COMPLETING SEQUENCES AND SEMI-LB-SPACES (*)

Manuel VALDIVIA (**)

SUMMARY. - Given a completing sequence in a locally convex space, we associate to it a Fréchet space and we use it to obtain localization results both in webbed spaces and semi-LB-spaces. Finally the fact that every convex webbed space is absolutely convex webbed is also proved.

INTRODUCTION. - The vector spaces we shall use here are defined over the field IK of real or complex numbers. The word "space" means "separated locally convex space". Given a space E, we denote by \hat{E} its completion. IN is the set of positive integers.

If A is a bounded, absolutely convex set in a space E, we denote by E_{A} the linear hull of A endowed with the norm of the Minkowski functional of A. A fundamental system of neighbourhoods of the origin in E_{A} is the family

$$\{\frac{1}{n}A : n = 1, 2, \dots\}.$$

It is said that A is a Banach disc when E_A is a Banach space. A space A is unordered Baire-like if, given any sequence (A_n) of closed and absolutely convex subsets of E convering E, there

^(*) This research was undertaken while the author visited the University of Lecce during the spring of 1985, at the invitation of Prof. V.B.Moscatelli.

^(**)Supported in part by CAICYT (pr.83-2622).

is a positive integer p such that A_p is a neighbourhood of the origin [5]. As an immediate consequence, if (E_n) is a sequence of subspaces of an unordered Baire-like space E that covers E, there is a positive integer p such that E_p is unordered Baire-like and dense in E.

Following De Wilde [1] and [2], we define a web in a space E as a family

$$W = \{C_{m_1, m_2, \dots, m_p}\}$$

of subsets of E, where n, m_1, m_2, \ldots, m_n are positive integers, and such that the following relations are satisfied:

$$E = U\{C_{m_1} : m_1 = 1, 2, ...\}$$
,

$$C_{m_1,m_2,\ldots,m_n} = U\{C_{m_1,m_2,\ldots,m_n,m} : m = 1,2,\ldots\}, n \ge 1.$$

A web W is said to be convex (absolutely convex) if the sets defining it are convex (absolutely convex). A web W is completing, or a \mathscr{C} -web, if the following condition is satisfied: for every sequence (\mathbf{m}_n) of positive integers there is a sequence (λ_n) of positive numbers such that for

$$x_n \in C_{m_1,m_2,\ldots,m_n}$$
, $0 \le |\mu_n| \le \lambda_n$, $\mu_n \in \mathbb{K}$, $n=1,2,\ldots$,

the series

$$\sum_{n=1}^{\infty} \mu_n x_n$$

converges in E. We shall say that a space E is a convex (absolutely convex) webbed space if it admits a convex (absolutely convex) \mathscr{C} -web.

We shall say that a sequence α_n in ${\rm I\!N}^{\rm I\!N}$, with

$$\alpha_{n} = (a_{n,p})_{p=1}^{\infty}, n=1,2,...,$$

is semi-stationary if, given any positive integer p, we have another positive integer q such that

$$a_{n,p} = a_{q,p}, \quad n \geq q.$$

A semi-LB-representation in a space F is a family of Banach discs

$$\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$$

verifying the following two conditions:

- 1. $U \{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\} = F$.
- 2. If (α_n) is a semi-stationary sequence in $\mathbb{N}^N,$ we have $_\alpha$ in \mathbb{N}^N such that

$$A_{\alpha}$$
 c A_{α} , $n = 1, 2, \ldots$.

We shall call a semi-LB-space a space admitting a semi-LB-representation.

1. ABSOLUTERY CONVEX \$\mathscr{S}\$-COMPLETING SEQUENCES.

In a space F, let \mathscr{B} be a family of Banach discs that convers F and such that the finite union of members of \mathscr{B} is contained

in same member of \mathcal{B} . We shall say that a sequence (A_k) of subsets of F is absolutely convex \mathcal{B} -completing if it is a decreasing sequence, every A_k is absolutely convex, and there is a sequence (λ_k) of positive numbers such that given

$$0 \le |\mu_k| \le \lambda_k, x_k \in A_k, k = 1,2,...,$$

there is a B in B with

$$x_k \in F_B$$
, $k = 1, 2, \ldots$,

and the series

$$\sum_{k=1}^{\infty} \mu_k x_k$$

converges in F_B . In what follows we shall suppose that

$$\lambda_1 = 1, \quad \lambda_k > \lambda_{k+1}, \quad \lambda_k < \frac{1}{2^k}, \quad k = 2, 3, \dots,$$

which does not imply any loss of generality.

