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ON REGULAR r-PACKINGS

Vikram Jha and N.L.Johnson

Abstract. This article is concerned with the connection between
regular 2 -packings in PG(2r-1,q) and translation planes of order
q2r whose components are defined by a set of rational Desarguesian
aets coordinatized by quadratic field extensions of a given fie d

of order q - This work 1s a natural extension of the studies ot

Walker [17] and Lunardon [14].

INTRODUCTION. Prohaska and Walker [15], Walker [17] and Lunardon
[14] have, independently, shown a connection between regular
2-packings in PG(3,q9) and certain translation planes of order q4
and kernel GF(q). These planes are of particular interest as they
admit a regulus % (of 1l+q components) and the components are

defined by 1+q+q2 derivable nets E%. i=1,...,1+q+q2 such that

c P and A =9 0D, i4j, i,j - 1,...,1+q+q°.

In [8], the authors show how to connect 2-packings (or paral-
lelisms) in PG(3,q) with general translation planes of order q4

admitting SL(2,q) as a collineation group.

In this note, we give the natural extensions of the work of
Walker |17], Lunardon [14], and the authors [8] to 2-packings
in PG(2r-1,q) related to translation planes of order q2r and kernel
F ~ GF(q) with a regulus A (of 1+q components) and whose compo-

2r-1_1 2r-1

nents are defined by 3 q-1 nets .@i,,i=l,...,.,.':l L such that
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2; is a rational Desarguesian net coordinatized by a quadratic

field extension of F, EfZﬂi DA and @i N @j =% for all i # j;
2r-1

1
q-1 -

i,j=1,...,3

The arguments supporting the results are quite similar or natura’
extensions of those of Prohaska and Walker [15] and Jha-Johnson [8].
However, we try to give direct proofs in order to make this article

more or less self-contained.
We require the following results:

(1.1). THEOREM (Jha[5], LEMMA 2).

Let V be an elementary abelian group of order pSK = qr i q2

L

and suppose U 1is any non-trivial group of order u for t > 1 in

Aut(V,+)) where u is a prime ©p-primitive divisor of q{r-l)—l_
T'hen
(a) |Fix U] =9
(b) U is semi regular on V/Fix(U)
(c) U is cyclic

(d) If r>2 then VV = FixU'QCU where CU is the unique |J-sub

module of V which is disjoint from Fix(U).

(e) If r>2 and W 1is a U-submodule of V then either W ¢ Fix(U)

r-1

or M| >

(1.2). THEOREM (Johnson [11]).

: 2kr . : r
Let 7 be a translation plane of order P which admits 9~SL(Z2,p )
as a collineation group 1in the translation complement. Assume

the p~elements are elations and 4 denotes the elation net.
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(1) There is a rational Desarguesian net % containing A" (coordi-

2T

natized by a field ~GF(p“" ) which is fixed by ¥ .

(2) (2 -¥)nAi, is an orbit under % and an orbit of & of lenght

2r T
p_

p defines a rational Desargquesian net containing .1{.

(3) If & is coordinatized by the field K~GF(q) then each such

orbit net % may be coordinatized by an extension field

K[t] ~ GF(pzr) (where K[t]| depends on 2),

2. REGULAR t-PACKINGS AND TRANSLATION PLANES.

(2.1) Definition. Let V be a vector space of dimension k over
a field F ~ GF(q) for q = pr. p a prime, r an integer. A partial
t-spread ? of V is a set of mutually disjoint t-dimensional su -
spaces. A t-spread of U is a partial t-spread which covers th-

vectors of V. (In this case, t]|r).

A Desarguesian or regular partial t-spread is a partial t-spread
2 such that there is a field extension K of F and the elements
of 2 are l-dimensional subspaces over K (note that K is isomorphic

to GF(qY).

(2.2) Definition. Let V be a vector space of dimension 2k over
a field F ~ GF(q). Let A& be a partial k-spread and let 2 be a
partial 2t-spread of V.We shall say that .+ is t-transversal to 2
if and only if YeAN& and ¢ €2 then ¥nNc is a t-subspace of c.

