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DIRICHLET PROBLEM FOR THE LAPLACE OPERATOR
IN A RECTANGLE AND IN A STRIP

Maria TRANSIRICO

Summary. Bounds for the solution of the bDirichlet problem for
the Laplace operator in a rectangle and in a strip are given by

means of the solution of a "symmetrized" problem.

INTRODUCTION. Many authors have considered the effect of Schwartz
symmetrization on elliptic (see, e.g., [10], [9], [11]) and para-

bolic (see [3], [2]) problems.

The principal aim of these papers is to obtain some optimal

bounds for the solutions of these problems.
A typical case in this setting is the following (see [9]).

Consider the problem

- Au = f in G
1
u = 0 on 4G
aAnd look for the
ey
sup P,q suitable
Hqu

where the supremum is taken when f ranges through the functions

with a fixed rearrangement and G ranges through the domains of

R" with fixed measure.
This least upper bound is attained for the solution of the problem

f # in G#
0 on aG"

- Aw

i
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where f# is the spherically symmetric rearrangement of f in the
sense of Hardy-Littlewood and G# is the ball centered at the origin

with same measure of G.

In fact, this is a useful point of view because now we deal
with majorization formulas for symmetric and then simpler problems.
Moreover it 1is well-known that symmetrization results are of parti-
cularly relevant interest in many fields of Mathematical Physics

(see, e.g., the classical book of Polya-Szego [12]}.

In this paper, following the previous point of view, we study

the effect of a Steiner symmetrization on the following problems.

Consider the problem

- &u(xl.xz) = f{xl,xzj in G

(0.1)

|
-

u(xl,xz) on 4G,

where G = (-a,a) x (0,b) with a, b>0 and A is the Laplacian operator.
Our aim is to give some bounds for u(xl,xz) by using the

solution of a "symmetrized" problem of the type

- ﬂU(xl.xz) = f#(xl.xz) in G
0.1)"

U(xl,xz) = ( on aG,

where, for any fixed xze[ﬂ,b], f#(-,xj) is the symmetrically decrea

sing rearrangement of f(-,xz) as defined by Hardy and Littlewond'[l)

(1] ?KZE[U,b]. f#(El,HzJ=f* {Cl|xl|,x2} where f*(t,x,) (t>0) denotes

the deacresing rearrangement of f£( -,xz} in [0,+m}, Cl=2. For
more details, see [3] and [9].
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# sufficiently smooth so that there is existen

We suppose f and f
ce and uniqueness for the solutions of problems (0.1), (U.l)# in

céGynce(d).

In section 1 we will give, for any xze[D.b], a bound for the

L1 - norm of u(*.xz) in terms of the L1 - norm of U(-.xz) and then
we will obtain also a bound of the L1 - norm of u in terms of the
L1 - norm of U in all G,
Consider then the problem
ﬂu(xl.xz) = f(xl.xz) in G
(0.2)
u(xl,xz] = 0 on 3G,
where G = (-«,+®) x (0,b) with b>0, and the''symmetrized" problem
(-AU(X4,X,) = f#(x X, ) in G
1°72 1'72
0.2 "
(0.2) U(xl,xz) = ( on 4G,
\
&

with f and then f" belonging to LZ(G).

It is well known that there exist unique solutions to (0.2)

and (0.2)* in Wl*2(6) nwf:2(G): see [5].

In section 2 we will obtain for a strip a result which is similar
to that obtained for a rectangle; moreover we will give, for any

xze[ﬂ,b], a bound for sup lu(xl,xz)| in terms of sup U(xy.%5)

=@ <4® 'ﬂﬁ{}[l{-+m

and also a bound for suplu(xl,xz)l in terms of sup U(xl,xzj.

To obtain these results we will use a technique devefuped by
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C. Bandle in her treatment of parabolic operators (see [2]). In
the same framework, we can quote the work of C. Borell, see [4],

where a symmetrization like that of Steiner is used.