When \mathscr{B} is the family of all the Banach discs in F, the former concept coincides with the absolutely convex completing sequences of De Wilde (see [2, Proposition IV; 1.9]). We are going to consider the family \mathscr{B} in order to obtain results that can be applied to the class of semi-LB-spaces.

We take a positive integer k and we write

$$B_k = U \left\{ \sum_{n=1}^{\infty} \lambda_n x_n : x_n \in A_{k+n-1}, n = 1, 2, ... \right\}.$$

It is immediate that B_k is absolutely convex and contains A_k .

Of course (B_n) is a decreasing sequence.

PROPOSITION 1. If W is a neighbourhood if the origin in F , there are a positive integer k together with a positive number λ such that

$$\lambda B_k$$
 c W.

Proof. It is not a restriction to assume that W is closed and absolutely convex. It is clear that the condition required for (B_k) is equivalent to the corresponding one with (A_k) . But the latter is easy to prove. Let us suppose that the property does not hold. For every positive integer k there is a point x_k in A_k such that

$$\lambda_k x_k \notin W$$
.

The series

$$k = 1$$
 $k \times k$

converges in F, consequently the sequence $(\lambda_k x_k)$ converges to the origin in F. So we have a positive integer p such that

$$\lambda_h x_k \in W$$
 if $k \ge p$,

which is a contradiction.

q.e.d.

Let G be a dense subspace of a metrizable space E. Let T be a linear mapping from G into F. We write

$$T^{-1}(A_k) = U_k, T^{-1}(B_k) = V_k.$$

 $\bar{\mathbb{U}}_k$ will be the closure of \mathbb{U}_k in E and $\mathring{\mathbb{U}}_k$ the interior of $\bar{\mathbb{U}}_k$ in the same space E. Let us suppose that $\bar{\mathbb{U}}_k$ is a neighbourhood of the origin in E, k=1,2,....

PROPOSITION 2. If the graph of T meets ExF_B in a closed subspace for every B in \mathcal{B} , we have that

$$\overset{\circ}{U}_{k}$$
 c V_{k} , $k = 1, 2, \ldots$

Proof. We fix a positive integer k and we take any point x in $\mathring{\bar{\mathbb{U}}}_k.$ Let

$$\{W_n : n = 1, 2, ...\}$$

be a fundamental system of neighbourhoods of the origin in E such that

$$W_n c \dot{\overline{U}}_{n+k}$$
, $n = 1, 2$.

We take x_1 in U_k such that

$$y_1 = x - x_1 \in \lambda_2 W_1$$
.

Proceeding by recurrence, it is assumed that for a positive integer m we have found

$$y_m \in \lambda_{m+1} W_m$$
.

We now determine

$$x_{m+1} \in U_{m+k}$$

such that

$$y_{m+1} = y_m - \lambda_{m+1} x_{m+1} \in \lambda_{m+2} W_{m+1}$$

The sequence (y_n) obviously converges to the origin in E, and

$$y_n = x - x_1 - \lambda_2 x_2 - \dots - \lambda_n x_n$$

for every positive integer n. Consequently, we have in E

$$x = \sum_{n=1}^{\infty} \lambda_n x_n.$$

For every positive integer j,

$$Tx_j \in A_{k+j-1};$$

since (A_n) is \mathscr{B} -completing, we have a B in \mathscr{B} such that

$$Tx_j \in F_B$$

and the series

$$n=1$$
 $\sum_{n=1}^{\infty} \lambda_n Tx_n$

converges in F_B to a vector u that obviously belongs to B_k . The fact that Tx=u follows from the fact that the graph of T meets E x F_B in a closed set. Then x belongs to V_k and the proof is complete.

q.e.d.

PROPOSITION 3. The set

$$M := \bigcap \{A_k : k = 1, 2, ...\}$$

is contained in a Banach disc.

Proof. If W is a neighbourhood of the origin in F, we apply Proposition 1 to obtain $\lambda>0$ and a positive integer p such that

$$\lambda M c \lambda B_D c W$$

and thus M is a bounded subset of F. Let Ψ be the canonical injection of F_M into F. We can extend Ψ to a linear mapping $\hat{\Psi}$ from the completion H of \hat{F}_M into \hat{F} . Let G be equal to $\hat{\Psi}^{-1}(F)$. If φ is the restriction of $\hat{\Psi}$ to G, we have that the graph of φ is closed in HxF. If we denote by U_k the set $\varphi^{-1}(A_k)$ and by V_k the set $\varphi^{-1}(B_k)$, we have that the closure \bar{U}_k of U_k in H is a neighbourhood of the origin in this space. Therefore, if we apply Proposition 2 we obtain that

$$\mathring{\mathbb{U}}_k$$
 c V_k ,

from which it follows that H=G. Consequently, the image through ϕ of the closed unit ball of H is a Banach disc in F containing the set M.

q.e.d.

