DIRICHLET PROBLEM FOR THE LAPLACE OPERATOR IN A RECTANGLE AND IN A STRIP

Maria TRANSIRICO

Summary. Bounds for the solution of the Dirichlet problem for the Laplace operator in a rectangle and in a strip are given by means of the solution of a "symmetrized" problem.

INTRODUCTION. Many authors have considered the effect of Schwartz symmetrization on elliptic (see, e.g., [10], [9], [11]) and parabolic (see [3], [2]) problems.

The principal aim of these papers is to obtain some optimal bounds for the solutions of these problems.

A typical case in this setting is the following (see [9]).

Consider the problem

\[
\begin{align*}
- \Delta u &= f \quad \text{in } G \\
 u &= 0 \quad \text{on } \partial G
\end{align*}
\]

and look for the

\[
\sup_{p,q \text{ suitable}} \frac{\|u\|_p}{\|f\|_q}
\]

where the supremum is taken when f ranges through the functions with a fixed rearrangement and G ranges through the domains of \(\mathbb{R}^n\) with fixed measure.

This least upper bound is attained for the solution of the problem

\[
\begin{align*}
- \Delta w &= f^# \quad \text{in } G^# \\
 w &= 0 \quad \text{on } \partial G^#
\end{align*}
\]
where $f^#$ is the spherically symmetric rearrangement of f in the sense of Hardy-Littlewood and $G^#$ is the ball centered at the origin with same measure of G.

In fact, this is a useful point of view because now we deal with majorization formulas for symmetric and then simpler problems. Moreover it is well-known that symmetrization results are of particularly relevant interest in many fields of Mathematical Physics (see, e.g., the classical book of Polya-Szego [12]).

In this paper, following the previous point of view, we study the effect of a Steiner symmetrization on the following problems. Consider the problem

\[
\begin{aligned}
\begin{cases}
-\Delta u(x_1,x_2) = f(x_1,x_2) & \text{in } G \\
u(x_1,x_2) = 0 & \text{on } \partial G,
\end{cases}
\end{aligned}
\]

(0.1)

where $G = (-a,a) \times (0,b)$ with $a, b>0$ and Δ is the Laplacian operator. Our aim is to give some bounds for $u(x_1,x_2)$ by using the solution of a "symmetrized" problem of the type

\[
\begin{aligned}
\begin{cases}
-\Delta U(x_1,x_2) = f^#(x_1,x_2) & \text{in } G \\
U(x_1,x_2) = 0 & \text{on } \partial G,
\end{cases}
\end{aligned}
\]

(0.1)'

where, for any fixed $x_2 \in [0,b]$, $f^#(\cdot,x_2)$ is the symmetrically decreasing rearrangement of $f(\cdot,x_2)$ as defined by Hardy and Littlewood.\(^{(1)}\)

\(^{(1)}\) For $x_2 \in [0,b]$, $f^#(x_1,x_2) = f^*(C_1|x_1|,x_2)$ where $f^*(t,x_2)$ ($t\geq 0$) denotes the decreasing rearrangement of $f(\cdot,x_2)$ in $[0,\infty)$, $C_1=2$. For more details, see [3] and [9].
We suppose \(f \) and \(f^\# \) sufficiently smooth so that there is existence and uniqueness for the solutions of problems (0.1), (0.1)# in \(C^2(G) \cap C^0(\bar{G}) \).

In section 1 we will give, for any \(x_2 \in [0, b] \), a bound for the \(L^1 \)-norm of \(u(\cdot, x_2) \) in terms of the \(L^1 \)-norm of \(U(\cdot, x_2) \) and then we will obtain also a bound of the \(L^1 \)-norm of \(u \) in terms of the \(L^1 \)-norm of \(U \) in all \(G \).

