Rank 2 spanned vector bundles on \mathbb{P}^{2} with a fixed restriction to a line or a prescribed order of stability

Edoardo Ballico ${ }^{\text {i }}$
Department of Mathematics, University of Trento
ballico@science.unitn.it

Received: 5.8.2015; accepted: 19.12.2015.

Abstract

Fix a line $D \subset \mathbb{P}^{2}$. In this note we study rank 2 spanned vector bundles with prescribed Chern classes and either with a prescribed order of stability or whose restriction to D has a prescribed splitting type, mainly when the splitting type is either rigid or the most extremal one, $(c, 0)$. We use the description of the Chern classes of all rank 2 spanned bundles due to Ph. Ellia.

Keywords: spanned vector bundles, vector bundles on the plane, splitting type
MSC 2000 classification: primary 14J60, secondary 14F05

Introduction

Several papers are devoted to the classification of spanned vector bundles on $\mathbb{P}^{n}, n \geq 2$, with low $c_{1}([1],[2],[5],[10],[11],[14], ~[15], ~[16])$. For any rank 2 vector bundle \mathcal{F} let $k(\mathcal{F})$ be the maximal integer k such that $h^{0}(\mathcal{F}(-k))>0$. The integer $k(\mathcal{F})$ is sometimes called the order of stability and sometimes the order of unstability or instability of \mathcal{F}. If \mathcal{F} is spanned, then $k(\mathcal{F}) \geq 0 . \mathcal{F}$ is stable (resp. semistable) if and only if $2 k(\mathcal{F})<c_{1}(\mathcal{F})$ (resp. $2 k(\mathcal{F}) \leq c_{1}(\mathcal{F})$). Two rank 2 vector bundles \mathcal{E}, \mathcal{F} with the same Chern numbers may have different cohomological properties. If \mathcal{E} is stable, but \mathcal{F} is not stable, they must have different cohomological properties (even if both are spanned), because $k(\mathcal{F}) \neq$ $k(\mathcal{E})$. The Chern classes of all rank 2 spanned bundles on \mathbb{P}^{2} are known ([6]). Here we use the results and proofs of [6] to consider spanned vector bundles \mathcal{E} with one of the following additional conditions: we fix a line D and we prescribe in advance the splitting type of $\mathcal{E}_{\mid D}$ or we fix the integer $k(\mathcal{E})$ or we fix both the integer $k(\mathcal{E})$ and the splitting type of $\mathcal{E}_{\mid D}$.

Fix a line $D \subset \mathbb{P}^{2}$. Looking only at bundles whose restriction to a given line is prescribed arises in the set-up of framed sheaves ([7], [8], [4]). Fix a positive

[^0]integer c and fix an integer t such that $0 \leq 2 t \leq c$. We only look at spanned bundles \mathcal{E} on \mathbb{P}^{2} with $\mathcal{E}_{\mid D} \cong \mathcal{O}_{D}(c-t) \oplus \mathcal{O}_{D}(t)$ (the possible splitting types of rank 2 spanned bundles on D). It is easy to check that the answer (i.e. the possible integers $c_{2}(\mathcal{E})$) depends very much from t. We have a complete answer in the case $t=\lfloor c / 2\rfloor$, i.e. when $\mathcal{E}_{\mid D}$ is rigid (see Proposition 1.6) and partial result in the other extremal case $t=0$ (see Propositions 4 and 5).

We recall that for all $(c, y) \in \mathbb{Z}^{2}$ there is a rank 2 vector bundle \mathcal{E} on \mathbb{P}^{2} with $c_{1}(\mathcal{E})=c$ and $c_{2}(\mathcal{E})=y([17],[12$, Theorem 6.2.1]). There is a stable rank 2 vector bundle \mathcal{E} on \mathbb{P}^{2} with $c_{1}(\mathcal{E})=c$ and $c_{2}(\mathcal{E})=y$ if and only if $4 y>c^{2}$ and $4 y-c^{2} \neq-4([17],[9$, page 145$])$. However, these Chern integers (c, y) may also be realized by unstable bundles, with very different cohomological properties.

Ph . Ellia gave the complete list of all $(c, y) \in \mathbb{Z}^{2}$ such that there is a rank 2 spanned vector bundle \mathcal{E} on \mathbb{P}^{2} with $c_{1}(\mathcal{E})=c$ and $c_{2}(\mathcal{E})=y$ ($[6$, Theorem $0.1]$). We need $c \geq 0$ and if $c=0$, then $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^{2}}^{2}$ and so $y=0$. Hence we may assume $c>0$. It is too long to state his full list (see [6, page 148]); suffice to say that $y \leq c^{2}$ and that all (c, y) with $c>0$ and $c^{2} / 4 \leq y \leq 3 c^{2} / 4$ are realized by some spanned \mathcal{E}. A minor modification of the proof of $[6$, Theorem 0.1$]$ gives the following 3 results: Theorem 1 and Propositions 1.5 and 1.6.

Theorem 1. Fix positive integers y, c such that there is a rank 2 spanned vector bundle \mathcal{F} with $c_{1}(\mathcal{F})=c$ and $c_{2}(\mathcal{F})=y$.
(i) There is a rank 2 stable and spanned vector bundle \mathcal{E} on \mathbb{P}^{2} with $c_{1}(\mathcal{E})=$ c and $c_{2}(\mathcal{E})=y$ if and only if $4 y>c^{2}, 4 y-c^{2} \neq-4$.
(ii) If $y>c\lfloor c / 2\rfloor$, then any such spanned \mathcal{F} is stable.

Recall again that the conditions $4 y>c^{2}, 4 y-c^{2} \neq-4$ in part (i) are the necessary and sufficient conditions for the existence of a rank 2 stable vector bundle on \mathbb{P}^{2} with these Chern numbers ([17], [9, page 145]). Thus part (i) of Theorem 1 may be rephrased saying that some Chern numbers (c, y) are realized by a stable spanned bundle if and only if they are realized by a spanned bundle and by a stable bundle.

For odd c_{1} a rank 2 semistable vector bundle on \mathbb{P}^{2} is stable. For even c_{1} we may consider properly semistable vector bundles. We get the following variation of Theorem 1.