Let us take v_k in A_k , k = 1,2,..., and let us denote by X_k the absolutely convex cover of

$$\{v_1, v_2, \ldots, v_k\} \cup A_k$$
.

PROPOSITION 4. (X_k) is an absolutely convex \mathscr{B} -completing sequence.

Proof. Let us take x_k in X_k . There is y_k in A_k and

$$b_k, a_{kj} \in \mathbb{K}, \quad j = 1, 2, \dots, k,$$

such that

$$\sum_{j=1}^{k} |a_{kj}| + |b_{k}| \leq 1, \quad x_{k} = \sum_{j=1}^{k} a_{kj} v_{j} + b_{k} y_{k}.$$

Ιf

$$0 \leq |\mu_k| \leq 2^{-k} \lambda_k$$

we have

$$\sum_{k=1}^{\infty} \mu_k x_k = \sum_{k=1}^{\infty} \mu_k (\sum_{j=1}^{k} a_k j^v j + b_k y_k)$$

$$= \sum_{j=1}^{\infty} (\sum_{k=j}^{\infty} \mu_k a_{kj}) v_j + \sum_{k=1}^{\infty} (\mu_k b_k) y_k.$$

Since

$$\left|\sum_{k=j}^{\infty} \mu_k a_{kj}\right| \leq \sum_{k=j}^{\infty} 2^{-k} \lambda_k \leq \lambda_j$$

$$|\mu_k b_k| \leq |\mu_k| \leq \lambda_k$$

it follows that the series

$$\sum_{k=1}^{\infty} \mu_k x_k$$

belongs to some \boldsymbol{F}_B , B $\varepsilon\,\boldsymbol{\mathscr{B}}$, and it converges in this space.

q.e.d.

PROPOSITION 5. 16

$$\mathbf{v}_{k} \in \mathbf{A}_{k}$$
, $\mathbf{b}_{k} \in \mathbb{K}$, $k=1,2,\ldots$, and $\sum\limits_{k=1}^{\infty} |\mathbf{b}_{k}| < \infty$,

then the series

$$\sum_{k=1}^{\infty} b_k v_k$$

converges in F and the set

A: = {
$$\sum_{k=1}^{\infty} a_k v_k : \sum_{k=1}^{\infty} |a_k| \le 1$$
 }

is a Banach disc.

Proof. We write X_k to denote the absolutely convex cover of

$$\{v_1, v_2, \ldots, v_k\} \cup A_k$$
.

According to the former proposition, (X_k) is an absolutely convex \mathscr{B} -completing sequence. We know that

$$\bigcap \{X_k : k = 1, 2, ...\}$$

is contained in a Banach disc P by Proposition 3. Let us observe that

$$v_k \in P$$
, $k = 1, 2, \dots$

and the conclusion now is obvious.

q.e.d.

The former proposition ensures that the following sets are well defined:

$$C_{k} = \left\{ \sum_{j=1}^{\infty} a_{j} x_{j} : x_{j} \in A_{k+j-1}, a_{j} \in \mathbb{K}, j=1,2,\ldots, \sum_{j=1}^{\infty} |a_{j}| \leq 1 \right\},$$

$$k = 1,2,\ldots.$$

We write \mathbf{D}_k for the linear hull of \mathbf{C}_k . We set

$$F^{(A_k)} = \bigcap \{D_r : r = 1, 2, ...\}$$
.

According to Proposition 1, the family

$$\frac{1}{r}(F^{(A_k)} \cap C_r), \quad r = 1, 2, \dots,$$

is a fundamental system of neighbourhoods of the origin in $F^{(A_k)}$ for a locally convex and metrizable topology finer than the topology induced by F on $F^{(A_k)}$. Let us suppose that $F^{(A_k)}$ is endowed with this metrizable topology.

PROPOSITION 6. $F^{(A_k)}$ is a Fréchet space.

Proof. Let (y_r) be a Cauchy sequence in $F^{(A_k)}$. We select a subsequence (z_r) of (y_r) such that

$$2^{2r}(z_{r+1} - z_r) \in C_r$$
.

