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SOMEDENSEBARRELLEDSUBSPACESOFBARRELLEDSPACES
WITHDECOMPOSITIONPROPERTIES

Jiurgen ELSTRODT-Walter ROELCKE

1. INTRODUCTION. There are many results on the barrelledness
of subspaces of a barrelled topological vector space X. For example,
by M.Valdivia [14], Theorem 3. and independently by S.A.Saxon
and M.Levin [11]. every subspace of countable codimension in X

is barrelled.

Recalling that locally convex Baire spaces are always barrelled,
it is an interesting fact that every infinite dimensional Banach
space contains a dense barrelled subspace which is not Baire,
by S.A.Saxon [10]. From the point of view of constructing dense
barrelled subspaces’ L of a barrelled space X the smaller subspaces
L are the more interesting ones by the simple fact that if L is
dense and barrelled so are all subspaces M between L and X. For
barrelled sequence spaces X some known constructions of dense
barrelled subspaces use “thinness conditions” on the spacing of
the non-zero terms X, in the sequences (xn)ndNeX. Section 3 of
this article contains a unification and generalization of these
constructions. which we describe now in the special case of sequence

spaces.

Let X be a sequence space over the field K of real or complex

numbers.For every X:(xn) eX and keN:={1,2,3,...} let gk(x) denote

nelN
the number of indices ne {1,2,...,k} such that xn*o. Clearly the

“thinness condition”
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gy (x)

(e) lim X

k>

on the sequence of non-zero components of x defines a linear sub-
space L of X. If X is the Banach space 11, then L is a proper dense
barrelled subspace of X by G.Ksthe. [7],[8], §27.1, where this

fact is deduced essentially from the following simple lemma.

1.1. LEMMA. A subspace Y of a (locally convex Hausdorff) barrelled
space X is dense and barrelled if and only if in the topological
dual X' of X every o(X',Y)-bounded sequence (Or, equivalently,

set) is o(X',X)-bounded.

Lateron, thinness condition (0) and variants thereof were used
for similar purposes by J.H.Webb [16] in his Lemma D.(I) on perfect
sequence spaces and by M.Valdivia [13], Theorem 1 and by M.Valdivia

and P.P.Carreras [15], ‘Example 1. Webb's Lemma D(1)reads as follows.

LEMMA D.(1).1f X is a perfect sequence space which is barrelled
under the Mackey topoloqy T(X,Xx) ,  Wwhere )(x denotes the a-dual
of X in the sense of G.ksthe [7].[8].,530, then the subspace L

of X defined by (0) is barrelled under the topoloqy T(L,Xx).

We shall deduce this result from our Corollary 3.4, which says
(roughly speaking): Suppose that X is a projection invariant bar-
relled sequance space such that x = nglxnen for all x=(xn)n€mex,

where e = Then the corresponding subspace L and even

n = 8 ndken
a certain smaller dense subspace M of L are barrelled. This result
is a special case of our general main Theorem 3.1 in which we
assume a kind of decomposition, called pseudodecomposition which

is more general than a Schauder decomposition.
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The notion of pseudodecomposition is introduced and discussed
in Section 2. A pseudodeconposition of an 1l.c. (locally  convex
Hausdorff topological vector) space X is a pair ((X ) gy-D) where

the X, (neN) are (not necessarily closed) subspaces of X and

D c nIL]NXn is a subspace such that oL converges in X for all

1*n
R oo

(x) hen€D and such that every xeX has an expansion x = nélxn for

some (Xn)ne]NeD' (This expansion need not be unique.) Obviously

every Schauder decomposition of X 'gives rise to an associated

pseudodecomposition. The pseudodecomposition ((X ) gv-D) is called

projection invariant e D for all (xn)ne]N e D and

if (enxn)ne]N
(En)nelN € {0,1}]N. Projection invariance is characterized in Lemma
2.4 by a summability property, and its relation with the equiconti-
nuity of an associated set of projectors is described in Lemma

2.5 for Schauder decompositions (Xn)n(-:IN'

Large parts of Section 2 are devoted to demonstrating in a
series of examples the very broad generality of the concept of
pseudodecomposition. The Main Example 2.8 proves that there even
exist Banach sequence spaces X that have a projection invariant

pseudodecomposition ((]Ken)n‘elN’D) with ngN ll(en ¢ D and with unique
expansions but such that (Ke ) g is not a decomposition of X
in the usual sense.

The main result of Section 3 is Theorem 3.1 stating that if

X is a barrelled (1.c.) space with a projection invariant pseudode-

composition ( (Xn)neIN'D)‘ then also the dense subspace L of X defined
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by thinness condition (8) and even a certain smaller dense subspace
M ¢ L are barrelled. The scope of Theorem 3.1 and Corollaries
3.3.3.4 is analyzed in Sections 4 and 5 by means of some classes
of examples on classical Banach or Fréchet spaces. In particular,

we shall show:

(a) The hypothesis of projection invariance cannot be dropped
in Theorem 3.1. and the hypothesis on the equicontinuity of the
set of projectors ay (J ¢ IN finite) cannot be omitted in Corollary

3.3.

(b) There exist special Banach spaces with Schauder basis for
which L and even a smaller subspace are barrelled although projec-

tion invariance does not hold.

(c) There are other thinness conditions more restrictive than
(8) which yield dense barrelled subspaces for some special Banach

or Fréchet spaces with Schauder decomposition but not for others.

(d) Thinness condition (8)is in some sense best possible (cf.

Theorem 5.6).
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2. PROJECTION INVARIANT PSEUDODECOMPOSITIONS.

we define pseudodecompositions of an ],¢. (locally convex Hausdorff
topological vector) space X by weakening the familiar defining

conditions on Schauder decompositions.

2.1. DEFINITION. A pseudodecomposition of an l.c. space X is
a pair ((Xn)ndN,D) where the X are (not necessarily closed) sub-

spiacesof X ind D is 4 subspace o f
(2.1) E: = {(Xn)ne]Ne n&NXn ; n§1 X converges}

such that, f o r allxeXtherei S a sequence (X ) pen € D with

(<)

nElxn=x. Here, (Xn)neIN

The set of all expansions of x in D is denoted by Dx.

will be called an expansionof x (in D).

Our concept of pseudodecomposition goes over into that of 1. Singer

[12] , p.538, Definition 15.21, by considering only Banach spaces

fnr X, closed subspaces for xn, and D=E. we will discuss this

@
rather general concept in some detail. For all meN et pr : I,X X,

prm((xn)ndN):=xm, denote the m-th canonical projection. A given
pseudodecomposition -((X ) n-D) may always be "reduced" to the
pseudodecomposition ((prn(D))ndN,D). Definition 2.1 does not require

that n%N prn(D) lies in D. - Consider now the canonical linear

oo
=nE

surjection f : D +x,f((xn)ndN):_n

@ - -
1%n- I f nelern(D) lies in D,
then its image under f is dense in X. The set DD of all expansinns

of 0 in D is the kernel of f. Every element xeX has a unique expan
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sion (xn)neIN in D if and only if DO=(0). If ((Xn)nejN‘D) is a pseudo

decomposition with unique expansions, one has the associated projec

tors
(2.2) a, DX o+ X gx) ;o= Xn (n ¢ IN), and
4j ¢ - n();J a4, for finite Jc N .

D = E and uniqueness of the expansions together mean that (X ) .y

1s a deconposition of X in the sense of J. Marti [9], Chapter
VII; and if, in addition, the projectors q, are continuous one

ohtains exactly the Schauder Secompositions (Xn)ne]N of X (with

Xn = {0} admitted). The (Schauder) decompositions of X can in
this way be considered as special pseudodecnmpositions. Applying
the abnve to X endowed with the weak topology o(X,X') one nbtains
weak  pseudodecompositions and weak (Schauder) decompositions.
Patently, every pseudodecomposition is a weak pseudodecomposition,
and it is easy to see that every Schauder decompnsition is a weak
Schauder decomposition. Conversely, for a barrelled space X, every
weak Schauder decomposition is a Schauder decompositinn (cf. J.

Marti [9], p.128, Theorem 5).