Proposition 1. Fix positive integers y, c such that c is even and there is a rank 2 spanned vector bundle \mathcal{F} on \mathbb{P}^{2} with $c_{1}(\mathcal{F})=c$ and $c_{2}(\mathcal{F})=y$.
(i) There is a rank 2 semistable and spanned vector bundle \mathcal{E} on \mathbb{P}^{2} with $c_{1}(\mathcal{E})=c$ and $c_{2}(\mathcal{E})=y$ if and only if $4 y \geq c^{2}$.
(ii) If $y \geq c^{2} / 2$, then any spanned \mathcal{F} is semistable.

Proposition 2. Fix positive integers y, c. There is a rank 2 spanned vector bundle \mathcal{E} on \mathbb{P}^{2} with $c_{1}(\mathcal{E})=c, c_{2}(\mathcal{E})=y$ and $\mathcal{E}_{\mid D} \cong \mathcal{O}_{D}(\lceil c / 2\rceil) \oplus \mathcal{O}_{D}(\lfloor c / 2\rfloor)$ if
and only if either there is a spanned semistable one or c is odd and $4 y=c^{2}-1$. In the latter case $\mathcal{O}_{\mathbb{P}^{2}}((c+1) / 2) \oplus \mathcal{O}_{\mathbb{P}^{2}}((c-1) / 2)$ is the only bundle.

In the next results we introduce the datum $k(\mathcal{E})$. We prove the following 2 results, first without imposing the splitting type of $\mathcal{F}_{\mid D}$ and then imposing that it is the most unbalanced one for spanned bundles, i.e. that $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$.

Proposition 3. Fix integers $c>k \geq 0$. There is a rank 2 spanned vector bundle \mathcal{F} with $c_{1}(\mathcal{F})=c, c_{2}(\mathcal{F})=y, k(\mathcal{F})=k$, and $h^{1}(\mathcal{F})=0$ if and only if one of the following conditions is satisfied:
(1) $c=k+1$ and $y=c$;
(2) $c=k+2$ and $y=2 c$;
(3) $2 k \geq c$ and $k(c-k) \leq y \leq k(c-k)+\binom{c-k+2}{2}-3$;
(4) $2 k<c$ and $k(c-k)+\binom{c-2 k+1}{2} \leq k(c-k)+\binom{c-k+2}{2}-3$.

Remark 1. Proposition 3 gives the list all triples $\left(c_{1}(\mathcal{F}), c_{2}(\mathcal{F}), k(\mathcal{F})\right)$ realized by a rank 2 spanned vector bundle \mathcal{F} with $h^{1}(\mathcal{F})=0$. In particular we see that for most (c, y) several different $k(\mathcal{F})$ are possible, often with some stable bundle, some properly semistable bundle and some non semistable bundle. See Proposition 6 (resp. Proposition 7) for the list of all triples $\left(c_{1}(\mathcal{F}), c_{2}(\mathcal{F}), k(\mathcal{F})\right)$ realized by a rank 2 spanned vector bundle \mathcal{F} with $h^{1}(\mathcal{F}(-1))=0$ (resp. $h^{1}(\mathcal{F}(-2))=0$. See Remark 5 for an application of Proposition 7.

Proposition 4. Fix integer $c>k \geq 0$ and $y>0$. There is a spanned vector bundle \mathcal{F} with $c_{1}(\mathcal{F})=c, c_{2}(\mathcal{F})=y, k(\mathcal{F})=k, h^{1}(\mathcal{F})=0$ and $\mathcal{F}_{\mid D} \cong$ $\mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$ if and only if one of the following conditions is satisfied:
(1) $c=k+1$ and $y=c$;
(2) $c=k+2$ and $y=2 c$;
(3) $2 k \geq c$ and $(k+1)(c-k) \leq y \leq k(c-k)+\binom{c-k+2}{2}-3$;
(4) $2 k<c$ and $(k+1)(c-k)+\binom{c-2 k}{2} \leq y \leq k(c-k)+\binom{c-k+2}{2}-3$.

Any bundle \mathcal{F} in Proposition 4 satisfies $h^{1}(\mathcal{F}(-2))>0$ (Lemma 3) and so it cannot have very general cohomology if c is not very small.

If we drop the condition $h^{1}(\mathcal{F})=0$, we obviously get many other cases. We point out here that for each $c_{1}(\mathcal{F})$ and $k(\mathcal{F})$ we realize the one with maximal c_{2}.

Proposition 5. Fix integers $c>k \geq 0$.
(a) Every spanned bundle \mathcal{F} with $c_{1}(\mathcal{F})=c, k(\mathcal{F})=k$ and $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus$ \mathcal{O}_{D} has $(k+1)(c-k) \leq c_{2}(\mathcal{F}) \leq c(c-k)$.
(b) There is a spanned bundle \mathcal{F} with $c_{1}(\mathcal{F})=c, k(\mathcal{F})=k, \mathcal{F}_{\mid D} \cong$ $\mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$ and $c_{2}(\mathcal{F})=c(c-k)$. Any such \mathcal{F} has $h^{0}(\mathcal{F})=\binom{k+2}{2}+2$ and $h^{1}(\mathcal{F})=(c-k)^{2}-2-\binom{c-k+2}{2}$.
(c) If \mathcal{F} is spanned, $c_{1}(\mathcal{F})=c, k(\mathcal{F})=k, \mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$ and $c_{2}(\mathcal{F})<c(c-k)$, then $h^{0}(\mathcal{F}) \geq\binom{ k+2}{2}+3$.

In the last section we briefly look at spanned bundles of rank $r>2$ and show the informations obtained from our results on the rank 2 case.

I thanks a referee for suggestions which greatly improved the exposition.

1 Balanced splitting type

Set $\mathcal{O}:=\mathcal{O}_{\mathbb{P}^{2}}$.
We need the following well-known exercise (see Lemma 5 for a more difficult case).

Lemma 1. Fix integers $a>0$ and $s \geq 0$. Let $S \subset \mathbb{P}^{2}$ be a general subset with cardinality s. The sheaf $\mathcal{I}_{S}(a)$ is spanned if and only if either $a=1$ and $\sharp(S)=1$ or $a=2$ and $\sharp(S)=4$ or $\sharp(S) \leq\binom{ a+2}{2}-3$.

