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ANALYTIC FUNCTIONALS
Roberto Luiz SORAGGI

1. INTRODUCTION. Let E be a complex, Hausdorff locally convex
space and +U an open subset of E. We denote by #(U) the vector
space of all analytic functions in U. The compact-open topology T,
defined on #(U) is t-he most natural topology but, in the cas-
dim E =« | [#(U), TG] may have undesirable properties (fuo:
instance, if E = i then [ﬁ{E),Tﬁ] is not infrabarreled).

So, in the infinite-dimensional <case we weed to consider

finer topologies on »#(U) in order to obtain nicer topological

properties.

The 7t _-topology, introduced by Nachbin [45], is defined
by the semi-norms on J(U) which are ported by the compact
subsets of U. A semi-norm p on J(U) is ported by the compact
subset K of U if (and only if) for every open neighbourhood
V of K, VcU, there exists a constant C(V) > 0 such that the

following inequality

p(f) < CLV)ILL

holds for every fex{U). (Here "f"V = sup|f(x)].)
xeV

It is clear that Ty X

< Ty This topology was motivated by

the results of A.Martineau [39] on analytic functionals in

several complex variables. The T topology has better properties

. N
than T , but in = =
o the case E=(0C", TD T and so T, may also

have unsuitable properties. The Tw—tupnlugy has also some further
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difficulties. For instance, we <cannot 1in general describe
a directed set of semi-norms which generates T, The topology
on H#(U) which has the strogest properties is the Ta—tnpulﬂgy,
introduced by Coeuré [12] and Nachbin [46]. A semi-norm p
on #(U) is t,.,-continuous if énd only if for each increasing

d

countable open cover of U, (V )m

nn=1° there exist a positive

integer n_ and C> 0 such that the inequality
p(f) < CIfly
Ny
holds for every f in 5(U). The Ts topology on #(U) 1is the

locally convex topology generated by the ~-continuous semi-

Ts
norms.

We always have 1 < T < 7T. T5 1S barreled and hornological
but, wunhappily, we cannot in general describe a directed
set of Tﬁfcnntinuuu5 seminorms which generates the Tﬁftnpﬂlngy.

Of course, the best situation is when T, = Tg- This is, actually,
the case when E is the strong dual of a Fréchet-Montel space
(Dineen [15]). On the other hand, T, # 1T, when E = EI, I an
uncountable set and Ty = Tg On #’(EI) if and only if I 1is
finite (Barroso [3]). Locally convex topologies on the space
of analytic functions defined on open subsets of infinite-
dimensional 1locally convex spaces have been extensively studied

by several authors and good references on this aspect of

the theory are the works of Dineen [17] and Noverraz [51].

In studying the questions: To = Ty T = Tgr T, = TgoM H(U)

one approach consists in characterizing the dual space [#(U),T]"
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(where T = ﬁj.Tw,Ta}. In the one-dimensional case this problem

led to the study of Fantappié's analytic functionals. For

instance, if U is an open disc of the complex plane, Fantappié's

formula for the analytic functional Te[x#(U), TD]' is given

by

(*) T(f) = 3=/ u(t)f(t)de for every f e (U),
Cn+1

where Cn+1 is the boundary of the disc Vn+1, the increasing
. 00 -

sequence of open discs [Un)n=l covers U and vn c Vn+1 for

allnand u(A) is the Fantappié's indicatrix in f]n = 0 - V..

€ = CU{«} . Fantappié's indicatrix u(A) is a locally analytic

function on ﬁn. If K=C-U ¢ D ,- it 1is easy to see that every
locally analytic function is defined on an open neighbourhood
of K and the right member of (*) defines a continuous linear
functional on #(U). If ul(A) and uz(k) are two locally analytic
functions, defined respectively in the open neighbourhoods
W, and w2 of K, such that u1|WE5u2|w for some open neighbourhood

Wof K, We W,NW then it is easy to show that

1 2’

1
2ﬂi‘£
n+1

L [ u (L) f(t)dt =
n+1

u2{t)f{t)dt

and so ul(t) and uz(t} define the same linear functional.