If ( (Xn)ndN’D) is a pseudodecomposition of X with n@INXn ¢ D,

with unique expansions and cnntinuous projectors 4y (cf. (2.2)),

then it is a Schauder decomposition. (To prove D = E, let (yn)ndNeE.

@

Put x : = n§1 b/

for alln,reNand o r>n, the sequence(yl,...,yr,0,0,...)

and consider its expansion (Xn)nelN e Dx. Then,

- - . . . . r ®
is in D, and the continuity of q_ implies y =q (;2;y;)=a,(;Zyy;)=
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= q,(x) = x, hence (yn)ne]N eD.)

2.2.EXAMPLE. There exists a Banach sequence space X with pseudo-

©

decomposi tion (]](en) D) with en:=(6nm)melN’n9 Me,, ¢ D and with

nelN’

unique expansions, but such that (Ken)nelN is not a deconposition
of X, i.e. such that ) 4 E,

(@) Let Z be an 1.c. space with a topnlogical basis (bn)nelN‘ That
is, for very zeZ there exists exactly one sequence ( A ) g in

K such that z = I, A b . (If in addition, z~ ) s continuous
for alln € N, then (bn)nelN is called a Schauder basis.) Let NcZ

be a closed subspace such that N${0}and Nﬂspan{bn: nelNl= {0}, Let
Y be a complementary subspace of N in Z containing span {bn: nelN}.
Thus Y is a proper dense subspace of Z. Transferring the Hausdorff
quotient topologyfrom Z/N to Y by means of the canonical isomorphism
Y ~ Z/None obtains an ],c, space X with the same underlying vector

space as Y. The topology of X is strictly coarser than that of

i = I i i I
Y, since for aeN, at0 and a = 2, b in Z, the series n=1nPp

is not convergent in Y, but it is convergent in X with sum O.
Consider now the decomposition (Kb ) nelN of Y as a pseudodecomposi

tion (ﬂ(bn)neJN’D) of Y, where

@

[
D : {(xn)ndN e Iy Il(b]_1 ‘nd) X, converges in Y}

This is at the same time a pseudodecomposition of X with unique

expansions in D. (Uniqueness holds since for (yn)neJNeD the sum

ntle y, in X agrees with the sum in Y, and (Mb,) is a decomposi-

neN
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tion of Y.) However. it is not a decomposition of X: The space E
from (2.1.) for this pseudodecomposition is strictly larger than D

since E contains the subspace
(o<} [o 0]
Fr=1G) €8 Kb : Iz converges in Z }.

If we use fnr Z a barrelled space then X is also barrelled; and
if we choose Z as a Banach sequence space with Schauder basis

O)nen = (€ )pene then Xa n d (Kep) gD have the required

2

properties. If Z = 1%, then a Hilbert space structure is induced

on X by that of 12/N.

Returning to the case of an 1.,c, space Z, we note that the
projectors a4, (see (2.2)) for our pseudodecomposition of X are

not all continuous by the remark before 2.2. (This also becomes

o

obvious if one takes aeN, a$0, a= | a in Z with a€ 11<bn (neN),

n

i~ 8

chooses meN such that ameO and notes that 18,=0 in X. but

n
r

an(pfy a) = ay for all r > m)
(b) We now compare the spaces E and F of the above construction
more closely. Clearly we have the internal algebraic direct sums

E=D 4-E, and F=D -G where

50 Doz {(xn)ne]N e I Kb I X, = 0 in X},
G::{(xn)ndN € n?jl ]](bn thk1X, converges in Z, with sum in N},
and clearly Gc¢ Eq- Therefore F = E holds if nnd only if G = EO'

We assume now that (bn)neIN is a Schauder basis of Z, and we claim:
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If dim N is finite, then F=E, i.e., G=E: and if dim N is infinite

and z=1P with 1 < p <=, one may have F4E.

1. Let dim N be finite and (x ) 4y€Ey- TO prove (x ), n€G we
may assume that (x ) n$0. Let C be the compact unit sphere for

some norm on N, and let U«,(Z) denote the filterof all neighbourhoods

of 0 in Z. For every Ue#,(Z) we choose a natural number r; such

that, for allr2ry, there exist some elements 2y ¢ eC and )‘U r<-:Il(
] 1)

such that
r
(2.3) n=1 Xn - My.r Zu,e € U-
The set T : = {(U,r) e @10(2) x IN :r > rU} is directed by

(U,r) < (u',r") if and only if UdU'and r<r'. The net (zU’r)(U,r)eT

in C has a subnet (zy ) converging to some point ceC. Applying
s

r_’seS

now to (2.3) the continuous projectors a, for the Schauder decompo-

) o f
s Is seS

()‘U,r)(U,r)eT converges to some )eK and that xnzlqn(c) for all

sition(n(bn)newof Z , one sees that the subnet (AU

o

) Iy - . .
neN, i.e., n=1%n Aci n Z . Hence (xn)ndNeG.and this proves our

first assertion G=E0.

2. Let z=17 with lcp<e and b =e (neN). We define a closed

subspace N of Z such that E$F as follows: Let (Ik)de be a partition

of 2N into infinite subsets |k and let dk:=n)3e€(2'nen (keN). We

define N to be the closure of span {an:nelN} in Z. where api=e -dg
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and a :=e, ; + dn_l-dn for n>2. The space N consists of all

@© . p . @©
elements of the form nfir,a, with ) el”, and ()‘n)ndN+ nyél)‘nan

is a topological isomorphism of 1P onto N, whence (@) N is a
Schauder basis of N. Obviously N n span{en:nelN}: {0} since the

I, are infinite and disjoint. Choose a complementary subspace

k
Y of N in 1P which contains span {en: neN} and def ine X as in part

=]
(a). Then we see from e1+e3+...+ezn_1=al+az+...+an+dn that | Z,e,, 4

converges in X with sum 0. Hence t h e sequence (%(1—(-1)n)en)n€m

belongs to E, but not to F. This proves nur secnnd assertion under

(b).

We shall imprnve Example 2.2 in nur Main Example 2.8 by making
the pseudndecnmpnsitinn in addition , prnjectinn invariant (cf.

Definition 2.3). Mnst pseudodecompositions ((X ) -D) to be needed

later will be invariant under the canonical prnjectnrs

X+ ILX (JC ),

(2.4)
pJ((xn)ndN) o= (yn)rlelN , where yrl = xn for n ¢ J and

y, =0 fnr n¢J.

n

2.3. DEFINITION. A pseudndecnmpnsitinn ((xn)ndN,D) of an 1.c.

space X is called projection invariant if D is prnjectinn invariant,

ice., if py(0) ¢ D far allJ C N. (X)) -D)iscalled unconditional
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o
if all series nglxn with (Xn)nelNeD are unconditionally convergent.

A projection invariant pseudodecomposition contains always

the projection invariant subspace o8N prn(D)and one may reduce

it by replacing the spaces X by pr (D).

If ((Xn)ne]N’D) is a projection invariant pseudodecomposition
of X with unique expansions x # (xn)nelN’ there exist the projectors

©

(2.5) q; 1 ox » X, qJ(x) élyn with i from (2.4) ,for all JCN,

n
extending (2.2). If X is an 1l.c. space with a projection invariant

pseudodecomposition ((X_ ) gy-D). then for all (x ) €D, the series

o«

n=):1xn is subseries convergent. By M.M. Day [1] , p. 78, this is

equivalent to saying that the sequence (xn)neJN and all its subse-

2]

gquences are summable, or equivalently, that nE1¥%n and all its
subseries are unconditionally convergent. By a form of the Dunford-
Pettis Theorem (cf. H.Jarchow [5], p.308, Theorem 4), these statements
about convergence and summability are equivalent to the corresponding
ones with respect to the weak topology of X. Thus the nntinns
of prnjectinn invariant pseudndecnmpnsitinn and of prnjectinn
invariant  weak pseudndecnmpnsitinn are equivalent. Alsn by the
above, every prnjectinn invariant pseudndecompnsitinn is uncondi-

tinnal.

