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Abstract. Fix a line D C P2, In this note we study rank 2 spanned vector bundles with
prescribed Chern classes and either with a prescribed order of stability or whose restriction to
D has a prescribed splitting type, mainly when the splitting type is either rigid or the most
extremal one, (c,0). We use the description of the Chern classes of all rank 2 spanned bundles
due to Ph. Ellia.
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Introduction

Several papers are devoted to the classification of spanned vector bundles on
P", n > 2, with low ¢; ([1], [2], [5], [10], [11], [14], [15], [16]). For any rank 2 vector
bundle F let k(F) be the maximal integer k such that h°(F(—k)) > 0. The
integer k(F) is sometimes called the order of stability and sometimes the order
of unstability or instability of F. If F is spanned, then k(F) > 0. F is stable
(resp. semistable) if and only if 2k(F) < c¢1(F) (resp. 2k(F) < ¢1(F)). Two
rank 2 vector bundles £, F with the same Chern numbers may have different
cohomological properties. If £ is stable, but F is not stable, they must have
different cohomological properties (even if both are spanned), because k(F) #
k(E). The Chern classes of all rank 2 spanned bundles on P? are known ([6]).
Here we use the results and proofs of [6] to consider spanned vector bundles £
with one of the following additional conditions: we fix a line D and we prescribe
in advance the splitting type of £ p or we fix the integer k() or we fix both the
integer k(£) and the splitting type of &p.

Fix a line D C P2. Looking only at bundles whose restriction to a given line
is prescribed arises in the set-up of framed sheaves ([7], [8], [4]). Fix a positive

'This work is partially supported by MIUR and GNSAGA (INDAM)
http://siba-ese.unisalento.it/ (©) 2016 Universita del Salento



26 E. Ballico

integer ¢ and fix an integer ¢ such that 0 < 2t < ¢. We only look at spanned
bundles £ on P? with Ep = Op(c—1t) @ Op(t) (the possible splitting types
of rank 2 spanned bundles on D). It is easy to check that the answer (i.e. the
possible integers ¢3(€)) depends very much from ¢. We have a complete answer
in the case t = [c/2], i.e. when &p is rigid (see Proposition 1.6) and partial
result in the other extremal case ¢ = 0 (see Propositions 4 and 5).

We recall that for all (c,y) € Z? there is a rank 2 vector bundle £ on P?
with ¢1(£) = c and c2(€) =y ([17], [12, Theorem 6.2.1]). There is a stable rank
2 vector bundle £ on P? with ¢;(£) = ¢ and c(€) = y if and only if 4y > ¢ and
dy —c® # —4 ([17), |9, page 145]). However, these Chern integers (c, y) may also
be realized by unstable bundles, with very different cohomological properties.

Ph. Ellia gave the complete list of all (c,y) € Z? such that there is a rank
2 spanned vector bundle £ on P? with ¢1(£) = ¢ and ¢2(€) = y ([6, Theorem
0.1]). We need ¢ > 0 and if ¢ = 0, then & = (’)]%,2 and so y = 0. Hence we may
assume ¢ > 0. It is too long to state his full list (see [6, page 148]); suffice to
say that y < ¢? and that all (c,y) with ¢ > 0 and ¢?/4 < y < 3c?/4 are realized
by some spanned £. A minor modification of the proof of [6, Theorem 0.1] gives
the following 3 results: Theorem 1 and Propositions 1.5 and 1.6.

Theorem 1. Fiz positive integers y,c such that there is a rank 2 spanned
vector bundle F with ¢i1(F) = ¢ and c2(F) = y.
(i) There is a rank 2 stable and spanned vector bundle € onP? with c1(£) =
c and co(E) = y if and only if 4y > %, 4y — ® # —4.
(ii) If y > c|c/2], then any such spanned F is stable.

Recall again that the conditions 4y > ¢?, 4y — ¢* # —4 in part (i) are the
necessary and sufficient conditions for the existence of a rank 2 stable vector
bundle on P? with these Chern numbers ([17], [9, page 145]). Thus part (i) of
Theorem 1 may be rephrased saying that some Chern numbers (¢, y) are realized
by a stable spanned bundle if and only if they are realized by a spanned bundle
and by a stable bundle.

