COMPLETING SEQUENCES AND SEMI-LB-SPACES (*)

Manuel VALDIVIA (**)

SUMMARY. - Given a completing sequence in a locally convex space, we associate to it a Fréchet space and we use it to obtain localization results both in webbed spaces and semi-LB-spaces. Finally the fact that every convex webbed space is absolutely convex webbed is also proved.

INTRODUCTION. - The vector spaces we shall use here are defined over the field \mathbb{K} of real or complex numbers. The word "space" means "separated locally convex space". Given a space E, we denote by \hat{E} its completion. \mathbb{N} is the set of positive integers.

If A is a bounded, absolutely convex set in a space E, we denote by E_A the linear hull of A endowed with the norm of the Minkowski functional of A. A fundamental system of neighbourhoods of the origin in E_A is the family

$$\{\frac{1}{n}A : n = 1, 2, \ldots\}.$$

It is said that A is a Banach disc when E_A is a Banach space. A space A is unordered Baire-like if, given any sequence (A_n) of closed and absolutely convex subsets of E converging E, there

(*) This research was undertaken while the author visited the University of Lecce during the spring of 1985, at the invitation of Prof. V.B. Moscatelli.

(**) Supported in part by CAICYT (pr. 83-2622).
is a positive integer \(p \) such that \(A_p \) is a neighbourhood of the origin \([5]\). As an immediate consequence, if \((E_n)\) is a sequence of subspaces of an unordered Baire-like space \(E \) that covers \(E \), there is a positive integer \(p \) such that \(E_p \) is unordered Baire-like and dense in \(E \).

Following De Wilde \([1]\) and \([2]\), we define a web in a space \(E \) as a family

\[\mathcal{W} = \{ C_{m_1, m_2, \ldots, m_n} \} \]

of subsets of \(E \), where \(n, m_1, m_2, \ldots, m_n \) are positive integers, and such that the following relations are satisfied:

\[E = \bigcup \{ C_{m_1} : m_1 = 1, 2, \ldots \}, \]

\[C_{m_1, m_2, \ldots, m_n} = \bigcup \{ C_{m_1, m_2, \ldots, m_n, m} : m = 1, 2, \ldots \}, \quad n \geq 1. \]

A web \(\mathcal{W} \) is said to be convex (absolutely convex) if the sets defining it are convex (absolutely convex). A web \(\mathcal{W} \) is completing, or a \(\mathcal{W} \)-web, if the following condition is satisfied: for every sequence \((m_n)\) of positive integers there is a sequence \((\lambda_n)\) of positive numbers such that for

\[x_n \in C_{m_1, m_2, \ldots, m_n}, \quad 0 \leq |\mu_n| \leq \lambda_n, \quad \mu_n \in \mathbb{K}, \quad n=1, 2, \ldots, \]

the series

\[\sum_{n=1}^{\infty} \mu_n x_n \]
Completing sequences and semi-LB-spaces

converges in E. We shall say that a space E is a convex (absolutely convex) webbed space if it admits a convex (absolutely convex) \mathcal{G}-web.

We shall say that a sequence a_n in \mathbb{N}^∞, with

$$a_n = (a_{n,p})_{p=1}^\infty, \quad n=1,2,\ldots,$$

is semi-stationary if, given any positive integer p, we have another positive integer q such that

$$a_{n,p} = a_{q,p}, \quad n > q.$$

A semi-LB-representation in a space F is a family of Banach discs

$$\{A_\alpha : \alpha \in \mathbb{N}^\infty\}$$

verifying the following two conditions:

1. $\bigcup \{A_\alpha : \alpha \in \mathbb{N}^\infty\} = F$.

2. If (a_n) is a semi-stationary sequence in \mathbb{N}^∞, we have α in \mathbb{N}^∞ such that

$$A_{a_n} \subset A_\alpha, \quad n = 1,2,\ldots.$$

We shall call a semi-LB-space a space admitting a semi-LB-representation.

1. ABSOLUTERY CONVEX \mathcal{G}-COMPLETING SEQUENCES.

In a space F, let \mathcal{G} be a family of Banach discs that converges F and such that the finite union of members of \mathcal{G} is contained
in some member of \(\mathcal{B} \). We shall say that a sequence \((A_k)\) of subsets of \(F \) is absolutely convex \(\mathcal{B} \)-completing if it is a decreasing sequence, every \(A_k \) is absolutely convex, and there is a sequence \((\lambda_k)\) of positive numbers such that given

\[
0 \leq |u_k| \leq \lambda_k \cdot x_k \in A_k, \quad k = 1, 2, \ldots, \]

there is a \(B \) in \(\mathcal{B} \) with

\[
x_k \in F_B, \quad k = 1, 2, \ldots, \]

and the series

\[
\sum_{k=1}^{\infty} u_k x_k
\]

converges in \(F_B \). In what follows we shall suppose that

\[
\lambda_1 = 1, \quad \lambda_k > \lambda_{k+1}, \quad \lambda_k < \frac{1}{2k}, \quad k = 2, 3, \ldots, \]

which does not imply any loss of generality.