The next lemma shows that under a mild cnmpleteness assumptinn

on X, the prnjectinn invariance of a pseudndecnmpnsitinn

((Xn)ne]N’E) with E frnm (2.1) may be characterized by the summability



166 J.Elstrodt-W.Roelcke

of the sequences (x ) €E. We call a series nzwn with y eX (neN)

a Cauchy series if its partial sums form a Cauchy sequence. A

pseudodecomposition D) with D=E is called complete if

(X)) ey

[}
(2.6) every Cauchy series nglxn with X, € Xn (neN) converges

(and hence (Xn)neNFE)' This condition i S trivially satisfiedif
X is sequentially complete. For Schauder decompositions it has

been introduced by N.Kalton [6], p.35.

2.4.LEMMA. A complete pseudodecomposition ((xn)ne]N’D) with D=E
(cf. (2.1)) of an l.c. space X is projection invariant if and only
if 11 sequences are summable, i.e., if and only if
a q (xn)ndNeE

it is uncondi tional .

Proaf . The condition is necessary as remarked after (2.5).
Now let it be fulfilled. Let (xn)ne]NeE,J c N and (yn)ne]N

. pJ((xn)ne]N)' For every neighbourhood U of 0 in X there is a
finite set I ¢ IN such that for all finite sets K ¢ N with KnI=¢

one has n&x X, € U. It follows that also L, yneUfor these K .

So the series noéolyn is Cauchy and by (2.6) converges, i.e.,

Ypdnenw € E-

Consequently. if atopological basis (bn)ne]N of an 1l.c. space
X vyields a complete (pseudo-) decomposition (Kb ) gy:E)of X,
one can say that this (pseudo-) decomposition is projection invariant

if and only if (bn)nelN is an unconditional basis.
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In the next lemma we give a relationship between projection

invariance of a Schauder decomposition (xn)ndN of an 1l.c. space

X and equicontinuity of the set

(2.7) P . {qy J ¢ IN finite }

of continuous projectors ay from (2.2). We recall that by D.G.H.
Garling [3],p.1001, Theorem 2. P is equicontinuous if and only
if X has a base @ of neighbourhoods of 0 such that q(U) < U for
allq e Pand U e&®.

2.5.LEMMA. Let X be an 1.c. space with Schauder deconposi tion
(Xn)ndN‘ If X 'is barrelled and (Xn)neIN is projection invariant,
then -the set P from (2.7) is equicontinuous, or, equivalently,

{qJ:J c N} (cf.(2.5)) is equicontinuous. If P is equicontinuous

and (xn)neN is complete (cf. (2.6)). then (X ) gy S Projection
i nvariant.

Proof. To prove the first statement, suppose that P is nnt
equicnntinunus. Then. as X is barrelled, P is nnt pnintwise bnunded.

So thereexist some xeX with expansinn (xn) and ueX' such

nelN’
that {u(q;(x)):JaN finite) is unbounded.Since {u(q;(x)):Jc{1,2,...,m}}

is bounded fnr each m e N, nne nbtains inductively a sequence

(Jk)kelN of finite sets Jk < N, Jk # ¢, such that max Jk< min Jk+1

and
|u(qu(X)) | - l“EJk U(Xn)l 2k (keN) ,

@

This means that the subseries of I corresponding to J :=.;J,

1%n
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is not a4 Cauchy series, whence pJ((xn)neN)¢E, contrary to the

assumption.

To prove the second statement, let (xn)nelNeE and JcN. To show

that (yn)new:=pJ((xn)neN)eE, let Ube a4 neighbourhood a 0 in

X. There exists g neighbourhood V of 0 in X such that qK(V)r_ U for

S
all finite K < N, Then there exists some meN such that I xnev
n=r
S
for m<r<s, Applying the map Ay, . .,s}ng one obtains niryne u for

m<r¢s. This means that F y_ is a Cauchy series and hence converges

n=I
since (X ) g 1S complete.

n

A theorem of N.Kalton [6], p. 35 implies that a barrelled space
with a4 complete Schauder decomposition (Xn)nelN is complete (resp.
quasicomplete, resp. sequentially complete) if and only if the

spaces )(n (nelN) have these properties, respectively.

In Example 4 .1 we show that the classical Banach space bv, has

a Schauder basis (d) hen such that the associated Schauder decompo-

sition (]Kbn)ne]N is not projection invariant.

2.6. EXAMPLE. In every separable metrizable and complete ].c.
space X{ {0} ene has the projection invariant pseudodecompositions

((Xn)ndN,D), where (Xn)ne]N is any sequence 0of one-dimensional sub-

spaces of X with | X, dense in X and
n=I

Di= (X)) en en?I;|Xn:(X")“dN is subsequence summable}.
Certainly D is a projection invariant subspace of n’l1xn- Let d

be a translation invariant metric for X. Then, for every xeX,
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one finds inductively a strictly increasing sequence (nj)de in

N and X, e X such that
oM

E -k
d(x,jglxn )<2

j

(k e N).

1-k and hence (xn.)AeIN is subsequence summa-

Then d(x
( “k+1'0) <2 j J

ble with sum x. Putting xn:=0 for all nelN\{nJ.:je]N} one has (Xn)neNeD

and x=n°§°1xn, as desired. - Plainly. the expansions in D are not

unique.

Familiar examples o f 1.c.spaces Wwith projection invariant
Schauder decompositions are the products and the locally convex
direct sums of 1.c. spaces and the 1P-sums of normed spaces (l¢p<w),
J.Marti [9], p.91, Corollary 3 gives an example of a projection
invariant decomposition of the Banach space 1 which is not a
Schauder decomposition. A similar construction works for many

separable - metrizable spaces X:

2.7. EXAMPLE. Let X be a separable metrizable 1.c. space which
has a closed subspace Y with a projection invariant Schauder decom-
position (Y ) . such that Yn#{o} (n eIN) .Then (Y, ) is a projec
tion invariant Schauder decomposition of Z:=span ngl =’2n‘ Since

X is metrizable and separable and Z has infinite codimension,
Z possesses a dense complementsry subspace X, $ X. Letting Xn:=Y2n_2

for n > 2, it is easily seen that (Xn)ﬁew is a projection invariant

decomposition of X, but not a Srhsuder decomposition.
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The following Main Example 2.8 shows that the concept of a
projection invariant pseudodecomposition ((xn)ne]N’D) is strictly
more general than that of a projection invariant decomposition,
even for Banach sequence spaces X and even under the additional
restriction that the expansions in D are unique and the subspaces

Xn are one-dimensional.

2.8.MAIN EXAMPLE. There exist l1.c. sequence spaces and even
Banach sequence spaces X which have a projection invariant pseudo-
decomposition where =(8 wi t h Ke_cD
P ((Ken)nelN’D) ( °n ( nk)ke]N) ngN ®n

and with unique expansions but such that (]Ken)ne]N is not a decompo

sition of X,

In order to exhibit such spaces we return to the construction
in Example 2.2. we start with an 1.,¢c. sequence space Z which has
(e ) ey @S @ topological basis such that ¢:=span{en:ne]N}+Z.

As in Example 2.2. (a) we choose a closed subspace N {0} of z
with N N ¢= {0}and a complementary subspace Y of N in Z containing
¢ . Recall that, by carrying over the quotient topology from Z/N
to Y by means of the canonical isomorphism Z/N ~ Y, Y gives rise

to an 1l.c. space X with the pseudodecomposition ( (]Ken)nelN’D)

where

o

©
D:={(x ) en © nf1 X, ¢ nZp Xn convergesi n Y},

and that the expansions in D are unique. To make D projection invar-

iant we choose Y invariant under the projectors pJ:]](N-> ]KIN (JCN;cf.

(2.4)). Such Z,N,Y exist in abundance as subspaces of 1P
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with 1 < p < « (and of all other Banach sequence spaces that have
(en)ne]N as a Schauder basis): Begin with any proper projection
invariant subspace Y of 1P with ¢ ¢ Y (such as Y:=¢ itself)
and choose any closed subspace N# {0} of 1P with YNN= {0} .Then
the subspace Z:=Y+N of 1P, together with N,Y, s as des ired. (Z
need not be projection invariant.) - The more difficult task is
to make X a Banach space. This is done by starting with a projection
invariant Banach sequence space Z with (en)neIN as Schauder basis
and showing that Z always has projection invariant hyperplanes
Y containing ¢ ; N may then be any complementary subspace of
Y in Z (and X and (n(en)ndN,D) are then obtained as abnve). The
existence of such hyperplanes Y is guaranteed by the fnllnwing
algebraic lemma that cnvers more general cases as well. (Alterna-

tively, the last part of Lemma 2.10 cnuld be invnked.)

