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BAIRE PROPERTIES OF (LF)-SPACES

*
P.P.NARAYANASWAMI (™)

ABSTRACT. we relate the study of (LF)-spaces with some covering
properties of locally convex spaces, which are variations of the
theme of "Baire Space". All (LF)-spaces are partitioned into three
classes, called {LF}I, {LFJE and (LFJ3-5paces respectively. Wwe
then show that these classes are precisely the classes of (LF)-
spaces that distinguish between the several Balire-type coverings
we considered. The role of the sequence space @ 1in this context
is studied. The interaction between rLFJ3-5p5c25 and the Separable

Quotient Problem is also discussed.

1 (LF)-SPACES

All spaces considered in this paper are locally convex (Hausdorff)

topological vector spaces over IR or €. Let {(E_,T1_)} be a se-

quence of locally convex spaces such that for each n, En = Eh+1‘

and on En,Tn+1 induces a topology coarser than T Such a sequence

is an inductive sequence. If E = HEIEH' and 1 is the finest Hausdorff
locally convex topology on E such that T induces on each En. a

topology coarser than T then (E,t) is said to be the inductive

limit of the sequence {(E_, 1)}, and we write (E, 1) = ind(E_, 1.).
n' n n ~on’n

(*) This paper was written while I visited the Department of Mathe-
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for his kind invitation, encouragement and financial support.
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The sequence {(En,Tn}} is a defining sequence for the inductive
limit. Note that we are only using a narrow definition of the no-
tion of an inductive limit that befits our needs. If for each n,

Tn+1’E = t1,» then the inductive limit and the corresponding defi-
n
!

ning sequence are said to be strict. If each (En‘TfJ is a Fréchet

space [Banach space|, the inductive limit is called an (LF)-space
[(LB)- space|. The terms strict (LF), strict (LB)-spaces have their
obvious meanings. While referring to defining sequences for an

(LF) or an (LB)-space, we shall always mean a defining sequence

consisting of Fréchet spaces. Two inductive sequences {(Eil],Tél)},

{(E'Ez).'r'(lz])} on E (defining possibly two different Hausdorff

topologies on E) are said to be equivalent, if for ie {1,2 } and

n arbitrary, there exists k such that E1) ¢ p{371) and
(3-1) (1), . . . .
k (i)i n o l.e., each member of either sequence is contin-
E
n

uously included in some member of the other. One readily sees that
equivalent inductive sequences of Fréchet spaces define the same

(LF)-space.

THEOREM 1 (EQUIVALENCE THEOREM) [17]

Let (E,T(iJ] = indfﬁﬁi).Tﬁi)), (i=1,2).The following are equiv-
I

alent statements:

(a) {(Egl),Tél))} is equivalent to {(Eéz),Téz)}};
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by 1) - (2
(c) The infimum of "[{1J and T(z} is Hausdorff,

COROLLARY. If (E,t) is a Hausdorff locally convex spatce, there
is at most one topology on E finer than 1, which makes E an (LF)-

space.

It is quite possible for a strict (LF)-space to possess a non-
strictt defining sequence. Also, for an (LB)-space, not every defi-

ning sequence need consist of Banach spaces only.

EXAMPLE 1. Let T denote the product (Banach space) topology

on

En = 11:<E1x..xﬂlr{ﬂ}x{ﬂ}x..

e

n factors

Clearly, (En,Tn) is a strict defining sequence of Banach spaces,

defining the strict (LB)-space (E,T1)-= ind(En,Tn). Consider
n

F o= 2 x 2 > xf xs x{0}x{0}

. Sy
n factors

with the product (non-Banach, Fréchet space) topology n_, where
s denotes the non-normable, nuclear Fréchet space of all rapidly
decreasing sequences of scalars (s 1is continuously included in

). One sees that {(En‘Tﬁ)} is equivalent to {(Fn,rh):+, which

is a non-strict defining sequence of non-Banach-spaces, defining

the strict (LB)-space (E, T1).
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Replacing F’l by E’Z‘ and s by 9,1, we obtain a strict (LB)-space

with a non-strict defining sequence of Banach spaces.

