ON REGULAR r-PACKINGS

Vikram Jha and N.L.Johnson

Abstract. This article is concerned with the connection between regular 2-packings in PG(2r-1,q) and translation planes of order q^{2r} whose components are defined by a set of rational Desarguesian nets coordinatized by quadratic field extensions of a given field of order q. This work is a natural extension of the studies of walker [17] and Lunardon [14].

INTRODUCTION. Prohaska and Walker [15], Walker [17] and Lunardon [14] have, independently, shown a connection between regular 2-packings in PG(3,q) and certain translation planes of order q^4 and kernel GF(q). These planes are of particular interest as they admit a regulus \mathscr{R} (of 1+q components) and the components are defined by 1+q+q² derivable nets \mathscr{D}_i , $i=1,\ldots,1+q+q^2$ such that $\mathscr{R} \subseteq \mathscr{D}_i$ and $\mathscr{R} = \mathscr{D}_i \cap \mathscr{D}_j$, $i \neq j$, $i,j=1,\ldots,1+q+q^2$.

In [8], the authors show how to connect 2-packings (or parallelisms) in PG(3,q) with general translation planes of order q^4 admitting SL(2,q) as a collineation group.

In this note, we give the natural extensions of the work of Walker [17], Lunardon [14], and the authors [8] to 2-packings in PG(2r-1,q) related to translation planes of order q^{2r} and kernel $F \simeq GF(q)$ with a regulus \mathscr{R} (of 1+q components) and whose compo-

nents are defined by $\frac{q^{2r-1}-1}{q-1}$ nets \mathcal{D}_i , $i=1,\ldots,\frac{q^{2r-1}-1}{q-1}$ such that

 \mathscr{D}_i is a rational Desarguesian net coordinatized by a quadratic field extension of F, $\mathscr{D}_i \supseteq \mathscr{R}$ and $\mathscr{D}_i \cap \mathscr{D}_j = \mathscr{R}$ for all $i \neq j$; $i,j=1,\ldots,\frac{q^{2r-1}-1}{q-1}$.

The arguments supporting the results are quite similar or natura' extensions of those of Prohaska and Walker [15] and Jha-Johnson [8]. However, we try to give direct proofs in order to make this article more or less self-contained.

We require the following results:

(1.1). THEOREM (Jha[5], LEMMA 2).

Let V be an elementary abelian group of order $p^{ST} = q^T \ge q^2$ and suppose U is any non-trivial group of order u^T for $t \ge 1$ in Aut(V,+)) where u is a prime p-primitive divisor of $q^{(r-1)}-1$.

Then

- (a) |Fix U| = q
- (b) U is semi regular on V/Fix(U)
- (c) U is cyclic
- (d) If r>2 then $V=FixU\oplus C_U$ where C_U is the unique $U-su\underline{b}$ module of V which is disjoint from Fix(U).
- (e) If r>2 and W is a U-submodule of V then either $W \subseteq Fix(U)$ or $|W| \ge q^{r-1}$.
- (1.2). THEOREM (Johnson [11]).

Let π be a translation plane of order p^{2kr} which admits $\mathscr{D}_{\underline{\sim}}SL(2,p^r)$ as a collineation group in the translation complement. Assume the p-elements are elations and $\mathscr N$ denotes the elation net.

- (1) There is a rational Desarguesian net $\mathscr D$ containing $\mathscr N$ (coordinatized by a field ${\sim}\mathsf{GF}(p^{2r})$ which is fixed by $\mathscr D$.
- (2) $(\mathcal{D} \mathcal{N}) \cap l_{\infty}$ is an orbit under \mathcal{D} and an orbit of \mathcal{D} of length $p^{2r} p^{r}$ defines a rational Desarguesian net containing \mathcal{N} .
- (3) If N is coordinatized by the field $K_{\sim}GF(q)$ then each such orbit net $\mathscr D$ may be coordinatized by an extension field $K[t] \sim GF(p^{2r})$ (where K[t] depends on $\mathscr D$).

2. REGULAR t-PACKINGS AND TRANSLATION PLANES.

(2.1) Definition. Let V be a vector space of dimension k over a field $F \simeq GF(q)$ for $q = p^r$, p a prime, r an integer. A partial t-spread \mathscr{P} of V is a set of mutually disjoint t-dimensional suspaces. A t-spread of U is a partial t-spread which covers the vectors of V. (In this case, t|r).