For odd ¢; a rank 2 semistable vector bundle on P? is stable. For even ¢; we
may consider properly semistable vector bundles. We get the following variation
of Theorem 1.

Proposition 1. Fiz positive integers y, ¢ such that c is even and there is a
rank 2 spanned vector bundle F on P? with c1(F) = ¢ and ca(F) = y.
(i) There is a rank 2 semistable and spanned vector bundle & on P? with
c1(&) = c and c3(E) = y if and only if 4y > c%.
(i3) If y > c/2, then any spanned F is semistable.

Proposition 2. Fiz positive integers y, c. There is a rank 2 spanned vector

bundle € on P* with c1(E) = ¢, c2(E) =y and Ep = Op([c/2]) ® Op(|c/2]) if
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and only if either there is a spanned semistable one or c is odd and 4y = c® — 1.
In the latter case Op2((c+1)/2) & Op2((c — 1)/2) is the only bundle.

In the next results we introduce the datum k(£). We prove the following 2
results, first without imposing the splitting type of F|p and then imposing that
it is the most unbalanced one for spanned bundles, i.e. that F|p = Op(c)® Op.

Proposition 3. Fiz integers ¢ > k > 0. There is a rank 2 spanned vector
bundle F with ci(F) = ¢, co(F) =y, k(F) = k, and h'(F) = 0 if and only if
one of the following conditions is satisfied:

(1) c=k+1andy=c;
(2) c=k+2 andy=2c;

(8) 2k > cand k(c— k) <y <k(c—k)+ (c—l;+2) _3;

(4) 2k < ¢ and k(c — k) + (6722]6“) <k(c—k)+ (CingQ) - 3.

Remark 1. Proposition 3 gives the list all triples (c1(F), ca(F), k(F)) real-
ized by a rank 2 spanned vector bundle F with h!(F) = 0. In particular we see
that for most (¢, y) several different k(F) are possible, often with some stable
bundle, some properly semistable bundle and some non semistable bundle. See
Proposition 6 (resp. Proposition 7) for the list of all triples (¢1(F), co(F), k(F))
realized by a rank 2 spanned vector bundle F with h'(F(—1)) = 0 (resp.
h'(F(—2)) = 0. See Remark 5 for an application of Proposition 7.

Proposition 4. Fiz integer ¢ > k > 0 and y > 0. There is a spanned
vector bundle F with c1(F) = ¢, co(F) =y, k(F) =k, h'(F) = 0 and Fjp =
Op(c) ® Op if and only if one of the following conditions is satisfied:

(1) c=k+1andy=c;

(2) c=k+2 and y = 2c;

(3) 2% > c and (k+1)(c—k) <y < k(c— k) + (°5+2) = 3;

(4) 2k < ¢ and (k+1)(c — k) + (“7*) <y < k(c—k) + (“5+2) 3.

Any bundle F in Proposition 4 satisfies h'(F(—2)) > 0 (Lemma 3) and so
it cannot have very general cohomology if ¢ is not very small.

If we drop the condition h!(F) = 0, we obviously get many other cases. We
point out here that for each ¢i(F) and k(F) we realize the one with maximal
Co.
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Proposition 5. Fix integers ¢ > k > 0.

(a) Every spanned bundle F with c1(F) = ¢, k(F) =k and F|p = Op(c)®
Op has (k+1)(c — k) < ca(F) < c(c— k).

(b) There is a spanned bundle F with c1(F) = ¢, k(F) = k, Fip =
Op(c) ® Op and co(F) = c(c — k). Any such F has h°(F) = (k;rz) + 2 and
WY F) = (c— k)2 —2— (“75F3).

(c) If F is spanned, c1(F) = ¢, k(F) = k, Fjp = Op(c) ® Op and
co(F) < c(c— k), then hO(F) > (¥12) + 3.

In the last section we briefly look at spanned bundles of rank r > 2 and
show the informations obtained from our results on the rank 2 case.
I thanks a referee for suggestions which greatly improved the exposition.

1 Balanced splitting type

Set O := Op2.
We need the following well-known exercise (see Lemma 5 for a more difficult
case).

Lemma 1. Fiz integers a > 0 and s > 0. Let S C P2 be a general subset
with cardinality s. The sheaf Ts(a) is spanned if and only if either a = 1 and
#(S) =1 ora=2 and 4§(S) =4 or #(S) < (aJ2r2) - 3.