When \(\mathcal{B} \) is the family of all the Banach discs in \(F \), the former concept coincides with the absolutely convex completing sequences of De Wilde (see [2, Proposition IV: 1.9]). We are going to consider the family \(\mathcal{B} \) in order to obtain results that can be applied to the class of semi-LB-spaces.

We take a positive integer \(k \) and we write

\[
B_k = \bigcup \left\{ \sum_{n=1}^{\infty} \lambda_n x_n : x_n \in A_{ktn-1}, \quad n = 1, 2, \ldots \right\}.
\]

It is immediate that \(B_k \) is absolutely convex and contains \(A_k \).
Of course \((B_n)\) is a decreasing sequence.

Proposition 1. If \(W\) is a neighbourhood of the origin in \(F\), there are a positive integer \(k\) together with a positive number \(\lambda\) such that

\[\lambda B_k \subset W.\]

Proof. It is not a restriction to assume that \(W\) is closed and absolutely convex. It is clear that the condition required for \((B_k)\) is equivalent to the corresponding one with \((A_k)\). But the latter is easy to prove. Let us suppose that the property does not hold. For every positive integer \(k\) there is a point \(x_k\) in \(A_k\) such that

\[\lambda_k x_k \notin W.\]

The series

\[\sum_{k=1}^{\infty} \lambda_k x_k\]

converges in \(F\), consequently the sequence \((\lambda_k x_k)\) converges to the origin in \(F\). So we have a positive integer \(p\) such that

\[\lambda_k x_k \in W \quad \text{if} \quad k \geq p,

which is a contradiction. \(\quad q.e.d.\)

Let \(G\) be a dense subspace of a metrizable space \(E\). Let \(T\) be a linear mapping from \(G\) into \(F\). We write

\[T^{-1}(A_k) = U_k, \quad T^{-1}(B_k) = V_k.\]
$ar{U}_k$ will be the closure of U_k in E and \bar{U}_k the interior of \bar{U}_k in the same space E. Let us suppose that \bar{U}_k is a neighbourhood of the origin in E, $k=1,2,\ldots$.

PROPOSITION 2. If the graph of T meets ExF_B in a closed subspace for every B in \mathcal{B}, we have that

$$\bar{U}_k \subset V_k, \quad k = 1,2,\ldots.$$

Proof. We fix a positive integer k and we take any point x in \bar{U}_k. Let

$$\{W_n : n = 1,2,\ldots\}$$

be a fundamental system of neighbourhoods of the origin in E such that

$$W_n \subset \bar{U}_{n+k}, \quad n = 1,2.$$

We take x_1 in U_k such that

$$y_1 = x - x_1 \in \lambda_2 W_1.$$

Proceeding by recurrence, it is assumed that for a positive integer m we have found

$$y_m \in \lambda_{m+1} W_m.$$

We now determine

$$x_{m+1} \in U_{m+k}$$

such that
\[y_{m+1} = y_m - \lambda_{m+1} x_{m+1} e \lambda_{m+2} W_{m+1}. \]

The sequence \((y_n)\) obviously converges to the origin in \(E\), and

\[y_n = x - x_1 - \lambda_2 x_2 - \ldots - \lambda_n x_n \]

for every positive integer \(n\). Consequently, we have in \(E\)

\[x = \sum_{n=1}^{\infty} \lambda_n x_n. \]

For every positive integer \(j\),

\[T x_j \in A_{k+j-1}; \]

since \((A_n)\) is \(\mathcal{A}\)-completing, we have a \(B\) in \(\mathcal{A}\) such that

\[T x_j \in F_B \]

and the series

\[\sum_{n=1}^{\infty} \lambda_n T x_n \]

converges in \(F_B\) to a vector \(u\) that obviously belongs to \(B_k\). The fact that \(Tx = u\) follows from the fact that the graph of \(T\) meets \(E \times F_B\) in a closed set. Then \(x\) belongs to \(V_k\) and the proof is com-plete.

q.e.d.

