CONVEX HYPERSURFACES WITH TRANSNORMAL HORIZONS ARE SPHERES

F.J.CRAVEIRO DE CARVALHO-S.A.ROBERTSON (*)

Let M be a smooth $(=C^{\infty})$, compact, connected hypersurface of Euclidean (n+1)-space R^{n+1} , $n \geq 2$, with nowhere-zero Gaussian curvature. Thus M is diffeomorphic to the n-sphere S^n and every affine tangent hyperplane meets M in just one point.

Let λ be any (straight) line in \mathbb{R}^{n+1} and let \mathbb{M}_{λ} denote the set of points of M at which the tangent hyperplane is parallel to λ . We call \mathbb{M}_{λ} the λ -horizon of M. If, for every λ , \mathbb{M}_{λ} is a transnormal submanifold of \mathbb{R}^{n+1} [5] we shall say that M is horizon-transnormal. In this paper we show that if M is horizon-transnormal then M is a round sphere. The converse is obviously true.

We show in §2 that if M is horizon-transnormal then it is transnormal. If M is transnormal then every λ -outline Ω_{λ} (see §1 below) is also transnormal. This is one aspect of a classical result in the theory of convex bodies of constant width [1] but we give a direct differential-geometric proof in §3. We prove in §4 that each λ -horizon M_{λ} is contained in a hyperplane normal to λ . It is then a consequence of a classical result that M must be an nellipsoid. Consequently, due to its transnormality, M is a round n-sphere.

^(*) The first-named author is grateful to the Calouste Gulbenkian Foundation - LISBON, for financial support.

1. ORTHOGONAL PROJECTIONS. - From now on M will denote, as above, a smooth, compact, connected hypersurface of \mathbb{R}^{n+1} , $n\geq 2$, with nowhere-zero Gaussian curvature. The tangent space at x to a smooth submanifold X of \mathbb{R}^{n+1} will be denoted by $T_\chi X$ and whenever convenient $T_\chi X$ will be considered as a linear subspace of \mathbb{R}^{n+1} . The affine tangent and normal spaces at x will be denoted by T_χ and N_χ respectively. Thus T_χ and N_χ are affine subspaces of \mathbb{R}^{n+1} . Also $f_{\star\chi}$ will denote the linear map induced by a smooth map f between the tangent spaces at x and f(x).

Let λ be a straight line in R^{n+1} and H_{λ} a hyperplane orthogonal to λ . Let $\pi\colon R^{n+1}\to H_{\lambda}$ be the orthogonal projection of R^{n+1} into H_{λ} . The critical set M_{λ} of $\pi|M$ is a smooth compact (n-1)-submanifold of M. Such a restriction was studied in [2] and we recall that xeM is a critical point of $\pi|M$ if and only if T_{χ} is parallel to λ . Since M has no non-zero asymptotic vectors it follows that if xeM $_{\lambda}$ then

$$T_x M_{\lambda} + \ker \pi_{\star x} = T_x M$$

(see [2] for details). That is, every point of M_{λ} is a fold point. Therefore $\pi|_{M_{\lambda}}$ is an embedding and we denote by Ω_{λ} its image in H_{λ} . In fact Ω_{λ} is diffeomorphic to S^{n-1} . We shall call Ω_{λ} the λ -outline of M. Trivially, Ω_{λ} is independent of H_{λ} up to translation of H_{λ} along λ . If meM_{λ} then we write $\text{m'}=\pi(\text{m})$ and we have

$$T_m$$
, = $\pi(T_m)$, N_m , $\|N_m$ and N_m , = $\pi(N_m)$,

where N_m is the normal line to Ω_λ at m' in H_λ . We remark that as far as verifying the transnormality of Ω_λ is concerned it is imma-

terial whether we consider N_{m} , or the normal 2-plane in R^{n+1} to Ω_{λ} at m'.

2. HORIZON-TRANSNORMALITY IMPLIES TRANSNORMALITY. - We prove now that if, for every λ , M_{λ} is transnormal then M itself is transnormal. Let xeM and suppose that yeN_x. Choose λ such that $\lambda \| T_x$ and $\lambda \| T_y$. Since x and y belong to M_{λ} and M_{λ} is transnormal then $T_x M_{\lambda} = T_v M_{\lambda}$. Also because x and y are fold points

$$T_x^M_{\lambda} + \ker \pi_{\star_X} = T_x^M,$$

$$T_y^M_{\lambda} + \ker \pi_{\star_y} = T_y^M.$$

But ker $\pi_{*_X} = D(\lambda) = \ker \pi_{*_Y}$, where $D(\lambda)$ stands for the direction of λ (that is to say, the line through 0 parallel to λ). Hence $T_X^M = T_Y^M$ and, consequently, $N_X^{\dagger} N_Y$. Since $y \in N_X$ we have $N_X = N_Y$.

3. TRANSNORMALITY IS EQUIVALENT TO TRANSNORMAL OUTLINES. - We show next that M is transnormal if and only if, for every λ , Ω_λ is transnormal.