If we consider on the set G of all locally analytic functions
def.ined on an open neighbourhood of K the equivalence relation
given by uj~u, if and only if ulwau2|w for some open neighbourhood

W of K with W ¢ wlﬂwz, where wl and w2 are respectively the
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open neighbourhoods of K where U4 and u, are locally analytic,
then we get the vector space #(K)=G/~ of locally analytic

functions on K. The analytic functional Te[ﬁ%U},TD]' is given by

the indicatrix vuex#(K) and, conversely, each ue f(K) defines
a Te[#(U), TD]'. The correspondence u + T between #(K) and
LﬁTLU. TGJ‘ is linear and bijective and so these spaces are

algebraically isomorphic.

If we consider on »#(K) the topology of uniform convergence
on the bounded subsets of [»#(U), TD]. we have that J#(K) 1is
reflexive and so 1is a barreled space. By the Mackey-Arens
theorem, the topology of H(K) 1is the finest 1locally convex

topology such that the mappings

ﬂn : N [[_]n] + #(K)

are continuous for all n, (:%ﬂm(ﬁnj is the Banach space of
all locally analytic functions on I%l with continuous extensions

to Dn), i.e., the topology of M#(K) 1is the inductive limit

topology of the spaces fm(ﬁn), nelN. We denote this by

#(K) = LimBE (D )l Iy J-
i (D Dn]

We have that the dual of »#(K) is [ﬁ(U)'TE]-

An "analytic functional space' was considered for the
first time by Pincherle [54] in 1901. The concept of 1locally
analytic linear functional and the concept of 1indicatrix
were introduced by Fantappié [20] in 1930. The formula (*),
which gives the functional through 1its indicatrix, appeared

in Fantappié's work in 1930, A short proof of this formula
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appears in Fantappié [21] in 1932. A good reference on analytic

functionals can be found in Fantappié [23].

The duality for #(U), in the case U is a disc of @, appears
in 1949 with Toeplits [73]. The general case and subsequent

generalizations appear in Sebastido e Silva ([58] to [60]),

Silva Dias [61],[62], Kothe ([32],[33], Grothendieck [26],[27]

and Tillmann ([69] to [72]. In 1950, Sebastidao e Silva [58
presented a new systematic account of the theory wusing the
concepts of '"Analyse Generale'. From these historical remarks

the following definitions seem to be natural.

DEFINITION 1.1. Let K be a non-void compact subset of
E. Let G be the collection of pairs (U,f), where U . is an
open neighbourhood of K and fe#(U). Define on G the following

equivalence relation:

(U,£) ~(V,g) < f]=gly

for some open neighbourhood W of K with W ¢ UNV., An analytic germ
on K 1s the e¢quivalence class of an element of G through
this equivalence relation. Let H(K) be the collection of
analytic germ on K. H(K) 1is a vector space through the

canonical mappings

ﬂU : H(U) — #(K).

The definition of H(K) does not change if we restrict
ourselves to the family # of open neighbourhoods U of K such that
each connected component has a non void intersection with K.

For such U's the mappings py are injective and each X#(U)
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may be identified with a subspace of #(K). With this identifica-

tion we may write

H(K) = U H(U).
UDK

DEFINITION 1.2. The topology on #(K) 1is the topology

T defined by

HMK), 1] = 1im (U)s | I,),
: ] Ve v

where (¥ “(U), | HU) is the Banach space of bounded analytic
functions on U endowed with the supremum-norm topology, i.e.
T is the finest locally convex topology rendering the applications

QUIJQF(U} continuous for every Ue% .

The topology T can be defined also by

K, = 1] .Un »
pe(K) , 1] Ué;E?ﬂJTw]

i.e. the finest locally convex topology rendering the applications

Pu continuous for every Ue#.

Since [x#(K), t] is an inductive 1limit of Banach spaces,
it- is bornological and barreled. It is not difficult to show
that T is a Hausdorff tﬂpnlﬂgy; But, even in the case of a
metrizable 1locally convex space E, H(K) 1is not a strict
inductive 1limit (for V 2U DK, V and U open subset of E the
norm on X% (U) induces a norm on J (V) which may be strictly

coarser than the norm on #°(V)).

So the main problems concerning J#(K) are the following:

PROBLEM 1. Describe the continuous semi-norms on J#(K).
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PROBLEM 2, Characterize the bounded subsets of ¥ (K).

PROBLEM 3. Is X (K) complete?