Consider then the problem

\[
\begin{align*}
- \Delta u(x_1, x_2) &= f(x_1, x_2) \quad \text{in } G \\
u(x_1, x_2) &= 0 \quad \text{on } \partial G,
\end{align*}
\]

(0.2)

where \(G = (-\infty, +\infty) \times (0, b) \) with \(b > 0 \), and the "symmetrized" problem

\[
\begin{align*}
- \Delta U(x_1, x_2) &= f^\#(x_1, x_2) \quad \text{in } G \\
U(x_1, x_2) &= 0 \quad \text{on } \partial G,
\end{align*}
\]

(0.2)\#

with \(f \) and then \(f^\# \) belonging to \(L^2(G) \).

It is well known that there exist unique solutions to (0.2) and (0.2)# in \(W^{1, 2}_0(G) \cap W^{2, 2}_{\text{loc}}(G) \); see [5].

In section 2 we will obtain for a strip a result which is similar to that obtained for a rectangle; moreover we will give, for any \(x_2 \in [0, b] \), a bound for \(\sup_{-\infty < x_1 < +\infty} |u(x_1, x_2)| \) in terms of \(\sup_{-\infty < x_1 < +\infty} U(x_1, x_2) \) and also a bound for \(\sup_{\bar{G}} |u(x_1, x_2)| \) in terms of \(\sup_{\bar{G}} U(x_1, x_2) \).

To obtain these results we will use a technique developed by
C. Bandle in her treatment of parabolic operators (see [2]). In the same framework, we can quote the work of C. Borell, see [4], where a symmetrization like that of Steiner is used.

SECTION 1.

Consider the boundary problem

$$\begin{cases}
-\Delta u(x_1,x_2) = f(x_1,x_2) & \text{in } G \\
u(x_1,x_2) = 0 & \text{on } \partial G
\end{cases}$$

(1.1)

where $G = (-a,a) \times (0,b)$, $a,b>0$.

We suppose f smooth enough to guarantee existence and uniqueness of the solution of (1.1) in $C^2(G) \cap C^0(\overline{G})$ (see [6], th. 4.3, pag. 55 and [7], th. 3.1, pag. 328).

Moreover we suppose f non-negative and so, by the maximum principle, u is positive in G. The assumption $f(x_1,x_2) \geq 0$ is not restrictive for our aims, since, for an arbitrary f, the modulus of the solution relative to f is less than, or equal to, the solution relative to $|f|$.

Put

$$H(s,x_2) = \int_{-s}^{s} u(x_1,x_2)dx_1$$

(1.2)

with $s \in [0,a]$ and $x_2 \in [0,b]$.

Lemma 1.1. The following differential inequality holds:

$$\frac{\partial^2 H(s,x_2)}{\partial s^2} + \frac{\partial^2 H(s,x_2)}{\partial x_2^2} + \int_{0}^{2s} f^*(s',x_2)ds' \geq 0,$$

(1.3)
Dirichlet problem for the Laplace ...

in \((0,a) \times (0,b)\).

Moreover we have:

\[
\begin{cases}
H(0,x_2) = 0, \\
H(s,0) = H(s,b) = 0, \\
\frac{\partial H}{\partial s}(a,x_2) = 0,
\end{cases}
\]

with \(s \in [0,a]\), \(x_2 \in [0,b]\).

Proof. Fix \(x_2 \in (0,b)\); we obtain from (1.1) by integration

\[(1.5) \quad -\int_{-s}^{s} \frac{\partial^2 u}{\partial x_1^2} dx_1 - \int_{-s}^{s} \frac{\partial^2 u}{\partial x_2^2} dx_1 = \int_{-s}^{s} f dx_1,
\]

for every \(s \in (0,a)\). We obtain easily:

\[
\int_{-s}^{s} \frac{\partial^2 u}{\partial x_1^2} dx_1 = -\frac{\partial^2 H}{\partial s^2}(s,x_2)
\]

and then, observing that from Hardy's inequality \((2)\)

\[
\int_{-s}^{s} f dx_1 \leq \int_{0}^{2s} f^*(s',x_2) ds',
\]

from (1.5) we obtain:

\[
\frac{\partial^2 H}{\partial s^2}(s,x_2) + \frac{\partial^2 H}{\partial x_2^2}(s,x_2) + \int_{0}^{2s} f^*(s',x_2) ds' \geq 0,
\]

in \((0,a) \times (0,b)\), that is (1.3).

