BI-IDEALS IN ORTHODOX SEMIGROUPS

Maria Maddalena MICCOLI (*)

SOMMARIO. - Un bi-ideale di un semigruppo S è un sottosemigruppo B di S tale che BSB <u>c</u> B. In questa nota si individuano delle relazioni tra i bi-ideali di un semigruppo ortodosso e i bi-ideali del suo sottosemigruppo degli idempotenti.

Recall that a subsemigroup B $(\neq \emptyset)$ of a semigroup S is said to be a bi-ideal of S if BSB \subseteq B. It is well-known that if S is regular then BSB = B for every bi-ideal B of S.

Let X be a non-empty subset of a semigroup S. The smallest bi-ideal of S containing X is called the bi-ideal of S generated by X and denoted by $(X)_b$. It is clear that $(X)_b = XUX^2UXSX$ and, if S is regular $(X)_b = XSX$.

One usually denotes by $\mathcal{B}(S)$ the semigroup of the bi-ideals of the semigroup S.

An orthodox semigroup is defined as a regular semigroup in which the idempotents form a subsemigroup. An orthodox and completely regular semigroup is called an orthogroup. A semigroup S is called intra-regular if $a = xa^2y$, where x,y are suitable elements of S, for every a ϵ S. A semigroup S is called an inverse semigroup if every a in S has a unique inverse, i.e. if there exists a unique

^(*) Research supported by a grant from "Ministero P.I.".

M.M.Miccoli

element a^{-1} in S such that $a = aa^{-1}a$ $a^{-1}aa^{-1} = a^{-1}$.

For the terminology and for the definitions of algebraic theory of semigroups, we refer to J.M. Howie [1].

If S is an orthodox semigroup with the band of idempotents E, then every bi-ideal B of S has at least one idempotent. In fact, if b is an element of B and x is an element of S such that b = bxb, bxxb is an idempotent of B. Moreover, if $E(B)=E\cap B$, E(B) is a bi-ideal of E. But B is not the unique bi-ideal of S containing E(B).

Example. - Let S be the bicyclic semigroup $\mathscr{C}(p,q)$, which has the band of idempotents $E = \{q^n p^n\}_{n \in \mathbb{N}_0}$. It is not difficult to see that $\mathscr{B}(E) = \{E_n\}_{n \in \mathbb{N}_0}$ with $E_n = \{q^{n+h} \ p^{n+h}\}_{h \in \mathbb{N}_0}$ and $\mathscr{B}(S) = \{B_m, n\}_{m,n \in \mathbb{N}_0}$ with $B_{m,n} = \{q^a p^b : a \ge m, b \ge n\}$. For any positive integer n, E_n is the band of idempotents of the biideals $B_{m,n}$ for any $m \le n$.

THEOREM 1. Let S be an orthodox semigroup with band of idempotents E. Then, for every bi-ideal E' of E, there exists a unique orthodox bi-ideal B of S with band of idempotents E'; moreover B is the bi-ideal of S generated by E'.

Proof. Let E' be a bi-ideal of E, then B = E'SE' is a bi-ideal of S. Moreover, if e is an idempotent of B, there are elements e',e'' of E' and an element s of S such that e = e'se'' then e = e'se'' = e'e'se''e'' = e'ee'' is an element of E'. Therefore E' is

the band of idempotents of B. Now, if b is an element of B, there are e', e" ϵ E' and s, x ϵ S such that b = e'se" = (e'se")x(e'se")= = e'se"e"xe'e'se"=be"xe'b. Since e"xe' ϵ B, b is a regular element of B and therefore B is an orthodox semigroup. Finally let D be an orthodox bi-ideal of S with band of idempotents E'; then, if d is an element of D, there is x ϵ D such that d=dxd=dxdxd with dx,xd ϵ E'; therefore d ϵ E'SE' and D=B.

COROLLARY 1. - Let S be an orthogroup with band of idempotents E. Then for every bi-ideal E' of E, there exists an unique bi-ideal B of S. Moreover, B is an orthogroup, with band of idempotents E'.

This corollary follows immediately from the preceding theorem and from Theorem 4 in [2].

COROLLARY 2. - Let S be an orthodox semigroup with band of idempotents E of type \mathscr{P} , where \mathscr{P} is any one of the types of band classified by M. Petrich in [3]. Then, for every bi-ideal E' of E, there exists an unique bi-ideal B of S, B orthodox, with band of idempotents of type \mathscr{P} and this is E'.

Let S be an orthodox semigroup with band of idempotents E and let E' be a bi-ideal of E. Denote by G(E') the set of bi-ideals of S whose band of idempotents is E'.

THEOREM 2. - Let S be an orthodox semigroup with band of idempotents E and let I be an ideal of S, then there exists an ideal E' of E such that I is the orthodox bi-ideal in G(E').

M.M.Miccoli

Proof. It is known ([4]) that the ideals of a regular semigroup are regular. Therefore, if S is an orthodox semigroup and I is an ideal in S, then I is an orthodox bi-ideal. Moreover, if E' is the band of idempotents of I, then E' is an ideal of E and I is the orthodox bi-ideal in G(E').