These problems are not independent. It is the aim of this
survey article to present a sketch of the techniques which

allowed to advance into thece problems.
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in the closure [in #(K)] of a bounded subset of some f’“TK+Un ) .
0

But, since the closed unit ball in ﬁ"m(K+Un ) is closed in X#(K),
0

F is contained in JFm(K}Vh_) and 1s bounded there. Hence we
0

have the following

THEOREM 2.1. Let K be a collpact subset of a metrizable locally
convex space E. Then a subset F of H(K) is bounded if and

X
only 1f F 1is contained and bounded in # (U) for some open

subset | containing K.

This result motivated the following

DEFINITION 2.2. The inductive limit (K) = l;mEﬁE?U):MHU]
Ues

is called regular if each bounded subset of H(K) is contained

and bounded in some ;ﬁ”?ﬂ).

The characterization of the bounded subsets of #(K) through
a family of continuous semi-norms on X(K) was first investigated
by Hirschowitz [29],[30] and Chae [11]. Their approach (which
was undertaken before Theorem 2.1 was proved) was to describe
families of continuous semi-norms on J¥(K) generating‘a coarser
Tl-tnpnlngy on #(K) but having the same bounded subsets.

A natural family is the family on (pl} seminorms on JF(K)

defined by

ﬁmf(x)
sSupp —1 , f € #(K),
0 xekK : m: J

He- 8

(*) p (£) = _

where p runs over the family of continuous semi-norms on s¢(0).
This family of semi-norms does not, however, yield the same

bounded sets, as the following example shows.
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EXAMPLE 2.3. Let E = (€. For each positive integer n, let
U = {zel€; Re z{-——l—} and V. = {ze(; Re 2>——1——}
n ’ n+l/2 n ’ n+l/2°°
We define fn € .#’[Un U Vn) as follows: frl = 0 in Un and

fn =1 in [%1' If K = {l/n}?;=1 U {0} then K is a compact subset

oo

of € and {f_}

nd n=1 1S a Tl-bnunded subset of #¥(K) which is

not bounded in the t-topology of #(K).

The above example motivated the following question:

When are the Tl—bnunded subsets of H(K) T-bounded in H(KY?
This question was studied by A.Baerstein [2] who gave a positive
answer in the case of 1locally connected compact subsets of (.
Zame [76] also gave a pnsitive_ answer 1in the case of compact
subset of E = " satisfying a very weak connectedness assumption.

Zame's method was generalized by Soraggi [64] to infinite

dimensional locally convex spaces. Mujica [40], generalized
Baerstein's method for metrizable locally convex spaces.
For the case of a compact subset of € having only a finite
number of connected components, Rogers and Zame [55] showed
that the topologies ] and T coincide and so we have an internal
description of the bounded subsets of J(K) and also an answer
to Problem 1. This result does not extend to C", n > 2. Recently,
Grzybowski [28], in using a geometric approach to the examination

of the extension property, obtained a result which wunified

all the aboveresults for compact subsets of c".

We now discuss the completeness of H(K). Recall that

a quasi-complete DF-space is complete (see Grothendieck [25]).
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S0, 1in the metrizable <case it 1is sufficient to study the
completeness of <closed ©bounded subsets. Using Theorem 2.1,
Mujica [41] showed that #(K) is complete for compact subsets
of <certain metrizable 1locally convex spaces. Subsequently,
Bierstedt and Meise [5] proved the same result for compact
subsets of Fréchet-Schwartz spaces. Aviles and Mujica [1]
extended this to quasi-normable 1locally convex spaces. To
show completeness of #(K) for compact subsets of an arbitrary
metrizable locally convex space another approach was necessary.
This problem remained open for many years and was solved
by Dineen [16]. Dineen's approach consists in returning to
the problem of describing continuous semi-norms on H(K),
to define continuous semi-norms on .#(K) of the type introduced

by Hirschowitz in a correction to his article [29].

oo ao
Let [xn)n=1 and (xn)n=1 be convergent sequences in K.

Let (yn)i=1 and (yﬁ):=1 be null sequences in E such that

[+ #]

n=1 be a strictly increasing

X +Yn = XptyQ for all n. Let (kn)
sequence of positive integers, Define the following continous

semi-norm on JJ(K):

AT ~m ,
d f(xn) g d f(xn)

(**)  p,y(f) = I,2 " ——(y) - g ———(y}) |

for all fes#(K).