2.9. LEMMA. Let (Xl)lel be a fanily of vector spaces over

a field K and 1let L be a projection invariant subspace of 1]'[I)(1 (cf.
€

(2.4)).Then every proper projection invariant subspace M CL is

the intersection of all projection invariant hyperplanes H ¢ L
with M ¢ H. In particular, if 121 xlgL ,there exists a projection
i nvari ant hyperplane of L containing 121X1 .

Proof. Fnr A ¢ 1, X € 1gIX1 and T ¢ RIOED ¢ let xA::pA(x)and

TA:=pA(T), with P, analngnus to (2.4). Let M be as in Lemma 2.9 and
deL\M. The set of all projection invariant subspaces UcL such that
MCU and d¢:U contains 4 maximal element H by Zorn’'s Lemma. If

we show that H is a hyperplane the prnnf will be finished. Suppose

that H is nnt a hyperplane. Chnnse a subspace T ¢ L with HgT
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and d¢T. As H is maximal, T is not projection invariant. Choose
zeT and A ¢ 1 with z,¢T. Let A':=IN A Then also z,, =z-z,¢T. Plainly.
S:=span {zB:B c A} is projection invariant. so also H+S is projection
invariant. As erS\H we have H#H+S, Because H is maximal, we deduce
that d e H + S, whence dA.eHA. ¢ H. .The same argument applied in

A’ instead of A gives d,eH. So d:dA+dA,eH, a contradiction.

A
If ((Xn)neJN'D) is a pseudodecomposition of an 1 .c. space X
and C is a complementary subspace of Do (see 2.1) in D, then
((Xn)neW‘C) is a pseudodecomposition of X with unique representations.
However if ((Xn)neJN’D) is projection invariant, ((Xn)ndN’C) need
not be projection invariant. That C may be chosen projection invariant

under additional algebraic conditions is contained in the following

lemma, to be applied with 1N,D,D0 H%an instead of I,L,N,M.

2.10.LEMMA. Let (XI)IGI be afamily of K-vector spaces and
L a projection invariant subspace of 1g1 X, A subspace N o f

L has a projection invariant complementary subspace S in L if

one of the following conditions is satisfied.
(@) dim N is finite.
(b) The <codinension @ of N in L is finite, and for al11 subsets
J C 1 of at mstm elements one has
pJ(1gI XI)ﬂN = {0}.

(c) The set of all SetSXI := {1el:x, 40} with x=(xq) o eN MO0} has

the finite intersection property.

If (a) is satisfied and MCL is a projection invariant subspace
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with MON = {0}, S may be chosen such that M c S.

Proof. 1. Let (a) hold and et Mc L be a projection invariant
subspace With MAN = {0}. W argue by inductinn on n:=dim N. The
case n=0 is trivial. To pass frnmn-1 to n, chnnse aeN,a30. By
Lenma 2.9 there is a prnjectinn invariant hyperplane Hin L with
M ¢ H and a¢H. Hence we have the internal direct sum N=(HNN)4Ka.
By inductinn hypnthesis. HNN has a prnjectinn invariant complemen-
tary subspace S in Hwith M c S By adding Ka to H=S4¢(HNN) nne
nbtains L = S 4 N.

2. Let (b) hnld. There are m linearly independent elenents

dyse.ndy in L. Then there exists a subset J ¢c1 wWith at npst m
elements  such that py(dy),....py(d ) are linearly independent.
So there are ky,....kpe {1,...,m} and Yseeos 1 €] such that

p{ll} (dkl) 0000l 0} (dkm) are linearly independent. These vectnrs

span an mdinensional prnjectinn invariant subspace S of P, GIX0,

and SNN = {0} by assunmptinn. Hence S is as desired.

3. If (c) is satisfied, there is an ultrafilter & on 1 such
that 1,e% fnr all xeN\{0}. The subspace T::{xeL:pA(x):O for sone
Ae%} has intersectinn {0} with N. Chnnse a cnnplenmentary subspace
Sof Nin L with T c S The prnnf will be finished if we show
that S is prnjectinn invariant. Let xeS and Acl, |If A':=I\A e%,

nne has Ppr (Py(x))=0 and hence pp(x)eTCS. If A'¢9, then Aeg,so,
by the last argunent, Ppr (X)e€S, and again nne has Pp(x)=x-p,, (X)€S.

The hypnt hesi s pJ(lgIX‘)nN = {0} is nnt superflunus in 2.10,

(b) as is nbvinus frnm the exanple I:=N, X, =K (nelN), L:=", and
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N a hyperplane containing ngNK' Case (b) is not interesting for

the above appl ication to pseudodecompositions since from X ~ D/D0=

= L/N and (b) one obtains dim X = m.

The first part of Lemma 2.9 and the part of Lemma 2.10 pertaining
to condition (a) generalize to arbitrary vector spaces L (not
necessarily embedded in a prnduct) fnr which there is given a
Boolean algebra of prnjectnrs ueEnd(L) with zero element OeEnd(L),
unit element idL, and the usual prnperties usav=u °ev=ve u, U vv =

= u+v-uev and cnmplement u'=id; -u.

3. THINNBSS CONDITIONS AND DENSE BARRELLED SUBSPACES.

Let X be an 1l.c. space and ((xn)nelN’D) a pseudndecnmpnsitinn
of X. Similarly as in the Intrnductinn we define gk((xn)ndN) fnr

(xn)nelNeD and k e N as the number of indices ne{1,...,k} such

that x 40. Then the thinness condition

(® in g, ((x) ) =0

1
k +o
determines a subspace D(0) of D whnse image under the canonical

map f : D =+ X, (Xn)nelN'_’ n;‘.l X4 is the subspace

(31) L : = {xeX:thereexists (x ) €D which satisfies (9)}
of X. Of course L need nnt be a prnper subspace, but in many cases
nbvinusly it is. (If dim X > 2 in Example 2.6, the subspace L
is nnt prnper as can be easily checked. The same applies to the

subspace M to be defined presently.) Besides L we cnnsider a smaller
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subspace M: = span Mo’ wvhere Moc X is defined by a1 thinnes rond it ion
more restrictive than (0), depending on an arbitrary preassigned

sequence (bj)je]N in IN as follows.
Let J be the set of all subsets J C N which are either finite

or. if J ={nj:jeIN}with Nw<hy g (jeN), satisfy

(jeN), and lim (n

] >

(J.1) n,.;-n -nj)=m

j+1 j+l

and

n. -n,
(5.2) the sequence (ﬁé—l)jew is unbounded.
j

Cancelling the first condition under (J.1) leads to a larger

class J. which for increasing (bj)jelN contains all subsets of

sets J e J. - If (k}-)de is bounded. (J.1) implies (5.2).
Nnw we define
(3.2) M0:={xex: there is (x ) o € D such that
{neN @ x| $ 0} € J for some J e J}.

Mn need not be a subspace of X as can be seen from the spaces
n&N or 1P (1sp<= ) with their Schauder decompositions Ke ) -
Because of (J.1) nne has Mn C L, hence alsn

(3.3) M: = span Mn

is cnntained in L. This inclusion may be proper even if nne disregards
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k

]

(5.2). (For x:=1! and Xn: Men the element KE1 jil Z'ke K 1 ies
- 2%+

in L but not in M)

If ( (Xn)ne]N’D) is assumed to be projection invariant, then
Mo and hence M and L are dense in' X since they contain the sums
of the sequences (X)) el € nQJNprn(D).

Now we come to the main result of this sectinn.

3.1. THEOREM. 1f X is a barrelled space wth a projection

0

invariant  pseudodeconposition ((Xn)nelN’D) , then also the dense

subspaces Mand L fron(3.3) and(3.1) are prarrelled.

REMARK. The fact that M and L are barrelled in their relative
topologies implies that also (M, T©(M,X'))and (L,t(L,X'))are bar-
relled, ' fnr a barrelled space carries the Mackey topology, and
T(M,M') = t(M,X')and 1(L,L')= t(L,X") hnld always true.