We also shall say that ¢ and % are t-transversal to each other.

‘We initially follow Prohaska and Walker [15].

-

(2.3). PROPOSITION. Let # be a partial k-spread of a vector

space of dimension 2k over F ~ GF(q). Let # denote the set of all
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2t-spaces t-transversal to #. Let fe% and let (f); {E’ﬂfffe.ﬁ} .
If (f):j’?’ is a t-spread of f then for every element g € %, [g):?

is a t-spread and % is a partial 2t-spread.

Proof.(We follow the argument of Prohaska and Walker.) If (f)ﬁ
is a t-spread then (f)ga is a translation plane of order qt and
| 2| = 1+q%. Hence, (g), is a partial t-spread with 1+q° elements.
That is, £Ng # 4 Ng and*{¥L Ng)N(#ng) c NM =0 . So (8), is a
t—spr'ead. It remains to show that % is a partial Z2t-spread. So,
let j,k eFand jNk #0 . L. P e jnk-{C} (be a vector # ®). There
exists a unique element & of 2 which contains P. Given N LeP-{ #}
by projection, there is a unique 2-dimensional subspace U (line
of projective space) which contains P and which intersects .4 and
¥ (as ¥ L = V), But, similarly, there is a unique 2-space U of
j containing P and which intersects jNA4 and jNY (in a l-space
of j). That is, U=U and U ¢ j and similary, U ¢ k so U ¢ jn k.
Now suppose Q 1is any 2Z2-space containing P such that Q ¢ j. If
Q ¢.# then since (f)g.} is a t-spread of f, it must be that Q inter-
sects at least two -elements of 2 (in (f)g, -but, this means that
0 ¢ jn k. Choose any vector in j N X and together with P form a
2-dimensional subspace T. As above T ¢ jn k. Hence, jNX ¢ jNk
and similarly kNX ¢ jnk. And, jNY ¢ j k, kNY ¢ jNn k. So,

j=k so that &% is a partial spread.

(2.4) PROPOSITION.Let A and B be mutually disjec. rt k ~spaces
of a 7k-dimension vector space V. Let o be a t-spi-er f A,R a
t-spread of B and f a linear bijection of V from «of onto 94 . Then
£ = {x @ if]i e A} is a partial 2t-spread with A,B t-transversal to

# . Furthermore, Aga = |, BL@ = B.
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Proof. We must show that £ is a partial 2t-spread. Let #,Te?

- - f f

and let PeZNT. Let &A= x & X T =Y ® Y for x,y t-spaces in ..

If PeA (or PeB) then x = y because « is a (partial) t-spread so

that R T. Assume P ¢ A and P ¢ B. There is a k-space C containing

il

P and mutually disjoint to A and B. There is a unique 2-dim space
L on P which nontrivially intersects A and B. R = x @ Ef is a
2t-space and P ¢ x or xf SO as in the previous argument there
is a unique 2-space L of x ® xf which contains P and which intersects
RNA and RNB. That is, L = L. Hence, L is in RNT, But T intersects
A (and B). Hence R and T have a (vector) point in common on A

and because s/ is a (partial) t-spread, R=T,.

(2.5) PROPOSITION. Suppose A,B,C are mutually disjoint k-
subspaces (of V a 2k-dimension vector space) and let & be a
t-spread of A. Then there exists precisely one pa.  al 2t-spread
P t-transversal to A,B,C and with [Al@:&f. Furtner, the -requlus

A(A,B,C)is contained in the set of all t-transversal to £ .

Proof. There" 1s a wunique involution i of V which fixes C

.
pointwise and interchanges A and B (i.e., A = (x =), (y =0) = B,

C is (y=x) then iC is O . ).
I @
- - —i{:‘ —
Consider = {x @ x “|xe@®}. By (2.4),2 1is certainly a partial

2t-spread and {Alﬁ = Supposp:ﬁ is a partial 2t-spread t-tran-
sversal to A,B,C with [A%y =/ . Then consider x e . There is

a 2t-space U (Df:ﬁ ) containing x and transversal to B and C.
i
Hence, x ¢ UN (x @ x “). We now again use the argument of (2.3).
1
We repeat part of the argument for U and x © x ¢ = T.
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Note that we may take the partial k-spread {A,B,C} and & the

set of all Z2t-spaces transversal to 2 such that |A =& ,U and
i

T are transversal to B and C. Consider a point Pe x. x ©® x C =7
P

is a Z2t-space and there exists a unigue 2-space wich contains
i
and intersects B and C. That is, L is also in x ® X  and in U.