Let T be the locally convex topology on H(K) generated
by the semi-norms of types (*) and (**). Dineen [16] show-

ed the following
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THEOREM 2.4, Let K be a

compact subset of a metrizable

locally convex space E. A& subset B of #(K) is bounded if and

only if B is Tz—baunded.

Proof.The semi-norms of type (**) are continuous, since

H(K) endowed with its natural topology 1 is a barreled space.

Conversely, if B 1is a Tz-bﬂunded subset of H(K), then

using semi-norms of type (*), we have that the set

d"f (x)

{ - n e N, x € K, f e B}

is a bounded subset of H#(0). Since #(0) is regular, there

exist an open neighbourhood W of zero in E and a constant

M>0 such that

M
a0
for all f e B, x €e K and n e N.

21
(A) LRECOVIR

If £t e B, x e K, vy ¢ W, let

L in
f(x)(y) = 1, S5 (y).

The proof will be complete if we show that: '"there exists

an open neighbourhood U of zero in E, U ¢ W, such that

f(x)(y)

F(x")(y")

for all x,x' € K, y,y' € U, whenever x+y = x'+y' and f e B."

(Claim (B)).

If it 1is not possible to find such an U, then there exist

L5 2] o . o0
sequences (xn)n=1 and (xﬁ)n=l in K, null sequences (yn)n=l
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in B such that

and (Yﬁ):;l in E, and a sequence (fn):=1

X +Y, = x'+yﬁ for all n and

n
£, (x ) () - £ (x| = 8 # 0.
Choose, inductively, a strictly increasing sequence of
o Ko
positive integers (kn)n=l. such that 2 Gn > n+2M for all n.
We have
k., “n d f(x) Kn dmfn(x')
pz(f ) 2 2 mED m! (yn) ) mEU m! (Yn)
k o k
> 2 Mes -2 .5 —ﬂ+| > 2 M - 2M>n.

Since (f )m_ c B we must have supp,(f_)<=, This contradiction
n‘n=1 n>1 27 n

proves claim (B) and the proof is complete,

On examining the proof of Theorem 2.4, we see that the
boundedness of semi-norms of type (*¥) on a subset B of H(K)
implies the existence of uniform Cauchy estimates on K for
the elements of B (inequality (A)). On the other hand, the

boundedness of semi-norms of type (**) on a subset B of

H(K) implies that there 1is <coherence in the Taylor series

development of the elements of B (Claim (B)).
Using Theorem 2.4, Dineen [16] showed the following

THEOREM 2.5, If K is a compact subset of a metrizable

locally convex space, then #(K) is a complete space.
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To proof Theorem 2.5 Dineen first showed that EQW(K), T2]
is a quasi-complete space., Then he considered the barreled
topology Tt on H(K) associated to T,. (See Komura [35] or
Schmets [5?:). We have that [Jf(K), Tt] is quasi-complete (see

Noureddine [49] or Noureddine and Schmets [50]). Since T, <

by Theorem 2.4 Ty and t have the same bounded subsets.

T »
Since [#(K),t] is a DF-space, [J?’(K),rt] is also a DF-space

.;‘:Tt <

and hence H(K) is Tt-complete. The proof is concluded by

showing that T = Tt'
Concerning Problem 1, Rusek [56] solved the problem of
describing a family of continuous semi-norms on H(K) which

generates the topology of H'(K) for compacts subsets of ¢h

satisfying a very weak connectedness assumption.

Nicodemi [48] considered on H(K) a new topology, 1i.e.

H(K),T = lim[pAU), T _].
; ol U%}[ o)

Considering the topology on H(K), Mujica [43] showed

To
the following

THEOREM 2.6. Let E be a Fréchet space and K a compact subset

of E. We have;:

a) ME)’TD] is an inductive limit (in the category of
topological spaces) of an increasing sequence of compact topological

. I ti lar T j -space.
spaces n particula [ﬁ%K), D] is a K-space

b) The topology TD on X(K) is generated by the semi-norms

of the following types:
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Pt
n
d f(x
(*) p,(f) = g sup | E )H .
1 n! L
n nek n
where (Ln} is a sequence of compact subsets of E, tending
to zero, that 1is, for each neighbourhood V of zero 1in E

there exists HGdN such that Ln{:v for all n > nD;

or

k

_ n
(**) p,(f) = SEDE n

N
n d f(xn)

d"f (x ')
0 n! (Yn) " n

n
0 n! {yﬁ)

ne-r =
ne1 =

o y OO

where (}n)n=1'(xﬁ n=1‘(yn]n=1’ (Yﬁ)n=l and (Kk

oo

) are as before

n‘n=1

(in defining the Tz—tapologyj.