Proof of Theorem 1 and Proposition 1.5: We first consider the stable case. A
necessary and sufficient condition for the existence of a stable bundle (even a
non spanned one) is 4y > ¢? and 4y — ¢® # —4. Assume that these inequalities
are satisfied and that either (c,y) € {(1,1),(2,4)} or ¢2/4 <y < 2+c(c+3)/2.
The existence of a spanned and stable bundle for these (¢, y) is due to Le Potier
([6, Proposition 1.4], [9, 3.4]), who proved that in this range we may take as €
a general stable bundle with the prescribed Chern numbers y, c. Since 2 + ¢(c+
3)/2 > ¢2/2, to conclude the proof of Theorem 1 it is sufficient to prove its part
(ii).

Assume 2y > ¢? and the existence of a rank 2 spanned vector bundle F with
c1(F) = c and cp(F) = y. Set k := k(F). F is stable (resp. semistable) if and
only if 2k < ¢ (resp. 2k < ¢). We have an exact sequence

0—-0k)—>F—=Zz(c—k)—0 (1.1)

with Z a zero-dimensional and locally complete intersection scheme. We have
y = k(c—k)+deg(Z). Since k > 0 and h*(O(k)) = 0, F is spanned if and only
if Tz(c — k) is spanned. If Zz(c — k) is spanned, then deg(Z) < (c — k)? and
hence y < ¢(c — k). We get part (ii) of Theorem 1 and of Proposition 1.5.
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If ¢ is odd, then stability and semistability coincide. Now assume that c is
even and take any semistable, but not stable bundle F. It fits in (1.1) with
k = ¢/2 and F is spanned if and only if Zz(c/2) is spanned. From (1.1) we get
hY(F(—=1—c¢/2)) = 0 and so any such F is semistable. We get y = deg(Z)+c?/4.

All cases with y > 2 + ¢2/4 allowed by [6, Theorem 0.1] are covered by
a stable spanned bundle (Theorem 1). Hence to prove part (i) of Proposition
1.5 it is sufficient to do the two cases y € {c?/4,¢?/4 + 1}. For any locally
complete intersection scheme Z there is a locally free F fitting in (1.1) with
k = ¢/2, because the Cayley-Bacharach condition is trivially satisfied. For the
case y = ¢*/4 use Z = () (in this case F = O(5)%?). For the case y = ¢*/4 + 1
use as Z a single point. In both cases Zz(c/2) is spanned. QED

Proof of Proposition 1.6: In characteristic zero the generic splitting type of a
semistable bundle F is rigid, i.e., [¢/2], |¢/2] is its generic splitting type, and
hence for a general g € Aut(P?) the bundle g*(F) gives a solution for Proposition
1.6.

If ¢ is even, then every bundle F with Fp = (’)D(g)692 is semistable.

Now take ¢ odd and let F be any bundle with F|p = Op(<L) @ Op(51).
Either F is semistable or it fits in (1.1) with £ = (¢+1)/2. In the latter case we
have co(F) = deg(Z) + (c? — 1)/4. Therefore (¢* — 1)/4 < co(F) < c(c—1)/2
and hence we are in the range for which there are spanned semistable bundles,
unless Z = (), i.e. unless F = O(<t) ¢ O(1). QED

Remark 2. Take ¢ > 0, 4y > %, 4y — 2 # 4 and y < 2+ c(c+3)/2. A
general rank 2 stable bundle £ with ¢;1(£) = ¢ and c2(€) = y is spanned (|6,
Proposition 1.4], [9, 3.4]) and it has the expected cohomology, i.e. for each t € Z
at most one of the integers h*(£(t)), i = 0,1, 2, is non-zero ([3, 5.1], [9, 3.4]). In
particular h'(E(t)) = 0 for all ¢ > 0. In part of this range we may find £ without
the expected cohomology, but with ~2'(£) = 0. In a smaller part of this range
we may find £ with h! () > 0, i.e. with h%(E) > x(£) = (3?) + 1 —y.

Lemma 2. Let W C P? be a zero-dimensional scheme such that Ty (a) is
spanned and h'(Zy (a)) = 0. Then for all A C W we have h*(Za(a)) = 0 and
Za(a) is spanned.