PROPOSITION 3. The set

\[M := \bigcap \{ A_k : k = 1, 2, \ldots \} \]

is contained in a Banach disc.
Proof. If W is a neighbourhood of the origin in F, we apply Proposition 1 to obtain $\lambda > 0$ and a positive integer p such that

$$\lambda M \subset \lambda B_p \subset W$$

and thus M is a bounded subset of F. Let ψ be the canonical injection of F_M into F. We can extend ψ to a linear mapping $\hat{\psi}$ from the completion H of F_M into \hat{F}. Let G be equal to $\hat{\psi}^{-1}(F)$. If φ is the restriction of $\hat{\psi}$ to G, we have that the graph of φ is closed in $H \times F$. If we denote by U_k the set $\varphi^{-1}(A_k)$ and by V_k the set $\varphi^{-1}(B_k)$, we have that the closure \hat{U}_k of U_k in H is a neighbourhood of the origin in this space. Therefore, if we apply Proposition 2 we obtain that

$$\hat{U}_k \subset V_k,$$

from which it follows that $H=G$. Consequently, the image through φ of the closed unit ball of H is a Banach disc in F containing the set M.

q.e.d.

Let us take v_k in A_k, $k = 1, 2, ..., n$, and let us denote by X_k the absolutely convex cover of

$$\{v_1, v_2, ..., v_k\} \cup A_k.$$

PROPOSITION 4. (X_k) is an absolutely convex w-completing sequence.

Proof. Let us take x_k in X_k. There is y_k in A_k and
\[b_k, a_{kj} \in \mathbb{K}, \quad j = 1, 2, \ldots, k, \]
such that
\[\sum_{j=1}^{k} |a_{kj}| + |b_k| \leq 1, \quad x_k = \sum_{j=1}^{k} a_{kj} v_j + b_k y_k. \]

If
\[0 \leq |u_k| \leq 2^{-k} \lambda_k \]
we have
\[\sum_{k=1}^{\infty} \mu_k x_k = \sum_{k=1}^{\infty} \mu_k \left(\sum_{j=1}^{k} a_{kj} v_j + b_k y_k \right) \]
\[= \sum_{j=1}^{\infty} \left(\sum_{k=j}^{\infty} \mu_k a_{kj} \right) v_j + \sum_{k=1}^{\infty} \left(\mu_k b_k \right) y_k. \]

Since
\[\left| \sum_{k=j}^{\infty} \mu_k a_{kj} \right| \leq \sum_{k=j}^{\infty} 2^{-k} \lambda_k \leq \lambda_j, \]
\[|\mu_k b_k| \leq |\mu_k| \leq \lambda_k, \]
it follows that the series
\[\sum_{k=1}^{\infty} \mu_k x_k \]
belongs to some F_B, $B \in \mathcal{A}$, and it converges in this space.

q.e.d.

PROPOSITION 5. Iff
\[
\nu_k \in A_k, \ b_k \in \mathbb{K}, \ k=1,2,..., \text{ and } \sum_{k=1}^{\infty} |b_k| < \infty ,
\]

then the series
\[
\sum_{k=1}^{\infty} b_k \nu_k
\]
converges in \(P \) and the set
\[
A = \{ \sum_{k=1}^{\infty} a_k \nu_k : \sum_{k=1}^{\infty} |a_k| \leq 1 \}
\]
is a Banach disc.

Proof. We write \(X_k \) to denote the absolutely convex cover of
\[
\{ \nu_1, \nu_2, \ldots, \nu_k \} \cup A_k.
\]

According to the former proposition, \((X_k) \) is an absolutely convex \(\mathcal{S} \)-completing sequence. We know that
\[
\cap \{X_k : k = 1,2,...\}
\]
is contained in a Banach disc \(P \) by Proposition 3. Let us observe that
\[
\nu_k \in P, \ k = 1,2,...
\]
and the conclusion now is obvious.

q.e.d.

The former proposition ensures that the following sets are well defined:
Completing sequences and semi LB-spaces

\[C_k = \{ \lim_{j \to \infty} \sum_{j=1}^{\infty} a_j x_j : x_j \in A_{k+j-1}, a_j \in K, \quad j = 1, 2, \ldots, \quad \sum_{j=1}^{\infty} |a_j| \leq 1 \}, \quad k = 1, 2, \ldots. \]

We write \(D_k \) for the linear hull of \(C_k \). We set

\[F(A_k) = \cap \{ D_r : r = 1, 2, \ldots \}. \]

According to Proposition 1, the family

\[\frac{1}{r}(F(A_k) \cap C_r), \quad r = 1, 2, \ldots, \]

is a fundamental system of neighbourhoods of the origin in \(F(A_k) \) for a locally convex and metrizable topology finer than the topology induced by \(F \) on \(F(A_k) \). Let us suppose that \(F(A_k) \) is endowed with this metrizable topology.

PROPOSITION 6. \(F(A_k) \) is a Fréchet space.

