IN A RECTANGLE AND IN A STRIP

Maria TRANSIRICO

Summary. Bounds for the solution of the Dirichlet problem for the Laplace operator in a rectangle and in a strip are given by means of the solution of a "symmetrized" problem.

INTRODUCTION. Many authors have considered the effect of Schwartz symmetrization on elliptic (see, e.g., [10], [9], [11]) and parabolic (see [3], [2]) problems.

The principal aim of these papers is to obtain some optimal bounds for the solutions of these problems.

A typical case in this setting is the following (see [9]).

Consider the problem

$$\begin{cases}
-\Delta u = f & \text{in } G \\
u = 0 & \text{on } \partial G
\end{cases}$$

and look for the

$$\sup \frac{\|\mathbf{u}\|_{\mathbf{p}}}{\|\mathbf{f}\|_{\mathbf{q}}} \quad \text{p,q suitable}$$

where the supremum is taken when f ranges through the functions with a fixed rearrangement and G ranges through the domains of $\mathbf{R}^{\mathbf{n}}$ with fixed measure.

This least upper bound is attained for the solution of the problem

$$\begin{cases}
- \Delta w = f^{\#} & \text{in } G^{\#} \\
w = 0 & \text{on } \partial G^{\#}
\end{cases}$$

where $f^{\#}$ is the spherically symmetric rearrangement of f in the sense of Hardy-Littlewood and $G^{\#}$ is the ball centered at the origin with same measure of G.

In fact, this is a useful point of view because now we deal with majorization formulas for symmetric and then simpler problems. Moreover it is well-known that symmetrization results are of particularly relevant interest in many fields of Mathematical Physics (see, e.g., the classical book of Polya-Szegő [12]).

In this paper, following the previous point of view, we study the effect of a Steiner symmetrization on the following problems. Consider the problem

$$\begin{cases} -\Delta u(x_1, x_2) = f(x_1, x_2) & \text{in } G \\ u(x_1, x_2) = 0 & \text{on } \partial G, \end{cases}$$

where $G = (-a,a) \times (0,b)$ with a, b>0 and Δ is the Laplacian operator. Our aim is to give some bounds for $u(x_1,x_2)$ by using the solution of a "symmetrized" problem of the type

$$\begin{cases} -\Delta U(x_1, x_2) = f^{\#}(x_1, x_2) & \text{in } G \\ U(x_1, x_2) = 0 & \text{on } \partial G, \end{cases}$$

where, for any fixed $x_2 \in [0,b]$, $f^\#(\cdot,x_2)$ is the symmetrically decreasing rearrangement of $f(\cdot,x_2)$ as defined by Hardy and Littlewood. (1)

 $[\]binom{1}{2}$ $\forall x_2 \in [0,b]$, $f^{\#}(x_1,x_2)=f^{*}(C_1|x_1|,x_2)$ where $f^{*}(t,x_2)$ $(t\geq 0)$ denotes the deacresing rearrangement of $f(\cdot,x_2)$ in $[0,+\infty)$, $C_1=2$. For more details, see [3] and [9].

We suppose f and f # sufficiently smooth so that there is existence and uniqueness for the solutions of problems (0.1), (0.1)# in $C^2(G) \cap C^{\circ}(\bar{G})$.

In section 1 we will give, for any $x_2 \in [0,b]$, a bound for the L^1 - norm of $u(\cdot,x_2)$ in terms of the L^1 - norm of $U(\cdot,x_2)$ and then we will obtain also a bound of the L^1 - norm of u in terms of the L^1 - norm of U in all G.

Consider then the problem

$$\begin{cases}
-\Delta u(x_1, x_2) = f(x_1, x_2) & \text{in } G \\
u(x_1, x_2) = 0 & \text{on } \partial G,
\end{cases}$$

where $G = (-\infty, +\infty) \times (0,b)$ with b>0, and the "symmetrized" problem

$$\begin{cases} -\Delta U(x_1, x_2) = f^{\#}(x_1, x_2) & \text{in } G \\ U(x_1, x_2) = 0 & \text{on } \partial G, \end{cases}$$

with f and then $f^{\#}$ belonging to $L^{2}(G)$.