Proof. Since W is zero-dimensional, h'(W,Z4w(a)) = 0 and hence the re-
striction map H°(Ow(a)) — H®(O4(a)) is surjective. Hence h'(Za(a)) = 0.
Hence h%(Z4(a)) = (G;FQ) — deg(A). Let B the base scheme of |Z4(a)|. We have
h%(Za(a)) = h°(Zp(a)). Since Ty (a) is spanned, we have B C W and in par-
ticular B is zero-dimensional. We saw that h'(Zg(a)) = 0, i.e. h°(Z(a)) =
(“3?) — deg(B). Since B D A, then B = A.



30 E. Ballico

A bundle F fits in an exact sequence (1.1) with k = k(F) and Z a locally
complete zero-dimensional scheme. A bundle F in (1.1) has ¢;(F) = ¢ and
c2(F) = k(c — k) + deg(Z) > k(c — k). A bundle F in (1.1) with & > 0 is
spanned if and only if Zz(c — k) is spanned. A bundle F in (1.1) has k = k(F)
if and only if h°(Zz(c — 2k — 1)) = 0. If k > —2 we have h!(F) = 0 if and only
if hY(Zz(c — k)) = 0 (note that this is true even if k # k(F)).

Proof of Proposition 3: Set s := y — k(c — k). Assume that F exists. It fits in
(1.1) with deg(Z) = s, Zz(c— k) spanned and h!(Zz(c—k)) = 0. We have Z = ()
if and only if s = 0. Assume for the moment s > 0. We get h%(Zz(c — k)) > 2
and that h%(Zz(c — k)) = 2 if and only Z is a complete intersection of 2 plane
curves of degree c— k. If Z is a complete intersection of 2 plane curves of degree
c — k we have h'(Zz(c — k)) = 0 if and only if ¢ — k < 2 and we get cases (1)
and (2) in the statement of Proposition 3. Now assume h°(Zz(c — k)) > 3. We
have h'(Zz(c — k)) = 0 if and only if h%(Zz(c — k)) = (c_§+2) — s. Hence if F
exists, then y < k(c—k) + (C_§+2) — 2. If ¢ < 2k, then any sheaf F in (1.1) has
k(F) = k. If ¢ > 2k, the condition k = k(F) implies deg(Z) > (0722]“1).

The existence part for cases (3) and (4) is true by Lemma 1; note that taking
as Z a general union of s points in the case ¢ > 2k we have h%(Zz(c—2k—1)) =
0.

Remark 3. Take y,c, k for which Proposition 3 gives a spanned bundle.
Taking as Z a general subset with cardinality y — k(c — k) gives the bundles F
with minimal Hilbert function among all bundles with fixed c;(F), c2(F), and
k(F), i.e. K (F(t)) = 0 for all t with k —c <t < 0 and y — k(c—k) < (“7*37F3).
If 2k > ¢ (i.e. if F is not stable) and y # k(n — k) (i.e. F # O(k) @ O(c — k)),
then the maximal integer ¢ with h*(F(¢)) > 0 is the maximal negative integer ¢

—k+t+2
such that y — k(c — k) > (“7"37).
Now we prove the following two modifications of Proposition 3.

Proposition 6. Fiz integers ¢ > k > 0. There is a rank 2 spanned vector
bundle F with c1(F) = ¢, ca(F) =y, k(F) =k, and h(F(—=1)) = 0 if and only
if one of the following conditions is satisfied:

(1) c=k+1andy=c;
(2) 2k > ¢ and k(c— k) <y < k(c— k) + (°5Y);
(3) 2k < ¢ and k(c — k) + (0722“1) <k(c—k)+ (Cigﬂ)'

Proposition 7. Fiz integers ¢ > k > 0. There is a rank 2 spanned vector
bundle F with c1(F) = ¢, co(F) =y, k(F) = k, and h'(F(-2)) = 0 if and only
if one of the following conditions is satisfied:
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(1) 2k > c and k(c— k) <y <k(c—k)+ (cEk);

(2) 2k < c and k(c— k) + (C_ZQkH) <k(c—k)+ (cgk)

Proof of Propositions 6 and 7: Let F be any spanned rank 2 vector bundle. Fix
t € {1,2} and let C C P? be a smooth curve of degree t. We have an exact
sequence

0= F(-t) > F = Fc—0 (1.2)

