection result':

PROPOSITION 1: For each w(-)eB ¢ (J,X) the multivalued function

F(-,w( }) admits measurable selections Sy € Ll(J.K)*

The above result is achieved firstly by using a general result

(see Kuratowskii-Ryll-Nardewskii [11]) on measurable selectors

to obtain a locally (for each compact interval I%] such that

oo

J = y K. ) measurable selector and then by extending it through

p=1
the boundedness assumption on the set-valued function F. Now,

for each yeBC(J,X) 1let us consider the (nonempty) set S(y) of

measurable selectors of the set function F( -,y)(-+)) defined by
S(y) = {s,eL'(J.X) : s, (t) e F(t.y(t)), a.e. in J}.

The main properties of this set are shown by the following

LEMMA 1: The subset S(y) c Ll(J.X) is i) convex and closed,

ii) weakly sequentially compact for each yeBC(J,X).

Proof. On each compact interval I(p, such that

closed (see [12]). Then, as in [5] it will be easy to show that

both the inclusions

S(y) ¢ n

S_(y)
p=1 P
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and

n SD(Y) c S(y)

p=1

hold, where Sp(y} = {syeLl(J,K) : sy{t) e F(t,y(t)), |5y(t}| <
< 9o(t,|yl), a.e. in Kp}; The latter set is closed for every peN:

thus S(y) = ﬁ

p=1
obvious and the weak sequential compactness follows from the boun-

Sp(y) and it is a closed set. The convexity 1is

dedness of F through a standard argument in functional analysis.

A method similar to the one used in [5] will allow us to reduce
the given problem to that of solving a suitable abstract equation
xeT(x): then the existence of a fixed point for the operator T
will be the essential tool needed to solve problem (1.1). To this

aim we will need the following hypotheses:

Hl) There exists a globally bounded closed convex set QcC(J,X)

such that, for each yefl, the "linear" system

X € Ax + F(t,y)
(1L)

X € S
has at least a solution in &

H2) If T(y) denotes the (nonempty) set of solutions of the BVP

(1L) we assume that T(f) c S. Then Kakutani's fixed point theorem
(see [2], pg.85) will be enough for us to get the required solution

of the problem (1.1).
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2. MAIN RESULT

Let us consider problem (2) as a suitable form of problem (1):
then we need hypotheses like A and B in order to have solutions
for the "single' ordinary differential equations and hypotheses

like Hl) and H2) in order to apply the fixed point argument,

Thus we have:

THEOREM 1: Assume that hypotheses A) and B) and hypotheses
Hl1) and H2Z) hold. Then the MBVP (2) has at least one (bounded)

solution.

REMARK 1. If the set S ¢ C(J,X) is a closed set, then hypothesis
H2) 1is obviously satisfied: we refer the reader to the quoted
paper [6] for other details on the role played by that hypothesis

and for other examples concerning the use of such an assumption.

PROOF OF THEOREM 1: Let us define the operator T:y » T(y). By
hypothesis Hl1) T is properly defined. The proof will be accomplished

by proving the following two steps:
Step 1: T(y) is a (nonempt) convex set for each yeQc C(J,X).
Step 2: y~»>T(y) is an u.s.c. operator with closed values.

Then a straightforward application of Kakutani's fixed point
theorem to the multivalued operator T will finish the proof.
Step 1 is easily show by observing that, for given yl,yzeT(y),

by (hypothesis Hl) there exist s; and sieS(y) such that

(¥, = Ayg + si(t)
<
|

Yy € S
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( 2
- = A

| Y5 Y + sy (1)
y, € S

The convexity of both S(y) and S completes the proof.

To prove Step 2 let
T(R) ¢ 2 is a

us first show that, under hypothesis H1l),

relatively compact subset of C(J,X). Thus we need

to prove that, by Ascoli's theorem, the set T() is equibounded

and equicontinuous in K for each compact subset K of J

J. Since
¢ and T(R) are bounded, there is a continuous real function

TR J > R" such that lw(t) | <y (t),

ly(t)|<wv(t) for all we® and
yeT ().

If ¥(K) = max{¥(t), t € K ¢ J}, then beside theequiboundedness

of  (and T(R) we get the equicontinuity by considering

Iy Cedl < IAL Iyl + |F(t,y(t))]| =

= [A[V(K) + max {o(t,lyl), teK, |yl < ¥(K)

The relative compactness of T(Q) will allow us to show that,

in order to prove that T is an u.s.c. operator with closed values,

T has a closed graph (see, for instance, [2]).

To that purpose assume (yn,xnj € graph (T) are such that

Lim(y_»x_ ) = (y,x) e @ x C(J,X):

we claim that xeT(y).
n

For such

{xn} there is a sequence {5}r } ¢ S(ynJ such that
n

or, (see [8]), equivalently
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Lt
T(t)xn[ﬂ) + %T{L—T}SY (1)dt , (%)
n

x_(t)

where we assumed that sy (t) are (strongly) measurable functions,
n
xn{U} e D(A) for all n and the above integral is in the Bochner

sense ([13]).