It is well known that there exist unique solutions to (0.2) and $(0.2)^{\#}$ in $W_0^{1,2}(G) \cap W_{loc}^{2,2}(G)$; see [5].

In section 2 we will obtain for a strip a result which is similar to that obtained for a rectangle; moreover we will give, for any $x_2 \in [0,b]$, a bound for $\sup_{-\infty < x_1 < +\infty} |u(x_1,x_2)|$ in terms of $\sup_{-\infty < x_1 < +\infty} U(x_1,x_2)$ and also a bound for $\sup_{\bar{G}} |u(x_1,x_2)|$ in terms of $\sup_{\bar{G}} U(x_1,x_2)$.

To obtain these results we will use a technique developed by

C. Bandle in her treatment of parabolic operators (see [2]). In the same framework, we can quote the work of C. Borell, see [4], where a symmetrization like that of Steiner is used.

SECTION 1.

Consider the boundary problem

$$\begin{cases} -\Delta u(x_1, x_2) = f(x_1, x_2) & \text{in } G \\ u(x_1, x_2) = 0 & \text{on } \partial G \end{cases}$$

where $G = (-a,a) \times (0,b)$, a,b>0.

We suppose f smooth enough to guarantee existence and uniqueness of the solution of (1.1) in $C^2(G)\cap C^{\circ}(\bar{G})$ (see [6], th. 4.3, pag. 55 and [7], th. 3.1, pag. 328).

Moreover we suppose f non-negative and so, by the maximum principle, u is positive in G. The assumption $f(x_1,x_2) \geq 0$ is not restrictive for our aims, since, for an arbitrary f, the modulus of the solution relative to f is less than, or equal to, the solution relative to |f|.

Put

(1.2)
$$H(s,x_2) = \int_{-s}^{s} u(x_1,x_2)dx_1$$

with se[0,a] and $x_2e[0,b]$.

LEMMA 1.1. The following differential inequality holds:

$$(1.3) \quad \frac{\partial^2 H}{\partial s^2}(s, x_2) + \frac{\partial^2 H}{\partial x_2^2}(s, x_2) + \int_0^{2s} f^*(s', x_2) ds' \ge 0,$$

Dirichlet problem for the Laplace ...

 $in (0,a) \times (0,b)$.

Moreover we have:

$$\begin{cases} H(0,x_2) = 0, \\ H(s,0) = H(s,b) = 0, \\ \frac{\partial H}{\partial s}(a,x_2) = 0, \end{cases}$$

with $s \in [0,a]$, $x_2 \in [0,b]$.

Proof. Fix $x_2 \in (0,b)$; we obtain from (1.1) by integration

(1.5)
$$-\int_{-s}^{s} \frac{\partial^{2} u}{\partial x_{1}^{2}} dx_{1} - \int_{-s}^{s} \frac{\partial^{2} u}{\partial x_{2}^{2}} dx_{1} = \int_{-s}^{s} f dx_{1},$$

for every se(0,a). We obtain easily:

$$\int_{-s}^{s} \frac{\partial^{2} u}{\partial x_{1}^{2}} dx_{1} = -\frac{\partial^{2} H}{\partial s^{2}} (s, x_{2})$$

and then, observing that from Hardy's inequality (2)

$$\int_{-s}^{s} f dx_{1} \leq \int_{0}^{2s} f^{*}(s', x_{2})ds',$$

from (1.5) we obtain:

$$\frac{\partial^{2} H}{\partial s^{2}}(s,x_{2}) + \frac{\partial^{2} H}{\partial x_{2}^{2}}(s,x_{2}) + \int_{0}^{2s} f^{*}(s',x_{2}) ds' \ge 0,$$

in (0,a) x (0,b), that is (1.3).