Since C = P! and Flc is a spanned vector bundle, we have hi(C, Fic) = 0. Hence
(1.2) shows that the set of all triples (¢, y, k) = (¢1(F), ca(F), k(F)) which are
obtained from a rank 2 spanned bundle F with h'(F(—2)) = 0 is contained in
the one realized by a rank 2 spanned bundle F with h!'(F(—1)) = 0 and the
latter is contained in the one obtained from a rank 2 spanned bundles F with
h'(F) = 0. Take a rank 2 spanned bundle F and set k := k(F), ¢ := ¢;(F) and
y = co(F). Hence F fits in (1.1) for some Z with deg(Z) = y—k(c—k). Since k >
0, we have h' (O(k—t)) = h?(O(k—t)) = 0. Thus h'(F(—t)) = kY (Zz(c—k—1)).
If we require h'(Zz(c — k — 1)) = 0, then we exclude case (2) of Proposition 3,
while case (1) is allowed with Z a single point P and F any locally free extension
of Zp(1) by O(c—1). If we require h'(Zz(c—k —2)) = 0, then we exclude cases
(1) and (2) of Proposition 3. Now we look at cases (3) and (4) of Proposition
3. If K (ZTz(c —k —1t)) =0, t € {1,2}, then y — k(c — k) < (cfkgtw). Recall
that to get the existence part for Proposition 3 we took as Z a general subset
of P? with cardinality y — k(c — k). Such a set Z has h'(Zz(c — k —t)) = 0 if
and only if y — k(c — k) < (c_k5t+2). We have (C_§+2) -3< (C_ISH) for all
¢ > k+ 2. Hence for our general Z in cases (2) and (3) of Proposition 6 we may
apply Lemma 1 with a = ¢ — k. If c = k + 1 we only get case (1) of Proposition
6, because if Z = ), then F = O(c) ® O and k(O(c) ® O) = c. Since ¢ > k,
we have (C_§+2) -3> (C;k) and so we may apply Lemma 1 with a = ¢ — k to
prove Proposition 7. QED

In Propositions 3, 4, 5, 6 and 7 we assumed ¢ > k > 0, because if F is
spanned, then k(F) > 0 and ¢;(F) = k(F) if and only if F = O(c1(F)) @ O.

Proposition 8. Fiz integers ¢ > k > 0. There is a rank 2 spanned vector
bundle F with c1(F) = ¢, co(F) =y, k(F) =k, and h*(F(=3)) = 0 if and only
if one of the following conditions is satisfied:

(1) 2k > c and k(c — k) <y <k(c—k)+ (C_g_l) —3;

(2) 2k < ¢ and k(c — k) + (0722]6“) <k(c—Fk)+ (Cigil)'

Proof. Take a spanned rank 2 vector bundle F fitting in (1.1) with ¢ = ¢1(F),
k = k(F) and deg(Z) = c2(F) — k(c — k). Since k > 0, we have h1(O(k — 3)) =
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h*(O(k — 3)) = 0 and so h!(F(=3)) = h}(Zz(c — k — 3)). Thus ca(F) < k(c —
k) + (7571 if AY(F(=3)) = 0. Assume co(F) < k(e —k) + (“57") and take as
7 a general subset of P? with cardinality co(F) — (Cfgfl). Any sheaf F in (1.1)
with this scheme Z satisfies h!(F(—3)) = 0. The proof of Proposition 3 gives
that Z gives a spanned vector bundle F with k(F) = k. QED

2 Splitting type (c,0)

In this section we consider necessary or sufficient conditions for the existence
of spanned bundles F with ¢1(F) = ¢, c2(F) =y and F|p = Op(c) ® Op.

Lemma 3. Let F be a rank r > 2 spanned vector bundle with no trivial
factor and with F|p = Op(c) ® Og(rfl). Then h'(F(-2)) >r — 1.

Proof. Since F has no trivial factor and it is spanned, we have h°(F") = 0 and
¢ > 0. From the exact sequence

0— FY(=1) > F' = F}, =0 (2.1)
we get h!(FV(—1)) > r — 1. Duality gives h}(FV(-1)) = h'(F(-2)). QED

The next lemma settles the case ¢ = 1.

Lemma 4. Let £ be a rank r spanned vector bundle such that c1(E) = 1.
Then either £ = O(l) fast (’)@(7‘—1) or & =2 TP2(—1) @ O@(T_2).