Observe that if E' is an ideal of E, the orthodox bi-ideal in G(E') generally is not an ideal of S. In fact in the bicyclic semigroup every bi-ideal of E is an ideal, because E is a semilattice, but the semigroup is simple.

THEOREM 3. - Let S be an inverse semigroup with semilattice of idempotents E and let E' be a bi-ideal of E. If B is a bi-ideal of S and B in G(E'), then $B' = \{y \in S : y^{-1} \in B\}$ is a bi-ideal of S and $B' \in G(E')$. Moreover $B = \{y \in S : y^{-1} \in B'\}$.

Proof. Let E' be a bi-ideal of E and let B be a bi-ideal of S such that B ϵ G(E'). If $y_1, y_2 \epsilon$ B' and xeS, then $(y_1 x y_2)^{-1} = y_2^{-1} x^{-1} y_1^{-1} \epsilon$ B, i.e. $y_1 x y_2 \epsilon$ B' and B' is a bi-ideal of S. Moreover, if e is an idempotent of B', then $e = e^{-1}$ is an idempotent of B. Analogously, if e is an idempotent of B, $e = e^{-1}$ is an idempotent of B'. Therefore B' is in G(E'). Finally, from the definition of B' it follows that $B = \{y \in S : y^{-1} \in B'\}$.

Let S be an orthodox semigroup with band of idempotents E; then $Z: \mathcal{B}(E) \to \mathcal{B}(S)$ defined by Z(E') = E'SE' for every bi-ideal E' of E is a mapping.

THEOREM 4. - If S is an orthodox semigroup with band of idempo-

tents E, the mapping Zis one - to - one.

Proof. Let E' and E" be two bi-ideals of E such that E'SE'= = E"SE". Then E' = E \cap (E'SE')=E \cap (E"SE") = E". Thus Z is one - to - one.

THEOREM 5 (Theorem 6 of [2]). If S is an orthogroup with band of idempotents E, then the mapping Z is a homomorphism, i.e.

(E'SE')(E''SE'') = E'E''SE'E'' for all E',E'' in $\mathscr{B}(E)$.

Example. - Let S be the bicyclic semigroup $\mathscr{C}(p,q)$ and let E_n , $E_m(n,m \in N_o)$ be two bi-ideals of E. Then $Z(E_n E_m) = B_{t,t}$, where $t = \max(m,n)$, whereas $Z(E_n)Z(E_m) = B_{n,m}$. Therefore $Z(E_n E_m) \neq Z(E_n)Z(E_m)$.

THEOREM 6. - Let S be an orthodox and intra-regular semigroup. Then the following are equivalent:

- 1) S is an orthogroup;
- 2) the mapping Z is a homomorphism;
- 3) the mapping Z is onto.

Proof. 1) \Longrightarrow 2). It is Theorems 5.

2) \Longrightarrow 3) Let Z be a homomorphism, let B be a bi-ideal of S and let \bar{E} be its band of idempotents. Then $\bar{E}S\bar{E}$ \underline{c} B. Moreover, if b is an element of B and x is one of its inverses and if E'=bxEbx and E''=xbExb, then by the hypothesis and because $\mathscr{B}(E)$ is a normal band ([5])

E'E''SE'E'' = E'SE'E''SE'' = E'SEE'E''ESE'' = E'SEE''E'ESE'' = E'SE''E'SE''.

Moreover $(E'SE'')^2$ = E'SE'' because E'SE'' ϵ $\mathscr{B}(S)$ and $\mathscr{B}(S)$ is a

M.M.Miccoli

band ([4]). Hence E'E"SE'E" = E'SE" and b ϵ E'E"SE'E". Moreover E'E" = bx E bx xb Exb \underline{c} B \cap E = \overline{E} and so b ϵ \overline{E} S \overline{E} . Finally B = \overline{E} S \overline{E} and Z is onto.

3) \implies 1) Let Z be onto; then for every B \in $\mathscr{B}(S)$ there is E' \in $\mathscr{B}(E)$ such that B = E'SE'. Moreover, by Theorem 1, B is an orthodox bi-ideal of S. Then, by Theorem 4 of [2], S is an orthogroup.

REFERENCES

- [1] J.M.HOWIE: "An Introduction to Semigroup Theory" Acad. Press, London, New York, 1976.
- [2] M.M.MICCOLI: "Bi-ideals in regular semigroups and in orthogroups" Acta Math. Hung. 47(1986), 3-6.
- [3] M.PETRICH: "A construction and a classification of bands", Math. Nachr. 48(1971) 263-273.
- [4] O.STEINFELD: "Quasi-ideals in rings and semigroups", Akadèmiai, Kiadò, Budapest (1978).
- [5] F.PASTIJN: "Regular locally testable semigroups as semigroups of quasi-ideals", Acta Math.Acad.Sci.Hung 36(1980) 161-166.

DIPARTIMENTO DI MATEMATICA
UNIVERSITA'
VIA ARNESANO
73100 LECCE