\(^{(2)}\) The Hardy's inequality is (see [9])

\[
\int_{-r}^{r} fg dx \leq \int_{0}^{2r} f^* g^* ds.
\]
The equalities (1.4) are easily obtained.

Consider now the "symmetrized" problem

\[
\begin{align*}
\begin{cases}
-\Delta U(x_1, x_2) &= f^\#(x_1, x_2) \quad \text{in } G \\
U(x_1, x_2) &= 0 \quad \text{on } \partial G.
\end{cases}
\end{align*}
\]

(1.1)\

We suppose \(f^\# \) sufficiently smooth so that problem (1.1) has a unique solution \(U \in C^2(G) \cap C^0(\bar{G}) \). For example, if \(f > 0 \) in \(G \), \(f = 0 \) on \(\partial G \) and \(f \in C^0_{\text{loc}}(G) \), then also \(f^\# \in C^0_{\text{loc}}(G) \) (see [2], proposition 1.2) and problems (1.1) and (1.1) have unique solutions \(u, U \) respectively in \(C^2(G) \cap C^0(\bar{G}) \).

The function \(f^\# \) is non-negative in \(G \), and so \(U \) is positive in \(G \).

Put

\[
(1.6) \quad \tilde{H}(s, x_2) = \int_{-s}^{s} U(x_1, x_2) \, dx_1
\]

with \(s \in [0, a] \), and \(x_2 \in [0, b] \).

Lemma 1.2. The following equality holds:

\[
(1.7) \quad \frac{\partial^2 \tilde{H}}{\partial s^2}(s, x_2) + \frac{\partial^2 \tilde{H}}{\partial x_2^2}(s, x_2) + \int_{0}^{2s} f^\#(s', x_2) \, ds' = 0,
\]

in \((0, a) \times (0, b) \).

Moreover we have:
\[
\begin{align*}
\begin{cases}
\tilde{H}(0,x_2) = 0 , \\
\tilde{H}(s,0) = \tilde{H}(s,b) = 0 , \\
\frac{\partial \tilde{H}}{\partial s}(a,x_2) = 0 ,
\end{cases}
\end{align*}
\]

(1.8)

with \(s \in [0,a] \) and \(x_2 \in [0,b] \).

Proof. The proof of (1.7) is similar to that of (1.3). lemma 1.1, if we note that

\[
\int_{-s}^{s} f^\#(x_1,x_2) dx_1 = \int_{0}^{2s} f^*(s',x_2) ds'.
\]

The equalities (1.8) are obvious.

Put now

\[
d(s,x_2) = H(s,x_2) - \tilde{H}(s,x_2) ,
\]

(1.9)

with \(s \in [0,a] \) and \(x_2 \in [0,b] \).

From lemmas 1.1 and 1.2 we have

\[
\frac{\partial^2 d}{\partial s^2} + \frac{\partial^2 d}{\partial s^2} = \Delta d > 0
\]

in \((0,a) \times (0,b)\) with

\[
\begin{align*}
\begin{cases}
d(0,x_2) = 0 \\
d(s,0) = d(s,b) = 0 , \\
\frac{\partial d}{\partial s}(a,x_2) = 0 ,
\end{cases}
\end{align*}
\]

(1.11)

for \(s \in [0,a] \) and \(x_2 \in [0,b] \).

Now we prove the following
LEMMA 1.3. If \(d(s,x_2) \neq 0 \), then \(d(s,x_2) < 0 \) in \((0,a) \times (0,b)\).