Thus, LU and T intersect on B. Moreover, this is true for every
point P of x. Let P,P be distinct l-spaces on x and L,L the unique

2-spaces PeL,PelL such that L,L intersect B,C non-trivially. Then

i
L,L ¢ xe X and L,L ¢ U. Can LNL #07

Then
E={[i1...it,(9‘...{9J.{C‘?...@ . El...it):}
L ={:(KT...KE,@ O (0 ... 0 X ooox* ) >
Now S = (((il...it]ﬂ, (il...it)ﬁ)}
= ((x*l...x*t)G,(x*l...x*t)Y)
= X;0=x¥8 = X, = x¥6a’t if a4 0
and =3 iiB; xi’T=ﬁ ii = x‘i“TB_l if B = 0.

Hence if o« or B# 0 = L =L, If a = 0 then &= 0 so B# O.

Hence , LNOL =¢ or L.
- - -ic - -ic
So, this means L,L ¢ x @ Xx and U, so that x & x = U.

So, we have shown that the space % of all 2t-spaces which are

t-trasversal to A,B,C and which when restricted to A give @ is
i

precisely 2= {x e x C|§: e O} (for # 1is a partial 2t-spread).

Now consider the regulus 2Z%(A,B,C) and D € # (A,B,C). The regulus
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is covered by 2-spaces- (little Desarguesian planes). So, if U
is a Z2t-spaces t-trasversal to A,B,C and considering U as a union
of its 2-spaces (transversal to A,B,C) we see, by the above argument,

that there exist disjoint 2-dim spaces of U which intersect D-one

2-space for each 1l-space on ANU. Hence, there are > 5 1;5pace5

of U on %.

Hence dim UND > t, But, also dim UNA =t and AND =0 . Hence,
dim UND = t. Thus, every 2t-space t-transversal to A,B,C is also
transversal to the elements of %4 (A,B,C).

We want to investigate the situation when there are precisely

t - oo
l1+q~ k-spaces which are t-transversal to #= { x @& x " |xe&}. In
this case the set # of t-transversal k-spaces is exactly covered
by . Or, another way of saying this is that if '# is the partial

spread of t-transversal k-spaces to &% , i e., each element of

F is t-transversal to %, then (f)y is a 2t-spread of fe# .

By Foulser's covering theorem [12] when this happens the t-
spread of & is Desarguesian. Conversely, consider a Desarguesian
t-spread o of A. Then there is a field extension K of F such
that = {x © ilc|_i e/ } is a partial 2-spread over K. And, we
may consider A,B.C as subspaces over K and V a vector space. over
K 2 F. Now applying the previous result the regulus #(A,B,C) over

K 1s contained in the set of 1l-transversals to % over K. But,

this menssﬂK(A,B,C] is the set of l-transversal to % over K. Hence,
(2.6) THEOREM (See Prohaska and Walker [15] when t=2)

There is all 1-1 correspondence between DPesarquesian t-spreads
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S of a k-space A of HA(A,B,C)(regulus over F generated by A,B,C)

and partial SPrEEdSE@ of degree Lﬂﬁ of t-transversal k-spaces
1

to A,B,C such that surface Y = surface of Z(X€ex C]:_{ e } which

contain the regulus AR(A,B,C).

That is, there is a 1-1 correspondence between rational Desarguesian
nets of degree 1-rqt containing a regulus A and Desarguesian t-

spreads of a component of the regulus,

(2.7) PROPOSITION. Given a regulus #(A,B,C) and Q¢surf4# , there

is a unigque 4-space containing () which 1is 2-transversal to A,B

and C and thus to A (A,B,C).