Proof. Let \((y_r) \) be a Cauchy sequence in \(F(A_k) \). We select a subsequence \((z_r) \) of \((y_r) \) such that

\[2^{2r}(z_{r+1} - z_r) \in C_r. \]

Then we have

\[x_{jr} \in A_{r+j-1}, a_{jr} \in K, \quad j = 1, 2, \ldots, \quad \sum_{j=1}^{\infty} |a_{jr}| \leq 1, \]

such that

\[2^{2r}(z_{r+1} - z_r) = \sum_{j=1}^{\infty} a_{jr} x_{jr}. \]
We fix a positive integer. Then
\[
\sum_{r=s}^{\infty} (z_{r+1} - z_r) = \sum_{r=s}^{\infty} \sum_{j=1}^{\infty} a_{jr} 2^{r+j} \cdot r = \sum_{m=s}^{\infty} \sum_{r=s}^{m} \frac{a_{(m-r+1)r}}{2^{2r}} \cdot (m-r+1)r.
\]

We put
\[
\nu_m = \sum_{r=1}^{m} \frac{|a_{(m-r+1)r}|}{2^{2r}}, \quad m = s, s+1, \ldots,
\]
and \(y_m = 0\) if \(\nu_m = 0\),
\[
y_m = \sum_{r=s}^{m} \frac{a_{(m-r+1)r}}{2^{2r}} \cdot (m-r+1)r \quad \text{if} \quad \nu_m \neq 0.
\]

Clearly, \(y_m\) belongs to \(A_m\) and
\[
\sum_{r=s}^{\infty} (z_{r+1} - z_r) = \sum_{m=s}^{\infty} \nu_m y_m.
\]

On the other hand,
\[
\sum_{m=s}^{\infty} \nu_m = \sum_{m=s}^{\infty} \sum_{r=s}^{m} \frac{|a_{(m-r+1)r}|}{2^{2r}} = \sum_{r=s}^{\infty} \sum_{j=1}^{\infty} \frac{|a_{jr}|}{2^{2r}} \cdot r = \sum_{r=s}^{\infty} \frac{1}{2^{2r}} \cdot \frac{1}{2^r} \cdot \frac{1}{2^s}.
\]

Consequently, the series \((1)\) is convergent in \(F\) and its sum belongs to \(\frac{1}{2^{2s}}\). Therefore, if
\[
\sum_{r=1}^{\infty} (z_{r+1} - z_r) = u
\]
Completing sequences and semi-LB-spaces

in F, we have (z_r) converging to $u - z_1$ in F. On the other hand,

$$\sum_{r=s}^{\infty} (z_{r+1} - z_r) = u - z_1 - z_s e - \frac{1}{2^s} C_s,$$

from which it follows that

$$u \in D_s, \quad s = 1, 2, \ldots,$$

and this

$$u \in F^{(A_k)}.$$

It also follows from (1) that (z_s) converges to $u-z_1$ in $F^{(A_k)}$.

Finally, it is obvious that (y_T) also converges to $u-z_1$ in $F^{(A_k)}$.

q.e.d.

Theorem 1. Let f be a linear mapping from a metrizable space E into F such that the graph of f meets $E \times F_B$ in a closed set for every B of \mathcal{B}. If the closure of $f^{-1}(A_k)$ in E is a neighbourhood of the origin, then $f(E) \subset F^{(A_k)}$ and $f : E \to F^{(A_k)}$ is continuous.

Proof. We fix a positive integer k. According to Proposition 2, $f^{-1}(B_k)$ is a neighbourhood of the origin in E and, consequently, $f(E)$ is contained in the linear hull of B_k. From the definitions, it is clear that $2C_k$ contains B_k. Thus we have $f(E) \subset D_k$ and so

$$f(E) \subset F^{(A_k)}.$$

If (x_n) is a sequence in E converging to the origin and r is a positive integer, there is another positive integer p such that
\[x_n \in \frac{1}{2^n} B_1, \quad n \geq p. \]

Then

\[f(x_n) \in \frac{1}{2^n} (F^k \cap C_1), \quad n \geq p, \]

from which the continuity of \(f \) follows.

q.e.d.

PROPOSITION 7. Let \(f \) be a continuous and injective linear mapping from a space \(E \) into \(F \). If the closure \(M_k \) of \(f^{-1}(A_k) \) in \(E \) is a neighbourhood of the origin, then the family

\[\left\{ \frac{1}{k} M_k : k = 1, 2, \ldots \right\} \]

is a fundamental system of neighbourhoods of the origin for a metrizable locally convex topology on \(E \).

Proof. We must show that

\[\bigcap_{k=1}^{\infty} \frac{1}{k} M_k = \{0\}. \]

Let us take a point \(x \) in \(E \), \(x \neq 0 \). We find a neighbourhood of the origin \(U \) in \(F \), closed and absolutely convex and such that

\[f(x) \notin U. \]

Then

\[x \in f^{-1}(U). \]
Completing sequences and semi-LB-spaces

According to Proposition 1 there is a positive integer k such that

$$\frac{1}{k} A_k \subset U$$

and, therefore,

$$\frac{1}{k} M_k \subset f^{-1}(U),$$

showing that x does not belong to $\frac{1}{k} M_k$.

q.e.d.