Proof. We have \(d(s,x_2) \neq 0 \) and \(\Delta d \geq 0 \) in \((0,a) \times (0,b)\), and so by the maximum principle, the maximum of \(d(s,x_2) \) must be attained on the sides of the rectangle \((0,a) \times (0,b)\) of \(\mathbb{R}^2 \).

But the maximum cannot be attained on \(\{s=a, 0 < x_2 < b\} \); in fact \(\frac{\partial d}{\partial s}(a,x_2) = 0 \) for \(x_2 \in (0,b) \), while if \((a,x_2)\) is a maximum point, we would have \(\frac{\partial d}{\partial s}(a,x_2) > 0 \) (see th.7 of [8], pag. 65). Then it follows from the first two relations of (1.11) that \(\max d(s,x_2) = 0 \).

So we proved that \(d(s,x_2) < 0 \) in \((0,a) \times (0,b)\).

We can now prove:

THEOREM 1.1. Let \(u \) be the solution of problem (1.1) and \(U \) the solution of problem (1.1)#. Then, for every \(x_2 \in [0,b] \),

\[
(1.12) \quad \|u(\cdot,x_2)\|_{L^1((-a,a) \times \{x_2\})} \leq \|U(\cdot,x_2)\|_{L^1((-a,a) \times \{x_2\})},
\]

and then

\[
(1.13) \quad \|u\|_{L^1(G)} \leq \|U\|_{L^1(G)}.
\]

Proof. From lemma 1.3 and equalities (1.11) we have

\[
(1.14) \quad \frac{\partial d}{\partial s}(s,x_2) \leq 0,
\]

in \([0,a] \times [0,b]\).

By (1.9) and (1.14) we have

\[
(1.15) \quad H(s,x_2) \leq \tilde{H}(s,x_2),
\]

that is
(1.16) \[\int_{-S}^{S} u(x_1, x_2) dx_1 \leq \int_{-S}^{S} U(x_1, x_2) dx_1. \]

Then, for every \(x_2 \in [0, b] \):
\[\int_{-h}^{a} u(x_1, x_2) \ dx_1 \leq \int_{-h}^{a} U(x_1, x_2) \ dx_1, \]

that is (1.12).

SECTION 2.

Consider the boundary problem:

\[
\begin{cases}
-\Delta u(x_1, x_2) = f(x_1, x_2) & \text{in } G \\
u(x_1, x_2) = 0 & \text{on } \partial G,
\end{cases}
\]

with \(G = (-\infty, +\infty) \times (0, b), b > 0 \), and the "symmetrized" one:

\[
\begin{cases}
-\Delta U(x_1, x_2) = f^\#(x_1, x_2) & \text{in } G \\
U(x_1, x_2) = 0 & \text{on } \partial G.
\end{cases}
\]

We suppose \(f \in L^2(G) \) and consequently \(f^\# \in L^2(G) \). Then, by theorem 5.4 of [5], page 632, problems (2.1) and (2.1)\# have unique weak solutions \(u, U \) respectively, belonging to \(W^{1, 2}_0(G) \cap W_{loc}^{2, 2}(G) \). Moreover, we take \(f, f^\# \) in \(C^{0, \lambda}(\bar{G}) \), with \(0 < \lambda \leq 1 \), so that \(u, U \in C^2(G) \cap C^0(\bar{G}) \) and finally we suppose \(f \geq 0 \) and so, by the maximum principle, we have \(u \geq 0 \) in \(G \).

Also we obtain \(U \geq 0 \) in \(G \), since \(f^\# \geq 0 \) in \(G \).