Because of M < L and in view of Lemma 1.1, Thenrem 3.1 is an
immediate cnnsequence of the follnwing proposition abnut not peces-

sarily barrelled 1l.c. spaces X.

3.2. PROPOSITION. If X is an 1l.c. space wth a projection
i nvari ant pseudodeconposi tion ((Xn)ne]N'D) then every o(X' ,M) -
-bounded subset of X' is 0o(X',X)-bounded.

(b) Mre sharply, let X be any 1l.c. space, let (ur)re]N be a sequence

in X'and let xeX be such that (ur(x))reIN is unbounded. suppose
@©
that there is a sequence (x)pgn N X such that x = r);:I *n

and that this series is subseries convergent. Then there exists

aJ eJ (see(J.l) and (5.2)) such that (ur(néan))remis unbounded.
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Proof. Clearly (a) follows from (b). If now under the hypotheses
of (b) there is a finite set JIN such that the sequence (u ( Z;x))

is unbnunded, then J belnngs to J and is as desired. We assume

nnw that
(3.4) (ur(nétlxn))rdN is bnunded fnr every finite set IcNN.

The desired set J e J will be nbtained by a sliding hump argument

in the fnrrm J = { tielN } with n;< n (ieN). The rnnstructinn

i+l
of the n, invnlves the inductive cnnstructinn of fnur sequences

(ak)de, (pk)kem’(rk)ke]N’(mk)de in N. It is cnnvenient to put

k
(3.5) 5,:=0 and sk:=i£1(p]. a;_q*+(my-1ay) fnr k e N.

Fnrming fnr every k ¢ N the finite arithmetic progression
(3.6) Spo] + Prdko1 + My (pw = 0,1,...,mk-1),

(whnse last term is strictly smaller than the first term

Sk
Sk + Pra1 @k of the next progression) and putting these prngressinns

nne after annther. the resulting sequence (ny) will be as desired.

ielN
We set nnw <, ;=0 and note that

k mi—l

(3.7) ¢ -supu( X ) | e IR fnr all k e IN.
k’ reN 11u0 s

i-1" P 84.1 TRy

The sequences (ak)de,( pk)de, (rk)ke]N’(mk)ke]N shall satisfy

conditions (ak)-(sk)fnr all K eN:
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() a - 2 bml fom 41 ay_q» With a :=1;

k

(Bk) G {1,2....,ak/ak_1};

(v ) {ur(ui(") Yr e IN} is unbounded;

XSk-1+0k ag-17 Mg

©

(8  lu (% x ) )| > keey s
k I, u=0 S1-1*PK 2k-1 +uak k-1

(ek) quk(nezlxn) | <1 for 3111 C {ne IN: n>sk}.

@

The sequence (ay), gy IS defined uniquely b; (ay) - Sjnce(ur(nglxn))relN

is unbounded by assumption and since nglxn is the sum of its

8

subseries

LIS}

b= 1....,a1/ao),therei5 some p

u=0 *pa_+ua; ( 1

such that ( 61) and ( yl) hold., Hence there is r; eN such that

(6 1) holds. Since n_len is subseries convergent the subsequences

of (x.) are summable (see the remarks after Definition 2.3).

X
n’'nelN

So there is m; e IN, my > 2 so large that s; becomes so large that

(sl)holds for allfinite and hence, by continuity, for all

I c{n € N: n>sl}. Similarly, if now k e N and if pi» Tj» M, € N

i i
(1 < i < k) are already determined in accordance with the above

conditions we define Prs1’ Tke1® Myey @S follows. Since

®
z

bel s +ua, MY P

Sk = Sk-1 T Ppaqt (mk—l)ak, the series

regarded as a section of the series in (Y ;). Hence (v ;) and (3.4)
L]

imply that {ur(u£1xsk+”ak) :r e N} is unbounded. Since Uglxskwak
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©
«

is the sum of its subseries ZX
H=0Tsy Py tuay

( o=1,...,ak+1/ak)

it follows that there is some e, ; ¢ N such that (8, ;) and

(Yk+1) hnld. Hence thereis some rk+leIN such that (6 k+1) hnlds,

and we can chnnse M1 € N, Mg 2 2. solarge that (€k+1) hnlds

as well. This ends the cnnstructinn of the sequences

ARken Crdken Fidkens M ken-

Nnw we build up the sequence (n;); n @S described after (3.5).

To prove (J.1) note that the difference of the last term of

S
k
the progression (3.6) and the first term in the next progression
IS Pp1 ay which lies between a and a.,,; by (B ).As a to

by (e ), (J.1) is nnw clear.

Putting nnw Lys=my+...+m, the definition of the n,(ieN) yields

2b whence (5.2) follows, as a o (k>w) .

1, +1%

DI NS e S e )

k
ThusJ:={ni:ielN}eJ.

To finish the prnnf we will nnw deduce frnm (6k) and (ek) that

(3.8) |“rk(n§J%1)‘ > kil (k e N).

Fnr k e N the set K:={n e J : n >s, _,}is cnntained in the set

{sy_q1+ey a1+ Hay L= 0,1,...} by cnnstructinn. and the differ-
ence 1 of these sets cnnsists of elements greater than Sy S°

that (¢,) applies. whereas
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L <
lurk ( neJ\K Xn) = %-1

by (3.7). Therefore ( ¢.)yields (3.8). (The sliding hunp was over

the subset {n e J : s, _; <n ¢ s} of J.)

By Lemma 2.5 one has the follow ng imediate consequence of

Thenrem 3. 1.

3.3. COROLLARY. If X is a sequentially conplete barrelled space

with Schauder deconposition whose projectors qJ:X +X (JcN

(Xn)neJN
finite; cf. (2.5)) form an equicontinuous fanmily, then also the

corresponding dense subspacesM and L are barrelled.

We apply nnw Thenrem 3.1 to sequence spaces. The fnllnw ng
is immediate.
3.4. COROLLARY. Let X ¢ ]KIN be a sequence space which contains

ngN ]l(en and is invariant under the canonical projectors Py (JCN)
of IKIN.Let X be endowed with a barrelled topology such that

o] .
X = nél xn en for all x:(xn)ne]NEX‘ Thus ((Ken)ndN,D) with

D = {(Xnen)ne]N: (Xn)nelNe X} is a projection invariant pseudodecom

position wth wunique expansions. Then also the corresponding dense

subspaces M and L are barrelled.

Note that in Cnrnllary 3.4 the pseudndecnnpnsitinn need nnt
be a decnmpnsitinn by nur Min Exanple 2.8. - Cbhvinusly Kéthe's
exanple cited in the Intrnductinn is a special case of Cnrnllary
3.4,
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The spaces 1P (1 <p <w), oo Lwn\ilth their Schauder decnmpnsition

e ), also satisfy the hypotheses of Cornllary 3.4, and hence
the cnrrespnnding spaces L and M are barrelled fnr these spaces.

We show now that alsn Webb's Lemma (D) .1 qunted in the Intro-
ductinn is cnntained in Cnrollary 3.4. Since X is perfect it cnntains
¢ : = span{e, : neN} andis normal by G.Kdthe [7], [8],§30,1.(3)
and hence is prnjectinn invariant. The Mackey topnlngy T(X,XX)

is barrelled by assumptinn. Fnr every x = (Xn)neJN € X nne has

x = %,x e With respect to T(X,X*) b y G.Kéthe [7], [8],§30,5.(10).

n=1

So Cnrnllary 3.4 yields that the relative topology (X, X)L
is alsn barrelled. Hence, by the Remark after Thenrem 3.1, alsn

T(L,Xx) is barrelled.

We note that in normal sequence spaces X cnntaining ¢ ,(en)ndN
always is a T(X,X") - Schauder basis.
If X is an 1l.c. space Wwith pseudndecnmpnsitinn ((Xn)ne]N’D)

with unique expansinns and if there is an X e X\L such that

(2'mxn neN € D for all real t > 0, then codim L is at least

the pnwer of the cnntinuum. Fnr it is straightfnrward to show
T ® -nt

that any linear combination J.§1 N opdp 2 an with A, ..., 4 eK

and 0 Sty <...<t.r,which lies in L, is trivial.