Proof.Again we argue as in Prohaska and Walker [15](3). If
{x,y} ¢ {A,B,C}, then there is a unique 2-space transversal to
- - . . i ]

x and y and containing Q. So there are three Z2-spaces UA,B‘LA*C’bB,C
containing Q and transversal to (A,B),(A,C),(B,C) respectively.
Then suppose two are equal.Then there is a 2-space which hits
A,B,C and thus lies on the regulus. But, Q ¢ regulus so that these
three are completely distinct spaces. (UA,B’UA,C’UB,C) is a 4-

dimensional space which contains Q and is the unique such 4-space

which is 2-transversal.

Now suppmsetﬂa,tﬁﬁ are two distinct regular 2-spreads. Then
consider the rational Desarguesian nets @1, 5’32 so constructed.
Then suppose Qe @1n @2 - #(A,B,C). Then there is a unique 4-space
éﬂ} containing 0 and 2-transversal to % . But, this 4-space 1is
simultaneously then a 2-space over two fields KI’KZ ~ GF(qZJ.
So,.ﬂb|ﬂ is a l-space over K, and over K,. That is, if we obtain a
partial spread we must have hat &7, and lma do not share a 1-

1

space and conversely.
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We have:

(2.8) THEOREM (See Prohaska and Walker [15], Walker [17] and

Lunardon [14] for order a*.)

Let V be a vector space of dimension 4k over F ~ GF(q). Let A
be a regulus of V. Let I be a set of rational Desargquesian nets
isomorphic to GF[QZ) containing A . Then U(T- A))UA 1is a L tal
spread & (A%@iﬁﬂEIﬂ is a partial 2-parallelism of A wh.

is a component of A,

(2.9) Notes

i) Theorem (2.8) is also noted by Walker in [17]. However,
our proof generally follows and extends Prohaska and Walker's

unpublished notes.

ii)Stinson and Vanstone [16] have determined a great number
of Z2-packings 1in PG(5,2). It 1is not clear if any are regular but
such regular Z-packings would correspond to translation planes
of order .26 and kernel GF(2) which contain a regulus of 1+2=3

lines and whose components consist of -éﬁf% = 31 rational nets
each of which may be coordinatized by a fielu isomorphic to GF(4)
containing the same prime field.

iii) If m™ 1is a translation plane of order qu constructed as

in (2.8) then TL(2,q) is a collineation group of T,

Proof. The regulus # admits [IL(2,q) and since each rational
Desarguesian net ﬁa is defined by an extension field of the field
defining the regulus # , T L(2,q) 1is also a collineation group

of Eﬁi. Hence, since 7w = (?ﬁi-.}f’)U,ﬁ, it follows that TL(2,q) 1is
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a collineation group of the plane w.

(2.10) TRANSLATION PLANES AND PARTIAL t-PACKINGS.

Let ™ be a translation plane of order th and kernel GF(q)

admitting a regulus #£ (of 1l+q components). Suppose the components
ts ts-1

consist of 4 thq - 4 t—l-l
qQ°-q qQ" -1

(where t-1|ts-1), rational Desarguesian

nets ‘isomorphic to GF(qt). Then on any component ¥ of #, conside-

ring & as PG(ts-1,q), there is an associative partial t-packing.

(sketch) If on ¥ two t-space il .iz are equal (one from two

1 i
different t-spreads) then il ) ilc = iz ) izc so that the associated

nets are equal.

2T

3. TRANSLATION PLANES OF ORDER q ADMITTING SL(2,q).

In [8], the authors show how to obtain regular parallelisms
in PG(3,q) (2Z2-packings) directly from an associated translation
plane of order qd. In this section, it is noted that the same

theorems are-valid for 2-packings in PG(2r-1,q).
That is, we prove:

(3.1) THEOREM. (See (2.4)(8])

Let T be a translation plane of order qu , q:ps_ q e prime,
s an integer which admits a collineation group % isomorphic to

SL(2,q) in the translation complement.

