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PLANAR PROJECTIVE CONFIGURATIONS

Part 1

*
N.S.MENDELSOHN, R.PADMANABHAN and B.WOLK ¢ )

To Gilbert Robinson on his B80th birthday

INTRODUCTION. - The problem originated in an attempt to construct
matrices A with entries 0 and 1 such that the product AAT has
each entry which 1is off the main diagonal either 0 or 1. Such
matrices are quite common and appear as the incidence matrices
of finite projective and affine planes as well as the incidence
matrices of configurations such as the Desargues and Pappus configur
urations. The configurations which we study are all self-dual.
The question of whether configurations which admit a preassigned

group of collineations can be constructed is also addressed.

DEFINITIONS. We define a pfanar projective configuration of order
n and deficiency k to be a system consisting of two sets P and
L called points and lines respectively and an incidence relation

between the sets such that (using conventional language):

1). Two points are on at most one line.
2). Two lines intersect in at most one point.
3). Every point is on exactly n+l lines.

4). Every line passes through exactly n+l points.

(*) This research of all the three authors was supported by the
NSERC of Canada.
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5). For each point there are exactly k other points which are
not joined to 1it.
6). For each 1line there are exactly k other lines which do

not intersect 1it.

[f we have such a system S we say that S belongs to the

class [n,k], or more loosely, S is an [n,k].

I[f S is an [n,k] then the number of points in S is N=n’+n+1+k.
To see this note that each point p 1s on exactly n+l lines. ‘The
total number of points on these 1is 1+n(n+l). Add to this the k
points which are not joined to p we obtain n2+n+1+k points. The
number of lines is also N. In classical terms an [n,k] configuration
has been referred to 1in the literature as an Nﬁ+l configuration.
We will use both notations interchangeably.

In connection with an [n,k] configuration, we introduce the
notion of the deficiency graph of the configuration. This graph
is formed by taking the points of the configuration to be the
vertices of the graph, and any two points which are not on a line
of the configuration are joined by an edge 1in the graph. Such
a graph is on N vertices and 1is regular of degree (valency) Kk.
It need not be connected even when the configuration is. If U
and V are configurations in the class [n,k] then the disjoint
union of U and V is a configuration in the class [n.N+k]. We will
refer to a configuration which 1is disconnected as imprimitive.

A connected configuration is then called primitive.

Another concept which is useful is that of an {ncddence mairdx
of a configuration. If we name the points and lines of the configur-

ation as pi,l (i,j=1,2,...,N) then the matrix A with entry 1

)



Planar Projective Configurations 93

in the i,j position if Py is on the line th and 0 otherwise 1is
called an 1incidence matrix of the configuration. For any configur-
ation in the class [n,k] the corresponding incidence matrix is
a matrix of order N in which each row and column has (n+1) 1's
and the remaining entries all 0. By a well known theorem of Garrett
Birkhoff |1|, such a matrix can be expressed as a sum of n+l permu-

tation matrices, usually in many ways.

Finally, we introduce the notion of a defdcient difference set
with respect to a finite group G. A group G has a left difference
set in the class {n,k} if there exists a set of (n+l) elements

{a;,a5,...,a .1} of G such that all the products a;la. (i,j =1,2,..,n+1)

J
with 1#j are distinct and include all but k+1 elements of G. Of

course, the identity element of G is always excluded in the set

of ailaj. In what follows the adjective deficient will usually

be omitted. We could also define a right difference set by using

-1 . -1 , -1 -1
products ajai instead of a; aj. However, if a; aj—ar ag then
-1_ -1

a.a a.a_~ . Hence, {al,az,..

= i8s is a left difference set

csa 1}
if and only if it is a right difference set. It is to be pointed
out that the excluded elements may not be the same for the left
differences as for the right differences. Counting included and
excluded differences it follows that |G| = n2+n+1+k=N. If the
elements of a difference set generate G we say that the difference
set 1s primitive, otherwise imprimitive. If {a;,ay,..05a 1} 15
a difference set then if x is any element of G the set {alx,azx,...