Proof of Theorem 1 and Proposition 1.5: We first consider the stable case. A necessary and sufficient condition for the existence of a stable bundle (even a non spanned one) is $4 y>c^{2}$ and $4 y-c^{2} \neq-4$. Assume that these inequalities are satisfied and that either $(c, y) \in\{(1,1),(2,4)\}$ or $c^{2} / 4<y \leq 2+c(c+3) / 2$. The existence of a spanned and stable bundle for these (c, y) is due to Le Potier ($[6$, Proposition 1.4], $[9,3.4]$), who proved that in this range we may take as \mathcal{E} a general stable bundle with the prescribed Chern numbers y, c. Since $2+c(c+$ $3) / 2 \geq c^{2} / 2$, to conclude the proof of Theorem 1 it is sufficient to prove its part (ii).

Assume $2 y \geq c^{2}$ and the existence of a rank 2 spanned vector bundle \mathcal{F} with $c_{1}(\mathcal{F})=c$ and $c_{2}(\mathcal{F})=y$. Set $k:=k(\mathcal{F}) . \mathcal{F}$ is stable (resp. semistable) if and only if $2 k<c$ (resp. $2 k \leq c$). We have an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(k) \rightarrow \mathcal{F} \rightarrow \mathcal{I}_{Z}(c-k) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

with Z a zero-dimensional and locally complete intersection scheme. We have $y=k(c-k)+\operatorname{deg}(Z)$. Since $k \geq 0$ and $h^{1}(\mathcal{O}(k))=0, \mathcal{F}$ is spanned if and only if $\mathcal{I}_{Z}(c-k)$ is spanned. If $\mathcal{I}_{Z}(c-k)$ is spanned, then $\operatorname{deg}(Z) \leq(c-k)^{2}$ and hence $y \leq c(c-k)$. We get part (ii) of Theorem 1 and of Proposition 1.5.

If c is odd, then stability and semistability coincide. Now assume that c is even and take any semistable, but not stable bundle \mathcal{F}. It fits in (1.1) with $k=c / 2$ and \mathcal{F} is spanned if and only if $\mathcal{I}_{Z}(c / 2)$ is spanned. From (1.1) we get $h^{0}(\mathcal{F}(-1-c / 2))=0$ and so any such \mathcal{F} is semistable. We get $y=\operatorname{deg}(Z)+c^{2} / 4$.

All cases with $y \geq 2+c^{2} / 4$ allowed by [6, Theorem 0.1] are covered by a stable spanned bundle (Theorem 1). Hence to prove part (i) of Proposition 1.5 it is sufficient to do the two cases $y \in\left\{c^{2} / 4, c^{2} / 4+1\right\}$. For any locally complete intersection scheme Z there is a locally free \mathcal{F} fitting in (1.1) with $k=c / 2$, because the Cayley-Bacharach condition is trivially satisfied. For the case $y=c^{2} / 4$ use $Z=\emptyset$ (in this case $\mathcal{F} \cong \mathcal{O}\left(\frac{c}{2}\right)^{\oplus 2}$). For the case $y=c^{2} / 4+1$ use as Z a single point. In both cases $\mathcal{I}_{Z}(c / 2)$ is spanned.

Proof of Proposition 1.6: In characteristic zero the generic splitting type of a semistable bundle \mathcal{F} is rigid, i.e., $\lceil c / 2\rceil,\lfloor c / 2\rfloor$ is its generic splitting type, and hence for a general $g \in \operatorname{Aut}\left(\mathbb{P}^{2}\right)$ the bundle $g^{*}(\mathcal{F})$ gives a solution for Proposition 1.6.

If c is even, then every bundle \mathcal{F} with $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}\left(\frac{c}{2}\right)^{\oplus 2}$ is semistable.
Now take c odd and let \mathcal{F} be any bundle with $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}\left(\frac{c+1}{2}\right) \oplus \mathcal{O}_{D}\left(\frac{c-1}{2}\right)$. Either \mathcal{F} is semistable or it fits in (1.1) with $k=(c+1) / 2$. In the latter case we have $c_{2}(\mathcal{F})=\operatorname{deg}(Z)+\left(c^{2}-1\right) / 4$. Therefore $\left(c^{2}-1\right) / 4 \leq c_{2}(\mathcal{F}) \leq c(c-1) / 2$ and hence we are in the range for which there are spanned semistable bundles, unless $Z=\emptyset$, i.e. unless $\mathcal{F} \cong \mathcal{O}\left(\frac{c+1}{2}\right) \oplus \mathcal{O}\left(\frac{c-1}{2}\right)$.
$Q E D$
Remark 2. Take $c>0,4 y>c^{2}, 4 y-c^{2} \neq 4$ and $y \leq 2+c(c+3) / 2$. A general rank 2 stable bundle \mathcal{E} with $c_{1}(\mathcal{E})=c$ and $c_{2}(\mathcal{E})=y$ is spanned ($[6$, Proposition 1.4], [9, 3.4]) and it has the expected cohomology, i.e. for each $t \in \mathbb{Z}$ at most one of the integers $h^{i}(\mathcal{E}(t)), i=0,1,2$, is non-zero $([3,5.1],[9,3.4])$. In particular $h^{1}(\mathcal{E}(t))=0$ for all $t \geq 0$. In part of this range we may find \mathcal{E} without the expected cohomology, but with $h^{1}(\mathcal{E})=0$. In a smaller part of this range we may find \mathcal{E} with $h^{1}(\mathcal{E})>0$, i.e. with $h^{0}(\mathcal{E})>\chi(\mathcal{E})=\binom{c+2}{2}+1-y$.

Lemma 2. Let $W \subset \mathbb{P}^{2}$ be a zero-dimensional scheme such that $\mathcal{I}_{W}(a)$ is spanned and $h^{1}\left(\mathcal{I}_{W}(a)\right)=0$. Then for all $A \subsetneq W$ we have $h^{1}\left(\mathcal{I}_{A}(a)\right)=0$ and $\mathcal{I}_{A}(a)$ is spanned.