Assume that, for every λ , Ω_{λ} is transnormal. Let meM and suppose that yeN_m. Choose λ such that N_m and N_y are parallel to H_{\lambda}. Then m, yeM_{\lambda} and m'=\pi(m), y'=\pi(y) belong to Ω_{λ} . Since Ω_{λ} is transnormal and y'eN_m, we have N_m, = N_y. Consequently N_m||N_y and as they have non-empty intersection they coincide.

Suppose now that M is transnormal and take a fixed λ .Let m'= π (m) be a point in Ω_{λ} . Since every affine tangent (n-1)-plane to Ω_{λ}

only intersects it in one point it follows that N_m , intersects Ω_λ in just one more point, say y'. Also N_m intersects M in just another point z and $N_m = N_z$ which implies that $T_m \| T_z$ and, consequently, that $z \in M_\lambda$. Moreover $T_m \| T_z$, and $N_m \| N_z$, with $z' = \pi(z)$. Since $z' \neq m'$ and $N_m = \pi(N_m)$ we conclude that z' = y'. Therefore $N_m = N_y$.

4. HORIZONS ARE CONTAINED IN HYPERPLANES. - We may assume without any loss of generality that λ is the straight line generated by $(0,\ldots,0,1)$. Then M_{λ} can be regarded as the graph of a smooth map $h:\Omega_{\lambda}\to R$. That M_{λ} is contained in a hyperplane normal to λ is implied by the following generalization of corollary 1 in [3].

PROPOSITION 4.1. Let X be a smooth, compact, connected, transnormal hypersurface of R^n and $h: X \to R^k$, $k \le n-1$, a smooth map. If the graph of h is transnormal then h is constant.

Proof. Since X is transnormal there is an antipodal involution [5] $\delta: X \to X$. Then if $N_{(x,h(x))} = N_{(y,h(y))}$ either x=y or $\delta(x)$ =y and it follows that the graph G_h of h is also 2-transnormal. Therefore the diameter of G_h is $\|(x,h(x))-(\delta(x),h(\delta(x)))\|$, for every xeX, and, consequently, $\|h(x)-h(\delta(x))\|$ is constant. By a result from [4] there exists x_0 eX such that $h(x_0)=h(\delta(x_0))$. Hence $h=h\circ\delta$.

Next we establish that, for every xeX, h_{\star_X} is the zero linear map. Regarding δ_{\star_X} as an automorphism of a linear subspace of \mathbb{R}^n all its eigenvalues $\lambda_1,\ldots,\lambda_{n-1}$ are real and negative. Choose a basis (e_i) for $T_X X$ formed by eigenvectors of δ_{\star_X} .

Then $T_{(x,h(x))}^G = (e_i,h_{*x}(e_i)),i=1,\ldots,m-1)$ and $T_{(\delta(x),h(\delta(x)))}^G = (\lambda_i e_i,(h \circ \delta)_{*x}(e_i)),i=1,\ldots,n-1)$, where << >> means generated by. Since $h=h \circ \delta$ it follows that $h_{*x}(e_i) = (h \circ \delta)_{*x}(e_i),i=1,\ldots,n-1$ and therefore there are negative real numbers μ_i such that $h_{*x}(e_i) = \mu_i h_{*x}(e_i)$. Consequently, for every $i,h_{*x}(e_i) = 0$ and h_{*x} is the zero map.

5. HORIZON-TRANSNORMAL HYPERSURFACES ARE ROUND SPHERES. - Having proved that the λ -horizons are contained in hyperplanes we can use a classical result [6] to conclude that M is an n-ellipsoid. Since the only transnormal n-ellipsoids are round n-spheres we obtain our main result, namely:

THEOREM 5.1. Let M be a C^{∞} , compact, connected hypersurface of Euclidean (n+1)-space R^{n+1} , $n\geq 2$, with nowhere-zero Gaussian curvature. If M is horizon-transnormal then it is a round n-sphere.

REFERENCES

- [1] G.D.CHAKERIAN-H.GROEMER, "Convex bodies of constant width", in Convexity and its applications, edited by P.M.Gruber and J.M.Wills, Birkhäuser, 1983.
- [2] F.J.CRAVEIRO DE CARVALHO, "On the radial map", Revista de la Universidad de Santander, N.2, parte 1 (1979), 489-497.
- [3] F.J.CRAVEIRO DE CARVALHO, "Transnormal graphs", Portugaliae Math., 39(1980), 285-287.
- [4] H.J.MUNKHOLM, "Borsuk-Ulam type theorems for proper $Z_{\rm p}$ -actions on (mod p homology) n-spheres", Math. Scand., 24(1969), 167-185.
- [5] S.A.ROBERTSON, "On transnormal manifolds", Topology, 6 (1967), 117-123.
- [6] A.SCHWENK, "Affinspharen mit ebenen schattengrezen", in Lecture Notes in Mathematics, 1156, Springer-Verlag, 1985.

Ricevuto il 18/12/1987

Departamento de Matematica Universidade de Coimbra 3000 COIMBRA - PORTUGAL

Faculty of Mathematical Studies
University of Southampton
Southampton SO9 5NH - U.K.