Proof. First assume r = 2. In this case £ is uniform of splitting type (1,0) and
hence either £ = O(1) ® O or £ = TP?(-1) ([18]). Now assume r > 2 and that
the lemma is true for bundles of rank r — 1. Since r > dim(PP?) a general section
of £ induces an exact sequence

0-0—=€E—-G—0

with G a spanned vector bundle with ¢;(G) = 1. Use the inductive assumption
and that h'(Qp2(1)) = 0. QED

From now on we assume ¢ > 2.

Remark 4. Let F be a vector bundle fitting in (1.1). If F is spanned, then
c >k and deg(ZNT) < c—k for each line T C P2 If k = ¢, then Z = {)
and so F = O(c) @ 0. If 0 < k < ¢, then Fjp = Op(c) ® Op if and only if
deg(ZND)=c—k.
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Lemma 5. Fiz an integer a > 0 and a line D C P2. Fiz an integer z such
that a < z < (a;—2) — 3. Let A C D be any degree a zero-dimensional scheme.
Let B C P2\ D be a general subset with #(B) = z — a. Then h*(Zaup(a)) =0
and Zaup(a) is spanned.

Proof. By Lemma 2 it is sufficient to do the case z = (G;Q) —3. Since BND = ),
there is a residual exact sequence

0= Zp(a— 1) = Taup(a) — Tapla) — 0 (2.2)

Since B is general, we have h%(Zg(a—1)) = 2 and h'(Zg(a—1)) = 0. Hence (2.2)
gives h'(Zaup(a)) = 0 and h°(Zaup(a)) = 3. Fix a general (C,C") € [Zg(a—1)|%.
For a general B, the curves C,C’ are general plane curves of degree a — 1 and
hence C N C’ = BU E with E a finite set with cardinality (a — 1)? — #(B) and
CNC'NE =10. Using TUD with T € |Zg(a — 1)| we see that the scheme-
theoretic base locus of |Z4up(a)| is contained in AU EU D. Let Z C D be
any zero-dimensional scheme such that deg(Z) = a+ 1 and Z D A. Using Z
instead of A in (2.2) we get h°(Zpuz(a)) = 2. Hence W N D = A (as schemes).
Therefore W C AUBUE. Hence to prove the lemma it is sufficient to prove that
ENW = (). Assume the existence of o € ENW. We fixed the scheme A, but we
are allowed to move B. Recall that C' is a smooth plane curve of degree a — 1.
Hence |O¢(a — 1) is induced by |Op2(a — 1)|. Since the lemma is easy if a < 3,
we may assume a > 4. In this case h°(O¢(a — 1)) > 8. By [13, Theorem 2.4]
the monodromy group of the set of divisors |O¢(a — 1)| contains the alternating
group and hence it is (@ — 1)? — I-transitive. For a general C’ we get that the
union with A of any two subset of B U E with cardinality (B) + 1 have the
same Hilbert function. Since o € W, we get E C W, i.e. h®(Zpupua(a)) = 2.
Since BUE = C N (', the equations of C' and C’ generate the homogeneous
ideal of BUE and so we h'(Zpug(a—1)) = 2 and h°(Zgyg(a) = 6. This is true
for any A, D and hence we may first assume that D is a general line and then
that A is a general subset of D with cardinality a > 4. For a general A C D
with cardinality a > 4, we get h°(Zpupua(a)) = 2, contradicting the inclusion
E C W, which gives h®(Zgygua(a)) = 3. QED

Proof of Proposition 4: Any F with ¢;(F) = ¢ and k(F) = k fits in (1.1) with
h2(Zz(c—2k—1)) = 0 and deg(Z) = ca(F)—k(c—k). We have F|p = Op(c)®Op
if and only if deg(Z N D) = ¢ — k. In particular we have co(F) > (k+1)(c — k).
Cases (1) and (2) corresponds to the case in which 1 < c¢—k < 2 and h%(Zz(c—
k)) = 2,i.e. Z a complete intersection of two plane curves Cy, Co of degree c—k;
this case is realized taking C; O D and then taking C'5 a general curve of degree
¢ — k. Therefore it is sufficient to test which (¢, y) of the cases (3) and (4) of
Proposition 3 give a solution for Proposition 4. Let Resp(Z) be the residual
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scheme of Z with respect to D, i.e. the closed subscheme of P? with Z5 : Zp as
its ideal sheaf. We have deg(Z) = deg(Z N D) + deg(Resp(Z2)).