Proof. Since W is zero-dimensional, $h^{1}\left(W, \mathcal{I}_{A, W}(a)\right)=0$ and hence the restriction map $H^{0}\left(\mathcal{O}_{W}(a)\right) \rightarrow H^{0}\left(\mathcal{O}_{A}(a)\right)$ is surjective. Hence $h^{1}\left(\mathcal{I}_{A}(a)\right)=0$. Hence $h^{0}\left(\mathcal{I}_{A}(a)\right)=\binom{a+2}{2}-\operatorname{deg}(A)$. Let B the base scheme of $\left|\mathcal{I}_{A}(a)\right|$. We have $h^{0}\left(\mathcal{I}_{A}(a)\right)=h^{0}\left(\mathcal{I}_{B}(a)\right)$. Since $\mathcal{I}_{W}(a)$ is spanned, we have $B \subseteq W$ and in particular B is zero-dimensional. We saw that $h^{1}\left(\mathcal{I}_{B}(a)\right)=0$, i.e. $h^{0}\left(\mathcal{I}_{B}(a)\right)=$ $\binom{a+2}{2}-\operatorname{deg}(B)$. Since $B \supseteq A$, then $B=A$.

A bundle \mathcal{F} fits in an exact sequence (1.1) with $k=k(\mathcal{F})$ and Z a locally complete zero-dimensional scheme. A bundle \mathcal{F} in (1.1) has $c_{1}(\mathcal{F})=c$ and $c_{2}(\mathcal{F})=k(c-k)+\operatorname{deg}(Z) \geq k(c-k)$. A bundle \mathcal{F} in (1.1) with $k \geq 0$ is spanned if and only if $\mathcal{I}_{Z}(c-k)$ is spanned. A bundle \mathcal{F} in (1.1) has $k=k(\mathcal{F})$ if and only if $h^{0}\left(\mathcal{I}_{Z}(c-2 k-1)\right)=0$. If $k \geq-2$ we have $h^{1}(\mathcal{F})=0$ if and only if $h^{1}\left(\mathcal{I}_{Z}(c-k)\right)=0$ (note that this is true even if $k \neq k(\mathcal{F})$).

Proof of Proposition 3: Set $s:=y-k(c-k)$. Assume that \mathcal{F} exists. It fits in (1.1) with $\operatorname{deg}(Z)=s, \mathcal{I}_{Z}(c-k)$ spanned and $h^{1}\left(\mathcal{I}_{Z}(c-k)\right)=0$. We have $Z=\emptyset$ if and only if $s=0$. Assume for the moment $s>0$. We get $h^{0}\left(\mathcal{I}_{Z}(c-k)\right) \geq 2$ and that $h^{0}\left(\mathcal{I}_{Z}(c-k)\right)=2$ if and only Z is a complete intersection of 2 plane curves of degree $c-k$. If Z is a complete intersection of 2 plane curves of degree $c-k$ we have $h^{1}\left(\mathcal{I}_{Z}(c-k)\right)=0$ if and only if $c-k \leq 2$ and we get cases (1) and (2) in the statement of Proposition 3. Now assume $h^{0}\left(\mathcal{I}_{Z}(c-k)\right) \geq 3$. We have $h^{1}\left(\mathcal{I}_{Z}(c-k)\right)=0$ if and only if $h^{0}\left(\mathcal{I}_{Z}(c-k)\right)=\binom{c-k+2}{2}-s$. Hence if \mathcal{F} exists, then $y \leq k(c-k)+\binom{c-k+2}{3}-2$. If $c \leq 2 k$, then any sheaf \mathcal{F} in (1.1) has $k(\mathcal{F})=k$. If $c>2 k$, the condition $k=k(\mathcal{F})$ implies $\operatorname{deg}(Z) \geq\binom{ c-2 k+1}{2}$.

The existence part for cases (3) and (4) is true by Lemma 1 ; note that taking as Z a general union of s points in the case $c>2 k$ we have $h^{0}\left(\mathcal{I}_{Z}(c-2 k-1)\right)=$ 0.

QED
Remark 3. Take y, c, k for which Proposition 3 gives a spanned bundle. Taking as Z a general subset with cardinality $y-k(c-k)$ gives the bundles \mathcal{F} with minimal Hilbert function among all bundles with fixed $c_{1}(\mathcal{F}), c_{2}(\mathcal{F})$, and $k(\mathcal{F})$, i.e. $h^{1}(\mathcal{F}(t))=0$ for all t with $k-c \leq t<0$ and $y-k(c-k) \leq\left({ }_{2}^{c-k+t+2}\right)$. If $2 k \geq c$ (i.e. if \mathcal{F} is not stable) and $y \neq \bar{k}(n-k)$ (i.e. $\mathcal{F} \neq \mathcal{O}(k) \oplus \mathcal{O}(c-k)$), then the maximal integer t with $h^{1}(\mathcal{F}(t))>0$ is the maximal negative integer t such that $y-k(c-k)>\binom{c-k+t+2}{2}$.

Now we prove the following two modifications of Proposition 3.
Proposition 6. Fix integers $c>k \geq 0$. There is a rank 2 spanned vector bundle \mathcal{F} with $c_{1}(\mathcal{F})=c, c_{2}(\mathcal{F})=y, k(\mathcal{F})=k$, and $h^{1}(\mathcal{F}(-1))=0$ if and only if one of the following conditions is satisfied:
(1) $c=k+1$ and $y=c$;
(2) $2 k \geq c$ and $k(c-k) \leq y \leq k(c-k)+\binom{c-k+1}{2}$;
(3) $2 k<c$ and $k(c-k)+\binom{c-2 k+1}{2} \leq k(c-k)+\binom{c-k+1}{2}$.

Proposition 7. Fix integers $c>k \geq 0$. There is a rank 2 spanned vector bundle \mathcal{F} with $c_{1}(\mathcal{F})=c, c_{2}(\mathcal{F})=y, k(\mathcal{F})=k$, and $h^{1}(\mathcal{F}(-2))=0$ if and only if one of the following conditions is satisfied:
(1) $2 k \geq c$ and $k(c-k) \leq y \leq k(c-k)+\binom{c-k}{2}$;
(2) $2 k<c$ and $k(c-k)+\binom{c-2 k+1}{2} \leq k(c-k)+\binom{c-k}{2}$.

