ON DERIVABLE BAER-ELATION PLANES

N.L.JOHNSON

1. INTRODUCTION. - In [5], Jha and Johnson introduce Baerelation planes. These are finite translation planes of order q^2 , $q=p^r$ which admit both Baer p-collineation groups and elation groups which normalize each other. By a result of Foulser [3], p=2.

Jha-Johnson consider, in particular, Baer-elation planes of order q^2 with kernel GF(q) of type (2,q) or type (q,2). That is, there is a Baer or elation group of order q. By the incompatibility results of Jha-Johnson [7], [8], the corresponding elation or Baer group has order ≤ 2 .

Recently, Huang and Johnson [4] have determined all of the semifield Baer-elation planes of order 64, kernel GF(8) (of type (2.8)). Note that the Desarguesian plane of order 64 may be considered a Baer-elation plane of type (2.8). There are eight such Baer-elation planes of order 64 with the Desarguesian plane being the only one which is derivable.

In general the Desarguesian and Hall planes of even order q^2 and kernel \geq GF(q) are the only known derivable Baer-elation planes of type (2,q) or type (q,2) and kernel \geq GF(q). In [1], Biliotti and Menichetti study finite translation planes of order q^2 which admit affine elations and which may be derived from a semifield plane. The affine elations of the semifield plane which fix the derivable net in question inherit as Baer collineations of the derived plane. Hence, these derived planes of order q^2 are derivable

Baer-elation planes of type (q,2). However, Biliotti-Menichetti show that the only such plane with kernel GF(q) is the Hall plane.

So, a basic question is whether there are derivable Baer-elation planes of order q^2 kernel $\geq GF(q)$ of type (2,q) or type (q,2).

Our main result answers this question.

THEOREM A.

Let π be a finite translation plane of even order q^2 and kernel $\geq GF(q)$.

- (1) Assume π admits an affine elation group E of order q and a nontrivial Baer 2-group $\mathscr B$ which normalize each other where $\mathscr B$ is in the linear translation complement. If the axis of E and an E-orbit of components defines a derivable net then π is Desarguesian.
- (2) Assume π admits a Baer group \mathscr{B} of order q and a nontrivial elation group E. If the net of degree q+1 containing the subplane pointwise fixed by \mathscr{B} is derivable then π is Hall.

2. BACKGROUND AND PROOF OF THEOREM A.

Let π be a Baer-elation plane which satisfies the assumption of Theorem A(1). Then π is of type (2,q) by Jha-Johnson [5] and

(2.1) LEMMA.

m may be represented in the following form:

$$\pi = \{(x_1, x_2, y_1, y_2) | x_i, y_i \in GF(q), i = 1, 2\}$$

and the components may be represented in the form x = 0,

 $y = x \begin{bmatrix} u+v & f(v) \\ v & u \end{bmatrix}$ where $x = (x_1, x_2)$, $y = (y_1, y_2)$, for all $u, v \in GF(q)$ and f is a 1-1 function GF(q) GF(q).

Proof. By Jha-Johnson [5] (3.7), we obtain the components in the form x = 0, $y = x \begin{bmatrix} u + v + m(v) & f(v) + m(u) \\ v & u \end{bmatrix}$ where $m, f : GF(q) \to GF(q)$. The elation group E has the form

$$E = \left\{ \begin{bmatrix} I & \begin{bmatrix} u & m(u) \\ 0 & u \end{bmatrix} \\ 0 & I \end{bmatrix} \middle| u \in GF(q) \right\}$$

and the Baer group $\mathscr{B} = \langle \sigma \rangle$ is represented by $\sigma = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 1 & 1 \end{bmatrix}$ (See also [5] (3.2).)

The nontrivial E-orbits Γ_{V} of components are

$$\begin{cases} y = x & \begin{cases} u+v+m(v), & f(v)+m(u) \\ v & d \end{cases} = \Gamma_v$$

for each fixed v in GF(q) and for all u e GF(q). Suppose one of these orbits union (x = 0) is derivable. Then by Jha-Johnson [9], each orbit Γ_v union (x=0) is a derivable net. In particular, $\Gamma_0 \cup (x=0)$ is derivable. So x=0, $y=x\begin{bmatrix} u & m(u) \\ 0 & u \end{bmatrix}$ for all u e GF(q) is a derivable partial spread.