.,an+lx} is called a right translate of the set and is clearly

a difference set. If {a).a,,. is a primitive difference

..,an+1}
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set then some translate of the set contains the identity element
G (which we denote by 1). In what follows we will assume that
a primitive difference set always contains the element 1. In this
case no element of G of order 2 can appear in the diiference set.
Also all elements of order 2 belong to the excluded set. If the
group G 1s cyclic the group 1is written additively with 0 being
the identity element. If n is a prime power q then the class |q,0]|
consists of projective planes of order q and these exist for every
q. In fact among such projective planes there is for every q a
Desarguesdian projective plane of order q and by a famous theorem
of Singer [6] such planes contain collineations which are cyclic
on its points. This does not exclude the possibility of other
planes having cyclic collineations, but at present none are known.
The existence of a cyclic collineation in a Desarguesian plane
of order q implies that the cyclic group Cq has a difference set
in the class {q,0} . (0Of course, we do not distinguish between

left and right for Abelian groups).

For most finite groups it 1is possible to construct primitive
deficient difference sets for relatively large values of n. We
note the following exclusions all based on the fact that a deficient
difference cannot contain elements of order 2 assuming that the
identity element of the group 1s a member of the difference set.
There is no difference set associated with an elementary Abelian
group of exponent 2. There are also no primitive difference sets
associated with a dihedral group or with the direct product of
the symmetric group S3 and an elementary Abelian group of exponent

2.
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SOME CONSTRUCTIONS OF CONFIGURATIONS IN THE CLASS [n,k].

1.) Deletion of incidences.

Suppose the class [n,k] is non empty. Let C be a configuration

in this class, and let A be an incidence matrix for C. Then A
is a matrix of order N which contains (n+l) 1's in each row and
each column and 0's elsewhere, Then A can be written as a sum
of permutation matrices (in many ways). Let P be one of the permuta-
tion matrices which appears in the sum. Let ¢ be the permutation
associated with P (¢ is the mapping i »i¢ for i=1,2,...,N). Then
each point Py is incident with the line 1i¢" On removing these
incidences, we obtain a configuration in the class [n-1,2n+k].
The different choices of the matrix P may give rise to non-isomorphic

configurations. In any case we have proved the following theorem.

THEOREM 1. 1§ the class [n,k] 44 non empty then A0 s the class

(n-1,2n+k].

COROLLARY 1. Iterating this result we obtain the following:
If [n,k] is non-empty, then so are the classes [n-1,2n+k],

(n-2,4n-24k], n-3,6n-6+k],....[n-1,2in-1i2+i-K],..., [1,n%+n-2+k].

COROLLARY 2. If n is the order of a projective plane, then

the results of corollary 1 are true with k=0. In particular, the

results are true with n equal to a prime power.

Note that the results of corollary 1 and 2 may be true even

when the premise is false. For example although there is no project-
ive plane of order 6 the class [4,22] is non empty as will be

shown in what follows.
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2). Stripping a projective plane.

If there 1is a projective plane of order n then by removing
a line and the points incident with it we obtain an affine plane.
The lines of this plane separate into parallel classes and every
point is on one line of each parallel class. Take one of the points
in the plane and remove it and all the lines which pass through
it. The resulting set of points and lines form a configuration

in the class [n-1,n-2]. We now have proved the following theorem:

THEOREM 2. 1§ the cfasst [n,0] 4s non empty then s0 45 the class

[n-1,n-2].

Note that the class |[n-1,n-2| may be non empty ecven though the
class [n,0| is empty. As will be shown in what follows the class
[S,JJ is non empty but there is no projective plane of order 0.
New classes of configurations may now be constructed by applying

corollary 1 of theorem 1 to this result.

3). The sextet substitution.