⁽²⁾ The Hardy's inequality is (see [9]) $\int_{-r}^{r} fg dx \leq \int_{0}^{2r} f^* g^* ds.$

The equalities (1.4) are easily obtained.

Consider now the "symmetrized" problem

$$(1.1)^{\#} \begin{cases} -\Delta U(x_{1}, x_{2}) = f^{\#}(x_{1}, x_{2}) & \text{in } G \\ U(x_{1}, x_{2}) = 0 & \text{on } \partial G. \end{cases}$$

We suppose $f^{\#}$ sufficiently smooth so that problem $(1.1)^{\#}$ has a unique solution $UeC^2(G) \cap C^{\circ}(\bar{G})$. For example, if f>0 in G, f=0 on ∂G and $feC^{0,1}_{loc}(G)$, then also $f^{\#}eC^{0,1}_{loc}(G)$ (see [2], proposition 1.2) and problems (1.1) and (1.1) $^{\#}$ have unique solutions u,U respectively in $C^2(G)\cap C^{\circ}(\bar{G})$.

The function $\boldsymbol{f}^{\#}$ is non-negative in G, and so U is positive in G.

Put

(1.6)
$$\widetilde{H}(s,x_2) = \int_{-s}^{s} U(x_1,x_2) dx_1$$

with se[0,a], and $x_2e[0,b]$.

LEMMA 1.2. The following equality holds:

(1.7)
$$\frac{\partial^2 \tilde{H}}{\partial s^2}(s, x_2) + \frac{\partial^2 \tilde{H}}{\partial x_2^2}(s, x_2) + \int_0^{2s} f^*(s', x_2) ds' = 0,$$

in $(0,a) \times (0,b)$.

Moreover we have:

(1.8)
$$\begin{cases} \widetilde{H}(0,x_2) = 0, \\ \widetilde{H}(s,0) = \widetilde{H}(s,b) = 0, \\ \frac{\partial \widetilde{H}}{\partial s}(a,x_2) = 0, \end{cases}$$

with se[0,a] and $x_2e[0,b]$.

Proof. The proof of (1.7) is similar to that of (1.3), lemma 1.1, if we note that

$$\int_{-s}^{s} f^{\#}(x_{1},x_{2})dx_{1} = \int_{0}^{2s} f^{*}(s',x_{2})ds'.$$

The equalities (1.8) are obvious.

Put now

(1.9)
$$d(s,x_2) = H(s,x_2) - \tilde{H}(s,x_2)$$
,

with se[0,a] and $x_2e[0,b]$.

From lemmas 1.1 and 1.2 we have

$$\frac{\partial^2 d}{\partial s^2} + \frac{\partial^2 d}{\partial s_2^2} \equiv \Delta d \geq 0$$

in (0,a) x (0,b) with

(1.11)
$$\begin{cases} d(0,x_2) = 0 \\ d(s,0) = d(s,b) = 0, \\ \frac{\partial d}{\partial s} (a,x_2) = 0, \end{cases}$$

for se[0,a] and $x_2e[0,b]$.

Now we prove the following

LEMMA 1.3. If $d(s,x_2) \neq 0$, then $d(s,x_2) < 0$ in (0,a]x(0,b).

Proof. We have $d(s,x_2) \not\equiv 0$ and $\Delta d \geq 0$ in $(0,a) \times (0,b)$, and so by the maximum principle, the maximum of $d(s,x_2)$ must be attained on the sides of the rectangle $(0,a) \times (0,b)$ of \mathbb{R}^2 .

But the maximum cannot be attained on $\{s=a, 0< x_2< b\}$; in fact $\frac{\partial d}{\partial s}(a,x_2)=0$ for $x_2e(0,b)$, while if (a,x_2) is a maximum point, we would have $\frac{\partial d}{\partial s}(a,x_2)>0$ (see th.7 of [8], pag. 65). Then it follows from the first two relations of (1.11) that max $d(s,x_2)=0$.

So we proved that $d(s,x_2)<0$ in $(0,a] \times (0,b)$.