Then we have

$$x_{jr} \in A_{r+j-1}$$
, $a_{jr} \in K$, $j = 1, 2, \ldots$, $\sum_{j=1}^{\infty} |a_{jr}| \leq 1$,

such that

$$2^{2r}(z_{r+1}-z_r) = \sum_{j=1}^{\infty} a_{jr} x_{jr}$$

We fix a positive intergers. Then

$$\sum_{r=s}^{\infty} (z_{r+1} - z_r) = \sum_{r=s}^{\infty} \sum_{j=1}^{\infty} \frac{a_{jr}}{2^{2r}} x_{jr} = \sum_{m=s}^{\infty} \sum_{r=s}^{m} \frac{a_{(m-r+1)r}}{2^{2r}} x_{(m-r+1)r}.$$

We put

$$v_{\rm m} = \sum_{r=1}^{\rm m} \left| \frac{a_{(m-r+1)r}}{2^{2r}} \right|, \ m = s, \ s+1, \dots,$$

and $y_m = 0$ if $v_m = 0$,

$$y_{m} = \sum_{r=s}^{m} \frac{a_{(m-r+1)r}}{2^{2r} v_{m}} (m-r+1)r$$
 if $v_{m} \neq 0$.

Clearly, y_{m} belongs to A_{m} and

$$\sum_{r=s}^{\infty} (z_{r+1} - z_r) = \sum_{m=s}^{\infty} v_m y_m$$
 (1)

On the ther hand,

$$\sum_{m=s}^{\infty} v_m = \sum_{m=s}^{\infty} \sum_{r=s}^{m} \left| \frac{a_{(m-r+1)r}}{2^{2r}} \right| =$$

$$= \sum_{r=s}^{\infty} \sum_{j=1}^{\infty} \frac{|a_{jr}|}{2^{2r}} \leq \sum_{r=s}^{\infty} \frac{1}{2^{2r}} < \frac{1}{2^{s}}.$$

Consequently, the series (1) is convergent in F and its sum belongs to $\frac{1}{2}C_s$. Therefore, if

$$\sum_{r=1}^{\infty} (z_{r+1} - z_r) = u$$

in F, we have (z_r) converging to $u - z_1$ in F. On the other hand,

$$\sum_{r=s_{s}}^{\infty} (z_{r+1} - z_{r}) = u - z_{1} - z_{s} \in \frac{1}{2^{s}} C_{s},$$

from which it follows that

$$u \in D_s$$
, $s = 1, 2, \dots$

and this

It also follows from (1) that (z_s) converges to $u\text{-}z_1$ in $F^{(A_k)}$. Finally, it is obvious that (y_r) also converges to $u\text{-}z_1$ in $F^{(A_k)}$. q.e.d.

THEOREM 1. Let f be a linear mapping from a metrizable space E into F such that the graph of f meets $E \times F_B$ in a closed set for every B of $\mathcal B$. If the closure of $f^{-1}(A_k)$ in E is a neighbourhood of the origin, then $f(E) \subset F^{(A_k)}$ and $f:E \to F^{(A_k)}$ is continuous.

Proof. We fix a positive integer k. According to Proposition 2, $f^{-1}(B_k)$ is a neighbourhood of the origin in E and, consequently, f(E) is contained in the linear hull of B_k . From the definitions, it is clear that $2C_k$ contains B_k . Thus we have f(E) c D_k and so

$$f(E) c F^{(A_k)}$$
.

If (\mathbf{x}_n) is a sequence in E converging to the origin and r is a positive integer, there is another positive integer p such that

68

$$x_n \in \frac{1}{2^r}B_r$$
, $n \ge p$.

Then

$$f(x_n) \in \frac{1}{r}(F^{A_k}) \cap C_r$$
, $n \ge p$,

from which the continuity of f follows.

q.e.d.

PROPOSITION 7. Let f be a continuous and injective linear mapping from a space E into F. If the closure \mathbf{M}_k of $\mathbf{f}^{-1}(\mathbf{A}_k)$ in E is a neighbourhood of the origin, then the family

$$\{\frac{1}{k} M_k : k = 1, 2, ...\}$$

is a fundamental system of neighbourhoods of the origin for a metrizable locally convex topology on E.

Proof. We must show that

$$\bigcap_{k=1}^{\infty} \frac{1}{k} M_k = \{0\}.$$

Let us take a point x in E, $x\neq 0$. We find a neighbourhood of the origin U in F, closed and absolutely convex and such that

$$f(x) \notin U$$
.

Then

$$x \in f^{-1}(U)$$
.