This result can be applied to a Fréchet space X with 4 decompo-

sition (xn)nelN such that xn# {0} fnr alln e N: To find a suitable
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X € X\L choosea basis (Un)ndNof neighbourhoods of 0 in X such that

Un is circled and satisfies Upop + Un+1C lﬁfor alln e N. Choose

00
pe = 2 1
Xp € UnﬂXn, X $40 for alln e IN. Then x nZ1x, converges,i.e.,

(Xn)n(-:]N ¢ E, and x ¢ L. Fnr all t-2>2 0 nne has 2'mxneUn(nelN),

-nt

hence (2 x)hen € E- @nd x is as desired. Hence codim L is at

least the pnwer of the continuum.

Finally we note that if ((Xn)ne]N’D) is aprnjectinn invariant

pseudndecnmpnsition  and o: N + IN is a permutation then also
((Xo(n))nGJN’DO) with D% = {(x () nen’ %) newed } is a prnjectinn
invar iant  pseudndecnmpositinn; but the cnrrespnnding analngues
M7, L0 of the spaces M,L will in general be different frnm M.L.

4. TWO EXAMPLES ON THE EQUICONTINUITY CONDITION.

In this sectinn and the fnllnwing one we analyze the sharpness

of  Theorem 3.1 and of Corollary 3.4 by means of some examples
involving the classical Banach spaces 1P (1 <p<w), c,c, ,bv,bv_.,bs,

CS, and the Fréchet space V. Recall that c is the space of all
cnnvergent  sequencesin X equipped with the supremum-nnrm and <,
is the subspace of all sequences cnnverging to zero. The space

bv cnnsists of all sequences x = (X'])ndN in K such that

o o}
I x "bV CoE |X1| # n);llxn‘xn+1| < @,
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whereas bvn:zbvncn is equipped with the nnrm

"X”bv”:= n:zllxn_xn+1l

(cf. Dunford-Schwart : (2], p.239). The space bs consists of all

sequences X = in X with

(xn)neN
n
Ixly g =sup ] | Zyx) | n eN} ¢,

o]
and cs is the subspace of all sequences such that §1Xn converges.

The space KN with the metr ic
a0y = 5 Tl
n=1 Zn 1+ _
(I Ix=yp )
is a Fréchet space. Let e :=(1,1,1,...) and let again e_:=(8 ),

for n > 1. Then (Ke ) is a Schauder decnmposition of 1P(1<p<x),

nelN

co,bvn,cs,and JK'N whereas (ll(en_l) is a4 Schauder decnmpnsitinn

nelN
of ¢ and of bv. These will be referred tn as the standard Schauder
deconposi tions. It is tacitly assumed in the sequel that the above

spaces are endowed with their standard Schauder decompositinns.

The following two examples throw light nn the hypnthesis on
prnjectinn invariance. Our first example shnws that this hypothesis
cannnt be drnpped in Theorem 3.1 and also that the equicnntinuity
condition cannnt be nmitted in Cnrnllary 3.3. This proves assertion

(a) frnm the Intrnductinn.

4.1. EXAMPLE. Let X=bv0. Clearly the standard Schauder decomposi-

l) N € bvO

ion is n roj i inv i int since x:=
t (IKen)ndN is not project ion iri (e
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and

n
L e

n
”k=21 72k g '—'1—"°° for n » o |

This also prnves that the set of projectnrs a; (J ¢ N finite)

i s nnt equi cont inunus whereas X meets all nther requirements of
Cnrnllary 3.3. Let again ¢ dennte the subspace of KN spanned by

the unit vectnrs e (ne TN). Fnr any x=(xk)dedK]N\ ¢ we dennte
by hn(x) (n e N) the index of the n-th non-zero term in the se-

quence (Xk)kejN' Then plaiinly (0) is equivalent to

(0" X € ¢ orlimhn(—g)zo.

n +o

wWe shall prove that the dense subspace

L::{xebvn:xeq>or ii’lhn(x):m

of bvn is non-barrelled. Fnr this end we take 0 < § < 1 and fnrm

- . : n
Ls © = spanix e bv = X € ¢ or 111'111* s:pm—)i 8} .

Then L(S DLOM. we claim that [ (and hence [ and M) is non-

$
barrelled.

Proof (cf. Greifenegger [4],p.18-20). The dual of bv, is
nnrm-isnmorphic to the space bs, the canonical bilinear form fnr

the dual pajr <bv _,bs> being
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@®
Elx y. for x = (x.)

<X > =
Y n ’‘n n’ne

n

+

Now f ix p e N such thatP;—1>lTG and define

n
(n)._é

y .-kekebs (n e IN).

L

Then

Iy g =n  for all n e N;

N € bvo. y = (v ) enEDsS-

185

hence (y(n))ndN is not equicontinuous and hence not o(bs'bvo)'

bnunded. Remembering Lemma 1.1 we prnceed to show that (y(“))ndN

is o(bs,Lg)-bounded. Firstly, if x e¢, then the sequence

(<x,y(")>)n(_jN is nbvinusly bnunded. Secnndly. assume that

, . n
X € va\ 9 and lim sup e <$

n»>o

we cnnsider the blncks of consecutive non-zero terms of

se-

quence x=(x\))de. Define the strictly increasing sequence (M) ke

and (nk)ke]N of natural numbers by the condition that Xy $+0 (v eN)

if and nnly if meLveny fnr. some k € N. Let 1, ¢ [mk,nk[ NNb

arbitrary (k € N). Then

Ix; | = |x - x| < T oIx; - x
by e e S

and hence

e
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41 x| € Ixhy, .
(41 &y oV,
Now choose r e | N such that

(4.2) hmmﬁ <33 for all m > ph.

Assume that m, < p’ < p V"t <n, for some y > r and for some keN.

\J
Then there would be at |east p\)+1 - p non-zero terms of the

. +1
sequence (Xk)keIN among the first p\) ternms, and hence

v+l v v+ v 1+
(4.3) E >
v+1 2
v+l v P

. 1
by the choice of p. Since v 2 r by assunption, we have p\)+ -¥Z,pr
and hence (4.3) contradicts (4.2). Thus. for all k e IN, at nost

one of the nunbers p” with v >r is contained in the k-th block

[m.n [ON. This yields for all neIN

n
n
|<x,y( )>, = I\)El x\)
P
r ©
$ B Doy g I

A

I Ix I+ Ixl
v=1 P\) bvo

(cf. (4.1)) . This proves our assertion.
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We add a few further remarks on Example 4.1. Although the space
Ls is defined by means of a thinness condition, it is easy to

see that Lg contains plenty of “non-thin” vectnrs since e.g.
11 ¢ Lg. I'n particular, 11 is a non-barrelled subspace of bvo.
(This fact is nbvinus anyway.) We mentinn withnut prnnf that

Lg =Ly far all 6 ¢ JO,1[. -

1

Note that b\{) is nnrm-isnmnrphic tg 11 by the map fbv 0”1

f((xn)new):=(xn—xn+l)nemfnr (xn)ne]Nebvo.The inverse map £71

transfers the Schauder basis (en)ndN of l1 to the Schauder basis
n

( Z e )pen Of bv . The subspaces L and M for the Schauder decom
k=1 0 -

n

position (Il(kg of va are obviously bnrrelled since their

lek)neJN
corresponding images in 1l are bnrrelled by Corollary 3.4, kence for
one and the same Banach space X one choice of a Schauder basi s
may produce dense barrell ed subspaces L and M., whereas another

choice of g Schauder basis c¢an lead to dense non-barrelled spaces

L,M.

Our secnnd example shows that there exist Banach spaces with
Schauder decnmpnsitinn such that L and even a certain subspace
M ¢ L are barrelled althnugh prnjectinn invariance dnes nnt hnlid.

This will prove assertion (b) frnm the Intrnductinn.