We can now prove:

THEOREM 1.1. Let u be the solution of problem (1.1) and U the solution of problem (1.1) $^{\#}$. Then, for every $x_2 \in [0,b]$,

$$||u(\cdot,x_2)||_{L^1((-a,a)x\{x_2\})} \leq ||U(\cdot,x_2)||_{L^1((-a,a)x\{x_2\})},$$

and then

(1.13)
$$\|u\|_{L^1(G)} \leq \|U\|_{L^1(G)}$$
.

Proof. From lemma 1.3 and equalities (1.11) we have

(1.14)
$$d(s,x_2) \le 0$$
,

in $[0,a] \times [0,b]$.

By (1.9) and (1.14) we have

(1.15)
$$H(s,x_2) \leq \tilde{H}(s,x_2)$$
,

that is

Dirichlet problem for the Laplace ...

(1.16)
$$\int_{-s}^{s} u(x_1, x_2) dx_1 \leq \int_{-s}^{s} U(x_1, x_2) dx_1.$$

Then, for every $x_2 \in [0,b]$:

$$\int_{-a}^{a} u(x_{1},x_{2}) dx_{1} \leq \int_{-a}^{a} U(x_{1},x_{2}) dx_{1},$$

that is (1.12).

SECTION 2.

Consider the boundary problem:

$$\begin{cases}
- \Delta u(x_1, x_2) = f(x_1, x_2) & \text{in } G \\
u(x_1, x_2) = 0 & \text{on } \partial G,
\end{cases}$$

with $G = (-\infty, +\infty) \times (0,b)$, b>0, and the "symmetrized" one:

$$\begin{cases} -\Delta U(x_1, x_2) = f^{\#}(x_1, x_2) & \text{in } G \\ U(x_1, x_2) = 0 & \text{on } \partial G \end{cases}$$

We suppose $\text{feL}^2(G)$ and consequently $\text{f}^\#\text{eL}^2(G)$. Then, by theorem 5.4 of [5], pag. 632, problems (2.1) and (2.1) have unique weak solutions u, U respectively, belonging to $\text{W}_0^{1,2}(G)\cap \text{W}_{1\text{oc}}^{2,2}(G)$. Moreover we take f, $\text{f}^\#$ in $\text{C}^{0,\lambda}(\bar{G})$, with $0 < \lambda \le 1$, so that u,UeC $^2(G)\cap \text{C}^\circ(\bar{G})$ and finally we suppose $\text{f} \ge 0$ and so, by the maximum principle, we have $\text{u} \ge 0$ in G.

Also we obtain $U \ge 0$ in G, since $f^{\#} \ge 0$ in G.

As in section 1, we put

(2.2)
$$H(s,x_2) = \int_{-s}^{s} u(x_1,x_2) dx_1,$$

(2.3)
$$\widetilde{H}(s,x_2) = \int_{-s}^{s} U(x_1,x_2) dx_1,$$

(2.4)
$$d(s,x_2) = H(s,x_2) - \tilde{H}(s,x_2)$$

with $s \ge 0$ and $x_2 \in [0,b]$.

We obtain, as in lemmas 1.1 and 1.2,

(2.5)
$$\Delta d \ge 0$$
, in $(0,+\infty) \times (0,b)$,

and

(2.6)
$$\begin{cases} d(0,x_2) = 0, & x_2 \in [0,b] \\ \\ d(s,0) = d(s,b) = 0, & s \ge 0. \end{cases}$$

We will obtain the following

LEMMA 2.1.
$$d(s,x_2) \le 0$$
 in $[0,+\infty) \times [0,b]$.

In order to prove lemma 2.1 we will use the following

THEOREM (Phragmèn-Lindelöf) - Let (r,θ) be polar coordinates such that the polar semiaxis is coincident with the positive x_1 axis and let $V=\{(r,\theta),\ r>0,\ -\frac{\pi}{2\alpha}<\theta<\frac{\pi}{2\alpha}\}$, be the open sector of the angle $\frac{\pi}{\alpha}$.