According to Proposition 1 there is a positive integer k such that

$$\frac{1}{k}$$
 A_k c U

and, therefore,

$$\frac{1}{k}$$
 M_k c f⁻¹(U),

showing that x does not belong to $\frac{1}{k}M_k$.

q.e.d.

THEOREM 2. Let f be a linear mapping with closed graph from a space E into $\ F.$ Let us suppose that for every positive integer k , the closure of $f^{-1}(A_k)$ in $\ E$ is a neighbourhood of the origin. Then we have

$$f(E) \ c \ F^{(A_k)}$$
 and $f: E \rightarrow F^{(A_k)}$ is continuous.

Proof. Since the graph of f is closed, there is a Hausdorff and locally convex topology ψ on F, coarser than the original one, and such that

$$f : E \rightarrow F[\mathscr{V}]$$

is continuous, (cf. [3] and [4]). The sequence (A_k) is also a \mathscr{B} -completing sequence of absolutely convex subsets in $F[\mathscr{V}]$ and $f^{-1}(0)$ is closed in E. Let φ be the canonical mapping from E onto $G:=E/f^{-1}(0)$ and ψ the canonical injection from G into F, with

$$f = \psi \circ \varphi$$
.

According to the former proposition, and denoting by \textbf{M}_k the closure of $\psi^{-1}(\textbf{A}_k)$ in G, k=1,2,..., we obtain the family

$$\{\frac{1}{k} M_k : k = 1, 2, \dots \}$$

as a fundamental system of neighbourhoods of the origin in G for a metrizable and locally convex topology $\mathscr U$ on G. Then the closure of $\psi^{-1}(A_k)$ in $G[\mathscr U]$ coincides with M_k and, therefore, it is a neighbourhood of the origin in this space. Now the conclusion follows applying Theorem 1.

q.e.d.

2. ABSOLUTELY CONVEX WEBBED SPACES

In all this section

$$W = \{C_{m_1, m_2, \dots, m_n}\}$$
 (2)

will be an absolutely convex and completing web in a space E. If $\alpha=(a_n)$ is an element of $\mathbb{N}^{\mathbb{N}}$, we have an absolutely convex and completing sequence

$$(c_{a_1,a_2,\ldots,a_k})_{k=1}^{\infty}$$

We shall write \textbf{E}_{α} to denote the Fréchet space $\textbf{E}^{(C_{a_1,a_2,\dots,a_k})}$ and we say that

$$\{E_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}} \}$$

is the family of Fréchet spaces associated to the web (2).

THEOREM 3. Let f be a linear mapping from a metrizable and unordered Baire-like space F into the space E. If the graph of f meets FxE_B in a closed subspace for every Banach disc B of E, there is a in \mathbb{N}^N such that $\mathsf{f}(\mathsf{F})$ c E_α and $\mathsf{f}:\mathsf{F}\to\mathsf{E}_\alpha$ is continuous.

Proof. Given a sequence (p_n) of positive integers, we denote by L_{p_1,p_2,\ldots,p_n} the linear hull of $f^{-1}(C_{p_1,p_2,\ldots,p_n})$ in F, $n=1,2,\ldots$ We have

$$F = \int_{n=1}^{\infty} L_n,$$

from which it follows that for a positive integer m_1 the space L_{m_1} is unordered Baire-like and dense in F. Proceeding by recurrence, let us suppose that the positive integers m_1, m_2, \ldots, m_p have been obtained in such a way that the space $L_{m_1, m_2, \ldots, m_p}$ is unordered Baire-like and dense in F. We have

$$L_{m_1,m_2,\ldots,m_p} = \bigcup_{m=1}^{\infty} L_{m_1,m_2,\ldots,m_p,m}$$

from which we have again a positive integer m_{p+1} such that the space $L_{m_1,m_2,\ldots,m_{p+1}}$ is unordered Baire-like and dense in F.

Obviously, the closures in F of $f^{-1}(C_{m_1,m_2},\ldots,m_k)$, $k=1,2,\ldots,$ are neighbourhood of the origin in F. Therefore according to Theorem

1 we obtain for $\alpha = (a_k)$ that f(F) c E and $f: F \twoheadrightarrow E_{\alpha}$ is continuous.

q.e.d.

THEOREM 4. If f is a linear mapping with closed graph from an unordered Baire-like space F into the space E, then there exists α in \mathbb{N}^N such that f(F) c E_α and f : F + E_α is continuous.

Proof. Proceeding as we have done in the former theorem we can obtain $\alpha = (a_k)$ in $\mathbb{N}^{\mathbb{N}}$ such that $f^{-1}(C_{m_1,m_2,\ldots,m_k})$ is a neighbourhood of the origin in F, k=1,2,.... The conclusion now follows applying Theorem 2.

q.e.d.