Proof of Propositions 6 and 7: Let \mathcal{F} be any spanned rank 2 vector bundle. Fix $t \in\{1,2\}$ and let $C \subset \mathbb{P}^{2}$ be a smooth curve of degree t. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{F}(-t) \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{\mid C} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

Since $C \cong \mathbb{P}^{1}$ and $\mathcal{F}_{\mid C}$ is a spanned vector bundle, we have $h^{1}\left(C, \mathcal{F}_{\mid C}\right)=0$. Hence (1.2) shows that the set of all triples $(c, y, k)=\left(c_{1}(\mathcal{F}), c_{2}(\mathcal{F}), k(\mathcal{F})\right)$ which are obtained from a rank 2 spanned bundle \mathcal{F} with $h^{1}(\mathcal{F}(-2))=0$ is contained in the one realized by a rank 2 spanned bundle \mathcal{F} with $h^{1}(\mathcal{F}(-1))=0$ and the latter is contained in the one obtained from a rank 2 spanned bundles \mathcal{F} with $h^{1}(\mathcal{F})=0$. Take a rank 2 spanned bundle \mathcal{F} and set $k:=k(\mathcal{F}), c:=c_{1}(\mathcal{F})$ and $y:=c_{2}(\mathcal{F})$. Hence \mathcal{F} fits in (1.1) for some Z with $\operatorname{deg}(Z)=y-k(c-k)$. Since $k \geq$ 0 , we have $h^{1}(\mathcal{O}(k-t))=h^{2}(\mathcal{O}(k-t))=0$. Thus $h^{1}(\mathcal{F}(-t))=h^{1}\left(\mathcal{I}_{Z}(c-k-t)\right)$. If we require $h^{1}\left(\mathcal{I}_{Z}(c-k-1)\right)=0$, then we exclude case (2) of Proposition 3, while case (1) is allowed with Z a single point P and \mathcal{F} any locally free extension of $\mathcal{I}_{P}(1)$ by $\mathcal{O}(c-1)$. If we require $h^{1}\left(\mathcal{I}_{Z}(c-k-2)\right)=0$, then we exclude cases (1) and (2) of Proposition 3. Now we look at cases (3) and (4) of Proposition 3. If $h^{1}\left(\mathcal{I}_{Z}(c-k-t)\right)=0, t \in\{1,2\}$, then $y-k(c-k) \leq\binom{ c-k-t+2}{2}$. Recall that to get the existence part for Proposition 3 we took as Z a general subset of \mathbb{P}^{2} with cardinality $y-k(c-k)$. Such a set Z has $h^{1}\left(\mathcal{I}_{Z}(c-k-t)\right)=0$ if and only if $y-k(c-k) \leq\binom{ c-k-t+2}{2}$. We have $\binom{c-k+2}{2}-3 \leq\binom{ c-k+1}{2}$ for all $c \geq k+2$. Hence for our general Z in cases (2) and (3) of Proposition 6 we may apply Lemma 1 with $a=c-k$. If $c=k+1$ we only get case (1) of Proposition 6 , because if $Z=\emptyset$, then $\mathcal{F} \cong \mathcal{O}(c) \oplus \mathcal{O}$ and $k(\mathcal{O}(c) \oplus \mathcal{O})=c$. Since $c>k$, we have $\binom{c-k+2}{2}-3 \geq\binom{ c-k}{2}$ and so we may apply Lemma 1 with $a=c-k$ to prove Proposition 7.

In Propositions 3, 4, 5, 6 and 7 we assumed $c>k \geq 0$, because if \mathcal{F} is spanned, then $k(\mathcal{F}) \geq 0$ and $c_{1}(\mathcal{F})=k(\mathcal{F})$ if and only if $\mathcal{F} \cong \mathcal{O}\left(c_{1}(\mathcal{F})\right) \oplus \mathcal{O}$.

Proposition 8. Fix integers $c>k>0$. There is a rank 2 spanned vector bundle \mathcal{F} with $c_{1}(\mathcal{F})=c, c_{2}(\mathcal{F})=y, k(\mathcal{F})=k$, and $h^{1}(\mathcal{F}(-3))=0$ if and only if one of the following conditions is satisfied:
(1) $2 k \geq c$ and $k(c-k) \leq y \leq k(c-k)+\binom{c-k-1}{2}-3$;
(2) $2 k<c$ and $k(c-k)+\binom{c-2 k+1}{2} \leq k(c-k)+\binom{c-k-1}{2}$.

Proof. Take a spanned rank 2 vector bundle \mathcal{F} fitting in (1.1) with $c=c_{1}(\mathcal{F})$, $k=k(\mathcal{F})$ and $\operatorname{deg}(Z)=c_{2}(\mathcal{F})-k(c-k)$. Since $k>0$, we have $h^{1}(\mathcal{O}(k-3))=$
$h^{2}(\mathcal{O}(k-3))=0$ and so $h^{1}(\mathcal{F}(-3))=h^{1}\left(\mathcal{I}_{Z}(c-k-3)\right)$. Thus $c_{2}(\mathcal{F}) \leq k(c-$ $k)+\binom{c-k-1}{2}$ if $h^{1}(\mathcal{F}(-3))=0$. Assume $c_{2}(\mathcal{F}) \leq k(c-k)+\binom{c-k-1}{2}$ and take as Z a general subset of \mathbb{P}^{2} with cardinality $c_{2}(\mathcal{F})-\binom{c-k-1}{2}$. Any sheaf \mathcal{F} in (1.1) with this scheme Z satisfies $h^{1}(\mathcal{F}(-3))=0$. The proof of Proposition 3 gives that Z gives a spanned vector bundle \mathcal{F} with $k(\mathcal{F})=k$. QED

2 Splitting type ($c, 0$)

In this section we consider necessary or sufficient conditions for the existence of spanned bundles \mathcal{F} with $c_{1}(\mathcal{F})=c, c_{2}(\mathcal{F})=y$ and $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$.

Lemma 3. Let \mathcal{F} be a rank $r \geq 2$ spanned vector bundle with no trivial factor and with $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}^{\oplus(r-1)}$. Then $h^{1}(\mathcal{F}(-2)) \geq r-1$.

Proof. Since \mathcal{F} has no trivial factor and it is spanned, we have $h^{0}\left(\mathcal{F}^{\vee}\right)=0$ and $c>0$. From the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{F}^{\vee}(-1) \rightarrow \mathcal{F}^{\vee} \rightarrow \mathcal{F}_{\mid D}^{\vee} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

we get $h^{1}\left(\mathcal{F}^{\vee}(-1)\right) \geq r-1$. Duality gives $h^{1}\left(\mathcal{F}^{\vee}(-1)\right)=h^{1}(\mathcal{F}(-2))$. QED

The next lemma settles the case $c=1$.
Lemma 4. Let \mathcal{E} be a rank r spanned vector bundle such that $c_{1}(\mathcal{E})=1$. Then either $\mathcal{E} \cong \mathcal{O}(1) \oplus \mathcal{O}^{\oplus(r-1)}$ or $\mathcal{E} \cong T \mathbb{P}^{2}(-1) \oplus \mathcal{O}^{\oplus(r-2)}$.