A Desarguesian or regular partial t-spread is a partial t-spread \mathscr{P} such that there is a field extension K of F and the elements of \mathscr{P} are 1-dimensional subspaces over K (note that K is isomorphic to $GF(q^t)$.

(2.2) Definition. Let V be a vector space of dimension 2k over a field $F \simeq GF(q)$. Let $\mathscr N$ be a partial k-spread and let $\mathscr P$ be a partial 2t-spread of V.We shall say that V is t-transversal to $\mathscr P$ if and only if $\mathscr L \in \mathscr N$ and $c \in \mathscr P$ then $\mathscr L \cap c$ is a t-subspace of c. We also shall say that c and $\mathscr L$ are t-transversal to each other.

We initially follow Prohaska and Walker [15].

(2.3). PROPOSITION. Let $\mathscr P$ be a partial k-spread of a vector space of dimension 2k over $F\sim GF(q)$. Let $\mathscr F$ denote the set of all

2t-spaces t-transversal to \mathcal{P} . Let $f \in \mathcal{F}$ and let $(f) = \{ \mathcal{L} \cap f \mid \mathcal{L} \in \mathcal{P} \}$. If $(f)_{\mathcal{P}}$ is a t-spread of f then for every element $g \in \mathcal{F}$, $(g)_{\mathcal{P}}$ is a t-spread and \mathcal{F} is a partial 2t-spread.

Proof. (We follow the argument of Prohaska and Walker.) If $(f)_{\mathscr{P}}$ is a t-spread then $(f)_{p}$ is a translation plane of order q^{t} and $|\mathscr{P}| = 1+q^t$. Hence, $(g)_{\mathscr{P}}$ is a partial t-spread with $1+q^t$ elements. That is, $\mathcal{L} \cap g \neq \mathcal{M} \cap g$ and $(\mathcal{L} \cap g) \cap (\mathcal{M} \cap g) \subseteq \mathcal{L} \cap \mathcal{M} = \emptyset$. So $(g)_{\mathscr{P}}$ is a t-spread. It remains to show that ${\mathscr F}$ is a partial 2t-spread. So, let j,k $\in \mathcal{F}$ and j \cap k $\neq \emptyset$. Let $P \in j \cap k-\{\emptyset\}$ (be a vector $\neq \emptyset$). There exists a unique element \mathcal{M} of \mathcal{P} which contains P. Given $\mathcal{N}, \mathcal{L} \in \mathcal{P}_{-} \{ \mathcal{M} \}$ by projection, there is a unique 2-dimensional subspace U (line of projective space) which contains P and which intersects ${\mathscr N}$ and \mathscr{L} (as $\mathscr{N} \oplus \mathscr{L} = V$). But, similarly, there is a unique 2-space U of j containing P and which intersects j $\cap \mathcal{N}$ and j $\cap \mathcal{L}$ (in a 1-space of j). That is, $U=\overline{U}$ and $U \underline{c}$ j and similary, $U \underline{c}$ k so $U \underline{c}$ j \cap k. Now suppose Q is any 2-space containing P such that Q \underline{c} j. If $Q \not \in \mathcal{M}$ then since $(f)_{\infty}$ is a t-spread of f, it must be that Q intersects at least two elements of $\mathscr P$ (in (f) -but, this means that $0 \subseteq j \cap k$. Choose any vector in $j \cap \bar{X}$ and together with P form a 2-dimensional subspace T. As above T \underline{c} j \cap k. Hence, j \cap \bar{X} c j \cap k and similarly $k \cap \bar{X} \subseteq j \cap k$. And, $j \cap \bar{Y} \subseteq j \cap k$. So, j=k so that \mathscr{F} is a partial spread.

(2.4) PROPOSITION.Let A and B be mutually disjoint k-spaces of a 2k-dimension vector space V. Let $\mathscr A$ be a t-spread of A, $\mathscr B$ a t-spread of B and f a linear bijection of V from $\mathscr A$ onto $\mathscr B$. Then $\mathscr P=\{\bar x\ \oplus\ \bar x^f\,|\,\bar x\in\mathscr A\}$ is a partial 2t-spread with A,B t-transversal to $\mathscr P$. Furthermore, $A_{\mathscr P}=\mathscr A$, $B_{\mathscr P}=B$.