4.2. EXAMPLE. The standard Schauder decnmpnsitinn of the Banach

space cs is nnt prnjectinn invariant since ((—1)“/n)ndNe cs
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and

I m
Cl k)::I 2k eZkIIc:s)neJN

is unbounded. The space cs also does not satisfy the equicontinuity
hypothesis of Corollary 3.3; cs is neither normal nor perfect.
Nevertheless. the space L defined by (3.1) and even a certain

dense subspace NcC[ are barrelled.
Proof. The map f : ¢ » cs, f((xn)ndN) D= (xyX o nen fOr

(xn)ndN e C with X, =0 iS 4 norm isomorphism. The standard Schauder

decnmpnsitinn (]Ken—l)nelN of c satisfies the equicnntinuity condi-

tion nf Cnrnllary 3.3. To prove this, take any x=(x_ ) g€ c and

def ine €= B 1)dpen bY EO==r11i:lxn. En:=xn-EO fnr n >1.

Then x = % and fnr every finite subset J ¢ NU{0}we have
20 En€ .y
n=0 nn

lagCO0 . = 1258, e he < 2Ixi,
Hence the set of ‘lprnjectnrs q; (J ¢ NU{0} finite) is equicon-

tinunus.

Applying Cnrnllary 3.3 to the ‘standard Schauder decnmpnsitinn

of ¢ we conclude that the subspace
M : = span M,

of ¢ with

a

MO::{x = L EpEe €€ {neN:& ,#0}C J some JeJ}
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:{(Xn)nelN e c:{ne N : x # lim xk}C J for some JeJ}

k >

n-1
is barrelled. We claim that the subspace
M= span Mo c L
of cs with
i * - . . C [A
Moi={(x ), gy € S {neN @ x4 0} © J for some J ¢ J ]

is barrelled as well. (Remember that J was defined after (J.2).)

In order to prove this assertion it suffices to show that f(Mo)cﬁ.

Suppose that x = (x ) o = nf:_foznen e Mo. If only finitely many
of the Ev (v> 0) are different from zero. then X, = &, for all

but finitely many n e IN and hence f(x) e 9 ¢ “io. Assume now that
¢ = (Ev_l) VeN satisf ies E\,_léfo for infinitely many v e N, Then
{hn(g) :ne IN } with h (&) from Example 4.1 is a subset of some
set J e J. Choose m e Nsolarge that h, ;(E)-h, (g) >4 for all
v 2m-l. Then with n=hm(§),p=hm+1(5), q = hm+2(g), r=hp 2(E),...,

: ,xn# € xp#go, xq # EO, X, ¢ Eothe. sequence x looks like

=(* *
x=(* oy % B8 E:O,xn.t:o.....Eo.xp,go,...,gn,xq,go,...,go,xr,go,...),
where the chains of terms ‘50 contain at least three terms each.

n o’

PO

H i = - = - = - =
ence with a = x g b.xP EO,C--X qio’d-‘xr'go

the sequence f(x) has the form
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f(x) =(*,...,*,0,0,a,-a,0,...,0,b,-b,0,...,0,c,-c,0,...,0,d,-d,0,...).

W now wite down the sequences

~<
—
"

(6,8 »eeerE o @ 0,0,...,0,-8,0, 0,...,0, C. 0, 0.02,0,-¢,0,0,...),
)’2: = (gf)’ El'---,in_z, 0,-a. 0,...,0, a,o0, 0;-..,0, O -c. 0,...,0, C,0.0,...),
Y3: = (%,El,....in_z, -a, O, 0;...,0, byoy 0"-"0'_bi O 0’---’0' dpoyov-..),

g = (B8 0B 50 a0 0.0,...,0,0,-b, 0,...,0, b, 0,0,...,0,0,-4,0,...),

where the dots between the zeros indicate chains of zeros wth
the same lenght as the dotted chains of zeros in the vector
£(x). Then (h (y;)-h (&) 4y is bounded for j = 1,...,4 and hence

YiseeesYy € M. By definition we have )’1+y2+y3+y4—f(x)ecp M,

and hence f(x) e M which proves our assertion.

5. DISCUSSION OF OTHER THINNESS CONDI TI ONS.

le anal yze in the present section to what extent our thinness
conditions are best possible. First we introduce another thinness
condition which produces barrelled subspaces in sone cases and
non-barrelled ones in others. This will corroborate assertion (c)

from the Introduction.

5.1.DEFINITION. Suppose that X is an 1.c. space with decomposi-

@
tion (X ) N and for x e X\ span y xn, X = I X

with x_eX_ (nelN),
nelN n:| n n( )

n

l'et h (x) denote the index of the n-th non-zerotermin the sequence

(X ) pen- Let (d) ey be a preassigned sequence of positive real
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numbers such that ?Id” diverges and put
n=

@
W :={xeX:xespanu X_0 r £ d <o} W:=span W_.
0 el no1 by (x) P 0
An elementary check shows that w0 already is 4 linear space

if (dn)ndN is monotonically decreasing. - In general, the thinness

condition

[+4]
r d < ®

1 h_(x)

n n

employed in the definition of W, is too restrictive to produce
barrelled subspaces of barrelled spaces as the following theorem

shows.

5.2.THEOREM. Suppose tkat X is one of the Banach spaces 1p(1<p<m),

C., c, bvo’ bv, cs equipped with its standard Schauder decomposi-

tion. Then W (as in Definition 5.1) is a dense non-barrelled sub-
space of X .
Proof. We argue by Lemma 1.1.
a) In the case X = 1P (1 < p <) let g > 1  be defined by %+ %:1.
Put
n

(m) .. kz—ldll(/q e, € 19 (nenN.

y

Then (y(n))ndN is not bounded in lq, but for all xeW, the sequence

(<x,y(")>)n€]N is bounded: For xeg this is trivial anyway, and
for x = (xk)deewoxcp and all neN we have by Holder 's inequal-

ity
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f<x,y(M>| - b

1/q
d
vih, (x)<n “hy (0 “hy (x)

© ]/q
(\)fl @1\) (X)) ”X"p «®.

b) For X=c_ we identify X' with 1!

The sequence (y(n))ne]N defined by

<
—
=l
=
"
M3

d €k (neN)

is unbounded in i ; but for all xeW, the sequence (<x,y(n)>)ndN

is bounded: For xe ¢ this is again trivial, and- for xewo\q) and
for all neN we have

i<x,y(n)>| =

d

)
sy 0@ 00y !

5 (\)51 dh\)(x)) "x"C

[o]

¢) The dual of X=c is norm-isomorphic to the space 1(1) of all sequences

y = (¥,)yso in K such that

Iyl 1 = 2 |y
11 7 vze

I< .

The canonical bilinear form for the dual pair <c,lé > s

o
<x,y>=y _limx_+ I x_ Yy
0 n->® n n=| n n
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1
for x = (x)dpay € €0y = (V)5 € Ly
Defining now
n
2™ Ddy . dpecdn 0o ) e 1!

the argument is essentially the same as in case b).

d) For X = by_, we let y() be as in b). Then (y(“))m_jN is unbounded

in the dual bs of bv . But the same estimate as in b) yields

that (<x.y(")>)ndN is bounded for every xeW. (Note that bvoc co.)

_ — r — H — -
e) Let X = bv and x = (x)en © X. Put N —nJLm X &n =Xy 50
for n»1, Then x = ® ¢ e . The elements y(“) (cf.b)) act As
- n=0" "

continuous linear forms on bv according to

The sequence (y("))ndN is unbounded in (bv)'by d), but for
all xeW the sequence (<x,y(n)>)ne]N is bounded because of d).

f) The case X=cs is settled as follows: It is easy to show by partial
summation that bv0 is norm-isomorphic to a subspace of X', the

elements y=(yn)neJNebVo acting on cs according to

0

<X,y>= n:zl X, Yq (X=(Xn)n€]N e Cs).

Now the sequence (y(“))ndN defined by
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=

s Esz'”k d e, (neN)

is unbounded in bv.But the sequence (<x,y(n)>)ndN is bounded

for all xeg, and we hnve for all x=( € Wx ¢ and all neN

X ) ke
h,, (x)

z (-1) d
Vihy(x)<n h\,(x)xh\,(x)l

(n)

|<x,y > |

IA

(Gt oMl @

For X=l1 and for X ]l(‘N the following result on the barrelledness

of W holds:

5.3. PROPOSITION. Suppose that X=1! or X = KN witn its standard

Schauder deconposition. Then W (as in Definition 5.1) is barrelled
if and only if (dn)ne]N converges to zero.