As in section 1, we put
(2.2) \[H(s, x_2) = \int_{-s}^{s} u(x_1, x_2) dx_1, \]

(2.3) \[\tilde{H}(s, x_2) = \int_{-s}^{s} U(x_1, x_2) dx_1, \]

(2.4) \[d(s, x_2) = H(s, x_2) - \tilde{H}(s, x_2) \]

with \(s \geq 0 \) and \(x_2 \in [0, b]. \)

We obtain, as in lemmas 1.1 and 1.2,

(2.5) \[\Delta d \geq 0, \text{ in } (0, +\infty) \times (0, b), \]

and

(2.6) \[
\begin{cases}
 d(0, x_2) = 0, & x_2 \in [0, b] \\
 d(s, 0) = d(s, b) = 0, & s \geq 0.
\end{cases}
\]

We will obtain the following

Lemma 2.1. \(d(s, x_2) \leq 0 \) in \([0, +\infty) \times [0, b].\)

In order to prove lemma 2.1 we will use the following

Theorem (Phragmèn-Lindelöf) - Let \((r, \theta)\) be polar coordinates such that the polar semiaxis is coincident with the positive \(x_1 \) axis and let \(V = \{(r, \theta), r > 0, -\frac{\pi}{2a} < \theta < \frac{\pi}{2a}\} \), be the open sector of the angle \(\frac{\pi}{4} \).

Let \(\nu \) be a function in \(C^2(V) \cap C^0(V) \) such that...
Dirichlet problem for the Laplace ...

\[\Delta \nu \geq 0 \quad \text{in} \ V, \]

and assume \(\nu \leq M \) on the boundary \(\theta = \pm \frac{\pi}{2\alpha} \) and

\[
(2.7) \quad \min \lim_{R \to +\infty} (\max_{r=R} \nu(r, \theta)) \leq 0.
\]

Then \(\nu \leq M \) on \(V \).

Remark 2.1. Let \(V' \) be an open subset of \(V \), and \(\nu \) a function in \(C^2(V') \cap C^0(\bar{V}') \) such that \(\Delta \nu \geq 0 \) in \(V' \), \(\nu \leq M \) on \(\partial V' \) and suppose that (2.7) holds relatively to \(V' \). Then it is easily seen that \(\nu \leq M \) in \(V' \).

Proof of Lemma 2.1. Since (2.6) hold, it is sufficient to prove that \(d(s, x_2) \leq 0 \) in \((0, +\infty) \times (0, b) \).

Let \(\alpha = 1 \), \(V' = (0, +\infty) \times (0, b) \), \(\nu = d \).

By (2.5), (2.6), the Phragmèn-Lindelöf theorem and remark 2.1, it is sufficient to prove that (2.7) holds in \((0, +\infty) \times (0, b) \).

We will prove that:

\[
(2.8) \quad \lim_{R \to +\infty} \left(\frac{\max_{(s, x_2) \in \Gamma_R} d(s, x_2)}{R} \right) = 0,
\]

where \(\Gamma_R \) is the arc of circle centered in \((0, 0) \) and with radius \(R \), contained in \((0, +\infty) \times (0, b) \).

In fact, for any \((s, x_2) \in \Gamma_R \),

\(^3 \) For the proof of Phragmèn-Lindelöf theorem and of remark 2.1, see [8], pp. 93-96.
(2.9) \[|d(s, x_2)| \leq \int_{-s}^{s} u(x_1, x_2) dx_1 + \int_{-s}^{s} U(x_1, x_2) dx_1. \]

Then, by the Schwartz-Hölder inequality,

(2.10) \[\int_{-s}^{s} u(x_1, x_2) dx_1 \leq (2s)^{\frac{3}{2}} \left(\int_{-s}^{s} u(x_1, x_2)^2 dx_1 \right)^{\frac{1}{2}} \leq \]

\[\leq (2s)^{\frac{3}{2}} \left(\int_{-\infty}^{+\infty} u(x_1, x_2)^2 dx_1 \right)^{\frac{1}{2}}. \]

Moreover, by the embedding of \(W^{1,2}(G) \) in \(L^2(-\infty, +\infty \times \{ x_2 \}) \) (see [1], lemma 5.19), a positive constant \(C \) exists, which is independent of \(u \) and \(x_2 \) and such that