Proof. We must show that \mathscr{P} is a partial 2t-spread. Let $\mathscr{R}, Te\mathscr{P}$ and let $Pe\mathscr{R} \cap T$. Let $\mathscr{R} = \bar{x} \oplus \bar{x}^f$, $T = \bar{Y} \oplus \bar{Y}^f$ for \bar{x}, \bar{y} t-spaces in \mathscr{A} . If PeA (or PeB) then $\bar{x} = \bar{y}$ because \mathscr{A} is a (partial) t-spread so that R = T. Assume $P \notin A$ and $P \notin B$. There is a k-space C containing P and mutually disjoint to A and B. There is a unique 2-dim space C on C which nontrivially intersects C and C and

(2.5) PROPOSITION. Suppose A,B,C are mutually disjoint k-subspaces (of V a 2k-dimension vector space) and let $\mathscr A$ be a t-spread of A. Then there exists precisely one partial 2t-spread $\mathscr P$ t-transversal to A,B,C and with (A) = $\mathscr A$. Further, the regulus $\mathscr R(A,B,C)$ is contained in the set of all t-transversal to $\mathscr P$.

Proof. There is a unique involution i_c of V which fixes C pointwise and interchanges A and B (i.e., A = (x = 0), (y = 0) = B, C is (y=x) then i_c is $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$).

Consider $\mathscr{P}=\{\bar{x}\ \theta\ \bar{x}^i{}^c|\bar{x}e\mathscr{O}\}$. By (2.4), \mathscr{P} is certainly a partial 2t-spread and (A), $=\mathscr{A}$. Suppose \mathscr{P} is a partial 2t-spread t-transversal to A,B,C with (A), $=\mathscr{A}$. Then consider \bar{x} e \mathscr{A} . There is a 2t-space U (of \mathscr{P}) containing \bar{x} and transversal to B and C. Hence, $\bar{x} \in U \cap (\bar{x} \theta \bar{x}^i{}^c)$. We now again use the argument of (2.3). We repeat part of the argument for U and $\bar{x} \theta \bar{x}^i{}^c = T$.

Note that we may take the partial k-spread {A,B,C} and \mathscr{F} the set of all 2t-spaces transversal to \mathscr{F} such that $\mathscr{F}|A=\mathscr{A}$, U and T are transversal to B and C. Consider a point $\text{Pe }\bar{x}$. \bar{x} θ $\bar{x}^{i_C}=T$ is a 2t-space and there exists a unique 2-space wich contains P and intersects B and C. That is, L is also in \bar{x} θ \bar{x}^{i_C} and in U. Thus, U and T intersect on B. Moreover, this is true for every point P of \bar{x} . Let \bar{P} , P be distinct 1-spaces on \bar{x} and \bar{L} , L the unique 2-spaces $\bar{P}e\bar{L}$, PeL such that \bar{L} , L intersect B,C non-trivially. Then L, \bar{L} \bar{c} \bar{x} \bar{e} \bar{x}^{i_C} and L, \bar{L} \bar{c} U. Can L \cap \bar{L} \neq \emptyset ?

Then

$$\bar{L} = \langle (\bar{x}_1 \dots \bar{x}_t, \theta \dots \theta), (\theta \dots \theta), \bar{x}_1 \dots \bar{x}_t) \rangle$$

$$L = \langle (x_1^* \dots x_t^*, \theta \dots \theta), (\theta \dots \theta), x_1^* \dots x_t^*) \rangle$$

$$S = (((\bar{x}_1 \dots \bar{x}_t)\alpha, (\bar{x}_1 \dots \bar{x}_t)\beta))$$

$$= ((x_1^* \dots x_t^*)\delta, (x_1^* \dots x_t^*)\gamma)$$

$$\Rightarrow \bar{x}_i \alpha = x_i^* \delta \Rightarrow \bar{x}_i = x_i^* \delta \alpha^{-1} \text{ if } \alpha \neq 0$$
and
$$\Rightarrow \bar{x}_i \beta = x_i^* \gamma \Rightarrow \bar{x}_i = x_i^* \gamma \beta^{-1} \text{ if } \beta = 0.$$

Hence if α or $\beta \neq 0 \implies \bar{L} = L$. If $\alpha = 0$ then $\delta = 0$ so $\beta \neq 0$. Hence, $L \cap \bar{L} = \mathcal{O}$ or L.