It follows from Theorem 2.6 a) that [#(K), TU] is always
the dual of a Fréchet space endowed with the compact-open
topology. It also follows from Theorem 2.6 a) and a result
of Bierstedt-Meise [5] that the 'TG and T topologies coincide
on H(K) when K is a compact subset of a Fréchet-Schwartz
space. Consequently, we have T o= T, on H#(U) when U 1is a
balanced open subset of a Fréchet-Schwartz space.

If E is a 1locally convex space, let Ei be the dual of E

endowed with the inductive topology, 1i.e. the locally convex

topology defined by Ei = lim(E') o when V runs the family
v

of convex, balanced neighbourhoods of E (see Berezanskii [4]
or Floret [Zd]). This topology is the topology induced on

E' by [#(E),t ] and is finer than the strong topology g of E'.

Using the inductive topology of Berezanskii [4] and a characteri-
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zation of the dual of a Banach space due to Dixmier [19] and

Ng [47], Mujica [44] showed the following

THEOREM 2.7. Let F = 1£m En be an inductive limit of a sequence
of Banach spaces. Suppose there exists a locally convex topology
T on E such that the closed unit ball 1% of each En is

T-compact. Then E =F!

;_ for some Fréchet space F . In particular,

L 1s complete.

Now, ‘if (Un):=l is a fundamental sequence of open subsets
of a Fréchet space E containing the compact subset K of E
then, by Ascoli's Theorem, the closed unity ball Bn of .;ﬁm(vn)
is Tﬂ*ﬂﬂmpﬂCt in #(U) and hence T, -compact in H(K) and

therefore, Theorem 2.7 has as corollary the following

THEOREM 2.8. Let K be a compact subset of E . Then #(K) = Yl

for some Fréchet space Y . In particular, JH(K) 1is complete.

So, the space of analytic germs on a compact subset of

a metrizable 1locally convex space has been quite well studied.

On the other hand, Krée ([36] to [38]), in his investigations
on the mathematical foundations of quantum field theory with
infinitely many degrees of freedoom, used the nuclearity of
[}f(U), TD] for open subsets of a quasi-complete space E whose
strong dual is a nuclear space (a result due to P.Boland [7]
and L.Waelbroeck [75]). Krée also wished to know if [JW[S).TG]-S
the space of rapidly decreasing sequences - was a bornological
space. This, together with the problem of whether [??{E}, TD]
héid a basis - E a nuclear space with a Schauder basis - and

some questions related to () - $ the space of test functions
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of L.Schwartz-and the possibility of a kernel .theorem for
analytic functionals in infinitely many variables, motivated
an intense research on analytic functions defined on nuclear
spaces. First we give some definitions. Our basic references

are Boland and Dineen [8] and Dineen [17].

DEFINITION 2.9. A fully nuclear space is a locally convex space
E such that E and the strong dual Eg are infrabarreled complete

nuclear spaces.

A fully nuclear space 1is always barreled. Every nuclear

Fréchet space is fully nuclear. The space 4 is fully nuclear.

DEFINITION 2.10 A fully nuclear space with basis js a fully nu-
clear space with a Schauder basis (hence an equicontinuous,

Schauder and absolute basis).

DEFINITION 2.11. (K6the ([34]). Let P be a collection of
sequences of non-negative real numbers such that for each

Qo

positive integer m > 0 there exists a= (a_)

) _, € P with a_ >0.

The sequence space A(P) -is defined as the set of all sequences

of complex numbers (zn)Z=l such that

20

pEyoafz <@ for all e = (o ) _, € P.
We consider A(P) endowed with the topology generated by the
family of semi-norms Py » Q= (un)n=1 € P, defined by
o ’; -
pu[(zn)n=l] = Zy0 |z | for all  (z_ ) _,; € A(P).