Let v be a function in $C^2(V) \cap C^{\circ}(\bar{V})$ such that

Dirichlet problem for the Laplace ...

$$\Delta v \geq 0$$
 in V ,

and assume $v \leq M$ on the boundary $\theta = \frac{\pi}{2\alpha}$ and

(2.7)
$$\min_{R \to +\infty} \lim_{r=R} (R^{-\alpha} \max_{r=R} v(r,\theta)) \leq 0.$$

Then $v \leq M$ on V.

REMARK 2.1. Let V' be an open subset of V, and v a function in $C^2(V')\cap C^{\circ}(\bar{V}')$ such that $\Delta v \geq 0$ in V', $v \leq M$ on $\partial V'$ and suppose that (2.7) holds relatively to V'. Then it is easily seen that $v \leq M$ in V'. (3)

Proof of lemma 2.1. Since (2.6) hold, it is sufficient to prove that $d(s,x_2) \le 0$ in $(0,+\infty)$ x (0,b).

Let $\alpha = 1$, $V' = (0,+\infty) \times (0,b)$, $v \equiv d$.

By (2.5), (2.6), Phragmèn-Lindelöf theorem and remark 2.1, it is sufficient to prove that (2.7) holds in $(0,+\infty)$ x (0,b).

We will prove that:

(2.8)
$$\lim_{R \to +\infty} \left(\frac{(s, x_2) \in \Gamma_R}{R} \right) = 0,$$

where Γ_R is the arc of circle centered in (0,0) and with radius R, contained in (0,+ ∞)x(0,b).

In fact, for any $(s,x_2) \in \Gamma_R$,

⁽³⁾ For the proof of Phragmèn-Lindelöf theorem and of remark 2.1, see [8], pp. 93-96.

(2.9)
$$|d(s,x_2)| \le \int_{-s}^{s} u(x_1,x_2)dx_1 + \int_{-s}^{s} U(x_1,x_2)dx_1$$
.

Then, by the Schwartz-Hölder inequality,

$$(2.10) \int_{-s}^{s} u(x_1, x_2) dx_1 \le (2s)^{\frac{1}{2}} (\int_{-s}^{s} u(x_1, x_2)^2 dx_1)^{\frac{1}{2}} \le$$

$$\leq (2s)^{\frac{1}{2}} (\int_{-\infty}^{+\infty} u(x_1, x_2)^2 dx_1)^{\frac{1}{2}}$$
.

Moreover, by the embedding of $W^{1,2}(G)$ in $L^2((-\infty,+\infty)x\{x_2\})$ (see [1], lemma 5.19), a positive constant C exists, which is independent of u and x_2 and such that

$$(2.11) \qquad \left(\int_{-\infty}^{+\infty} u(x_1, x_2)^2 dx_1\right)^{\frac{1}{2}} \leq C \|u\|_{W^{1,2}(G)}.$$

From (2.10) and (2.11), we obtain

(2.12)
$$\int_{-s}^{s} u(x_1, x_2) dx_1 \leq Ks^{\frac{1}{2}},$$

where
$$K = 2^{\frac{1}{2}} C \|u\|_{W^{1,2}(G)}$$
.

In the same way we obtain for U:

where
$$K' = 2^{\frac{1}{2}}C\|U\|_{W^{1,2}(G)}$$
.

From (2.9), (2.12), and (2.13), it follows

$$|d(s,x_2)| \le C' s^{\frac{1}{2}},$$

where C' = K+K' is independent of s and x_2 .

Then we easily obtain

$$|\max_{\Gamma_R} d(s,x_2)| \le C' R^{\frac{1}{2}}$$

and so (2.8) follows.