Theorem 2. Let f be a linear mapping with closed graph from a space E into F. Let us suppose that for every positive integer k, the closure of $f^{-1}(A_k)$ in E is a neighbourhood of the origin. Then we have

$$f(E) \subset F^{(A_k)}$$

and $f : E \to F^{(A_k)}$ is continuous.

Proof. Since the graph of f is closed, there is a Hausdorff and locally convex topology ψ on F, coarser than the original one, and such that

$$f : E \to F[\psi]$$

is continuous, (cf. [3] and [4]). The sequence (A_k) is also a \mathcal{A}-completing sequence of absolutely convex subsets in $F[\psi]$ and $f^{-1}(0)$ is closed in E. Let ϕ be the canonical mapping from E onto $G := E/f^{-1}(0)$ and ψ the canonical injection from G into F, with
\[f = \psi \circ \varphi. \]

According to the former proposition, and denoting by \(M_k \) the closure of \(\psi^{-1}(A_k) \) in \(G \), \(k=1,2,\ldots \), we obtain the family

\[\left\{ \frac{1}{k} M_k : k = 1,2,\ldots \right\} \]

as a fundamental system of neighbourhoods of the origin in \(G \) for a metrizable and locally convex topology \(\mathcal{U} \) on \(G \). Then the closure of \(\psi^{-1}(A_k) \) in \(G[\mathcal{U}] \) coincides with \(M_k \) and, therefore, it is a neighbourhood of the origin in this space. Now the conclusion follows applying Theorem 1.

\[\text{q.e.d.} \]

2. ABSOLUTELY CONVEX WEBBED SPACES

In all this section

\[W = \{ C_{m_1,m_2,\ldots,m_n} \} \tag{2} \]

will be an absolutely convex and completing web in a space \(E \).

If \(\alpha = (a_n) \) is an element of \(\mathbb{N}^\mathbb{N} \), we have an absolutely convex and completing sequence

\[(C_{a_1,a_2,\ldots,a_k})_{k=1}^{\infty}. \]

We shall write \(E_\alpha \) to denote the Fréchet space \(E \)
\[(C_{a_1,a_2,\ldots,a_k}) \]

and we say that

\[\{ E_\alpha : \alpha \in \mathbb{N}^\mathbb{N} \} \]
is the family of Fréchet spaces associated to the web (2).

Theorem 3. Let \(f \) be a linear mapping from a metrizable and unordered Baire-like space \(F \) into the space \(E \). If the graph of \(f \) meets \(F \times E_B \) in a closed subspace for every Banach disc \(B \) of \(E \), there is an \(a \) in \(\mathbb{N}^\infty \) such that \(f(F) \in E_a \) and \(f : F \rightarrow E_a \) is continuous.

Proof. Given a sequence \((p_n) \) of positive integers, we denote by \(L_{p_1, p_2, \ldots, p_n} \) the linear hull of \(f^{-1}(C_{p_1, p_2, \ldots, p_n}) \) in \(F \), \(n = 1, 2, \ldots \). We have

\[
F = \bigcap_{n=1}^{\infty} L_n,
\]

from which it follows that for a positive integer \(m_1 \) the space \(L_{m_1} \) is unordered Baire-like and dense in \(F \). Proceeding by recurrence, let us suppose that the positive integers \(m_1, m_2, \ldots, m_p \) have been obtained in such a way that the space \(L_{m_1, m_2, \ldots, m_p} \) is unordered Baire-like and dense in \(F \). We have

\[
L_{m_1, m_2, \ldots, m_p} = \bigcup_{m=1}^{\infty} L_{m_1, m_2, \ldots, m_p, m}
\]

from which we have again a positive integer \(m_{p+1} \) such that the space \(L_{m_1, m_2, \ldots, m_p, m_{p+1}} \) is unordered Baire-like and dense in \(F \).

Obviously, the closures in \(F \) of \(f^{-1}(C_{m_1, m_2, \ldots, m_k}) \), \(k=1, 2, \ldots \), are neighbourhood of the origin in \(F \). Therefore according to Theorem...
we obtain for $\alpha = (a_k)$ that $f(F) \subseteq E_\alpha$ and $f : F \rightarrow E_\alpha$ is continuous.

q.e.d.

Theorem 4. If f is a linear mapping with closed graph from an unordered Baire-like space F into the space E, then there exists α in \mathbb{N}^N such that $f(F) \subseteq E_\alpha$ and $f : F \rightarrow E_\alpha$ is continuous.