(i) If the p-elements are elations and % is 1 /2 -transitive on
8. -ANe_where A denotes the net of elation axes then the kernel

of @Y is GF(QJ, each orbit ! union A is a ratianai Desarguesian
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net coordinatized by a field isomorphic to GF[qz) . If ¥ is an
elation axis then X is thought of as PG(2r-1,q) admits a regular

2-packing.

(ii) Conversely, if Lis a 2r-space over a field F~GF(q) and admits
a regular 2-packing as PG(2r-1,q) then there is a corresponding
translation plane which admits a collineation group 9@-~ SL(2,q).
q:pS , where the p-elements are elations and such that % acts
1/2-transitively anﬂhﬁﬁfﬂﬂm where N denotes the net of elation

axes.

Proof. (ii). By (2.8) there 1is a corresponding translation
plane m. Since each net may be coordinatized by an extension of
a field K ~ GF(q), clearly the group £ generated by the elations
of the regulus # is isomorphic to SL(2Z2,q) (see (2.9)(11) and is
a collineation group of ® . Clearly, 2 acts 1/2-transitively on
L .- AN L_  because for each rational Desarguesian net 22% , 2-%

is an orbit under £ .

(i) Suppose ¥ 1is 1/2-transitive. By (1.2), there is at last
one rational Desarguesian net 2 coordinatized by a field extension

K[t] of the field K defining the net # of elation. And, 9Z-4 is

r 2r-1
an orbit. Hence, there exist 9———2—'—3 = 4 q-l-l such orbits and by
q -9

(1.2)(3), each such orbit defines another rational Desarguesian
net containing 4. Thus, by (2.8),(i) is proved.

We now consider translation planes of order q2r that admit

SL(2,q) x Z 2 -1 as a collineation group in the translation
-1
g-1
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complement. Note that the known regular Z-packings define transla-

tion planes that admit such groups (see Jha-Johnson [8]).

We prove

(3.2) THEOREM (COMPARE WITH JHA-JOHNSON [8] (2.5)).

2rs 2T

Let T be a translation plane of order p = q that admits
a collineation group 2 iomorphic to SL(2,q) x Z 2r-1 in the
q -1
T=1

translation complement. Then, the kernel is G(GF(q) , the p-elements
are elations and for any elation axis & considered as PG(2r-1,q),

¥ admits a reqular 2-packing.
Proof.We structure the proof as in Jha-Johnson [B](Z.S).

We first assume the p-elements are elations. By Jha-Johnson

[8](2.5), we may assume 2r > 4 in any case.

Let the elation net be denoted by A& . By (1.2), there is at

least one rational Desarguesian net DON,D of degree 1+q2.

Suppose g € Z 2r-1_, = Z fixes 2 . Let h € Z such that |h]
q —
is a prime p-primitive divisor of q(2r-1_1' Since 2r > 4, there
2r-1
always exists such an element since |h||3 q—l- (note 43-1 is

a possible exception and the argument is taken separately in [8]).

Since h fixes each elation axis and fixes points on each (as

2r-1_

of Ih||q2r—1, and |q 1 then {h||q{2r'2r_l)—1. which cannot be

the case).

By (1.1). Fix h is a subplane of order gq. g acts on Fix h so
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that if g does not fix points of Fix h then there exists an integer

j such that gJ#1 and |gJ||q-1. Then consider qJ with |[q?]|][q-1

2r

and fixing %. Since |8j||q _1—1 and |gJ|q—1 then gJ fixes affine

points and since |2-A4| = qz—q, some pOWer th fixes infinite

points of 2-# . That is, gjk fixes a subplane of order > qz point-

wise. And, there 1is a subplane ™9 of order q2 of £ such thaz

Fix h ¢ 1, ¢ Fix gl¥.