By Foulser [2], this derivable partial spread is Desarguesian and is a regulus with respect to some field L \cong GF(q). Hence, the set of matrices $\left\{\begin{bmatrix} u & m(u) \\ 0 & u \end{bmatrix} \middle| u \in \text{GF}(q) \right\}$ form a field \cong GF(q). This implies that vm(u) = um(v) for all u,v \in GF(q). For v=1, m(u) = um(1) for all u \in GF(q). However, if we initially assume that x = y is a component of the subplane pointwise fixed by σ then m(1) = 0. So, we have the proof to (2.1).

(2.2) LEMMA.

Let $\Sigma = PG(3,q)$ and represent Σ by homogeneous coordinates (x_0,x_1,x_2,x_3) . Let $\mathscr C$ be the quadratic cone in Σ with vertex (0,0,0,1)

with equation $x_0x_1=x_2^2$. If $x=\mathcal{O}$, $y=x\begin{bmatrix} u+v & f(v) \\ v & u \end{bmatrix}$ represents the translation plane π then let $\rho_{\tilde{V}}$ be the projective plane of Σ whose equation is $vx_0-f(v)x_1+vx_2+x_3=0$. Then $\{\rho_V\cap\mathscr{C}|v\in GF(q)=\mathscr{F}\}$ is a set of ovals (conics) which are mutually disjoint and which partition $\mathscr{C}-\{(0,0,0,1)\}$. That is, \mathscr{F} is a flock of the quadratic cone.

Proof. This is part of a more general theorem which will appear elsewhere. However, with the conditions on the matrix spread set

$$\begin{bmatrix} u+v & , & f(v) \\ v & , & u \end{bmatrix} - \begin{bmatrix} s+t & , & f(t) \\ t & , & s \end{bmatrix}$$

being nonsingular on zero, it is straightforward to verify that $\{\rho_{\mathbf{v}} \cap \mathscr{C} \, \big| \, v \in GF(q) \} \quad \text{is a flock. We obtain}$

$$\det \begin{bmatrix} (u+v)-(s+t) & f(v)-f(t) \\ v-t & u-s \end{bmatrix} = 0$$

if and only if

$$((u-s)+(v-t))(u-s) - (v-t)(f(v)-f(t)) = 0$$

if and only if

$$(u-s)^2 + (u-s)(v-t) - (v-t)(f(v)-f(t))$$

iff

$$(u-s)^{2}(v-t)^{2} + (u-s)(v-t)^{3} - (v-t)^{3}(f(v)-f(t))$$

iff for (u-s)(v-t) = z.

$$z^{2} + z(v-t)^{2} - (v-t)^{3}(f(v-f(t)))$$

iff for $v \neq t$

$$\left(\frac{z}{v-t}\right)^2 + \left(\frac{z}{v-t}\right)(v-t) - (v-t)(f(v)-f(t))$$

iff $x^2 + x(v-t) - (v-t)(f(v)-f(t))$ is irreducible for all $v \neq t$.

The plane $(\rho_v \cap \rho_t)(0,0,0,1)$ of Σ is given by $(v-t)x_0-(f(v)-f(t))x_1 + (v-t)x_2 = 0$. This plane contains a point on the cone $\mathscr C$ $(x_0x_1 = x_2^2)$ if and only if

$$(v-t)\bar{x}_0\bar{x}_1 - (f(v)-f(t))\bar{x}_1^2 + (v-t)\bar{x}_1\bar{x}_2 = 0$$

for some $\bar{x}_0, \bar{x}_1, \bar{x}_2$. This is true iff

$$(v-t)\bar{x}_2^2 - (f(v)-f(t))\bar{x}_1^2 + (v-t)\bar{x}_1\bar{x}_2 = 0$$

and since clearly $\bar{x}_1\bar{x}_2 \neq 0$, and

$$(v-t)^3\bar{x}_2^2 - (v-t)^2(f(v)-f(t))\bar{x}_1^2 + (v-t)^3\bar{x}_1\bar{x}_2 = 0$$

write
$$(v-t)\frac{\bar{x}_2}{\bar{x}_1} = Z$$
 so that
$$(v-t)Z^2 + (v-t)^3Z - (v-t)^2(f(v)-f(t)) = 0$$

iff for $v \neq t$

$$x^2 + x(v-t) - (v-t)(f(v)-f(t)) = 0.$$

So, $(\rho_v \cap \rho_t)(0,0,0,1)$ cannot contain a point of $\mathscr C$ and we obtain a flock of $\mathscr C$.