The space ¢ of all scalar sequences with only a finite number
of non-zero coordinates, equipped with the finest locally convex
topology, can be recognized as the inductive limit of finite-dimen-
sional spaces. It is the only strict (LB)-space for which every
defining sequence is strict. The dual of ¢ is the space w, the
space of all scalar sequences, with the product (Fréchet space)

topology.

We observe that no (LF)-space is both complete and metrizable.
It is well-known ([19], p.225) that strict (LF)-spaces are complete,
hence non-metrizable. Also, (LB)-spaces are never metrizable, even
though some are incomplete. In [9], §31.6, there is a classical

example of an incomplete (LB)-space, while the (LB)-space Ep—-=

N

+
 —

ind fg 1 where p>1 and N is chosen so that p -
TP - N+n J°’

is a complete (LB)-space. (Note that ¢ is independent of the

p

P n P~

choice of N). The (LF)-space w x & =ind(m x & 1 )15 a non-strict
N+n

(LF), non-(LB), non-metrizable (LF)-space (see [16]). However,
there do exist plenty of metrizable, as well as normable (LF)-
spaces. For instance, see [17], [22] for constructions of such

spaces. The following is a quick example.

EXAMPLE 2. Let En =W X W X...X @ X &5 X Ep x... with the product

e R
n factors
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(Fréchet) topology. Now Ep(p > 1) 1is densely, and continuously
included in w. So {En} is a strictly increasing sequence of Fréchet

spaces, with En continuously included in En+1 for each n. It follows

that ind E = U,E is a dense subspace of the Fréchet space

F = w x w x,,., which, with the relative topology, is a metrizable
(LF)-space. Since F is isomorphic to w, it follows that w contains

a dense, (metrizable) (LF)-subspace.

Normable (LF)-spaces are not easy to come by, but an example

due to De Wilde is cited in [8], p.210.

At this point, a natural question arises. '"When 1is an (LF)-
space metrizable?'" In the next section, we see that this leads
to some covering properties of spaces. This is not unexpected,
since in the definition of an (LF)-space (E, 1), E 1is "covered"

by the defining sequence {En}.

2. BAIRE-TYPE COVERINGS

In 1], Amemiya-Komura observed that if E is barrelled and metri-
zable, then E is not the union of an increasing sequence of nowhere-
dense, absolutely convex sets. The current terminology for this
property is Baire-likeness, and a detailed study of Baire-like
spaces can be found in [13]. White Baire-like spaces are always
barrelled, it is shown in [13]), as a generalization of the Amemiya-
Komura result, that a barrelled space that does not contain (an
isomorphic copy of) ¢, is Baire-like. We note that ¢ is not metri-

zable. As a consequence of these observations, we have the following
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result.

THEOREM 2 [16]

An (LF)-spece is metrizable, if and only if it 1is Bailire-like,

if and only if it does not contain a copy of ¢ .

We now consider several variants of the Baire-like covering

property. A locally convex space E is

Baire if E is nmot the union of an increasing sequence of nowhere-

dense sets;

unordered Baire-like [19] if E is not the union of a sequence of
nowhere dense, absolutely convex sets, equivalently E has property

(R-R) (Robertson and Robertson [11] Todd-Saxon [19]): if E is cov-
ered by a sequence of subspaces, at least one of the subspaces is

both dense and barrelled.

a (db)-space [16], if E has property (R-T-Y) (Robertson, Tweddle
and Yeomans [JZ]): if E is covered by an increasing sequence of
subspaces, at least one of the subspaces is (hence almost all of
them are) both dense and barrelled. (Valdivia [21] uses the termi-

nology-superbarrelled space).

gquasi-Baire if E is barrelled, and is not the union of an increasing
sequence of nowhere-dense subspaces. Note that unordered Raire-
like property is the same as '"unordered'" (db) property. In the
definition of an unordered Baire-like space, if we demand that
the absolutely convex sets are 'increasing'', we obtain a Baire-

like space.
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All these spaces (except Baire spaces) enjoy ''reasonable" perma-
nence properties. They are stable under the formation of arbitrary
products, quotients and countable-codimensional subspaces. (See
(10], [13], [16], [19]). The so-called Wilansky-Klee conjecture
([15],[19]) that ‘'"every dense one-codimensional subspace of a
Banach space is Baire', was answered in the negative by Arias
de Reyna [2], using Martin's Axiom. Using continuum hypothesis,
he further showed in [3] that there exist two pre-Hilbertian spaces

whose product is not Baire. Clearly,

Baire = unordered Baire-like = (db) =

=> Baire~-like = quasi-Baire = barrelled.