Let E be a Hausdorff 1locally convex space with an absolute
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basis (En)n=1' If P = {(p{en}]nzl, when p runs over the family

cs(E) of continuous semi-norms on E} , we define a natural

mapping from E into A(P) as

=

Lz e € E (z )" . € A(P)
n=1“n"n i n‘n=1 '

E is algebraically isomorphic to its image in AMP). E is isomorphic

to AMP) if and only if E is complete.

It follows from the Grothendieck-Pietsch <criterion (see
[53]) that a fully nuclear space E with a basis is a sequence

space and so 1is Eé hence we can define polydiscs in E and Eé.

DEFINITION 2.12. A set U ¢ A(P) is a polydisc if U is a subset

of A(P) of one of the following types:

(*) {(z, ) _, € A(P); supfz B | <1} ,
n
or
(**) {(zn):=1 e A(P); sup|z B | < 1}
n

where B e [0,+%] for all n, [a+(+e = +o if a >0 and 0-(+«)=0].

A polydisc of type (*) is open if and only if (Bn)n e P;

A polydisc of type (**) is always closed.

DEFINITION 2.13. Let E ~ A(P) be a fully nuclear space

with a basis and let U be a subset of E. We define the multiplica-

tive polar UM of U by

M_ @ ' 1Y . oo
U = {(w ) _q1 € EB ~ MP'); SEplezﬂl <1 for all (z ) _, € U}.

If U is an open polydisc in E then the multiplicative polar
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M

g

Using the fact that |}ﬁﬂ£];rﬂ] has a basis, Boland and Dineen

U" is a compact polydisc in E

[8] showed the following

THEOREM 2.14. Let U be an open polydisc in a fully nuclear
space with a basis. Then MU)‘TG]1 is topologically isomorphic

to the space #‘(UM] of analytic germs on the compact polydisc

UM

Under this isomorphism, equicontinuous subsets of [f(UJ'TG"—"
correspond to subsets of ,ﬁ’[UH) which are uniformly bounded

on some open neighbourhood of UM

For open polydisc U in fully nuclear spaces with a basis,

Theorem 2.14 has the following corollary:

L;["[U),Tﬂ] is infrabarreled & [}{‘(UM), |1 is a regular inductive

limit < De’(u),-cnj is bornological.

This result motivated the study of regularity of H (K)
for compact subsets K of nonmetrizable locally convex spaces.
For a certain category of fully nuclear spaces with basis,
regularity and completeness are equivalent when U=E (Boland-

Dineen [9], Proposition 10).

Unfortunately, Mujica's method does not apply in this case.
But the arguments used to prove Theorem 2.4 can be adapted
to study regularity of H(K) when K is a metrizable compact

subset of certain non-metrizable locally convex spaces.

R. Aron showed that for E = EDN] the space of germs at
the origin - 3#(0) - is not regular. In 1978, Boland and Dineen [9]

showed that if E is the strong dual of a Fréchet nuclear space
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with basis and Eé does not have a continuous norm, then
X’{DE) - the space of germs at the origin of E - 1is not regular,
On the other hand using Theorem 2.14 Boland and Dineen [10]
showed that H#(0) - the Imrigin in the space of distributions

§' (respectively §) - is regular (is not regular).

So regularity in spaces of analytic germs on compact subsets
of non-metrizable locally convex spaces may be a very delicate
question. Even for the strong dual of a Fréchet space, H(0)
may be regular as for instance 0 € E = s' or #(0) may tail

to be regular as for instance E = EDN].

The first problem was to study regularity of H(0). This
problem 1is equivalent to the existence of uniform Cauchy
estimates for the elements of a bounded subset B of H(0),
i.e., does there exist x> 1, M >0 and a neighbourhood W of the

origin of E such that

M
ll’ﬂ

|— d™£(0) Iy < for all meN and all feB?

In the nuclear case, Dineen ([17], Theorem 5.42) gives new
examples where H(0) is regular. Further examples where H(0)

is regular are given by Soraggi [66].

Now, let B be a bounded subset of H(K). By wusing semi-

norms of (*)-type, we have that

, n e N, x e K, f € B}

{ ﬂnf[x)_
n!
is bounded in J(0).