Proof. Let X = 11 and assume first that (d) ey CONVerges to
zero. Let (y (n))nelN be an unbounded sequence in 1 = X . We have

to show: There exists an xeW such that (<X.y(")>)ndN is unbounded.

To prove this we may assume that there is no xeg with this property,

since ¢ ¢ W .

Let y(™ = (ylgn))de (n e N). Then for every peN the set

™ :neN, 1¢kcp)

is bounded. Since (Il)'(n)llm)ndN is unbounded. there exist two strictly

increasing sequences (“j)jelN and (kj)jelN of natural numbers such

that
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> for all j eN
and

7 d
z k < ®© .
j=1 7]

Focusing attention to the spaces 11 and 1°  over the subsequence

( _])_]dN our assertion now becomes obvious. The sequence (kJ)JeIN
and hence the sequence (h;(x));gy can even be made arbitrarily

thin. The same idea of proof works in the case X =, xr = 9 .

To prove the converse, assume that x = 1tand suppose that

lim sup dn> 0 . Choose e > 0 and a strictly increasing sequence
n-» o

) s of natural numbers such :
(mJ)JE]N that

d > ¢ for all j eN.
m] -

Def ine y(n): (ylE"))dee 1" by
ylgn):=jfork=mj,k:n,jeIN,

yén): = 0 otherwise.

Then (y(n))nelN is an unbounded sequence in 1 . Now let xewo. Then

Xn $+ 0 only for finitely many j e N. Hence (<x,y(“)>)neIN is bounded
)
for all xewoand hence also for all xew. Thus W is not barrelled.

The same idea of proof works for X=id,
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Another class of barrelled subspaces of 1} was constructed by

Saxon [10], p. 155-157.

=1

Suppose now that d, = (n e IN). Then Theorem 5.2 says that

for X = 1P (1 < p < » ), Cyr bV, iCs the subspace W of X containing

all vectors x e X satisfying the thinness condition

" ® 1
(e X € ¢ or f__h( <

n=1 'n )

is non-barrelled. Now remember that for every monotonically decreas

@
i iti i i
ing sequence (c ) . Of positive real numbers with n=|C“< ®
one has lim n c, =0 This means that (") implies (©') from Exam-

n=+wo

ple 4.1 whence W < L, and L is barrelled. On the other hand. for
X = 11 or ]k]N W is barrelled by Proposition 5.3. This yields asser-

tion (c¢) from the Introduction. In addition, this observation also
lies in the direction of claim (d) from the Introduction. In order
to justify assertion (d) more precisely we modify thinness condition

(0') and introduce another class of subspaces.

5.4. DEFINITION. Let X, (X)), g (hp (X)) gy (xeX\span Y, X))

be As in Definition 5.1. Let a = be an arbitrary preassigned

(an)ndN
sequence of positive real numbers and define

U : = {xeX : x e span y X_ or lim n_-90},
© neN " nao P (X

U::U(a):zspanUO.

Valdivia [13] considers a slight variant of the thinness condi-
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tion employed in the definition of U,-

5.5. REMARKS. (a) If a = (an)ne]N is an arbitrary sequence of

positive real numbers, there exists 4 strictly monotonicallyincreas

ing sequence b = (bn)ne]N of positive real numbers such that
(i) U(a) = U(b) and
AL ) ] ) br1 )
(ii) () nen 'S bounded if and only if (_n)nelN is bounded.

(b) If a= (an)ndN is a monotonically increasing sequence of post-
tive real numbers such that (aZH/an)ne]N is bounded, then U0 is
a linear space, i.e. U = UO.
(c) Suppose that X = 11 or X = iV with its standard Schauder decom-

position. Then U(a) is barrelled (without any restriction on a).

we omit the elementary proofs of the remarks (a) and (b). The

proof of remark (c) is similar to that of Proposition 5.3.
For a, = N (n e N), we have U = L, and this space is barrelled

under the hypothesis of Theorem 3.1 or Corollary 3.4. The next
theorem shows that for none of the Banach spaces lp(1<p<°°).co,c,cs

there exists a sequence (a ) g of positive real numbers tending
to infinity more rapidly than the sequence (n)ne]N such that U is

barrelled. Hence thianess condition (@) is best possible for the
construction of barrelled subspaces among all the thinness conditions
introduced in Definition 5.4. This justif ies assertion (d) from

the Introduct ion.
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5.6. THEOREM. Suppose that X is one of the Banach spaces

1p (1<p< ), Co' ¢, CS with its standard Schauder deconposi tion.

Then the space U(a) (as in Definition 5.4) is barrelled if and

an
C ) neN

only if is bounded.

Note that the Banach space cs appearing in this theorem is not

projection invariant.

a
Proof. Assume first that (n—“)ndN is bounded. Then L ¢ U. Now
L is barrelled by Corollary 3.4 (for X=1P (l1<p<®) or X=q or

X=c) and by Example 4.2 (for X=cs). Hence U is barrelled as well.

a
Assume now that (_2)neJN is unbounded. We have to show that U
is non-barrelled. Referring to Remark 5.5, (a) we may assume without

loss of generality that (an)ndN is strictly monotonically increasing.

We claim that it is sufficient to prove the following assertion

(A):

There exists a monotonically decreasing sequence (d) of

nelN

(A) positive real numbers such that czo dI ndiverges and such that
n=
4]
i N with
nzzldhn converges for every sequence (hn)ne]N in t
. a
lim & = 0.

n+>e hI’I
Once we have proved assertion (A), it is obvious that the space
W from Definition 5.1 corresponding to the sequence (d) hen contains
U. Since W is non-barrelled by Theorem 5.2, we conclude that U

is non-barrelled as well. Hence we are left to prove (A).
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a
. n H i r
Since (nen 18 unbounded, there exists asequence (c ) o oOf
L. [J ] [an]
positive real numbers such that EIC“ converges whereas 5 — Ch
n= n=1

diverges. Def ine

K
d : = I BN (n e IN).
n k:a)>n
Then (d_ ) g IS @ monotonically decreasing sequence of positive
real numbers. The series g’ldn diverges since
n=
® @ C @ [a ]
rd = I I —{: = I 1‘(‘ Cp =
n=1 n=1 k:a,2n k=1

Now let (hn)ne]N be any sequence of natural numbers such that

a
Iimh—n —~ 0. Then there exists some p € N such that hn ERN for
n-»>co n

all n > p. Using the strict monotonicity of (an)ndN we thus obtain

: 4y = 3 z &
n=p hn n:pk:akzlhn
@ C
R -
n=p k:ak>_an
[¢] © C
< r 1 —i
n=1 k:n
= ? C <
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This yields (A) and the proof is complete.
Theorem 5.6 holds analogously with U replaced by V=span VO with
v0;= {xeX:x e span uanen or (an/hn(x))mﬂN is bounded).

We remark in conclusion that the methods of this work may be
adapted to produce dense barrelled or non-barrelled subspaces of
spaces of continuous functions and of the spaces Lp(1_<_p<°° ). As
a sample we mention the following results.

5.7. THEOREM. Suppose that (X, 1) is a u-finite measur e space

(<]
wi t hout atoms, and let X = U E, be a representation of X as a

k=l K

countabl e disjoint union of measurable sets of positive finite
measure. Then for ] < p ¢ @ the space
Vi={felP:limggsulteE :f. (t) j0N=0)
k> MUEK k
is a dense barrelled subspace of LP.

5.8. PROPOSITION. suppose that (X,&,H) is a a-finite measure

space and that 1 <p < © . Then the space

W= {f el u({t e X: f(t)  0}< =)
is barrelled if and only if U(X) is finite, i.e., if and only if
W = Lp' If X is a o-finite measure space Wwithout atoms and
p = 1, then W is barrelled.

PROBLEM. The trigonometrical system is a Schauder basis in
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LP([0,27]) for 1 <p <= . It is known that the associated Schauder
deromposition is not projection invariant for all p#2 (see J.Marti
[9], p. 51-53, proof of Theorem 8). we do not know if the spaces
L or M for this Schauder decomposition are barrelled for some pi#2,

1 <p<o. We do not know either if the corresponding space w (cf.
Definition 5.1) is non-barrelled.
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