Proof. First assume $r=2$. In this case \mathcal{E} is uniform of splitting type $(1,0)$ and hence either $\mathcal{E} \cong \mathcal{O}(1) \oplus \mathcal{O}$ or $\mathcal{E} \cong T \mathbb{P}^{2}(-1)([18])$. Now assume $r>2$ and that the lemma is true for bundles of rank $r-1$. Since $r>\operatorname{dim}\left(\mathbb{P}^{2}\right)$ a general section of \mathcal{E} induces an exact sequence

$$
0 \rightarrow \mathcal{O} \rightarrow \mathcal{E} \rightarrow \mathcal{G} \rightarrow 0
$$

with \mathcal{G} a spanned vector bundle with $c_{1}(\mathcal{G})=1$. Use the inductive assumption and that $h^{1}\left(\Omega_{\mathbb{P}^{2}}(1)\right)=0$.

From now on we assume $c \geq 2$.
Remark 4. Let \mathcal{F} be a vector bundle fitting in (1.1). If \mathcal{F} is spanned, then $c \geq k$ and $\operatorname{deg}(Z \cap T) \leq c-k$ for each line $T \subset \mathbb{P}^{2}$. If $k=c$, then $Z=\emptyset$ and so $\mathcal{F} \cong \mathcal{O}(c) \oplus \mathcal{O}$. If $0<k<c$, then $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$ if and only if $\operatorname{deg}(Z \cap D)=c-k$.

Lemma 5. Fix an integer $a>0$ and a line $D \subset \mathbb{P}^{2}$. Fix an integer z such that $a \leq z \leq\binom{ a+2}{2}-3$. Let $A \subset D$ be any degree a zero-dimensional scheme. Let $B \subset \mathbb{P}^{2} \backslash D$ be a general subset with $\sharp(B)=z-a$. Then $h^{1}\left(\mathcal{I}_{A \cup B}(a)\right)=0$ and $\mathcal{I}_{A \cup B}(a)$ is spanned.

Proof. By Lemma 2 it is sufficient to do the case $z=\binom{a+2}{2}-3$. Since $B \cap D=\emptyset$, there is a residual exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{B}(a-1) \rightarrow \mathcal{I}_{A \cup B}(a) \rightarrow \mathcal{I}_{A, D}(a) \rightarrow 0 \tag{2.2}
\end{equation*}
$$

Since B is general, we have $h^{0}\left(\mathcal{I}_{B}(a-1)\right)=2$ and $h^{1}\left(\mathcal{I}_{B}(a-1)\right)=0$. Hence (2.2) gives $h^{1}\left(\mathcal{I}_{A \cup B}(a)\right)=0$ and $h^{0}\left(\mathcal{I}_{A \cup B}(a)\right)=3$. Fix a general $\left(C, C^{\prime}\right) \in\left|\mathcal{I}_{B}(a-1)\right|^{2}$. For a general B, the curves C, C^{\prime} are general plane curves of degree $a-1$ and hence $C \cap C^{\prime}=B \sqcup E$ with E a finite set with cardinality $(a-1)^{2}-\sharp(B)$ and $C \cap C^{\prime} \cap E=\emptyset$. Using $T \cup D$ with $T \in\left|\mathcal{I}_{B}(a-1)\right|$ we see that the schemetheoretic base locus of $\left|\mathcal{I}_{A \cup B}(a)\right|$ is contained in $A \cup E \cup D$. Let $Z \subset D$ be any zero-dimensional scheme such that $\operatorname{deg}(Z)=a+1$ and $Z \supset A$. Using Z instead of A in (2.2) we get $h^{0}\left(\mathcal{I}_{B \cup Z}(a)\right)=2$. Hence $W \cap D=A$ (as schemes). Therefore $W \subseteq A \cup B \cup E$. Hence to prove the lemma it is sufficient to prove that $E \cap W=\emptyset$. Assume the existence of $o \in E \cap W$. We fixed the scheme A, but we are allowed to move B. Recall that C is a smooth plane curve of degree $a-1$. Hence $\left|\mathcal{O}_{C}(a-1)\right|$ is induced by $\left|\mathcal{O}_{\mathbb{P}^{2}}(a-1)\right|$. Since the lemma is easy if $a \leq 3$, we may assume $a \geq 4$. In this case $h^{0}\left(\mathcal{O}_{C}(a-1)\right) \geq 8$. By [13, Theorem 2.4] the monodromy group of the set of divisors $\left|\mathcal{O}_{C}(a-1)\right|$ contains the alternating group and hence it is $(a-1)^{2}-1$-transitive. For a general C^{\prime} we get that the union with A of any two subset of $B \cup E$ with cardinality $\sharp(B)+1$ have the same Hilbert function. Since $o \in W$, we get $E \subset W$, i.e. $h^{0}\left(\mathcal{I}_{B \cup E \cup A}(a)\right)=2$. Since $B \cup E=C \cap C^{\prime}$, the equations of C and C^{\prime} generate the homogeneous ideal of $B \cup E$ and so we $h^{0}\left(\mathcal{I}_{B \cup E}(a-1)\right)=2$ and $h^{0}\left(\mathcal{I}_{B \cup E}(a)=6\right.$. This is true for any A, D and hence we may first assume that D is a general line and then that A is a general subset of D with cardinality $a \geq 4$. For a general $A \subset D$ with cardinality $a \geq 4$, we get $h^{0}\left(\mathcal{I}_{B \cup E \cup A}(a)\right)=2$, contradicting the inclusion $E \subset W$, which gives $h^{0}\left(\mathcal{I}_{B \cup E \cup A}(a)\right)=3$.