So, this means $L, \bar{L} \subseteq \bar{x} \oplus \bar{x}^{1} \subset \bar{x}$ and U, so that $\bar{x} \oplus \bar{x}^{1} \subset \bar{x} \cup \bar{x}^{2} \subset \bar{x}$

So, we have shown that the space \mathscr{F} of all 2t-spaces which are t-trasversal to A,B,C and which when restricted to A give \mathscr{O} is precisely $\mathscr{P} = \{\bar{x} \in \bar{x}^{i_C} | \bar{x} \in \mathscr{O} \}$ (for \mathscr{F} is a partial 2t-spread). Now consider the regulus $\mathscr{R}(A,B,C)$ and D $\in \mathscr{R}(A,B,C)$. The regulus

is covered by 2-spaces (little Desarguesian planes). So, if U is a 2t-spaces t-trasversal to A,B,C and considering U as a union of its 2-spaces (transversal to A,B,C) we see, by the above argument, that there exist disjoint 2-dim spaces of U which intersect D-one 2-space for each 1-space on A \cap U. Hence, there are $\geq \frac{q^t-1}{q-1}$ 1-spaces of U on \mathcal{D} .

Hence dim U \cap D \geq t. But, also dim U \cap A = t and A \cap D = \emptyset . Hence, dim U \cap D = t. Thus, every 2t-space t-transversal to A,B,C is also transversal to the elements of $\mathcal{R}(A,B,C)$.

We want to investigate the situation when there are precisely $1+q^t$ k-spaces which are t-transversal to $\mathscr{F}=\{\bar{x}\ \oplus\ \bar{x}^{i_c}|\bar{x}\in\mathscr{A}\}$. In this case the set \mathscr{I} of t-transversal k-spaces is exactly covered by \mathscr{F} . Or, another way of saying this is that if \mathscr{I} is the partial spread of t-transversal k-spaces to \mathscr{F} , i.e., each element of \mathscr{I} is t-transversal to \mathscr{F} , then (f)y is a 2t-spread of fe \mathscr{F} .

By Foulser's covering theorem [12] when this happens the t-spread of $\mathscr A$ is Desarguesian. Conversely, consider a Desarguesian t-spread $\mathscr A$ of A. Then there is a field extension K of F such that $\mathscr F=\{\bar x\ \oplus\ \bar x^{i_C}|\bar x\ \in\mathscr A\}$ is a partial 2-spread over K. And, we may consider A,B.C as subspaces over K and V a vector space over K \supseteq F. Now applying the previous result the regulus $\mathscr R(A,B,C)$ over K is contained in the set of 1-transversals to $\mathscr F$ over K. But, this mens $\mathscr R_K(A,B,C)$ is the set of 1-transversal to $\mathscr F$ over K. Hence,

(2.6) THEOREM (See Prohaska and Walker [15] when t=2)

There is all 1-1 correspondence between Desarguesian t-spreads

A of a k-space A of $\Re(A,B,C)$ (regulus over F generated by A,B,C) and partial spreads $\mathscr D$ of degree 1+q^t of t-transversal k-spaces to A,B,C such that surface $\mathscr D$ = surface of $\mathscr F(\bar x \in \bar x^{1}C | \bar x \in \mathscr A)$ which contain the regulus $\Re(A,B,C)$.

That is, there is a 1-1 correspondence between rational Desarguesian nets of degree $1+q^{t}$ containing a regulus \Re and Desarguesian t-spreads of a component of the regulus.

(2.7) PROPOSITION. Given a regulus $\mathcal{R}(A,B,C)$ and $Q\notin surf \mathcal{R}$, there is a unique 4-space containing Q which is 2-transversal to A,B and C and thus to $\mathcal{R}(A,B,C)$.

Proof. Again we argue as in Prohaska and Walker [15](3). If $\{\bar{x},\bar{y}\}$ \underline{c} {A,B,C}, then there is a unique 2-space transversal to \bar{x} and \bar{y} and containing Q. So there are three 2-spaces $U_{A,B}, U_{A,C}, U_{B,C}$ containing Q and transversal to (A,B),(A,C),(B,C) respectively. Then suppose two are equal. Then there is a 2-space which hits A,B,C and thus lies on the regulus. But, Q \notin regulus so that these three are completely distinct spaces. $(U_{A,B},U_{A,C},U_{B,C})$ is a 4-dimensional space which contains Q and is the unique such 4-space which is 2-transversal.