It is a well known result on Steiner triple systems that if
the system contains six points A,B,C,D,E,F lying on the four lines
A B C, AF D, EBF, EC D, we may interchange the points A and
E to obtain four new lines with which to replace the original
four lines. The resulting system is a new Steiner triple system.
The same substitution works for any configurations in the class
[2,k]. Of interest is that the two configurations have the same
deficiency graph. If we apply this trasformation to the Desargues
configuration which 1is in the class [2,3J the resulting configur-

ation serves to discriminate between those Desarguesian planes
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which are non-Pappian from those which are Pappian. This is discussed

in detail in part 2.

4). Construction using deficient difference sets.

The existence of a difference set in the class {n,k}! is now
used to construct a configuration in the class [n,k]. If G is
the group of the difference set then the collineation group of
the configuration contains a subgroup isomorphic to G. If often
happens that difference sets on different group yield isomorphic
configurations. The construction is described in the following

theorem,

THEOREM 3. Llel {a va ) be a difference set in Lhe class

U,ﬂl,...
{n,k} with G being the underlying group. Then there exisls a confd-
guration 4in the class n,k which admits G as part of 4«is codl-

Lineaiion group.

Proof. We take as the lines of the configuration all the right
translates of {aﬂ,al,...,an}. Since every group element appears
in some right translate the number of lines is equal to the number
of points and equals |G| = N, and k is given by Nu[n2+n+1). We
next show that given any two lines, they either have 1 or 0 points
in common. Indeed if the translates by x and y had two elements
in common there would exist m,n,p,q such that a x=a_y and apx=aqyi

—1a -1

These imply that a a . = aq ap. This contradicts the definition

of a difference set. Hence the points and lines of the configuration

form a configuration in the class [n,k].

THEOREM 4. Lel {a .sa be a difference set Ain the class

0*%1°"
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{n,k} with G being the underlying group. Let H be the subgroup
of G which 45 generated by ag,ay,...,a_, and suppose that [G:H]=m.
Then the configuration defined by the difference set (s {imprimitdive
and consdists of m disfodnt ALsomorphdic copies of a configuratdion

in the class [n,k'] where k'=k-N(m-1)/m, and N=n2+n+1+k.

Proof. Let G = H&Hg2+...+Hgn. The elements of a translate of
{a[},al,...,an} by an element 1n the coset Hgi all lie 1in the
set Hgi. This allows us to separate the lines of the configuration
defined by the difference set into m subseté, where the lines
of thq ith subset contain elements of the coset Hgi. Call these
subsets of lines fil, 2""’Sn' Each of these sets form an [n,K]
configuration where k' 1s given by the value 1n the statement
of the theorem, Since right translations by elements of G permute

the sets Si they are all isomorphic as configurations.

THEOREM 5. Let {1,a ,,ar} be a digference set over a group

-

IR
G. I§ Byseeerd generate G then 2Lhe corresponding congiguration

H {4 primitive.

Proof. Corresponcing to the configuration H we introduce a
graph H* where the vertices of H* are the points of H and two
vertices of H* are connected by an edge iff the corresponding
points of H are both incident on the same line. We show that there
is a path from the vertex 1 to any other vertex of the graph.
This will imply that the graph H* is connected and hence that
the configuration H is primitive. From the difference set itself
it follows that the vertex 1 1is joined to each of the vertices

@5 e easd by an edge. Represent each element of G as a word in
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Ayseensd without wusing inverses of generators., Inductively, we
assume that there is a path from 1 to each vertex which is repre-
sented by a word of length n. Let W be a word of length n+l1. Then
W is of the form W = amT for some m and T is of length n. Translate
the difference set by T, we obtain that the points T,aZT,...,arT
all are on a line of the configuration. Hence, in particular,
there is an edge from T to amT. Combining this with the path from
1 to T, vyields a path from 1 to W. Hence, H* 1is connected and

H is primitive,.

THEOREM 6. 14 a congdguration S is constructed using a difference
sel on a group G , then the collineation group o4 the confdiguration
contains G as a subgroup and This subgroup acts transitively on

the points and Lines of S.