Since xeS by hypothesis HZ), it will be enough to show the
existence of syeS[y) such that x is a solution of the integral
equaiation:

t

x{(t) = x(0) + _f T(t-1)s_ (T1)dT
0 Yy

As usual, let {ZH{} be a sequence of nested compact intervals

L
with the property | [,=J. Put {z (t)}= [T(t-t)s_  (t)dt: then
k=0 0 "n

from () we can say that {zn(tj} converges to a function zeC(J,X),

uniformly on each Ik‘ i.e.

t
z(t) = lim z_(t) = lim ] T(t-1)s_ (1)dr
0 Y

n > n > 1]

for tEIk' Moreover, by assuming (strongly) measurability and Bochner

integrability of a suitable selector EHF (denoted si for tEIk}

we can apply Proposition 1 to say that such a selector exists
such that
t k
z(t) = | T(t*T)Sy(T) drt
0

or, equivalently,

t
x(t) = T(t)x(0) + | T(t-T)SE(T)dT
0
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Without 1loss of generality, we can suppose that for each tEIk

k+1
S

.k
y (t) = 5},[1:]

and define any extension ét(t) of 5t(tj to J such that ét(t)=5§(t)

for tel, and Hsi[-)” < 9(t,ly(t)]) for t¢l, . This extended function

belongs to the set

sK(y) = (s, e LY (3.x) : Is, 1 < @Ce.y(e)).

sy(t) e F(t,y(t)) d.e. on Ik}

and so the sequence {sy} 1s a weakly compact sequence of Ll(J*K}:

then a subsequence converging to & function Ey € Ll(J,X) cdan be
found such that 5}, € S(y) = kgﬂ Sk(yJ, since the latter set 1is

strongly closed and convex and since éy belongs to the weuk

closure of the set S(y).

From the above construction, for each peN

~k+p _ =k
sy (t) = sy(t).

Thus 5, (t) = §§{t} for tel, and the proof of both Step 2 and

Theorem 1 is done.

5. SOME APPLICATIONS

As Theorem 1 shows, we need two types of a priori bounds for
the existence of solutions of system (2). Hence, we want to present
some cases in which the existence of such a priori bounds is given

and so the hypotheses H1)-H2) are satisfied.
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THEOREM 2. Let us assume that the following conditions hold:

1) there exist two {Ll—SGmmabIe) functions a.b such that
|F(t,x)| < a(t)lx|+b(t) for teJ and xeX ;
11) the linear system (1[.) has at least one solution X for
each continuous bounded vy such that ny(ﬂ)ﬂ < sup ly[t) :
T tel

iii) let A be such that the corresponding semigroup of bounded
linear transformations over X has a negative exponential

growth, that 1is

IT(t)] < M exp (t(w +€)),

fi

where M = M(e) >0 and w = lim + 1g|T(t)] < 0.

t>o

Let T(y) be the set as defined in hypothesis HZ). Then there

exists a continuous real function ¢ such that sup{e(t), teJ} <+

and T(R(9)) ¢ S(¢9) where

(p) = {yeC(J,X) : Iyl < o(t), ted }.

Moreover, if the condition

(*) T(8)(e)) ¢ S

holds, then the system (2) has (at least) one bounded solution.

REMARK 1: We will put in the sequel a = exp ( [ a(s)ds), b =
J
=/ b(s)ds, K = K(&) ==(w +€)>0. The negative exponential growth
J

is not too restrictive a condition: there are in fact semigroups

for which w_ = - ® (see (3] p.166).
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Proof. Let us consider the scalar differential equation

MO(t) = a(t)®(t) + bL(t) (%)
Then we have
t t S _
Mo(t) = exp( éﬂts)ds)[m{ﬂ} + éb{s)exp(- éd(r]dr}dsj
4and so
dD
H$HL] j*ﬁT[H¢{0}ﬂ + hD1¢§+u:_

Let now ¢ be such that @(0) < M{sup|y(t)|, teJ} and satisfying
1 t
(%), i.e.  9(1)-9(0) = 5 | (a(s)®(s)+b(s))ds
0
Let us now consider xY e T(y), with yeQ(¢@): then, from the

corresponding integral equation (%), we have

ix, () < ITCe)iix (O) 0+

+ _zHT(t~5]n(ﬂ(5)¢{5}+b(5])d5 <

t
<M exp (-kt) NKY[OJH + Jo(d(53¢(5)+b(5}J ds <

< HHKY(U)H + (e(t)-9(0)) =

(L) + Mﬂxy(U)H - @(0) < o(t).

Then T(Q(9p)) ¢ Q(¢). Finally the assertion follows from Theorem

1 by recalling condition (°).

REMARK 2: Condition ii) can be improved by putting
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nyiﬂJH < a {sup|y(t)|, te J} +B

where a > 0 and B8 >0. If a = 0, then the assumption is d4lways
satisfied: this occurs, for instance, if the boundary condition
implies a bound on the initial condition or, equivalently, if

S ¢ ST, where

Sy = {yeC(J,X) & Iy(0)l<y . Yy >0} .

REMARK 3. Whether condition HZ) 1is satisfied or not depends
essentiially upon the special kind of boundary conditions associated
with the differential system. If the set Q( @), introduced in
Theorem 2, is such that (@) ¢ S, then the assumption T(Q(¢)) cl(o)
is verified. This is the case, for instance, when we are looking
for bounded solutions or when the boundary conditions are of Cauchy's
or Nicoletti's type (in these latter cases both the assumptions

T(R) ¢ and T(R) ¢ S are satisfied.
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