Now suppose \mathscr{A}_1 , \mathscr{A}_2 are two distinct regular 2-spreads. Then consider the rational Desarguesian nets \mathscr{D}_1 , \mathscr{D}_2 so constructed. Then suppose $Q \in \mathscr{D}_1 \cap \mathscr{D}_2 - \mathscr{R}(A,B,C)$. Then there is a unique 4-space \mathscr{L}_Q containing 0 and 2-transversal to \mathscr{R} . But, this 4-space is simultaneously then a 2-space over two fields $K_1, K_2 \simeq GF(q^2)$. So, $\mathscr{L}_Q \mid A$ is a 1-space over K_1 and over K_2 . That is, if we obtain a partial spread we must have hat \mathscr{A}_1 and \mathscr{A}_2 do not share a 1-space and conversely.

We have:

(2.8) THEOREM (See Prohaska and Walker [15], Walker [17] and Lunardon [14] for order q^4 .)

Let V be a vector space of dimension 4k over $F \sim GF(q)$. Let \Re be a regulus of V. Let Γ be a set of rational Desarguesian nets isomorphic to $GF(q^2)$ containing \Re . Then $U(\Gamma - \Re)U\Re$ is a ι ial spread \iff $(A)_{\mathscr{D}} | \mathscr{D} \in \Gamma$ is a partial 2-parallelism of A whils a component of \Re .

(2.9) Notes

- i) Theorem (2.8) is also noted by Walker in [17]. However, our proof generally follows and extends Prohaska and Walker's unpublished notes.
- ii)Stinson and Vanstone [16] have determined a great number of 2-packings in PG(5,2). It is not clear if any are regular but such regular 2-packings would correspond to translation planes of order 2^6 and kernel GF(2) which contain a regulus of 1+2=3 lines and whose components consist of $\frac{2^5-1}{2-1}=31$ rational nets each of which may be coordinatized by a field isomorphic to GF(4) containing the same prime field.
- iii) If π is a translation plane of order q^{2r} constructed as in (2.8) then $\Gamma L(2,q)$ is a collineation group of π .
- **Proof.** The regulus $\mathcal R$ admits $\Gamma L(2,q)$ and since each rational Desarguesian net $\mathcal D_i$ is defined by an extension field of the field defining the regulus $\mathcal R$, $\Gamma L(2,q)$ is also a collineation group of $\mathcal D_i$. Hence, since $\pi = (\mathcal D_i \mathcal R) \cup \mathcal R$, it follows that $\Gamma L(2,q)$ is

130 Y. Jha-N.L. Johnson

a collineation group of the plane π .

(2.10) TRANSLATION PLANES AND PARTIAL t-PACKINGS.

Let π be a translation plane of order q^{ts} and kernel GF(q) admitting a regulus \mathscr{R} (of 1+q components). Suppose the components consist of $\frac{q^{ts}-q}{q^t-q}=\frac{q^{ts-1}-1}{q^{t-1}-1}$ (where t-1|ts-1), rational Desarguesian nets isomorphic to $GF(q^t)$. Then on any component $\mathscr L$ of $\mathscr R$, considering $\mathscr L$ as PG(ts-1,q), there is an associative partial t-packing.

(sketch) If on $\mathscr L$ two t-space $\bar{x}_1=\bar{x}_2$ are equal (one from two different t-spreads) then $\bar{x}_1\oplus\bar{x}_1^{i_c}=\bar{x}_2\oplus\bar{x}_2^{i_c}$ so that the associated nets are equal.

3. TRANSLATION PLANES OF ORDER q^{2r} ADMITTING SL(2,q).

In [8], the authors show how to obtain regular parallelisms in PG(3,q) (2-packings) directly from an associated translation plane of order q^4 . In this section, it is noted that the same theorems are valid for 2-packings in PG(2r-1,q).

That is, we prove:

(3.1) THEOREM. (See (2.4)[8])

Let π be a translation plane of order q^{2r} , $q=p^S$, q a prime, q an integer which admits a collineation group $\mathcal D$ isomorphic to $\operatorname{SL}(2,q)$ in the translation complement.

(i) If the p-elements are elations and ${\mathscr D}$ is 1/2-transitive on ℓ_{∞} - ${\mathcal N}\cap \ell_{\infty}$ where ${\mathscr N}$ denotes the net of elation axes then the kernel of ${\mathscr D}$ is ${\mathsf GF}(q)$, each orbit Γ union ${\mathscr N}$ is a rational Desarguesian

net coordinatized by a field isomorphic to $GF(q^2)$. If $\mathscr L$ is an elation axis then $\mathscr L$ is thought of as PG(2r-1,q) admits a regular 2-packing.