Proof. The points of S are the elements of G. The set o¢of all
right translates of a point by the elements of G is simply the
set of all elements of G. Hence G acts transitively on the points
of 5. Also, since the set of lines of S are simply the set of
right translates of a single line, it follows that G acts transi-
tively on the lines. Each right translation by an element of G
induces a collineation of S, and the set of right translations

is isomorphic to the right regular representation of G.

Calculation by computer yields an enormous number of deficient
difference sets. At present there is no criterion which will tell
us whether the configurations obtained from one group difference
set are 1isomorphic to the configurations obtained from difference

sets on other groups of the same order. Hence publication of tables
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of such results appears quite useless at the present time. Instead
we prove two theorems which indicate the ubiquity of such configur-

ations.

THEOREM 7. Let n be a f4xed «nteger. There exists an 4Aintegenx
k' , depending on n , such that foxr every 4integern k>k' the class
[n,k] £4 non empty. Furthermore, each such class contains a primdi-
tive configuraiion which admits a collineation which acts cyclically

on 415 points.

Proof. Let q be the smallest prime power such that q>(n+2).
There 1s a Desarguesian plane of order q. By Singer's Theorem,
this plane contains a collineation which is cyclic on its points.
This implies the existence of a difference set {D,l,az,...,aq}
in the integers mod N, where N=q2+q+1. From this difference set
delete q-n elements from amongst the subset 62,33,...,aq. There
remains a set of n+l1 integers which includes 0 and 1 and which
form a deficient difference set S on the integers mod N. Let T
be the set of differences of members of S, which are not reduced
mod N. The members of T are all distinct. Let r be the largest
member of T, Take M to be max(2r+1,N). Then S 1is a difference
set in the integers mod m for every m>M. Also, since S contains
0 and 1, the elements generate all the integers mod m, This implies
that the configuration generated by S 1is primitive and admits
the integers mod m as collineations. The theorem now follows with

2

k' = M-n"-n-1.

THEOREM 8. Let G be a finite simple group of oxder N . Then

there is a primitive configuration in the class [2,N-7] which
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admits G as a group of collineations of 2the confdguration. |In
classical notation there {4 a configuration of ZLype NS whoae

collineation group centains G.)

Proog. We are required to find two elements a and b in G which
generate G and such that {1,a,b} are a difference set over G.

This requires that a,aﬁl,b,b_l, -

ab ,ba_l, be all distinct, that
is neither a nor b are of order 2 and neither is the square of
the other. Every finite simple group contains such a pair of gener-

arors.

We remark that this is a minimal result whose purpose 1s to
illustrate the construction. A reasonable conjecture to make 1is
the following. If G is a group of order N and if u is the largest
integer such that u2+u+liN, then deficient difference sets on
G exist for all orders n<n' where n'<u but roughly of the same
order of magnitude as u. How much smaller n' is than u wiil depend

on how many involutions there are in the group G.

SOME CONCRETE EXAMPLES.

In these examples we use both notations to describe the configur
ation class, the <classical notation given in parentheses after

our owrln.

EXAMPLE 1. Manipulation of the class [3,0]——{134). This class
contains only one configuration, namely the projective plane of
order 3. One can obtain a number of configurations 1n the class
{2,6|--[133) by using the method of deletion of incidences, and

then follw this with a sextet substitution. For example, take
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the lines of the projective plane to be given by

Li = 1,1+1,1+3,i+9 (i=1,...,13 mod 13), we delete successively
from these lines their incidences with the points 10,11,3,7,6,2,8,4,
5,153,1,12,9, obtaining the configuration whose lines are 1 2 4,
23 5, 4 6 12, 45 13, 581, 6 7 9, 7 10 3, 8 9 11, 9 10 12,
10 11 6, 11 12 7, 13 2 8, 13 1 3. Now apply the sextet substitution
to the four lines 1 2 4, 1 5 8, 8 2 13, 4 5 13, by interchanging
the points 4 and 8 and we obtain a second configuration whose
lines are 1 2 8, 2 3 5, 4 6 12, 8 5 13, 5 4 1, 6 7 9, 7 10 3,
8 9 11,9 10 12, 10 11 6, 11 12 7, 13 2 4,13 1 3. We have not inves-
tigated how many more configurations in the class [2,6] can be

obtained in this way. In fact we do not know whether or not all confi-

gurations in this class [2,6] may be obtained in this way.