If H(0) 1is regular, then, as in the proof of Theorem 2.4,
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the existence of uniform C(Cauchy estimates for the elements
of B implies that for each f in B, x in K and y in a neighbourhood
W of the origin of E, we can define

Tn

FO0(y) = Fy S

However the Taylor series expansions may fail to be coherent,

i.e.,

QUESTION 2.15. Is there an open neighbourhood of the origin

V ¢ W such that

T(x)(y) = f(x")(y") for all x, x' in K and y,y' in V,
whenever x+y = x'+y' and f € B?

If the question has a positive answer, then we see easily
that B is contained and bounded 1in ;?m{K+V) and so regularity
of #(K) will follow. Hence the study of the regularity of

H(K) leads to the following

QUESTION 2.16. When 1is regularity of #(0) sufficient

to imply regularity of ¥ (K)?

Twe different approaches were considered. The first approach
consists in identifying those elements in K where there 1is
no conherence in the Taylor series expansions and to endow
the correspondent quotient space with the structure of an
analytic space. For this we need to impose very weak connectedness
assumptions on the compact subset K in order to show that
some functions defined in this analytic space are analytic.

This was done by Zame (76| in the finite-dimensional case
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and by Soraggi [65] in the infinite-dimensional case, where a
positive answer to the question can be found. The second approach
consists 1in wusing semi-norms and type (**) and to adapt the
arguments used to prove Theorem 2.4. Soraggi [66] showed that
Question 2.16 has always a positive answer when K 1is metrizable
and E satisfies a very weak technical conditiqn which holds

in most, if not all, spaces for which #(0) is regular.

DEFINITION 2.17. A locally convex space E satisfies condition P
if for wsach convex, balanced open subset U of E and for each

non-trivial (i.e. fn;U for all n) sequence (fn)ndw in H(U),

oo

there exist a subsequence (fn.)j=0 and a bounded sequence
(Yj};;ﬂ in U such that fnj(yj} # UJfGT all jeN.

Baire spaces, metrizable 1locally <convex spaces, products
of metrizable locally convex spaces, C(X) - the space of complex-

valued continuous functions defined on a completely regular
Hausdorff space, endowed with the compact-open topology - ar:

examples of locally convex spaces satisfying condition P.

o0

A sequence (Kn)n=1 in a locally convex space E is very strongly
5 o oo
C r t F ) ¥
onvergen if, for each sequence of scalars (ln}n=1 (Anxn}n=1

is a null sequence in E.

In studying »(K) there is no loss of generality if we restrict
ourselves to complete locally convex spaces. In this case,
Soraggi [66] showed that E satisfies condition P if and only
if there is no non-trivial very strongly convergent sequence in

H#(E) endowed with the compact-open topology T, -
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Very strongly convergent sequence were introduced by Dineen
[14] in studying holomorphic completions and they were applied
by Dineen [13] in other areas of infinite-dimensional holomorphy.
If E is the strong dual of a reflexive Fréchet space, non existence
of a non-trivial, very strongly convergent sequence in F&% c@ﬁE}J}J

is equivalent to E satisfying condition P and so the latter

is equivalent to F admitting a continuous norm (see Dineen
[13]).
Using condition P, Soraggi [66] showed the following

THEOREM 2.18. Let E be a locally convex space satisfying
condition P and let K be a metrizable compact subset of EBE. If 5#(0)

is regular, then H(K) 1is regular.

Sketch of proof. Let B be a bounded subset of J#(K) and suppose
that there 1is no coherence in the Taylor series expansions
of the .elements of B, i.e., for each open neighbourhood of
the origin Vo ¢ W (where W is given by the uniform Cauchy estimate)

we can find

X ,Ku

[
o
o
~c
=]

e
o -
-
—
<l

such that
£, (x,) (vy) # £,(x) )(ye ).