COROLLARY. Every continuous linear mapping from an unordered Baire-like space F into E can be extended to a continuous linear mapping from finto E.

3. SEMI-LB-SPACES.

Let

$$\{A_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$$
 (3)

be a semi-LB-representation in a space E. Given positive integers k, m_1, m_2, \ldots, m_k , we write

$$M_{m_1,m_2,...,m_k} = U\{A_{\alpha} : \alpha = (a_n) \in \mathbb{N}^{\mathbb{N}}, a_n = m_n, n = 1,2,...,k\}.$$

Let C_{m_1,m_2,\ldots,m_k} be the absolutely convex cover of M_{m_1,m_2,m_k} .

We denote by # the family (3) of Banach discs.

PROPOSITION 8. Given (m_k) in $\mathbb{N}^{\mathbb{N}}$, the sequence

$$C(_{m_1,m_2,\ldots,m_k})$$

is absolutely convex and B-completing.

Proof. Let \boldsymbol{x}_k be a vector in $\boldsymbol{C}_{m_1,m_2,\ldots,m_k}$, $k=1,2,\ldots$. There are

$$x_{kj} \in M_{m_1, m_2, ..., m_k}, a_{kj} \in \mathbb{K}, j=1, 2, ..., p(k)$$

such that

$$x_k = \sum_{j=1}^{p(k)} a_{kj} x_{kj}, \sum_{j=1}^{p(k)} |a_{kj}| \le 1$$
.

Let

$$\alpha_{ki} = (a_{n,ki}) \in \mathbb{N}^{\mathbb{N}}, a_{n,ki} = m_n, n = 1,2,...,k$$

and

$$x_{kj} \in A_{\alpha_{kj}}$$
, $j = 1, 2, ..., p(k)$.

The sequence

$$\alpha_{11}, \alpha_{12}, \ldots, \alpha_{1p(1)}, \alpha_{21}, \alpha_{22}, \ldots, \alpha_{2p(2)}, \ldots, \alpha_{k1}, \alpha_{k2}, \ldots, \alpha_{kp(k)},$$

obviously is semi-stationary; therefore, we have α in $\mathbb{N}^{\mathbb{N}}$ such that

$$A_{\alpha_{kj}} c A_{\alpha}$$
, $j = 1, 2, ..., p(k)$, $k = 1, 2, ...$.

Consequently,

$$x_k \in A_\alpha$$
 , $k = 1, 2, \ldots$

and if

$$b_k \in \mathbb{K}$$
, $k = 1, 2, \ldots$, and $\sum_{k=1}^{\infty} |b_k| \leq 1$,

the series

$$k=1$$
 $k \times k$

converges in $\boldsymbol{E}_{\boldsymbol{A}_\alpha}$.

q.e.d.

If $\alpha=(m_k)\in {\rm I\!N}^N$ we denote by E_α the Fréchet space E and we shall say that

$$\{E_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$$

in the family of Fréchet spaces associated to the semi-LB-representation (3).

The following two theorems are proved using Theorem 1 and Theorem 2 respectively.

THEOREM 5. Let f be a linear mapping from a metrizable Baire space F into the space E. If the graph of f meets F x $E_{A_{\beta}}$ in a closed subspace for every β in $\mathbb{N}^{\mathbb{N}}$ there is a in $\mathbb{N}^{\mathbb{N}}$ such that f(F) c E_{α} and $f:F \to E_{\alpha}$ is continuous.

THEOREM 6. If f is a linear mapping with closed graph from a Baire space $\,F$ into the space $\,E$, there is a in ${\rm I\!N}^{\rm I\!N}$ such that

 $f(F) \subset E_{\alpha}$ and $f: F \to E_{\alpha}$ is continuous.

In the set $\mathbb{N}^{\mathbb{N}}$ we consider the following order relation "\(\left\)": for $\alpha = (a_n)$ and $\beta = (b_n)$ in $\mathbb{N}^{\mathbb{N}}$ we say that $\alpha \leq \beta$ if and only if $a_n \leq b_n$ for every positive integer n.

A quasi-LB-representation in a space G is a family

$$\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$$

of Banach discs satisfying the following conditions:

1.
$$U \{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\} = G$$
.

2. If
$$\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$$
 and $\alpha \leq \beta$, then $B_{\alpha} \in B_{\beta}$

We say that a space admitting a quasi-LB-representation is a quasi-LB-space.