Proof. Proceeding as we have done in the former theorem we can obtain $\alpha = (a_k)$ in \mathbb{N}^N such that $f^{-1}(C_{m_1^k, m_2, \ldots, m_k})$ is a neighbourhood of the origin in F, $k=1, 2, \ldots$. The conclusion now follows applying Theorem 2.

q.e.d.

Corollary. Every continuous linear mapping from an unordered Baire-like space F into E can be extended to a continuous linear mapping from F into E.

3. **Semi-LB-Spaces.**

Let

$$
\{ A_\alpha : \alpha \in \mathbb{N}^N \}
$$

be a semi-LB-representation in a space E. Given positive integers k, m_1, m_2, \ldots, m_k, we write

$$
M_{m_1^k, m_2, \ldots, m_k} = \bigcup \{ A_\alpha : \alpha = (a_n) \in \mathbb{N}^N, a_n = m_n, n=1, 2, \ldots, k \}.
$$

Let $C_{m_1^k, m_2, \ldots, m_k}$ be the absolutely convex cover of $M_{m_1^k, m_2, m_k}$.
Completing sequences and semi-LB-spaces

We denote by Ω the family (3) of Banach discs.

PROPOSITION 8. Given \((m_k)\) in \(\mathbb{N}^N\), the sequence

\[
C(m_1, m_2, \ldots, m_k)
\]

is absolutely convex and Ω-completing.

Proof. Let \(x_k\) be a vector in \(C_{m_1, m_2, \ldots, m_k}\), \(k = 1, 2, \ldots\). There are

\[
x_k = \sum_{j=1}^{p(k)} a_{kj} x_{kj}, \quad j=1, 2, \ldots, p(k)
\]

such that

\[
x_k = \sum_{j=1}^{p(k)} a_{kj} x_{kj}, \quad \sum_{j=1}^{p(k)} |a_{kj}| \leq 1.
\]

Let

\[
a_{kj} = (a_{n,kj}) \to \mathbb{N}^N, \quad a_{n,kj} = m_n, \quad n = 1, 2, \ldots, k,
\]

and

\[
x_{kj} \in \mathbb{A}_{a_{kj}}, \quad j = 1, 2, \ldots, p(k).
\]

The sequence

\[
a_{11}, a_{12}, \ldots, a_{1p(1)}, a_{21}, a_{22}, \ldots, a_{2p(2)}, \ldots, a_{k1}, a_{k2}, \ldots, a_{kp(k)},
\]

obviously is semi-stationary; therefore, we have \(a\) in \(\mathbb{N}^N\) such that

\[
A_{a_{kj}} \in A_{a}, \quad j = 1, 2, \ldots, p(k), \quad k = 1, 2, \ldots.
\]
Consequently,
\[x_k \in A_q , \quad k = 1, 2, \ldots, \]
and if
\[b_k \in k, \quad k = 1, 2, \ldots, \quad \text{and} \quad \sum_{k=1}^{\infty} |b_k| < 1, \]
the series
\[\sum_{k=1}^{\infty} b_k x_k \]
converges in \(E_{A_q} \).

q.e.d.

If \(a = (m_k) \in \mathbb{N}^\mathbb{N} \) we denote by \(E_a \) the Fréchet space \(E_{m_1, m_2, \ldots, m_k} \) and we shall say that
\[\{ E_a : a \in \mathbb{N}^\mathbb{N} \} \]
in the family of Fréchet spaces associated to the semi-LB-representation (3).

The following two theorems are proved using Theorem 1 and Theorem 2 respectively.

THEOREM 5. Let \(f \) be a linear mapping from a metrizable Baire space \(F \) into the space \(E \). If the graph of \(f \) meets \(F \times E_{A\beta} \) in a closed subspace for every \(\beta \) in \(\mathbb{N}^\mathbb{N} \) there is \(a \) in \(\mathbb{N}^\mathbb{N} \) such that \(f(F) \subset E_a \) and \(f : F \rightarrow E_a \) is continuous.

THEOREM 6. If \(f \) is a linear mapping with closed graph from a Baire space \(F \) into the space \(E \), there is \(a \) in \(\mathbb{N}^\mathbb{N} \) such that
Completing sequences and semi-LB-spaces

f(F) c E_q and \(f : F \rightarrow E_q \) is continuous.

In the set \(\mathbb{N}^\mathbb{N} \) we consider the following order relation "\(\preceq \)"; for \(\alpha = (a_n) \) and \(\beta = (b_n) \) in \(\mathbb{N}^\mathbb{N} \) we say that \(\alpha \preceq \beta \) if and only if \(a_n \preceq b_n \) for every positive integer \(n \).