(ii) Conversely, if $\mathscr L$ is a 2r-space over a field $F_{\sim}GF(q)$ and admits a regular 2-packing as PG(2r-1,q) then there is a corresponding translation plane which admits a collineation group $\mathscr D_{\sim}SL(2,q)$, $q=p^S$, where the p-elements are elations and such that $\mathscr D$ acts 1/2-transitively on l_{∞} - $\mathcal N\cap l_{\infty}$ where $\mathscr N$ denotes the net of elation axes.

Proof. (ii). By (2.8) there is a corresponding translation plane π . Since each net may be coordinatized by an extension of a field $K \simeq GF(q)$, clearly the group $\mathscr D$ generated by the elations of the regulus $\mathscr R$ is isomorphic to SL(2,q) (see (2.9)(ii) and is a collineation group of π . Clearly, $\mathscr D$ acts 1/2-transitively on ℓ_∞ - $\mathscr R \cap \ell_\infty$ because for each rational Desarguesian net $\mathscr D \supseteq \mathscr R$, $\mathscr D - \mathscr R$ is an orbit under $\mathscr D$.

(i) Suppose \mathscr{D} is 1/2-transitive. By (1.2), there is at last one rational Desarguesian net \mathscr{D} coordinatized by a field extension K[t] of the field K defining the net \mathscr{N} of elation. And, \mathscr{D} - \mathscr{N} is an orbit. Hence, there exist $\frac{q^2r_{-q}}{q^2_{-q}} = \frac{q^2r_{-1}}{q-1}$ such orbits and by (1.2)(3), each such orbit defines another rational Desarguesian net containing \mathscr{N} . Thus, by (2.8), (i) is proved.

We now consider translation planes of order q^{2r} that admit SL(2,q) x Z $\frac{q^{2r-1}-1}{q-1}$ as a collineation group in the translation

complement. Note that the known regular 2-packings define translation planes that admit such groups (see Jha-Johnson [8]).

We prove

(3.2) THEOREM (COMPARE WITH JHA-JOHNSON [8] (2.5)).

Let π be a translation plane of order $p^{2rs}=q^{2r}$ that admits a collineation group $\mathscr D$ iomorphic to $SL(2,q) \times Z_{\frac{q}{q-1}-1}$ in the

translation complement. Then, the kernel is GF(q), the p-elements are elations and for any elation axis $\mathscr L$ considered as PG(2r-1,q), $\mathscr L$ admits a regular 2-packing.

Proof. We structure the proof as in Jha-Johnson [8] (2.5).

We first assume the p-elements are elations. By Jha-Johnson [8](2.5), we may assume 2r > 4 in any case.

Let the elation net be denoted by \mathcal{N} . By (1.2), there is at least one rational Desarguesian net $\mathcal{D} \supseteq \mathcal{N}, \mathcal{D}$ of degree 1+q².

Suppose g ϵ Z = Z fixes \mathscr{D} . Let h ϵ Z such that |h| $\frac{1}{q-1}$

is a prime p-primitive divisor of $q^{(2r-1)}-1$. Since 2r>4, there always exists such an element since $|h||\frac{q^{2r-1}-1}{q-1}$ (note 4^3-1 is a possible exception and the argument is taken separately in [8]).

Since h fixes each elation axis and fixes points on each (as of $|h|/q^{2r}-1$ and $|q^{2r-1}-1|$ then $|h|/q^{(2r,2r-1)}-1$ which cannot be the case).

By (1.1). Fix h is a subplane of order q. g acts on Fix h so

that if g does not fix points of Fix h then there exists an integer j such that $g^j \ne 1$ and $|g^j| |q-1$. Then consider q^j with $|q^j| |q-1$ and fixing \mathscr{D} . Since $|g_j| |q^{2r-1}-1$ and $|g^j| |q-1$ then g^j fixes affine points and since $|\mathscr{D}-\mathscr{N}| = q^2-q$, some power g^{jh} fixes infinite points of $\mathscr{D}-\mathscr{N}$. That is, g^{jk} fixes a subplane of order $\ge q^2$ pointwise. And, there is a subplane π_0 of order q^2 of \mathscr{D} such that Fix $h \subseteq \pi_0 \subseteq \text{Fix } g^{jk}$. However, π_0 is Desarguesian so that |h| |= 2 and q must be odd. But then |h| |q-1 which cannot be the case.