From lemma 2.1 and in the same way as in the proof of theorem 1.1, we obtain

THEOREM 2.1. Let u be the solution of problem (2.1) and U the solution of problem $(2.1)^{\#}$. Then, $\forall x_{2}[0,b]$,

$$\| u(\cdot, x_2) \|_{L^1((-\infty, +\infty)x\{x_2\})} \leq \| U(\cdot, x_2) \|_{L^1((-\infty, +\infty)x\{x_2\})},$$

and so also

$$\|u\|_{L^{1}(G)} \leq \|U\|_{L^{1}(G)}.$$

Moreover the following theorem holds:

THEOREM 2.2. Let u,U the solutions of problems (2.1) and (2.1) $^\#$ respectively. Then, $\forall x_2 \in [0,b]$,

(2.16)
$$\sup_{-\infty < x_1 < +\infty} u(x_1, x_2) \le \sup_{-\infty < x_1 < +\infty} U(x_1, x_2) ,$$

and so also

(2.17)
$$\sup_{\bar{G}} u(x_1, x_2) \leq \sup_{\bar{G}} U(x_1, x_2).$$

Proof. Fix $x_2 \epsilon(0,b)$; from lemma 2.1 and the first of (2.6) we obtain

$$(2.18) \qquad \qquad \frac{\partial d}{\partial s}(0, x_2) \leq 0.$$

Since $\frac{\partial H}{\partial s}(0,x_2)=2u(0,x_2)$ and $\frac{\partial \widetilde{H}}{\partial s}(0,x_2)=2U(0,x_2)$, we have $\frac{\partial d}{\partial s}(0,x_2)=2(u(0,x_2)-U(0,x_2))$ and then, from (2.18),

$$(2.19) u(0,x_2) \le U(0,x_2).$$

Now, let (k,x_2) be a point of G, with kell, at height x_2 . We write $f_{|k|}(x_1,x_2)$ for the translation of $f(x_1,x_2)$ of the quantity |k|, in the direction of the positive x_1 -axis if k<0, and in the direction of the negative x_1 -axis if $k\ge 0$. If we consider $f_{|k|}$ instead of f, then also u will be translated. We write $u_{|k|}$ for this translation.

Now,
$$\forall x_2 \in (0,b)$$
, $f^{\#}(x_1,x_2) = (f_{|k|})^{\#}(x_1,x_2)$.

Then, by (2.19),

$$u(k,x_2) = u_{|k|}(0,x_2) \le U(0,x_2) \le \sup_{-\infty < x_1 < +\infty} U(x_1,x_2),$$

and then (2.16) follows.

REFERENCES

- [1] R.A.ADAMS: Sobolev spaces, Academic Press New-York San Francisco London (1975).
- [2] C.BANDLE: On symmetrizations in parabolic equations, J. Anal. Mat. 30(1976) 98-112.
- [3] C.BANDLE: Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston London Melbourne (1980).
- [4] C.BORELL: An inequality for a class of harmonic functions in n-space, from M.R.Essén, The cosπλ Theorem, Lecture Notes in Mathematics 467 Springer (1975) 99-112.
- [5] D.E.EDMUNDS-W.D.EVANS: Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa 27(1973) 591-640.
- [6] D.GILBARG-N.S.TRUDINGER: Elliptic partial differential equations of second order, Springer New-York (1977).
- [7] J.NECĂS: Les méthodes directes en théorie des equations elliptiques, Academia, Editeurs, Prague (1967).
- [8] M.H.PROTTER-H.F.WEINBERGER: Maximum principles in differential equations, Prentice-Hall, Inc. Englewood Cliffs, N.J.(1967).
- [9] G.TALENTI: Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa (4) 3(1976) 697-718.
- [10] H.F.WEINBERGER: Symmetrization in uniformly elliptic problems, Studies in Math.Anal.Stanford Univ. Press (1962).
- [11] A.ALVINO-G.TROMBETTI: Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri, Ricerche Mat., 27(1978) 414-428.

[12] G.POLYA-G.SZEGÖ: Isoperimetric inequalities in mathematical physics, Princeton Press (1951).

ISTITUTO DI MATEMATICA FACOLTA' DI SCIENZE UNIVERSITA' DI SALERNO 84100 SALERNO (Italy)