(2.11) \[\left(\int_{-\infty}^{+\infty} u(x_1, x_2)^2 dx_1 \right)^{\frac{1}{2}} \leq C \| u \|_{W^{1,2}(G)}. \]

From (2.10) and (2.11), we obtain

(2.12) \[\int_{-s}^{s} u(x_1, x_2) dx_1 \leq K s^{\frac{1}{2}}, \]

where \(K = 2^{\frac{3}{2}} C \| u \|_{W^{1,2}(G)}. \)

In the same way we obtain for \(U \):

(2.13) \[\int_{-s}^{s} U(x_1, x_2) dx_1 \leq K' s^{\frac{1}{2}}, \]

where \(K' = 2^{\frac{3}{2}} C \| U \|_{W^{1,2}(G)}. \)

From (2.9), (2.12), and (2.13), it follows
Dirichlet problem for the Laplace ...

\[|d(s,x_2)| \leq C' s^{\frac{1}{2}}, \]

where \(C' = K + K' \) is independent of \(s \) and \(x_2 \).

Then we easily obtain

\[\max_{R} d(s,x_2) \leq C' R^{\frac{1}{2}} \]

and so (2.8) follows.

From lemma 2.1 and in the same way as in the proof of theorem 1.1, we obtain

THEOREM 2.1. Let \(u \) be the solution of problem (2.1) and \(U \) the solution of problem (2.1)#. Then, \(\forall x_2 \in [0,b] \),

\[\|u(\cdot,x_2)\|_{L^1((-\infty, +\infty) \times \{x_2\})} \leq \|U(\cdot,x_2)\|_{L^1((-\infty, +\infty) \times \{x_2\})}, \]

and so also

\[\|u\|_{L^1(G)} \leq \|U\|_{L^1(G)}. \]

Moreover the following theorem holds:

THEOREM 2.2. Let \(u,U \) the solutions of problems (2.1) and (2.1)# respectively. Then, \(\forall x_2 \in [0,b] \),

\[\sup_{-\infty < x_1 < +\infty} u(x_1,x_2) \leq \sup_{-\infty < x_1 < +\infty} U(x_1,x_2), \]

and so also

\[\sup_{G} u(x_1,x_2) \leq \sup_{G} U(x_1,x_2). \]
Proof. Fix \(x_2 \in (0, b) \); from lemma 2.1 and the first of (2.6) we obtain

\[
\frac{\partial d}{\partial s}(0, x_2) \leq 0.
\]

(2.18)

Since \(\frac{\partial H}{\partial s}(0, x_2) = 2u(0, x_2) \) and \(\frac{\partial \tilde{H}}{\partial s}(0, x_2) = 2U(0, x_2) \), we have

\[
\frac{\partial d}{\partial s}(0, x_2) = 2(u(0, x_2) - U(0, x_2))
\]

and then, from (2.18).

(2.19)

\[u(0, x_2) \leq U(0, x_2) \]

Now, let \((k, x_2)\) be a point of \(G \), with \(k \in \mathbb{R} \), at height \(x_2 \). We write \(f|_k(x_1, x_2) \) for the translation of \(f(x_1, x_2) \) of the quantity \(|k| \), in the direction of the positive \(x_1 \)-axis if \(k < 0 \), and in the direction of the negative \(x_1 \)-axis if \(k \geq 0 \). If we consider \(f|_k \) instead of \(f \), then also \(u \) will be translated. We write \(u|_k \) for this translation.

Now, \(Vx_2 \in (0, b) \), \(f|_k(x_1, x_2) = (f|_k)(x_1, x_2) \).

Then, by (2.19),

\[u(k, x_2) = u|_k(0, x_2) \leq U(0, x_2) \leq \sup_{-\infty < x_1 < +\infty} U(x_1, x_2) \]

and then (2.16) follows.
REFERENCES

ISTITUTO DI MATEMATICA
FACOLTA' DI SCIENZE
UNIVERSITA' DI SALERNO
84100 SALERNO (Italy)