Hence, if g fixes \mathscr{D} then $|g^j|q-1$ and $|g^j||\frac{q^{2r-1}-1}{q-1}$.

$$(q-1,1+q+q^2+...+q^{2r-2})$$

= $(q-1,(q-1)+(q^2-1)+...+(q^{2r-2}-1)+(2r-1))$.

So the GCD equals (q-1,2r-1). So there are at least $\frac{q^{2r-1}-1}{(q-1)(q-1,2r-1)}$ =t 1 ational Desarguesian nets $\mathcal{D}_i \supseteq \mathcal{N}$ such that $\mathcal{D}_i \cap \mathcal{D}_j = \mathcal{N}$ for i,j= = 1,...,t₁ since SL(2,q) has $\mathcal{D}_i - \mathcal{N}$ as an orbit for all i=1,...,t₁. But, let $\sigma \in \mathcal{D} \simeq SL(2,q)$ be an element such that $|\sigma||q^2-1$, but $|\sigma| \beta^k-1$ for $k \leq 2s$ (g=p^s) (see e.g. Johnson [11]. σ permutes the remaining points on ℓ_∞ - $\ell_1 = \ell_1$ $\ell_2 = \ell_2$.

$$|\ell_{\infty} - \bigcup_{i=1}^{t_1} \mathcal{D}_i| = (q^{2r} - q) - \frac{(q^{2r-1} - 1)(q^2 - q)}{(q-1)(q-1, 2r-1)}$$
.

Let (q-1,2r-1) = s.

So,

More generally, suppose there are $\frac{T}{s}(\frac{q^{2r-1}-1}{q-1})=t_2$ rational Desarsian nets. Then

$$|\ell_{\infty} - \int_{1=1}^{t_2} \mathcal{D}_i| = (q^{2r} - q) - \frac{T}{s} (\frac{q^{2r-1} - 1}{q-1} (q^2 - q))$$

$$q(q^{2r-1} - 1) (1 - \frac{T}{s})$$

$$= q(q^{2r-1} - 1) (\frac{s - T}{s}).$$

Then if

$$|\sigma| |q(q^{2r-1}-1)(\frac{s-T}{s})$$

then

$$|\sigma||(q^{2r-1}-1,q^2-1) = q^{(2r-1,2)}-1 = q-1.$$

Hence, σ fixes additional points on ℓ_{∞} . Now apply the previous argument inductively. That is, remove another set of at least $(\frac{q^{2r-1}-1}{(q-1)s})$ rational Desarguesian nets. Obtain another set of cardinality $q(q^{2r-1}-1)(\frac{s-2}{s})$. By (1.2) and induction, there are $\frac{q^{2r-1}-1}{q-1}$ rational Desarguesian nets $\mathscr{D}_{i} \supseteq \mathscr{N}$ such that $\mathscr{D}_{i} \cap \mathscr{D}_{j} = \mathscr{N}$. Now apply (2.8).

Now assume the p-elements in SL(2,q) are planar. Note the proof in [8] extends directly.) Let π_0 be a subplane of order $p^k = Fix$, $\sigma |\sigma| = p$, $\sigma \in \mathcal{D}_SL(2,q)$. $Z_{q^{2r-1}-1} \equiv Z$ must leave π_0 invariant and if $g \in Z$ $\frac{q^{2r-1}-1}{q-1}$

has order a prime p-primitive divisor of $q^{(2r-1}-1)$ (recall 2r>4) then we assert that g must fix a component of π_0 . That is, by Foulser's Dimension Theorem (e.g., see Jha [7]) k must divide

2rs if $q=p^s$. However, if $|g||1+p^k$ then $|g||(p^{2k}-1,p^{(2r-1)s}-1)=$ = $(p^{(2k,(2r-1)s)}-1)$. Hence we have a contradiction unless (2r-1)s|2k|4rs so (2r-1|s|4rs or 2r-1|4r. But since 2r-1 is odd, 2r-1|r so that r=1. But then the order is q^2 and the group is SL(2,q) and the planes are determined in Foulser-Johnson ([5],[6]).

Now let g fix p^t points on a fixed component \mathcal{L} of π_0 . As g is completely reducible on $\mathcal{L} \cap \pi_0$, $\mathcal{L} \cap \pi_0 = (\text{Fix g on } \mathcal{L} \cap \pi_0) \oplus \mathbb{W}$ where $|\mathbb{W}| = \frac{p^k}{p^t}$. Hence $|g| | (p^{(k-t,(2r-1)s)}-1)$. However, this cannot be the case unless (2r-1)s|(k-t). But k|2rs so k-2rs-t and $k \leq rs$. Then (2r-1)s|2rs-t so s|t and $k-t \leq rs-s$. Hence, (2r-1)s|2rs-ts so that $\ell=1$ and $\ell=1$. But, if (2r-1)s|k-s then $(2r-1)s \leq rs-s$ which obviously cannot be.