SECTION 1.
Consider the boundary problem
-ﬂu(xl.xz) = f(xl,x2) in G
(1.1)
u{xl,xz) = 0 on aG

where G = (-a,a) x (0,b), a,b>0,

We suppose f smooth enough to guaranteeexistence and uniqueness
of the solution of (1.1) in CZ{GJHC“(G] (see [6], th. 4.3, pag.
55 and [7], th. 3.1, pag. 328).

Moreover we suppose f non-negative and so, by the maximum princi
ple, u is positive in G. The assumption f(xl.xz] > 0 is not restri-
ctive for our aims, since, for an arbitrary f, the modulus of the
solution relative to f is 1less than, or equal to, the solution

relative to |f].
Put

S
(1.2) H(s,x,) = [ u(xq.x,)dx,
-S

with se[0,a] and x,e[0,b].
LEMMA 1.1. The following differential inequality holds:

"2 2 2s
(1.3) i—%(s,xz) + g—%{s,xz) +ID f*(s',xz)ds‘ > 0,
as 312
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in (0,a) x (0,bh).
Moreover we have:

H(D,xz) = 0,

(1.4) H(s,0) = H(s,b) = 0,
%2 (a.x,) = 0,

with s € [U,H]. KF € [U'b]'

Proof. Fix xze{ﬂ,b); we obtain from (1.1) by integration
d-u u _
(1.5) -] — dx - — dx; = f dx,,
2

for every se(0,a). We obtdain easily:

S 2 2
a " u _ d°H
-f. _del = T 2{5*}(2)
-5 Hxl 9s
and then, observing that from Hardy's inequality (2)
S 2s
[ fdxy <[ f*(s',x,)ds',
-5 . 0
from (1.5) we obtain:
2 V/ 2s
BHisxy) + LHisixy) +f £r(stxp)dst > 0,
as sz 0

in (0,a) x (0,b), that is (1.3).

(2) The Hardy's inequality is (see [9]}

r 2x
| fg dx < [ f* g* ds.
-r o
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The equalities (1.4) are easily obtained.

Consider now the ''symmetrized'" problem

—ﬁU{xl,x f#{xl,xzj in G

2)
(1.1)7

U(xl,x = 0 on aG

7)

We suppose f# sufficiently smooth so that problem (1.1)# has

A unique solution UECZ(G) N C°(G). For example, if f>0 in G, f=0

0,1 0,1

. -#
lmr(ﬂ)‘ then also f Eclﬂr

cn a6 and feC

(G) (see [2], proposition

1.2) and problems (1.1) and (1.1}# have unique solutions u,U respe-

ctively in C2(G)nc°(G).

The function f# is non-negative in G, and so U is positive in

Put

— S
(1.6) H(s,x,) ={5 U(xqy.x,) dx;

with se[0,a], and x,e[0,b].

LEMMA 1.2. The following equality holds:

2 2= 2s
(1.7) O9Hs x ) + EHs x) «f f£%(s'.x,)ds' = 0,
2 2 2 2 2
as 3x2 9]

in (0,a) x (0,b).

Moreover we have:
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H(U.xz) = 0 ,

(1.8)

with  se(0,a] and x,e[0,b].

Proof. The proof of (1.7) is similar to that of (1.3), lemma

1.1, if we note that

S 2s
[ f#(xl,xz)dxl = | f*(s'.xz)ds'.
-5 0

The equalities (1.8) are obvious.
Put now

(1.9) d(s,x,) = H(s,x,) - ﬁ(s,xz) ._.

5)
with se[0,a] and x,e[0,b].

From lemmasl.l and 1.2 we have

(1.10) 3—g+i-%zad3_0
s 352
in (0,a) x (0,b) with
d(U.xz) =
(1.11) d(s,0) = d(s,b) = 0,
ad

e (a.xz) = Q,

for se[0,a] and x,e[0,b].

Now we prove the following
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LEMMA 1.3, If d(s,x2)$0. then d(s.xz)ﬁﬂ in (0,a]x(0,b).