The Amemiya-Komura result, together with a result of De-Wilde
and Houet [5] and/or Saxon [13], shows that in the class of metri-
zable spaces, Baire-likeness <coincides with barrelledness, and
even with a weaker property, namely property (S): the dual E’

is o(E E)-sequentially complete. Valdivia [20] generalized the

Amemiya-Komura result by showing that a Hausdorff barrelled space
whose completion is Baire must be a Baire-like space. It then
turns out that in the "smallest' variety [7], namely the variety
of real Hausdorff spaces with their weak topology, the completion
of any member is a product of reals, and hence a Baire space;
so in the smallest variety, barrelledness is equivalent to Baire-
likeness. In [13], it is shown that barrelled spaces are Baire-
like in a wider class of spaces not containing ¢ . Also in [10],
we prove that in a still wider class of 1locally convex spaces

not containing a complemented copy of ¢ , barrelled spaces are
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quasi-Baire.

We want to show that none of the above implication arrows 1is
reversable. Examn@es of unordered Baire-like spaces that are not
Baire are }’.)Ien:tb”* (EE‘E [6],[13],[14],(15]). The abundant existence

- h’ii W

of (db)- ap&qﬁg tham}wnxz not unordered Baire-like is demonstrated
# '—'-itl"*"

by the following theorem:

THEOREM 3  [16]

Every 1infinite-dimensional Fréchet space has a dense subspace

that is a (metrizable) (db)-space, but not unordered Baire-like.

For the remaining three implications, we employ a classification

of (LF)-spaces.

3. A CLASSIFICATION OF (LF)-SPACES

Since Fréchet spaces are barrelled, and inductive limits of
barrelled spaces are again barrelled, it follows that (LF)-spaces
are barrelled. On the other hand, no (LF)-space is a (db)-space.
For, otherwise if (E,t) = ind(En,Tn], some (Ek.rk] is dense and

barrelled in (E, T). The identity map from (Ek,Tk) onto (Ek.TIEk]

is continuous from a Ptak space onto a barrelled space, hence
must be open, by Ptak's open mapping theorem. Thus, Ek is closed
in E, yielding Ek=E' a contradiction. A similar argument, using
an increasing sequence of multiples of the unit balls in E 's
shows that (LB)-spaces are never Baire-like. Also no strict (LF)-
space 1is quasi-Baire, since in the definition, E, is a proper,

closed subspace of E. These observations fit into the scheme
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(db) == Baire-like = quasi-Baire = barrelled

nicely, and enable us to classify all (LF)-spaces into three disjoint

classes as follows.
P,
~ @

DEFINITION [10] =2 MW Z)
2 10 Yrdi0

An (LF) (B, D) i o310 W

n -sSpace » ) 1S an \?}G#bf

(LF)l-space if (E, 1) has a defining sequence none of wvwhose members

is dense in E.

(LF)Z-space if (E, 1) is non-metrizable, and has a defining sequence
each of whose members is dense in E (equivalently,

at least one of the members is dense in E);

[LF)S—space if (E, 1) is metrizable.

These three classes are mutually disjoint - (LF)1 N (LF)2=fD
since two defining sequences must be equivalent; (LF)2 is disjoint
from (LF)S by definition. (LF]l-spaces are never Baire-like, so
by Theorem 2, are disjoint from the class of (LF)3-spaces. Each
of these classes is sufficiently rich, All strict (LF)-spaces

are (LF)l-spaces; o x L _
p

spaces,namely those with a defining sequence of dense subspaces,

is a non-strict (LB]l-space. Some (LB)-

for instance, the space § _,
P

space. (Since no (LB)-space 1is metrizable, [LB)3—5paces do not

is an (LF)Z—space - in fact an (LB]Z-

exist). Every metrizable and every normable (LF)-space is an example
of an (LF);-space. It is demonstrated in [17] that there exist

plenty of (LF)E-spaces.