A quasi-LB-representation in a space G is a family

\[\{ B_\alpha : \alpha \in \mathbb{N}^\mathbb{N} \} \]

of Banach discs satisfying the following conditions:

1. \(\bigcup \{ B_\alpha : \alpha \in \mathbb{N}^\mathbb{N} \} = G \).

2. If \(\alpha, \beta \in \mathbb{N}^\mathbb{N} \) and \(\alpha \preceq \beta \), then \(B_\alpha \subset B_\beta \)

We say that a space admitting a quasi-LB-representation is a quasi-LB-space.

It is obvious that a quasi-LB-representation is a semi-LB-representation, and thus, a quasi-LB-space is a semi-LB-space.

Lifting theorems have been proved in [6] for quasi-LB-representations. These results can be formulated with some minor modifications for semi-LB-representations.

4. CONVEX WEBBED SPACES

Let

\[\mathcal{V} = \{ L_{n_1, n_2, \ldots, n_k} \} \]
be a convex \(\mathcal{W} \)-web in a space \(E \). If \(M_{n_1,n_2,\ldots,n_k} \) is the convex cover of

\[
\{0\} \cup \bigcup_{n_1,n_2,\ldots,n_k}
\]

we write

\[
A_{n_1,n_2,\ldots,n_k} = M_{n_1,n_2,\ldots,n_k} - M_{n_1,n_2,\ldots,n_k}.
\]

We denote by \(T \) an injective mapping from \(\mathbb{N}^2 \) onto \(\mathbb{N} \). When \((p_1,r_1) \) belongs to \(\mathbb{N}^2 \) and \(T(p_1,r_1) = n_1 \), we put

\[
B_{n_1} = p_1 A_{r_1}.
\]

Proceeding by recurrence, let us suppose that for a positive integer \(k > 1 \) we have constructed the subsets

\[
B_{n_1,n_2,\ldots,n_{k-1}},
\]

where \(n_1,n_2,\ldots,n_{k-1} \) are arbitrary positive integers. Given positive integers \(p_1,r_1,p_2,r_2,\ldots,p_k,r_k \) we write

\[
p_{n_1,n_2,\ldots,n_k} = p_1 p_2,\ldots,p_k A_{r_1,r_2,\ldots,r_k},
\]

\[
B_{n_1,n_2,\ldots,n_k} = p_{n_1,n_2,\ldots,n_k} \cap B_{n_1,n_2,\ldots,n_{k-1}},
\]

where

\[
T(p_j,r_j) = n_j, \quad j = 1,2,\ldots,k.
\]
Since $p_1^n A_{r_1}$ contains L_{r_1}, it follows that

$$U \left\{ B_{n_1} : n_1 = 1, 2, \ldots \right\} = E.$$

Let us now take a point x in $B_{n_1, n_2, \ldots, n_k}$, then x belongs to $p_{n_1, n_2, \ldots, n_k}$ and therefore there exist two points y and z in

$$p_1 p_2 \ldots p_k L_{r_1, r_2, \ldots, r_k}$$

together with two numbers α and β, $0 \leq \alpha \leq 1$, $0 \leq \beta \leq 1$, such that

$$x = \alpha y - \beta x.$$

If y coincides with z, there is a positive integer r_{k+1} such that

$$y = z \in p_1 p_2 \ldots p_k L_{r_1, r_2, \ldots, r_k, r_{k+1}}$$

and so

$$x \in p_1 p_2 \ldots p_k A_{r_1, r_2, \ldots, r_{k+1}}.$$

If y is not equal to z, we take

$$H = \{ \lambda z + (1 - \lambda) y : 0 \leq \lambda \leq 1 \}.$$

Since H is contained in

$$p_1 p_2 \ldots p_k L_{r_1, r_2, \ldots, r_k},$$
there exists a positive integer \(r_{k+1} \) such that
\[
 p_1 p_2 \cdots p_k \mathcal{L}_{r_1, r_2, \ldots, r_{k+1}}
\]
meets \(H \) in two points at least. A positive integer \(p_{k+1} \) can be determined such that
\[
 2H \mathcal{c} p_1 p_2 \cdots p_k p_{k+1} A_{r_1, r_2, \ldots, r_k, r_{k+1}}
\]
and therefore
\[
 x \in p_1 p_2 \cdots p_k p_{k+1} A_{r_1, r_2, \ldots, r_k, r_{k+1}} \tag{5}
\]
Consequently, (5) holds in the two cases considered. If
\[
 T(p_{k+1}, r_{k+1}) = n_{k+1},
\]
it follows that
\[
 x \in p_{n_1, n_2, \ldots, n_{k+1}} \cap B_{n_1, n_2, \ldots, n_k} = B_{n_1, n_2, \ldots, n_k, n_{k+1}}
\]
from which we have
\[
 B_{n_1, n_2, \ldots, n_k} = U \{ B_{n_1, n_2, \ldots, n_k, n_{k+1}} : n_{k+1} = 1, 2, \ldots \}, \tag{6}
\]

PROPOSITION 9. The family

\[
 \mathcal{U} = \{ B_{n_1, n_2, \ldots, n_k} \}
\]
is a completing web in \(E \).