Proof. We have d(5,12)$0 and Ad > 0 in (0,a) x (0,b), and so

by the maximum principle, the maximum of d(s.xz) must be attained

on the sides of the rectangle (0,a)x(0,b) of ZRZH

But . the maximum cannot be attained on {s=a, 0{12{13}; in fact

%g(a,x2]=il for xze(ﬁ.b), while if Gﬂ.xz) is a maximum point, we
would have %%(a,xz)}o (see th.7 of (8], pag. 65). Then it follows
from the first two relations of (1.11) that max d(s,x2)=0.

So we proved that d(s.xz)fﬂ in (0,a] x (0,b).

We can now prove:

THEOREM 1.1. Let u be the solution of problem (1.1) and U the

"y

solution of problem (1_1]#_Then, for every xze[ﬂ,h],

(1*12) ||11(-13(2)ﬂ 1 _'E "U("vxzj]{ 1 ’
L™ ((-a,a)x{x,}) L7 ((-a,a)x{x,})

and then

(1.13) lall 4 < Ul

Lo L o)

Proof. From lemma 1.3 and equalities (1.11) we have

(1.14) d(s.x,) <0 ,

in [0,a] x [0,b].
By (1.9) and (1.14) we have
(1.15) H(s,x,) < H(s,x,).

that 1is
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S >
(1.16) J ulxq.x,)dxg EJZEU(xl.xz)dxl-

-S
Then, for every 12E[U.b]:

A a
{a u(x;.x,) dx; < {H U(xy,x,)dxy,

that is (1.12).

SECTION 2.

Consider the boundary problem:

- ﬂu(xl.xz) f(xl,xz) in G

(2.1)
u[xl,xz) = 0 on a6,

with G = (-eo,+=) x (0,b), b>0, and the '"symmetrized' one:

- AU(xq,x,) = f#(xl,xz) in G
(2.1)% S
) U(xy.x,) = 0 on 9G

#

We suppose feLZ(G) and consequently f ELZ(G). Then, by theorem

5.4 of [5], pag. 632, problems (2.1) and (2.1J# have unique weak

solutions u, U respectively, belonging to Hé'Z[G)ﬂwfég(G). Moreover

we take f, f' in C°** (G). with 0 <A< 1, so that u,UeC?(G)NC°(G)
and finally we suppose f > 0 and so, by the maximum principle,

we have u > 0 in G.

Also we obtain U > 0 in G, since f# > 0 in G.

As in section 1, we put
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_J'S
(2.2) H(s,xz) = ,EU(KI'H2)dxl‘

[% U(xq,x,)dxy,

fl

(2.3) ﬁ(s,xz)

(2.4) d(s,x,) = H(s,x,) - ﬁ(s.xz)

with s > 0 and x,e[0,b].

We obtain, as in lemmas 1.1 and 1.2,

(2.5) Ad > O, in (0,+«) x (0,b),
and

d(0,x,) = 0, xze[ﬂ,b]
(2.6)

d(s,0) = d(s,b) = 0, s > 0.

We will obtain the following

LEMMA 2.1. d(s,x,) < 0 in [0,+=) x [0,b].

In order to prove lemma 2.1 we will use the following

THEOREM (Phragmén-Lindelof) - Let (r,0) be polar coordinates

such that the polar semiaxis 1s coincident with the positive ;.;1

axis and let V ={ (r,98), r>0, - —_ < E{TT }, be the open sector of
2a 2a

the angle g .

Let v be a function in CZ(V)HC°(ﬁ) such that
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Av > 0 in V,

and assume v < M on the boundary 6 = + —2% and

(2.7) min lim (R™" max v(r,e)) < 0.
R »+ r=R

Then v < M on V.

REMARK 2.1. Let V' be an open subset of V, and v a function
in CE(V‘)ﬂC“(?') such that 4v > 0 in V', v < M on ©@8V' and suppose
that (2.7) holds relatively to V'. Then it 1is easily seen that
v <M in v'.(3)

Proof of lemma 2.1. Since (2.6) hold, it is sufficient to prove

that d(5,12) <0 in (0,+«) x (0,b).
Let ¢ = 1, V' = (0,+%) x (0,b), v=d.