Ordering (Vu L] by set-theoretical inclusion, we have Y o + 0,

y:] + 0 and so xﬁ-— x:] + 0. Since K-K is metrizable, we can find
a sequence Xx -x" *> 0. Denote by x_-x' such a sequence, by
o an n n
fn the corresponding functions and by yn.yﬁ the elements in
V = V_.
o n
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Let
ho (y) = £ (x )(y) - £ (xXx -x'+y), y € W

Since hn{yn} # 0 for all n, we can find a subsequence (h }?=U
]
= =]

and a bounded sequence (Ij)j=0 in V such that hn (zjj # 0 for
J
all j. Choose ( lj)?=ﬂ a null sequence of scalars such that

hj( ljzj) # 0. For all j > 0 let Hjj(ljzj)i = 6j > 0. Choose

inductively a strictly increasing sequence of positive integers

(kj)T=0 such that, for all j,

k. 4m
j d™ . (x.) kc‘lf(x) S
) J ) .z J n )
1) Im:ﬂ m! (l.]z-]) m= 0 m" (K x.]+‘l-]z )I} 7
k. 6.
2) 2 ) f‘ j J

oo
Since A.z.). and X.-X'+ A,z are null sequences in
C*525) 5=0 (X §=X; J)J 0 q

E, the semi-norm defined on (K) by

'S K ; d™f (x ;) i @M (x i)
p(f) = 'E{] 2 bz_ m! (AJEJ) - 0 m (x. ':':J""}LJZ ) |

||fi‘*1I e

is continuous. Hence sypp(f )<~ since (fj) ¢ B.

On the other hand we have, for all j,

p(£.) > 23 > j.

This contradiction shows the coherence of the Taylor series
expansions.

Observe that E = E[NJ does not satisfy condition P, since
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T

Eh = does not admit a continuous norm. On the other hand,

A(0) - 0 € E[mj - is not regular.
The following question naturally suggests itself:

QUESTION 2.19., what is the relationship between regularity

of #(0) and condition P7?

If E is the strong dual of a reflexive Fréchet space and
E does not satisfy condition P, we Kknow - (Soraggi [66]) that
Eé is a Fréchet space without continuous norm. By a resuilt
of Dineen ([13]), E has a quotient space isomorphic to EDN],
i.e., there exists an open, surjective, continuous mapping
. IN] . "
m: E > ( . Now, by Soraggi's result ([66], Proposition 1.10)

H(0), 0OeE, cannot be regular. We have the following

PROPOSITION 2.20. Let E be the strong dual of a reflexive
Fréchet space. If J3#(0) , 0ODekE , i1s regqular, then E satisfies

condition P.

Since compact subsets of DF-spaces are metrizable (Pfister

52] or Valdivia [74] and DF-spaces are quasi-normable (Kats

31]) and in quasi-normable spaces regularity of H(K) -impldies

N L

that A (K) 1is quasi-complete (Bierstadt and Meise [6]), we

have the following

THEOREM 2.21, If E is the strong dual of a reflexive Fréchet
space and HK(0)- 0 € E- is regular, then H(K) is regular and

guasi-complete for every compact subset K of k.

In studying analytic functions of nuclear type we showed

in [67] that for certain nuclear spaces E with basis, regularity
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of H(0) implies that E satisfies property P. On the other
hand, by wusing Taylor series expansions it is easy to show
that for a complete space E condition P is equivalent to Z2(E)
- the space of continuous polynomials on E endowed with the
compact-open topology - having no non-trivial very strongly
convergent sequence. We showed in [66] that EI'3 having no non-
trivial very strongly convergent sequence is equivalent to
E having property P when E 1is the strong dual eof a reflexive
Fréchet space, 1i.e., in this case we need only consider in
the definition of property P a sequence of non-zero continuous

linear functions on E. Hence we have the following open question.

QUESTION 2.22. Let E be a complete Montel space. (Hence
I #
T,=B ©°n E). Eh c E?[E},Tﬁ]_When are the following statements

equivalent?

1) In Eé there 1is no non-trivial very strongly convergent sequence

(linear condition P),

2) In 2(E) there is no non-trivial very strongly convergent

sequence (polynomial condition P).

It is worth noting that, if we get an answer to the above
question, we also get an answer to Question 2.16. In fact,
if E does not have linear condition P, i.e., there is a non-
trivial very strongly convergent sequence in E' , then by a
result of Simoes [63] E must have a quotient space topologically
isomorphic to -EBH]. Again applying Soraggi's result in [66].
we have that »#(0), OeE, is not regular. These results strengthen

our conjecture that regularity of #(0) always implies regularity
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of #(K) for metrizable compact subsets of any Hausdorff 1locally

convex space E.
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