First assume 2k > ¢, so that any F fitting in (1.1) has k(F) = k. Use Lemma
D.

Now assume 2k < c. In this case we also have the condition h®(Zz(c — 2k —
1)) = 0. Since deg(Z N D) = c—k > ¢ — 2k — 1, we have h®(Zz(c — 2k — 1)) =
W (Zres, () (¢ — 2k —2)). The h'-part of Lemma 5 with a = ¢— k shows that we
may satisfy it taking Z = AU B with deg(A) =c—k, A C D, and B general in
P2\ D as soon as #(B) > (CEZk). Hence we need deg(Z) > ¢ —k + (CEQk) and
hence y > (k+1)(c — k) + (C_ZQk). QED

Proof of Proposition 5: Any F with ¢1(F) = ¢, k(F) = k and Fjp = Op(c) ®
Op fits in (1.1) with deg(ZND) = c—k. Without the condition deg(ZND) = c¢—
k, the maximal integer deg(Z) is obtained if and only Z is a complete intersection
of 2 plane curves C, C’ of degree ¢ — k and in this case we have ca(F) = c¢(c—k)
and h(F) =2+ (k;r2) We satisfy the condition deg(D N Z) = ¢ — k taking as
C' a reducible curve with D as a component.

3 Rankr > 2

In this section we consider rank r > 2 spanned vector bundles £ on P?
without trivial factors with ¢;(€) = ¢ and ¢2(€) = y. The situation is different
for certain sectors of triples (¢, y,r) of ¢1, co and rank r. First of all r < (652) -1
Ifr = (032) —1, then the spanned bundle £ exists, it is unique, it is homogeneous
and hence its splitting type,co(€) = ¢, £ is homogeneous and for each line D
the bundle & p has splitting type (1,...,1,0,---,0) with ¢ 1’s. So we cannot
achieve all splitting types. For the more unbalanced splitting type (c,0,...,0)
we may use the statements of Propositions 4 and 5 and give some existence
results, summarized in Remark 6.

Fix an integer 7 > 2. Let F be a rank 2 vector bundle on P? with no trivial
factors. There is a rank r vector bundle £ on P? fitting in an exact sequence

0-0%2 5645 F 50 (3.1)

and with no trivial factor if and only if » < h'(FV) + 2. If £ exists, then it is
spanned if and only if F is spanned.

Remark 5. Take a spanned rank 2 vector bundle F. Duality gives h'(F") =
h(F(-3)). Hence Proposition 8 gives the list of all (¢ (F), ca(F), k(F)) with F
a rank 2 spanned vector bundle such that any extension of F by a trivial vector
bundle is the trivial extension.
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Fix a line D C P2. Look at the exact sequence (2.1). From (2.1) we get a
linear map u : H'(FV(—1)) — HY(FV). Set a := rank(u). We have r < 2 + «
if and only if there is an extension (3.1) whose restriction to D is the trivial
extension. Note that the restriction of (3.1) to D is the trivial extension if

and only if &p = Fp & O%(T_Q). Now assume that F is spanned and set
¢ = c1(F). We assume ¢ > 0 i.e. F # O?. Since F has no trivial factor, then
RO(FY) = 0. Hence the map wu is injective if and only if Fip has no trivial
factor (in this case o = h'(FY(—1))), while if Fjp = Op(c) & Op, then u
has a one-dimensional kernel (in this case a = h'(FV(—1)) — 1). Duality gives
hY(FY(-=1)) = h'(F(-2)). So to know the integer « it is sufficient to compute
the integer h!(F(—2)).