The following theorem, which characterizes barrelled spaces
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that are not quasi-Baire is very useful, in this context.

THEOREM 4 [10]
For a barrelled space E, the following are equivalent.
(a) E is not quasi-Baire:
(b) E contains a complemented copy of o ;

(c) E contains a closed S\SU- codimensional subspace ;

(d) E ~ E x ¢
(e) E 1is a strict inductive 1limit of a strictly increasing

sequence of closed, barrelled subspaces of E.

As a consequence, all strict (LF)-spaces contain a complemented
copy of @3 also, in the class of spaces not containing a comple-
mented copy of ¢, the notions barrelled, and quasi-Baire coincide.
Along with Theorem 2, these observations enable us to characterize
(LF)i-space (i=1,2,3) 1is terms of Baire-type notions, as well
as in terms of the incidence of ¢ . Explicitly, we have the fol-

lowing two characterization theorems.

THEOREM 5 [10]
An (LF)-space (E,T) is an
(LF)l-SpaEE > (E,T1) is not quasi-Baire;
(LF)Z—space <> (E, 1) is quasi-Baire, but not Baire-like;
(LF)S-space <> (E, 1 is Baire-like.

Since (LF)-spaces are never (db)-spaces but always barrelled,

we see that
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{LF)I-spaces are precisely the class of (LF)-spaces that distinguish

between barrelled spaces and quasi-Baire spaces;

(LF)2—Spa£BS are precisely the class of (LF)-spaces that distinguish

between quasi-Baire and Baire-like spaces;
(LF)S-spaces are precisely the class of (LF)-spaces that distinguish

between (db) and Baire-like spaces.

The next theorem characterizes [LF)i—spaces (i=1,2,3) in terms
of the space ¢ .
THEOREM 6 [10]

An (LF)-space E is an
(LF)I-space <> E contains a complemented copy of ¢ ;
(LF)Z-SDEEE <> E contains ¢, but not a complemented copy of ¢;
(LF)3-5pace <= E does not contain g¢.

REMARK (LF)E-spaces form incomplete quotients of complete spaces.

(See [9], page 225).

4. STABILITY PROPERTIES OF (LF)i—SPACES (i=1,2,3)

Various permanence properties of (LF)i-spaces (i=1,2,3) are
studied in [10] and [17]. A finite-codimensional subspace of an
{LF]i—space 1s an (LP)j—spate, 1 <1i, j < 3, if and only if i=j.
A countable-codimensional subspace of an (LF)-space is an (LF)-
space if and only if it is closed, and not contained in any member
of a defining sequence. A Hausdorff inductive limit of an increasing

sequence of (LF)-spaces is again an (LF)-space. An infinite product
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of (LF)-spaces 1is never an (LF)-space. But the cartesian product
of an (LF]i—Space with an (LF)j—space is an (LF)k—space. where
k = minimum of {i,j}, and 1 < i,j,k, <3. If M is a closed subspace
of an (LF)i—space, E, then the quotient E/M is either an (LF)J.-
space, with j > i, (1 < i, j < 3)‘Dr else, a Fréchet space (in
case En + M = E for some n). This result on quotients is fascinating,
since it is possible for a Fréchet space to be the quotient of
an (LF)-space. Since the index 1 cannot decrease while passing
to quotients, we can regard the class of Fréchet spaces as (LFjd'
spaces, by agreeing to relax the requirement that the inductive
sequence {En} is strictly increasing, in our original definition
of an (LF)-space. The <class of (LF)3-spaces are better behaved
for quotients. Every (LF)3—5pace admits a quotient, which is separa-
ble, infinite-dimensional Fréchet space. Such a result need not

hold for (LF)1 or LLF)Z-spacesu For example, no quotient of ¢

(an (LB)l—space) or 2 _ (an (LB)Z—space) is a Fréchet space.
P

On the other hand, if E is an (LF)i-Space, (i=1,2) and F, a Fréchet
space, then the (LF)i-space ExF, (i=1,2) has the Fréchet space

F as a quotient.