EXAMPLE 2. The class [4,22]--—(4353. If there were a projective
plane of order 6 configurations in this class could be constructed
using the method of deletion of incidences. Since this method
is unavailable we use instead the difference set {0,1,3,7,12}

in the integers mod 43,

EXAMPLE 3. The class [5,4]---(35.). The non existence of the
projective plane of order 6 makes it impossible to use the method

of stripping a projective plane. Nevertheless the class is non
empty since 10,1,3,7,12,20} is a difference set in the integers

mod 35.

EXAMPLE 4. The class [4,0]---(215). This is the projective
plane of order 4. There is only one configuration in this class

(apart from isomorphism). This example illustrates that difference
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sets on two different groups may yield the same configuration. In

the group C21 the difference set {0,1,6,8,18} generates the confi-
guration. The non-Abelian group of order 21 may also be used to
obtain the same configuration. The group is generated by two ele-

3

ments a and b, which satisfy a?=b =1, ba=azb. An appropriate dif-

3,b,32b2} . The differences may easily be

ference set is {1l,a,a
seen to be distinct using the permutation representation a=(1234567)
and b=(253)(467). The conditions under which this phenomenon occurs
have not been determined, but necessary conditions under which
a configuration C may be generated by two distinct groups G and
H are: (1)|G| = |C| = N (say); (2) both G and H have faithful
transitive permutations on N symbols and; (3) if C is in the class
In,k| then G and H have difference sets in the class {n,k}. When
two different groups generate the same configuration, the «col-

lineation group of the configuration contains subgroups isomorphic

to each of the generating groups.

EXAMPLE 5. The class [2,51~~—{123}. There are many configurations
in this class. We draw attention to two of these. The difference
set {0,1,3} mod 12 yields a configuration with a cyclic collineation.
In part 2 we will show that this configuration can be drawn in
the complex projective plane with its points on a cubic curve.
The configuration can also be drawn in the real projective plane.
A configuration which is non-isomorphic to this is obtained either
from the alternating group Ad or from the group Cﬁxcz. The differ-
ence sets are obtained as follows. Generate A4 from the permutations

(123) and (124) and take as the difference set {1,(123),(124)} .

For the group (36:-;{32 take generators a and b such that aﬂ=b2=l,
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ab=ba, and use as the difference set {l,a,azb}. These difference
sets generate 1isomorphic designs. In a subsequent paper we show
the following remarkable properties of this design. The configur-
ation can be drawn with the points lying on a real cubic curve.
Furthermore, the design can be extended in a unique way to a con-
figuration of 12 points and 16 lines such that each point is on
4 lines and each line contains 3 points. Feld [3] obtained this

configuration in an entirely different way.

EXAMPLE 6. The class [2,4]---11 We draw attention to the

3-
example generated by the difference set {1,2,4} mod 11. The con-
figuration has a collineation cyclic on its points. It can be
drawn in the real projective plane. Furthermore it can be drawn

in the complex projective plane with its points all on a cubic

curve, as will be shown in part 2.