QED
Proof of Proposition 4: Any \mathcal{F} with $c_{1}(\mathcal{F})=c$ and $k(\mathcal{F})=k$ fits in (1.1) with $h^{0}\left(\mathcal{I}_{Z}(c-2 k-1)\right)=0$ and $\operatorname{deg}(Z)=c_{2}(\mathcal{F})-k(c-k)$. We have $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$ if and only if $\operatorname{deg}(Z \cap D)=c-k$. In particular we have $c_{2}(\mathcal{F}) \geq(k+1)(c-k)$. Cases (1) and (2) corresponds to the case in which $1 \leq c-k \leq 2$ and $h^{0}\left(\mathcal{I}_{Z}(c-\right.$ $k))=2$, i.e. Z a complete intersection of two plane curves C_{1}, C_{2} of degree $c-k$; this case is realized taking $C_{1} \supseteq D$ and then taking C_{2} a general curve of degree $c-k$. Therefore it is sufficient to test which (c, y) of the cases (3) and (4) of Proposition 3 give a solution for $\operatorname{Proposition~4.~Let~} \operatorname{Res}_{D}(Z)$ be the residual
scheme of Z with respect to D, i.e. the closed subscheme of \mathbb{P}^{2} with $\mathcal{I}_{Z}: \mathcal{I}_{D}$ as its ideal sheaf. We have $\operatorname{deg}(Z)=\operatorname{deg}(Z \cap D)+\operatorname{deg}\left(\operatorname{Res}_{D}(Z)\right)$.

First assume $2 k \geq c$, so that any \mathcal{F} fitting in (1.1) has $k(\mathcal{F})=k$. Use Lemma 5.

Now assume $2 k<c$. In this case we also have the condition $h^{0}\left(\mathcal{I}_{Z}(c-2 k-\right.$ 1) $)=0$. Since $\operatorname{deg}(Z \cap D)=c-k>c-2 k-1$, we have $h^{0}\left(\mathcal{I}_{Z}(c-2 k-1)\right)=$ $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{D}(Z)}(c-2 k-2)\right)$. The h^{1}-part of Lemma 5 with $a=c-k$ shows that we may satisfy it taking $Z=A \sqcup B$ with $\operatorname{deg}(A)=c-k, A \subset D$, and B general in $\mathbb{P}^{2} \backslash D$ as soon as $\sharp(B) \geq\binom{ c-2 k}{2}$. Hence we need $\operatorname{deg}(Z) \geq c-k+\binom{c-2 k}{2}$ and hence $y \geq(k+1)(c-k)+\binom{c-2 k}{2}$.

QED
Proof of Proposition 5: Any \mathcal{F} with $c_{1}(\mathcal{F})=c, k(\mathcal{F})=k$ and $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus$ \mathcal{O}_{D} fits in (1.1) with $\operatorname{deg}(Z \cap D)=c-k$. Without the condition $\operatorname{deg}(Z \cap D)=c-$ k, the maximal integer $\operatorname{deg}(Z)$ is obtained if and only Z is a complete intersection of 2 plane curves C, C^{\prime} of degree $c-k$ and in this case we have $c_{2}(\mathcal{F})=c(c-k)$ and $h^{0}(\mathcal{F})=2+\binom{k+2}{2}$. We satisfy the condition $\operatorname{deg}(D \cap Z)=c-k$ taking as C a reducible curve with D as a component.

3 Rank $r>2$

In this section we consider rank $r>2$ spanned vector bundles \mathcal{E} on \mathbb{P}^{2} without trivial factors with $c_{1}(\mathcal{E})=c$ and $c_{2}(\mathcal{E})=y$. The situation is different for certain sectors of triples (c, y, r) of c_{1}, c_{2} and rank r. First of all $r \leq\binom{ c+2}{2}-1$. If $r=\binom{c+2}{2}-1$, then the spanned bundle \mathcal{E} exists, it is unique, it is homogeneous and hence its splitting type, $c_{2}(\mathcal{E})=c^{2}, \mathcal{E}$ is homogeneous and for each line D the bundle $\mathcal{E}_{\mid D}$ has splitting type $(1, \ldots, 1,0, \cdots, 0)$ with $c 1$'s. So we cannot achieve all splitting types. For the more unbalanced splitting type $(c, 0, \ldots, 0)$ we may use the statements of Propositions 4 and 5 and give some existence results, summarized in Remark 6.

Fix an integer $r>2$. Let \mathcal{F} be a rank 2 vector bundle on \mathbb{P}^{2} with no trivial factors. There is a rank r vector bundle \mathcal{E} on \mathbb{P}^{2} fitting in an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}^{\oplus(r-2)} \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

and with no trivial factor if and only if $r \leq h^{1}\left(\mathcal{F}^{\vee}\right)+2$. If \mathcal{E} exists, then it is spanned if and only if \mathcal{F} is spanned.

Remark 5. Take a spanned rank 2 vector bundle \mathcal{F}. Duality gives $h^{1}\left(\mathcal{F}^{\vee}\right)=$ $h^{1}(\mathcal{F}(-3))$. Hence Proposition 8 gives the list of all $\left(c_{1}(\mathcal{F}), c_{2}(\mathcal{F}), k(\mathcal{F})\right)$ with \mathcal{F} a rank 2 spanned vector bundle such that any extension of \mathcal{F} by a trivial vector bundle is the trivial extension.

Fix a line $D \subset \mathbb{P}^{2}$. Look at the exact sequence (2.1). From (2.1) we get a linear map $u: H^{1}\left(\mathcal{F}^{\vee}(-1)\right) \rightarrow H^{1}\left(\mathcal{F}^{\vee}\right)$. Set $\alpha:=\operatorname{rank}(u)$. We have $r \leq 2+\alpha$ if and only if there is an extension (3.1) whose restriction to D is the trivial extension. Note that the restriction of (3.1) to D is the trivial extension if and only if $\mathcal{E}_{\mid D} \cong \mathcal{F}_{\mid D} \oplus \mathcal{O}_{D}^{\oplus(r-2)}$. Now assume that \mathcal{F} is spanned and set $c:=c_{1}(\mathcal{F})$. We assume $c>0$ i.e. $\mathcal{F} \neq \mathcal{O}^{2}$. Since \mathcal{F} has no trivial factor, then $h^{0}\left(\mathcal{F}^{\vee}\right)=0$. Hence the map u is injective if and only if $\mathcal{F}_{\mid D}$ has no trivial factor (in this case $\alpha=h^{1}\left(\mathcal{F}^{\vee}(-1)\right)$), while if $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$, then u has a one-dimensional kernel (in this case $\left.\alpha=h^{1}\left(\mathcal{F}^{\vee}(-1)\right)-1\right)$. Duality gives $h^{1}\left(\mathcal{F}^{\vee}(-1)\right)=h^{1}(\mathcal{F}(-2))$. So to know the integer α it is sufficient to compute the integer $h^{1}(\mathcal{F}(-2))$.