The classical Separable Quotient Problem (for Banach spaces)
asks whether every infinite-dimensional Banach space admits a
Hausdorff quotient, (by a closed subspace) which 1is separable
and infinite-dimensional. While this problem is still open, we
have an affirmative answer to the corresponding problem for the

class of (LF)-spaces.
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THEOREM 7 [16]

Every (LF)-space admits an infinite-dimensional, separable

quotient.

The proof in [16] actually constructs the separable quotient.

For the class of Banach/Fréchet spaces, we have the following

equivalent formulation.

THEOREM 8  ([16], [17], [18])

The following are equivalent for a Banach/Fréchet space E.

(a) E has a separable quotient;

(b) E has a dense, non-barrelled subspace;

(c) E has a dense, non-(db)-subspace;

(d) E has a dense S ;-subspace (i.e., a union of a strictly
increasing sequence of closed subspaces);

(e) E has a dense subspace which, with a topology stronger
than the relative topology is a normable/metrizable (LF)-
space;

(f) E has a dense, proper subspace which, with a topology stronger

than the relative topology is a Banach/Fréchet space (Bennett-

Kalton [4]).

It is a classical result of Eidelheit, (see [9], p.432) that
every non-normable, Fréchet space has a quotient, isomorphic to
w . Hence, 1t 1is clear that all such spaces possess separable
quotients, and properties (a) through (f) of the above theorem
(for Fréchet spaces) hold for them. Furthermore, by Example 2

of Section 1, w contains a dense (LF)3-5ub5pace. Hence it follows,
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as observed in [22] that every non-normable Fréchet space, in
particular all nuclear Fréchet spaces contain dense [LF)S-SubSDaCES.

The next two theorems also enable us to construct [LF]S-SpaEES.

THEOREM 9 [17]

Let E be a Fréchet space, with a sequence {PEH of orthogonal
prtojections such that each of the (necessarily closed) subspaces
PH[F] has a separable, Hausdorff, infinite-dimensional quotient.

Then E contains a dense (LF)3—5ub5pace.

THEOREM 10 [17]

Let q ¢+ E » F be a continuous linear surjection of a Fréchet
space E onto a Fréchet space F. Then F has a dense subspace FG‘
which, with the relative topology, is an (LF)S—space, 1f and only

if E has a dense subspace Iﬁ]. which, with the relative topology

is an (LF);-space, containing q_l[ﬂ].

Yet another classical problem is the splitting problem. A Banach

space E splits infinitely often 1if there exist sequences {Mn},

{Nn} of subspace of E such that E=M1@N1, My = M,ON,, M

~\
1 M

ON

2 33

Equivalently, there exists a sequence of orthogonal projections
with infinite-dimensional ranges. Theorems 9 and 10 essentially

state that
A Fréchet space E has a dense (LF}S—EubSDﬂce if

either E splits infinitely often, and each of the parts has a

separable quotient,
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or, E has a separable quotient, that splits infinitely often.

Since non-normable Fréchet space always has (LF)E—subSpace,
the above discussion (Theorems 9 and 10) are needed only for Banach
spaces 1i.e., every Banach space will be the completion of some
(LF)-space, provided the separable quotient problem and the split-

ting problem have affirmative answers for Banach spaces.

Independently, one <can easily construct (LF}3-dubspaEES of
standard Banach spaces. If a Banach space E has an unconditional

basis {xn }, partition the natural numbers IN into infinite disjoint

H

sets{Sn}. and define Pn : E » E by Pn(x) ) a;X;, where x =

. i
ieS
n

o0

1513111' Then {Pn} is a sequence of orthogonal projections, and

each of the infinite dimensional subspaces PH[E] admit a separable
quotient by the trivial subspace {0}. For 2, P [#_] =%, which
is known to have a separable quotient. For C[0,1] (which has no

unconditional basis), choose a sequence {[an'bn]}id of disjoint,

non-degenerate subintervals of [0,1], and set a_<c_<d <b for

each n. Define projections P_ : c[0,1]>C[0,1] by

f(t) c, <t <d
Pn(f)(t) = 0 t ¢ (an.bn)

linear in {a_,c ] and (d_,b ]

Each P_(C[0,1]) 1is isomorphic to C[0,1], which is infinite-

dimensional and separable, with HPHH = 1. Theorem 9 applies.
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