It is obvious that a quasi-LB-representation is a semi-LB-representation, and thus, a quasi-LB-space is a semi-LB-space.

Lifting theorems have been proved in [6] for quasi-LB-representations. These results can be formulated with some minor modifications for semi-LB-representations.

4. CONVEX WEBBED SPACES

Let

$$\mathscr{V} = \{ L_{n_1, n_2, \dots, n_k} \}$$

be a convex %-web in a space E. if ${}^{M}\mathbf{n}_{1},\mathbf{n}_{2},\ldots,\mathbf{n}_{k}$ is the convex cover of

we write

$$A_{n_1,n_2,\ldots,n_k} = M_{n_1,n_2,\ldots,n_k} - M_{n_1,n_2,\ldots,n_k}$$

We denote by T an injective mapping from \mathbb{N}^2 onto \mathbb{N} , When (p_1,r_1) belongs to \mathbb{N}^2 and $T(p_1,r_1)=n_1$, we put

$$B_{n_1} = p_1 A_{r_1}.$$

Proceeding by recurrence, let us suppose that for a positive integer $k \ge 1$ we have constructed the subsets

$$B_{n_1,n_2,...,n_{k-1}}$$

where $n_1, n_2, \ldots, n_{k-1}$ are arbitrary positive integers. Given positive integers $p_1, r_1, p_2, r_2, \ldots, p_k, r_k$ we write

$$p_{n_1,n_2,...,n_k} = p_1 p_2,...,p_k A_{r_1,r_2,...,r_k}$$

$$B_{n_1,n_2,\ldots,n_k} = P_{n_1,n_2,\ldots,n_k} \cap B_{n_1,n_2,\ldots,n_{k-1}},$$

where

$$T(p_j,r_j) = n_j, j = 1,2,...,k$$
.

Since $p_1^A r_1$ contains L_{r_1} , it follows that

$$U \{B_{n_1}: n_1 = 1, 2, ...\} = E.$$

Let us now take a point x in B_{n_1,n_2,\dots,n_k} ; then x belongs to P_{n_1,n_2,\dots,n_k} and therefore there exist two points y and z in

$$p_1 p_2 \cdots p_k$$
 $L_{r_1, r_2, \ldots, r_k}$

together with two numbers α and β , $0 \leq \alpha \leq$ 1, $0 \leq \beta \leq$ 1, such that

$$x = \alpha y - \beta x$$
.

If y coincides with z, there is a positive integer $\ensuremath{r_{k+1}}$ such that

$$y = z \in p_1 p_2 ... p_k L_{r_1, r_2, ..., r_k, r_{k+1}}$$

and so

$$x \in p_1 p_2 \dots p_k A_{r_1, r_2, \dots, r_{k+1}}$$
.

If y is not equal to z, we take

$$H = \{\lambda z + (1-\lambda)y : 0 \le \lambda \le 1\}.$$

Since H is contained in

$$p_1 p_2 \dots p_k L_{r_1, r_2, \dots, r_k}$$

there exists a positive integer r_{k+1} such that

$$p_1 p_2 \cdots p_k \quad L_{r_1, r_2, \ldots, r_{k+1}}$$

meets H in two points at least. A positive integer \mathbf{p}_{k+1} can be determined such that

2H c
$$p_1 p_2 ... p_k p_{k+1} A_{r_1, r_2, ..., r_k, r_{k+1}}$$

and therefore

$$x \in p_1 p_2 \dots p_k p_{k+1} A_{r_1, r_2, \dots, r_k, r_{k+1}}$$
 (5)

Consequently, (5) holds in the two cases considered. If

$$T(p_{k+1}, r_{k+1}) = n_{k+1}$$
,

it follows that

$$x \in P_{n_1,n_2,...,n_{k+1}} \cap B_{n_1,n_2,...,n_k} = B_{n_1,n_2,...,n_{k+1}}$$

from which we have

$$B_{n_1,n_2,\ldots,n_k} = U\{B_{n_1,n_2,\ldots,n_k,n_{k+1}} : n_{k+1} = 1,2,\ldots\},$$
 (6)

PROPOSITION 9. The family

$$\mathcal{U} = \{B_{n_1, n_2, ..., n_k}\}$$

is a completing web in E.