Thus, it must be that k=t so that g fixes π_0 pointwise. By (1.1)(a) Fix g on each fixed component has order q. So π_0 c Fix g and Fix g is a subplane of order q.

Let $\mathscr L$ be a component of π_0 then $\mathscr L=((\operatorname{Fix}\, g)|\mathscr L)\oplus \operatorname{C}_{g,\mathscr L}$ where $\operatorname{C}_{g,\mathscr L}$ is the unique g-submodule on $\mathscr L$ which is disjoint from $((\operatorname{Fix}\, g)|\mathscr L)$. But, σ fixes $\mathscr L$ and therefore must fix the module $\operatorname{C}_{g,\mathscr L}$ since σ permutes the g-submodules on $\mathscr L$. However, this implies that fixes additional points on $\mathscr L$.

Hence, the p-elements cannot be planar.

Now let σ be a p-element and assume Fix σ lies in a component $\mathscr L$. The previous argument shows that Fix \subseteq Fix g, Fix g has order q on $\mathscr L$ and σ must fix the complement $C_{g,\mathscr L}$ of g on $\mathscr L$. That is, again σ must fix additional points of $\mathscr L$ (since $|\sigma|=p$). This proves (3.2).

REFERENCES

- [1] R.D.BAKER, Partitioning the planes of $AG_2m(2)$ into 2-Designs. Discrete Math. 15(1974), 205-211.
- [2] A.BEUTELSPACHER, Partial spreads in finite projective spaces and partial designs. Math. Z. 145(1975), 211-229.
- [3] R.H.F.DENNISTON, Some packings of projective spaces. Rend. Acc. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. (8) 52(1972), 36-40.
- [4] D.A.FOULSER, Baer p-elements in translation plane, J.Algebra 31 (1974), 354-366.
- [5] D.A.FOULSER AND N.L.JOHNSON, The translation planes of order q^2 that admit SL(2,q), I.Even order. J.Alg. (2)86(1984),385-406.
- [6] D.A.FOULSER AND N.L.JOHNSON, The translation planes of order q^2 that admit SL(2,q), II.Odd order. J.Geom. 18(1982), 122-139.
- [7] V.JHA, On translation planes which admit solvable autotopism groups having a large shape orbit. Can.J.Math. 36(1984), 769-782.
- [8] V.JHA AND N.L.JOHNSON, Regular parallelism from translation planes. (to appear) Discrete Math.
- [9] N.L.JOHNSON, The translation planes of order 16 that admit non-solvable collineaton groups. Math. Z. 185(1934), 355-372.
- [10] N.L.JOHNSON, The maximal special linear groups which act on translation planes. Boll. U.M.I. (to appear).
- [11] N.L.JOHNSON, Desarguesian extension of elation nets. J Geom. 23 (1984), 72-78.
- [12] N.L.JOHNSON, Foulser's Covering Theorem. Note Mat.5(1985),139-145.
- [13] N.L.JOHNSON AND T.G.OSTROM, The translation planes of order 16 which admit PSL(2,7). J.Comb.Theory Sez.A 26(1979)127-134.

- [14] G.LUNARDON, On regular parallelisms in PG(3,q). Discrete ath. 51(1984), 229-235.
- [15] O.PROHASKA and M.WALKER, Unpublished notes on translation planes.
- [16] D.R.STINSON AND S.A.VANSTONE. Orthogonal packings in PG(5,2) Proc. Winnepeg Conference, Winnipeg, 1984.
- [17] M.WALKER, Spreads covered by derivable partial spreads. J. Comb. Theory Ser. A 38(1985), 113-130.
- [18] K.ZSIGMONDY, Zur Theorie der Potentreste, Monatsh. Math.Phys. 3(1892), 265-284.

Ricevuto il 31/1/1986

V.JHA
Mathematics Department
Glasgow College of Technology
Cowcaddens Road
Glasgow GA OBA
SCOTLAND

N.L.JOHNSON
Mathematics Department
University of Iowa
Iowa City, IA 52242
U.S.A.