Proof. From (4) and (6) we know that \(\mathcal{U} \) is a web in \(E \). Given a sequence of positive integers \((r_k) \) we determine a sequence
(λ_k) of positive numbers such that the series

\[\sum_{k=1}^{\infty} u_k x_k \]

converges in E whenever

\[0 \leq \mu_k \leq \lambda_k, \quad x_k \in L_{r_1, r_2, \ldots, r_k}, \quad k = 1, 2, \ldots. \]

Let us now suppose that for the sequence (n_j) in \(\mathbb{N} \) we have

\[T^{-1}(n_j) = (p_j, r_j), \quad j = 1, 2, \ldots. \]

If we take \(z_k \) in \(B_{n_1, n_2, \ldots, n_k} \) we have

\[z_k \in p_1 p_2 \cdots p_k A_{r_1, r_2, \ldots, r_k} \]

and we can find \(u_k \) and \(v_k \) in \(L_{r_1, r_2, \ldots, r_k} \) together with

\[0 \leq a_k \leq 1, \quad 0 \leq \beta_k \leq 1, \]

such that

\[z_k = p_1 p_2 \cdots p_k (a_k u_k - \beta_k v_k). \]

Let us now take

\[0 \leq \mu_k \leq (p_1 p_2 \cdots p_k)^{-1} \lambda_k \]

and we have the convergent series

\[\sum_{k=1}^{\infty} u_k p_1 p_2 \cdots p_k a_k u_k \quad \text{and} \quad \sum_{k=1}^{\infty} u_k p_1 p_2 \cdots p_k \beta_k v_k \]

from which it follows that the series
\[\sum_{k=1}^{\infty} u_k z_k \]

also converges in \(E \).

Q.E.D.

When \(E \) is a real space we write

\[C_{n_1, n_2, \ldots, n_k} = B_{n_1, n_2, \ldots, n_k} \]

and in case of \(E \) being a complex space we write

\[C_{n_1, n_2, \ldots, n_k} = B_{n_1, n_2, \ldots, n_k} \cap i \ B_{n_1, n_2, \ldots, n_k} \]

whenever \(k, n_1, n_2, \ldots, n_k \) are positive integers.

Proposition 10. The family

\[W = \{ C_{n_1, n_2, \ldots, n_k} \} \]

is an absolutely convex and completely web in \(E \).

Proof. The result is obvious when \(E \) is a real space. Let us now suppose that \(E \) is a complex space. If \(x \) is any point of \(E \) there are two positive integers \(p_1 \) and \(r_1 \) such that the strongt line with and-points in \(x \) and \(ix \) is contained in \(p_1 A_{r_2} \). It now follows that both \(x \) and \(ix \) are in \(B_{n_1} \), where \(n_1 = T(p_1, r_1) \). Thus we have

\[U \{ C_{n_1} : n_1 = 1, 2, \ldots \} = E . \]

If \(x \) is any point in \(C_{n_1, n_2, \ldots, n_k} \), we know that \(x \) and \(ix \) belong
Completing sequences and semi-LB-spaces

We put \((p_j, r_j) = T^{-1}(n_j), j = 1, 2, \ldots\). Then we have

\[x, ix \in p_1 p_2 \ldots p_k A_{r_1, r_2, \ldots, r_k} \]

and therefore there are two positive integers \(p_{k+1}\) and \(r_{k+1}\) such that

\[x, ix \in p_1 p_2 \ldots p_{k+1} A_{r_1, r_2, \ldots, r_{k+1}} \]

Consequently, we have

\[x, ix \in B_{n_1, n_2, \ldots, n_{k+1}} \]

where \(T(p_{k+1}, r_{k+1}) = n_{k+1}\) and so

\[x \in C_{n_1, n_2, \ldots, n_{k+1}} \]

Thus

\[U\{C_{n_1, n_2, \ldots, n_{k+1}} : n_{k+1} = 1, 2, \ldots\} = C_{n_1, n_2, \ldots, n_k} \]

and hence \(W\) is a web in \(E\). Finally it is clear that \(W\) is absolutely convex and completing.

q.e.d.

The following theorem is now clear:

Theorem 7. If \(F\) is a convex webbed space, then \(F\) is an absolutely convex webbed space.
REFERENCES

Prof. Manuel VALDIVIA
Facultad de Matemáticas
Dr. Moliner, 50
BURJASOT - VALENCIA
SPAIN