Remark 6. Take the set-up of Propositions 5, i.e. the set-up of Proposition 4 without the assumption $h^{1}(\mathcal{F})=0$. By duality we have $h^{1}\left(\mathcal{F}^{\vee}\right)=h^{1}(\mathcal{F}(-3))$. Since $k>0,(1.1)$ gives $h^{1}(\mathcal{F}(-2))=h^{1}\left(\mathcal{I}_{Z}(c-k-3)\right)$. Since $\operatorname{deg}(Z)=y-k(c-$ k), we have $h^{1}\left(\mathcal{I}_{Z}(c-k-3)\right) \geq \max \left\{0,\binom{c-k-1}{2}-y+k(c-k)\right\}$, but the condition $\mathcal{F}_{\mid D} \cong \mathcal{O}_{D}(c) \oplus \mathcal{O}_{D}$ gives $h^{1}(\mathcal{F}(-2))>0$ (Lemma 3). In case (1) (resp. (2)) of Proposition $4 Z$ is a point (resp. the complete intersection of 2 conics) and hence $h^{1}\left(\mathcal{F}^{\vee}\right)=1$ and $h^{1}(\mathcal{F}(-2))=1\left(\right.$ resp. $h^{1}\left(\mathcal{F}^{\vee}\right)=4$ and $\left.h^{1}(\mathcal{F}(-2))=3\right)$. Hence in case (1) \mathcal{F} extends as a spanned bundle with no trivial factor, up to rank 3 , but the associated bundle has not $(c, 0,0)$ as its splitting type over D. In case (2) \mathcal{F} extends up to rank 6 as a spanned bundle with no trivial factor, but only up to rank 4 if we add the condition that $(c, 0, \ldots, 0)$ is the splitting type over D.

Now look at cases (3) and (4) of Propositions 3 and 4. For very large y in cases (3) and (4) we have $h^{1}(\mathcal{F}(-2)) \geq 2$, but for many y there are different schemes Z with $h^{1}\left(\mathcal{I}_{Z}(c-k)\right)=0$, but with different values for $h^{1}(\mathcal{F}(-2))$. Since $h^{0}\left(D, \mathcal{I}_{A, D}(c-k-2)\right)=0, h^{1}\left(D, \mathcal{I}_{A, D}(c-k-2)=1\right.$ and $h^{2}\left(\mathcal{I}_{Z}(c-k-3)\right)=$ $h^{2}(\mathcal{O}(c-k-3))=0$, the one used to solve the existence part for Proposition 4 has $h^{1}\left(\mathcal{I}_{Z}(c-k-3)\right)=\max \left\{1,\binom{c-k-1}{2}-y+(k+1)(c-k)\right\}$. Any spanned bundle \mathcal{F} has $h^{1}(\mathcal{F}(-2)) \geq\binom{ c-k-1}{2}-y+(k+1)(c-k)$.

Acknowledgements. I thanks a referee for suggestions which greatly improved the exposition.

References

[1] C. Anghel, I. Coandă, N. Manolache: Globally generated vector bundles on \mathbb{P}^{n} with $c_{1}=4$, arXiv:1305.3464v2.
[2] C. Anghel, N. Manolache: Globally generated vector bundles on \mathbb{P}^{n} with $c_{1}=3$, Math. Nachr. 286 (2013), no. 13-15, 1407-1423.
[3] J. Brun: Les fibrés de rang deux sur \mathbb{P}_{2} et leurs sections, Bull. Soc. Math. France 107 (1979), 457-473.
[4] U. Bruzzo, D. Markushevich: Moduli of framed sheaves on projective surfaces, Documenta Math. 16 (2011), 399-410.
[5] L. Chiodera, P. Ellia: Rank two globally generated vector bundles with $c_{1} \leq 5$, Rend. Istit. Mat. Univ. Trieste 44 (2012), 413-422
[6] Ph. Ellia: Chern classes of rank two globally generated vector bundles on \mathbb{P}^{2}, Rend. Lincei, Mat. Appl. 24 (2013), no. 2, 147-163.
[7] D. Huybrechts, M. Lehn: Framed modules and their moduli, Internat. J. Math. 6 (1995), 297-324
[8] D. Huybrechts, M. Lehn: The geometry of moduli spaces of sheaves, Friedr. Vieweg \& Sohn, Braunschweig, 1997.
[9] J. Le Potier: Stabilitè et amplitude sur $\mathbb{P}^{2}(\mathbb{C})$, in: Vector Bundles and Differential Equations, A. Hirschowitz (ed.), 145-182, Progress in Math. 7, Birkhäuser, Boston, 1980.
[10] L. Manivel: Des fibrés globalment engendre sur l'espace projectif, Math. Ann. 301 (1995), 469-484.
[11] N. MANOLACHE: Globally generated vector bundles on \mathbb{P}^{3} with $c_{1}=3$, Preprint, arXiv:1202.5988 [math.AG], 2012.
[12] Ch. Okonek, M. Schneider, H. Spindler: Vector bundles on complex projective spaces, Progress in Mathematics, 3. Birkhäuser, Boston, Mass., 1980.
[13] J. Rathmann: The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), no. 4, 565-579.
[14] J. C. Sierra: A degree bound for globally generated vector bundles, Math. Z. 262 (2009), no. $3,517-525$.
[15] J.C. Sierra, L. Ugaglia: On globally generated vector bundles on projective spaces, J. Pure Appl. Algebra 213 (2009), 2141-2146.
[16] J.C. Sierra, L. Ugaglia: On globally generated vector bundles on projective spaces II, J. Pure Appl. Algebra 218 (2014), 174-180.
[17] R. L. E. Schwarzenberger: Vector bundles on the projective plane, Proc. London Math. Soc. 11 (1961), 623-640.
[18] A. Van de Ven: On uniform vector bundles, Math. Ann. 195 (1972), 245-248.

[^0]: ${ }^{\mathrm{i}}$ This work is partially supported by MIUR and GNSAGA (INDAM)
 http://siba-ese.unisalento.it/ © 2016 Università del Salento