Proof. From (4) and (6) we know that $\mathscr U$ is a web in E. Given a sequence of positive integers (r_k) we determine a sequence

 $(\boldsymbol{\lambda}_k)$ of positive numbers such that the series

$$k=1$$
 $\sum_{k=1}^{\infty} \mu_k x_k$

converges in E whenever

$$0 \le \mu_k \le \lambda_k, x_k \in L_{r_1, r_2, \dots, r_k}, k = 1, 2, \dots$$

Let us now suppose that for the sequence (n_j) in $\mathbb{N}^{\mathbb{N}}$ we have

$$T^{-1}(n_j) = (p_j, r_j), \quad j = 1, 2, \dots$$

If we take z_k in B_{n_1,n_2,\ldots,n_k} we have

$$z_k \in p_1 p_2 \dots p_k A_{r_1, r_2, \dots, r_k}$$

and we can find u_k and v_k in L_{r_1,r_2,\dots,r_k} together with $0 \le \alpha_k \le 1, \ 0 \le \beta_k \le 1, \ \text{such that}$

$$z_k = p_1 p_2 \dots p_k (\alpha_k u_k - \beta_k v_k).$$

Let us now take

$$0 \le \mu_k \le (p_1 p_2 \dots p_k)^{-1} \lambda_k$$

and we have the convergent series

$$\sum_{k=1}^{\infty} \ \mu_k p_1 p_2 \dots p_k \alpha_k u_k \ \text{and} \ \sum_{k=1}^{\infty} \ \mu_k p_1 p_2 \dots p_k \beta_k v_k$$

from which it follows that the series

$$\sum_{k=1}^{\infty} \mu_k z_k$$

also converges in E.

q.e.d.

When E is a real space we write

$$c_{n_1,n_2,...,n_k} = B_{n_1,n_2,...,n_k}$$

and in case of E being a complex space we write

$$C_{n_1,n_2,...,n_k} = B_{n_1,n_2,...,n_k} \cap i B_{n_1,n_2,...,n_k}$$

whenever k, n_1, n_2, \ldots, n_k are positive integers.

PROPOSITION 10. The family

$$W = \{ C_{n_1, n_2, ..., n_k} \}$$

is an absolutely convex and completing web in E.

Proof. The result is obvious when E is a real space. Let us now suppose that E is a complex space. If x is any point of E there are two positive integers p_1 and r_1 such that the strongt line with and-points in x and ix is contained in $p_1A_{r_2}$. It now follows that both x and ix are in B_{n_1} , where $n_1 = T(p_1, r_1)$. Thus we have

$$U \{C_{n_1}: n_1 = 1, 2, ...\} = E$$
.

If x is any point in C_{n_1,n_2,\ldots,n_k} , we know that x and ix belong

to
$$B_{n_1,n_2,...,n_k}$$
. We put $(p_1,r_1) = T^{-1}(n_j)$, $j=1,2,...$.

Then we have

$$x, ix \in p_1 p_2 \dots p_k \land r_1, r_2, \dots, r_k$$

and therefore there are two positive integers \mathbf{p}_{k+1} and \mathbf{r}_{k+1} such that

$$x, ix \in p_1 p_2 \dots p_{k+1} \land r_1, r_2, \dots, r_{k+1}$$

Consecuently, we have

$$x, ix \in B_{n_1, n_2, \dots, n_{k+1}}$$

where $T(p_{k+1}, r_{k+1}) = n_{k+1}$ and so

$$x \in C_{n_1,n_2,\ldots,n_{k+1}}$$
.

Thus

$$U\{C_{n_1,n_2,\ldots,n_{k+1}}:n_{k+1}=1,2,\ldots\}=C_{n_1,n_2,\ldots,n_k}$$

and hence W is a web in E. Finally it is clear that W is absolutely convex and completing.

q.e.d.

The following theorem is now clear:

THEOREM 7. If F is a convex webbed space, then F is an absolutely convex webbed space.

REFERENCES

- [1] M.DE WILDE: "Réseaux dans les espaces linéaires à semi-normes". Mém.Soc.Roy.Sci.Liège, 18(2)(1969).
- [2] M.DE WILDE: "Closed graph theorems and webbed spaces". Pitman, London San Francisco Melbourne 1978.
- [3] Y.KOMURA: "On linear topological spaces". Kumamoto J.Sci. A 5, 148-157(1962).
- [4] V.PTAK: "Completeness and the open mapping theorem". Bull.Soc. Math. France 86, 41-74(1958).
- [5] A.TODD and S.SAXON: "A property of locally convex Baire spaces".

 Math. Ann. 206, 23-34(1973).
- [6] M.VALDIVIA: "Quasi-LB-spaces". J.London Math. Soc. 2(35) 149-168 (1987)

Prof. Manuel VALDIVIA
Facultad de Matemáticas
Dr.Moliner, 50
BURJASOT - VALENCIA
SPAIN