Remark 6. Take the set-up of Propositions 5, i.e. the set-up of Proposition
4 without the assumption h!(F) = 0. By duality we have h'(F") = hl(F(-3)).
Since k > 0, (1.1) gives h'(F(=2)) = b} (Zz(c—k—3)). Since deg(Z) = y—k(c—
k), we have h'(Zz(c—k—3)) > max{0, (67271) —y+k(c—k)}, but the condition
Fip = Op(c) ® Op gives h'(F(—2)) > 0 (Lemma 3). In case (1) (resp. (2)) of
Proposition 4 Z is a point (resp. the complete intersection of 2 conics) and hence
hY(FY) =1 and h}(F(-2)) =1 (vesp. h}(FY) = 4 and h'(F(-2)) = 3). Hence
in case (1) F extends as a spanned bundle with no trivial factor, up to rank 3,
but the associated bundle has not (¢, 0,0) as its splitting type over D. In case
(2) F extends up to rank 6 as a spanned bundle with no trivial factor, but only
up to rank 4 if we add the condition that (c,0,...,0) is the splitting type over
D.

Now look at cases (3) and (4) of Propositions 3 and 4. For very large y in
cases (3) and (4) we have h'(F(—2)) > 2, but for many y there are different
schemes Z with h'(Zz(c—k)) = 0, but with different values for h!(F(—2)). Since
RY(D,Zap(c—k—2))=0, BN (D,Zyp(c—k—2)=1and h*(Zz(c—k—3)) =
h%(O(c — k — 3)) = 0, the one used to solve the existence part for Proposition
4 has h'(Zz(c — k — 3)) = max{1, (Cfgfl) —y+ (k+1)(c—k)}. Any spanned
bundle F has h!(F(-2)) > (C_g_l) —y+ (k+1)(c—k).

Acknowledgements. I thanks a referee for suggestions which greatly im-
proved the exposition.

References

[1] C. ANGHEL, I. COANDA, N. MANOLACHE: Globally generated vector bundles on P" with
c1 =4, arXiv:1305.3464v2.



36

(18]

E. Ballico

C. ANGHEL, N. MANOLACHE: Globally generated vector bundles on P™ with ¢c1 = 3, Math.
Nachr. 286 (2013), no. 13-15, 1407-1423.

J. BRUN: Les fibrés de rang deuzr sur P2 et leurs sections, Bull. Soc. Math. France 107
(1979), 457-473.

U. Bruzzo, D. MARKUSHEVICH: Moduli of framed sheaves on projective surfaces, Docu-
menta Math. 16 (2011), 399-410.

L. CHIODERA, P. ELLIA: Rank two globally generated vector bundles with ¢c1 <5 , Rend.
Istit. Mat. Univ. Trieste 44 (2012), 413-422

PH. ELLIA: Chern classes of rank two globally generated wvector bundles on P?, Rend.
Lincei, Mat. Appl. 24 (2013), no. 2, 147-163.

D. HuyBRECHTS, M. LEHN: Framed modules and their moduli, Internat. J. Math. 6
(1995), 297-324

D. HuyBRECHTS, M. LEHN: The geometry of moduli spaces of sheaves, Friedr. Vieweg &
Sohn, Braunschweig, 1997.

J. LE POTIER: Stabilité et amplitude sur P?(C), in: Vector Bundles and Differential Equa-
tions, A. Hirschowitz (ed.), 145-182, Progress in Math. 7, Birkh&user, Boston, 1980.

L. MANIVEL: Des fibrés globalment engendre sur ’espace projectif, Math. Ann. 301 (1995),
469-484.

N. MANOLACHE: Globally generated vector bundles on P® with ¢; = 3, Preprint,
arXiv:1202.5988 [math.AG], 2012.

CH. OKONEK, M. SCHNEIDER, H. SPINDLER: Vector bundles on complex projective
spaces, Progress in Mathematics, 3. Birkhauser, Boston, Mass., 1980.

J. RATHMANN: The uniform position principle for curves in characteristic p, Math. Ann.
276 (1987), no. 4, 565-579.

J. C. SIERRA: A degree bound for globally generated vector bundles, Math. Z. 262 (2009),
no. 3, 517-525.

J.C. SIERRA, L. UGAGLIA: On globally generated vector bundles on projective spaces, J.
Pure Appl. Algebra 213 (2009), 2141-2146.

J.C. SIERRA, L. UGAGLIA: On globally generated vector bundles on projective spaces 11,
J. Pure Appl. Algebra 218 (2014), 174-180.

R. L. E. SCHWARZENBERGER: Vector bundles on the projective plane, Proc. London Math.
Soc. 11 (1961), 623-640.

A. VAN DE VEN: On uniform vector bundles, Math. Ann. 195 (1972), 245-248.