(2.3) LEMMA.

With the assumptions of (2.2), the planes $\rho_{_{\mbox{\scriptsize V}}}$ of the flock all contain a common point.

Proof. Note that (1,0,1,0) satisfies

$$vx_0 - f(v)x_1 + vx_2 + x_3 = 0$$

for all $v \in GF(q)$.

Now by a recent result of Thas [10] (1.5.6) if the planes of a flock of a quadratic cone in PG(3,q) contain a common point and q is even then the flock is *linear*. This means the set of

planes $\{\rho_V\}$ is the set of planes containing some line \mathscr{L} of PG(3,q) (except for the plane $\mathscr{L}\cdot(0,0,0,1)$). So

$$\rho_{v} : vx_{0} - f(v)x_{1} + vx_{2} + x_{3}$$

and

$$\rho_t$$
: $tx_0 - (f(t)x_1 + tx_2 + x_3)$

contain the common line ${\mathscr L}$ contained in the plane

$$(v-t)x_0 - (f(v)-f(t))x_1 + (v-t)x_2 = 0.$$

If $x_0 = x_2 = 0$ then for t = 0 and $v \neq 0$, $f(v)x_1 = 0$ iff $x_1 = 0$ as f is 1-1. So we may assume x_0 or $x_2 \neq 0$. Silimarly, if $x_0 + x_2 = 0$ then we obtain $f(v)x_1 = 0$ and the common point (1,0,1,0). Hence, we may assume that $x_0 + x_2 \neq 0$ and hence $v(f(v))^{-1} = \frac{x_1}{x_0 + x_2}$ for some point (x_0, x_1, x_2, x_3) different than (0,0,0,1) or (1,0,1,0). But, this says that $v(f(v))^{-1} = w(f(w))^{-1}$ for all nonzero v,w of GF(q). So vf(w) = wf(v) for all nonzero v,w in GF(q) and hence, f(v) = vf(1).

Note that the translation plane now is represented by components x=0, $y=x\begin{bmatrix} u+v & vf(1) \\ v & u \end{bmatrix}$ which clearly represents the Desargue sian plane. Hence, we have the proof to Theorem A(1).

We now assume the conditions of Theorem A(2).

If the elation group E does not leave the net containing the

Baer axis invariant then there are at least two such Baer groups of order q and the plane is Hall by Jha-Johnson [6].

If the elation group does leave the net (derivable) invariant then the axis of E must be a component of the net and in the derived plane, we obtain the hypotheses of Theorem A(1). Hence, in either case, π must be the Hall plane.

REFERENCES

- [1] BILIOTTI M. and MENICHETTI G.: Derived semifield planes with affine elations. J. Geom. 19(1982), 50-88.
- [2] FOULSER, D.A.: Subplanes of partial spreads in translation planes. Bull. London Math. Soc. 4(1972), 32-38.
- [3] FOULSER, D.A.: Baer p-elements in translation planes. J.Alg. 31(1974), 354-366.
- [4] HUANG, H. and JOHNSON, N.L.: 8 semifield planes of order 8². (submitted).
- [5] JHA, V. and JOHNSON, N.L.: Baer-elation planes. Rend. Mat. Padova (to appear).
- [6] JHA, V. and JOHNSON, N.L.: Solution to Dempwolff's nonsolvable B-group problem. European J. Math. 7(3) July (1986), 227-235.
- [7] JHA, V. and JOHNSON, N.L.: Coexistence of elations and large Baer groups in translation planes. J. London Math. Soc. (2)32 (1985), 297-304.
- [8] JHA.V. and JOHNSON, N.L.: Baer involutions in translation planes admitting large elation groups. Resultate Math.2(1987) 63-71.
- [9] JHA, V. and JOHNSON, N.L.: Derivable nets defined by central collineations. *Information and Systems Sci.* (to appear).
- [10] THAS, J.A.: Generalized quadrangles and flocks of cones. (to appear).

Department of Mathematics University of Iowa Iowa City, Iowa 52242