However, ™, is Desarguesian so that |h|]|=2

and q must be odd. But then |h||gq-1 which cannot be the case.
2r-1

Hence, if g fixes %2 then |gJ|q-1 and |gj||q -1 L
(q-1,1+q+q2+...+q2r_2)
= (q-1.(q-1)+(q%-1)+...+(a*T 2-1)+(2r-1))

2r—1_1

So the GCD equals (g-1,2r-1). So there are at least q =t
(q-1)(q-1,2r-1) 1

ational Desarguesian nets 2, >4 such that 2; N ﬂ% =& for i,j=

= 1,....t1 since SL(2,q) has ﬁu - A as an orbit for all i=1,...,tl.
But, let 0 €% ~SL(2,q) be an element such that '|=:r|]r_12-l, but

|g|ﬁk—1 for k < 2s (g=p5) (see e.g. Johnson [11]. 0 permutes the

t
1
remaining points on &_ - ;515@1'
S0,
t
1 2r-1 2
21 - -
1L - ‘ul E’Bil = (g -q) - (g 1)(q -9)
1=

(a-1)(g-1,2r-1)
Let (q-1,2r-1) = s.

2r-1_
q-1

1

More generally, suppose there are %(q ) = t2 rational Desar-

sian nets. Then
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L2 2r-1
2T T -1, 2
_ U _ - 19 -
2= Y12 | = (@7 -q) - gC—gz—(a"-q)
a(@®T -na - D
- 5 T
= q(q?T -1y )
Then 1if
2r - -T
o] 1qCa®" " 1-1) (35
then
|G||(q2r'l-1,q2-1) _ q[2r—1,2)_1 = q-1.

Hence, o fixes additional points on 2_ . Now apply the previous

argument inductively. That 1is, remove another set of at least

2r-1_1)

(1) rational Desarguesian nets. Obtain another set of
q-1)s

(H

cardinality q(qzr'l-l)(iég). By (1.2) and induction, there are

{121'—1“1
q-1

Now apply (2.8).

rational Desarguesian nets 2., D 4 such that 2, 0 '@j =N,

Now assume the p-elements in SL(2,q) are planar. Note the proof
in [8] extends directly.) Let m, be a subplane of order pK=Fix,o|o|=

= p, 0€2~8L(2,q9). Z , _4 = Z must leave m, invariant and if geZ
q -1

q-1

(2r—1_1) (recall 2r>4)

has order a prime p-primitive divisor of q
then we assert that g must fix a component of '"D. That 1is, by

Foulser's Dimension Theorem (e.g., see Jha [7]) k must divide
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k 2r-1)s
p( )

2rs if q=p%. However, if |g||1+pX then |g||(p%K-1, 1)-

= (p(2k,(2r-1}5)_1)‘ Hence we have a contradiction unless
(2r-1)s|2k|4rs so (2r-1|s|4rs or 2r-1|4r. But since 2r-1 is odd,
2r-1|r so that r=1. But then the order is q2 and the group is

SL(2,q) and the planes are determined in Foulser-Johnson ([5],7fi).

Now let g fix pt points on a fixed component ¥ of Ty n> 8

is completely reducible on ﬁF'W“D,qﬁ’ﬂ My = (Fix g on £ N T, )6w

(k-t.(2r-1)s) 5.

k
where |W]| = —Rf. Hence |g]| | (p However, this cannot

P
be the case unless (2r-1)s|(k-t). But k|2rs so k-2rs-t and k < rs.
Then (2r-1)s|2rs-t so s|t and k-t<rs-s. Hence, (2r-1)s|2rs-2s
so that & = 1 and s=t. But, if (2r-1)s|k-s then (2r-1)s < rs-s

which obviously cannot be.

Thus, it must be that k=t so that g fixes To pointwise. By
(1.1)(a) Fix g on each fixed component has order q. So Ty € Fix g

and Fix g is a subplane of order q.

Let &% be a component of o then ¥= ((Fix g)|ly) © Cg P where

¥

C is the unique g-submodule on % which is disjoint from

g.%
((Fix g)|&¥). But, ¢ fixes & and therefore must fix the module
C lgjsince o permutes the g-submodules on ¥ . However, this implies

that fixes additional points on & .
Hence, the p-elements cannot be planar.

Now let ¢ be a p-element and assume Fix ¢ lies in a component

Z . The previous argument shows that Fix ¢ Fix g, Fix g has order

q on & and o must fix the complement Cg o of g on ¥ . That is,

again g must fix additional points of % (since |o| p).

This proves (3.2).
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