EXAMPLE 7. The class [2,3]--103. There are several configurations
in this class. We confine our discussion to three of these configur-
ations. The deficiency graph 1is on ten vertices and is of degree
three. Most of the configurations have a graph with a Hamiltonian
circuit. An example of one of these is the graph generated by
the difference set {1,2,4} mod 10. This configuration is embeddable
in the complex plane with its vertices on a cubic curve. It 1is
also embeddable in a real projective plane with its points on
a cubic curve. There are two configurations which correspond to
a deficiency graph which is connected and is without a Hamiltonian
circuit. In this case the deficiency graph is the Peterson graph.
Neither can be generated by a difference set. The first is the

Desargues configuration. The second, which has sometimes been
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referred to as a "anti Fano configuration'" (a most unfortunate
and inappropriate name) is obtained by applying the sextet substi-
tution to a Desargues configuration. In terms of embeddability
into a projective plane the Desargues configuration is a universal
configuration in any plane which can be co-ordinated by elements
of a field. On the other hand the "anti Fano configuration' has
the property that it can be embedded in any non-Pappian Desarguesian
plane, but cannot be embedded in a Pappian plane. It therefore
serves as a closed configuration which discriminates between Desar-
guesian planes which are non-Pappian from those which are Pappian.
Hence, a more appropriate name for this configuration would be
"anti Pappian configuration" Figures 1 and 2 illustrate some of
the situations. In what follows we use the term 'anti Pappian

configuration'.

EXAMPLE 8. The class [2,2]---9,. This class contains exactly
3 1isomorphism classes, namely: 1) The Pappus configuration; 2)
The cyclic configuration generated by the difference set {1,2,4]
mod 9, and; 3) A configuration embeddable in a real cubic curve
but without a collineation which is <c¢yclic on its points. The
deficiency graphs of these three configuration are; three disjoint
triangles, a nonagon, and a hexagon with a triangle disjoint from
it, respectively., Figure 3 1illustrates the three configurations

and their deficiency graphs.

EXAMPLE 9. The class [2,1]---8;. There is exactly 1 configuration
in this class. It can be generated in three ways: 1) using a dif-

ference set in the cyclic group of order 8, namely, {1,Z2,4} mod 8;
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2) using the difference set {1,i,j} on the quaternion group; 3)
using the method of stripping of the projective plane in the class
[3,0]. The configuration cannot be embedded in the real projective
plane, but lies on any complex cubic curve with nine points of
inflexion. Its points are any eight of the points of inflexion.
The configuration is illustrated in Figure 4, but since it cannot
be draun in the real plane, the drawing distorts one of the lines

into a curve.

EMBEDDABILITY OF THE CONFIGURATIONS INTO PROJECTIVE PLANES.

All of the configurations in each class [n,k] lie in some pro-
jective plane. This follows from the fact that any collection
of points and lines such that any two points lie on at most one
line and any two lines pass through at most one point can be embedded
in projective planes in infinitely many ways by a construction
given by Marshall Hall [4]. In fact if we were to take all the
configurations in all the classes |[n,k] for all valid values of
n and k, there would be a single projective plane containing them
all. This sort of situation is too general to be of interest.
Our interest is mainly in the question of embedding of configur-
ations in the planes which have been widely studied viz.:; finite
planes, real planes, complex planes etc. In the case of finite
planes, any configuration obtained from a finite plane using either
the method of stripping or the method of removal of incidences

already lies in a finite plane.

In part 2 we address the question of embeddability of configur-

ations 1into complex projective planes. In particular, we look
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at the question as to whether every class [2,k]*ﬁ»N3‘ contains
a configuration, all of whose points lie on a complex cubic curve,
and obtain some geometric consequences of such embeddings. It
is known that the Pappus configuration (93,93) is embeddable in
a complex non-singular cubic with two degrees of freedom. In spite
of its similarities with Désargues configuration, the latter
(103,103) configuration is not so embeddable. These results are
proved in Part 2 of this sequence where we give a systematic method

of describing the actual embeddings into cubics whenever possible,.
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The Class [2,3]

How the sextet substitution ransforms the Desargues Configuration into the anti Pappian Configuration

1z}

(13

i«

{23 [ al]

Figure 2
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The Three Configurations in the Class [2,2] and their Deficiency Graphs

ON G AAN

Non CY‘CILC 1 2 4} mod 9 Pappug anﬁgmllﬂn

Figure 3
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The Unique Configuration in the Class [2,1]

Figure 4
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