By (2.5), (2.6), Phragmen-Lindelof theorem and remark 2.1, it

is sufficient to prove that (2.7) holds in (0,+«) x (0,b).

We will prove that:

Mmd X . d(s,xz)
(s,xZ)E R

R

L
i
o

(2.8) lim (

R»+w

where fR is the arc of circle centered in (0,0) and with radius
R, contained in (0,+«)x(0,b).

In fact, for any (5.x2) © PR‘

(3) For the proof of Phragmén-Lindelof theorem and of remark 2.1,
see [8], Pp. 93-96.
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S

s
(2.9) Id(s.x2)| <[ u(xq,xy)dxy + [ U(xl,xz)dxl.
-5 -5

Then, by the Schwartz-Holder inequality,

S 5 S . 2 %
(2.10) f_su(xl.xz)dxl < (2s) (j—su(xl‘xz) dxl) P

o

.
< @2 ulxy.xlax?

Moreover, by the embedding of wl‘z(G) in Lz((—¢u+m)x{x2}) (see
(1], lemma 5.19), a positive constant C exists, which is independent

of u and X5 and such that

+ €O

(2.11) (' ulxgxp)?dx)? < Clul

. wl»2

(G)

From (2.10) and (2.11), we obtain

S
(2.12) J ulxq.xy)dxg = Ks?,

where K = 2i Clul 1.2 .
W' (G)

In the same way we obtain for U:

S
e vreld
(2.13) I_S U(x;,x,)dx; < K's ,

where K' = 2%C|U| -
W='"(G)

From (2.9), (2.12), and (2.13), it follows
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|d(5,x2)| < C! si,

il

where C' K+K' is independent of s and X

Then we easily obtain

|m?x d(s.xzjf < C’ R

R
And so (2.8) follows.

From lemma 2.1 and in the same way as in the proof of theorem
1.1, we obtain
THEOREM 2.1. Let u be the solution of problem (2.1) and U the

solution of problem (2_1)#_ rhen, sz[ﬂ,b],

(2.14)  Ju(+.x,)] <IUCxp) ,
2L (e, re) x (x4 ) 2L (o) x (x5 ))

and so also

(2.15) lul ;< VI,

L (G) LY (G)

Moreover the following theorem holds:

THEOREM 2.2. Let u,U the solutions of problems (2.1) and (2,1)#

respectively. Then, vxze[ﬂ,b],

(2.16) sSup u(xl,xz)i sup U[xl,xz) .

ot LA, P - - -0 X + oo
1 <Xq1<
and so also

(2.17) sgp u(xl,xz} < SHD U(xl.xz).
G
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Proof. Fix xze(O,bJ: from lemma 2.1 and the first of (2.6) we

obtain
(2.18) 290.x,) < 0.
Since E)—E(‘D X~) = 2u(0,x,) and QE(U X~) = 2U(0,x,) we have
ds "2 ' 72 gs 72 T2

%g(ﬂ,xz) = E(U{U‘xz}—U(U,xzj} and then, from (2.18),
(2.19) u[O,xz) < U(D,xzj.

Now, let (k,xz) be a point of G, with kelR, at height x We

5 -
write flk|(xl’x2) for the translation of f(xl,xz) of the quantity
k|, in the direction of the positive x,-axis if k<0, and in the
direction of the negative x,-axis if k>0. If we consider f|k| in-

stead of f, then also u will be translated. We write ulkl for this

translation.

# #
Now, VKZE(O,b), f (xl.x2)=(f|k|} [xl,sz.

Then, by (2.19),

u(k,x,) = u'kl(ﬂ,xz) < U(ﬂ,xz) < sup U(xl,xz}.

~weX ., ¢+too

1

and then (2.16) follows.
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