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1 Introduction

In the last few decades affine distributions (and their equivalence) have been
considered by several authors. These developments have primarily been inspired
and motivated by geometric control theory. Elkin [9, 10] studied equivalence of
affine distributions on low-dimensional manifolds and obtained normal forms
for the associated control systems. More recently, Clelland et al. [8] investi-
gated the geometry of so-called point-affine distributions and computed (local)
invariants for a class of such distributions (using Cartan’s method of equiva-
lence). Invariant affine distributions on low-dimensional Lie groups (or rather
their associated control systems) have attracted particular attention (see, e.g.,
1, 3, 11, 12, 13, 15, 16]).
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Among the four-dimensional Lie algebras, only four can be described as
nontrivial central extensions of three-dimensional Lie algebras [6]. These are (in
Mubarakzyanov’s notation [14]):

(1) the Engel algebra g4.1, a central extension of the Heisenberg algebra bs;
(2) the algebra g4.3, a central extension of aff(R) ® R;

(3) the algebra g;é, a central extension of the semi-Euclidean algebra se(1,1);
(4)

4) the oscillator algebra 92.9, a central extension of the Euclidean algebra
se(2).

Moreover, the only indecomposable four-dimensional Lie algebras admitting an
invariant scalar product are g$, and g;é. The oscillator algebra g, and its
associated groups were studied in [4].

In this paper we consider the algebra glé (which we denote eﬁl) and its
associated simply connected Lie group Eﬁl. More specifically, we are interested
in the equivalence of left-invariant affine distributions on Efl. We regard two
distributions as being equivalent if they are related by a group automorphism. In
section 2, a characterization of this equivalence relation in terms of Lie algebra
automorphisms is provided. In section 3, the group Eil and its Lie algebra efl
are introduced and the vector subspaces of efl are classified. (As corollaries, we
obtain an exhaustive list of the subalgebras as well as the ideals.) In section 4,
the invariant affine distributions on E}'; are classified. Finally, in section 5,
two extensive examples interpreting this classification in the context of control
theory and sub-Riemannian geometry are presented.

2 Invariant affine distributions

An affine distribution on a (real, finite-dimensional) connected Lie group G
is a (smooth) map D that assigns to every point g € G an affine subspace D, of
T4G. D is said to be left-invariant if (Ly).D = D, i.e., TyLy - D}, = Dyp,. (Here
TyLy : ThG — Ty, G is the tangent map of the left translation Ly : b — gh.) A
left-invariant affine distribution D is determined by its associated affine subspace
Dy C g, where g is the Lie algebra of G. (If Dy is a vector subspace, then D is
a left-invariant vector distribution on G.) We say that D is bracket generating
if Dy is bracket generating, i.e., the subalgebra Lie(Dq) generated by Dy is g.

Two left-invariant affine distributions D and D’ on G are called £-equivalent
if there exists a Lie group automorphism ¢ : G — G such that ¢,D = D’.

Proposition 1. D is £-equivalent to D' if and only if there exists a Lie
group automorphism ¢ : G — G such that Ty ¢ - D1 = Dj.
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Proof. If ¢ : G — G is an automorphism such that ¢,D = D', then clearly
T1¢ - D1 = Dj. Conversely, suppose there exists an automorphism ¢ : G — G
such that T1¢ - D1 = Dj. We have ¢ = Lgyg) o po Ly for g € G. By left
invariance, we get Ty¢ - Dy = D;b(g). QED

Corollary 1. When G is simply connected, D is £-equivalent to D' if and
only if there exists a Lie algebra automorphism v : g — g such that ¢-Dy = Dj.

Accordingly, the classification of left-invariant affine distributions on a sim-
ply connected Lie group reduces to a classification of affine subspaces of its
Lie algebra. By a slight abuse of terminology, we say that two affine subspaces
I' = Dy and IV = D] are £-equivalent if there exists a Lie algebra automorphism
Y : g — g such that ¢ - ' =I". We shall write ' = A+T%= A+ (By,...,By),
where A, By,...,By € g and By, ..., By are linearly independent.

3 Ef, and its Lie algebra

The connected, simply connected four-dimensional matrix Lie group

1 vy =z
Efi =410 e z|:x,y,2,0€R
0 0 1

is a (nontrivial) central extension of the semi-Euclidean group SE(1,1). Indeed,
the mapping ¢ : E;“}l — SE(1,1),

1 y =z 1 0 0
0 €& z|+— % (yefa + z) coshf —sinhf
0 0 1 % (ye‘e — z) —sinh# coshé

is a Lie group epimorphism with ker ¢ = Z(Efl). Moreover, E?,l decomposes as
the semi-direct product Hg x SO(1, 1)y of the Heisenberg subgroup

1 y =z
Hs = 01 z|:xz,y,z€R
0 0 1
and the pseudo-orthogonal subgroup
1 0 0
SO(1,1)g=<¢ 10 ¢ 0]|:0eR
0 0 1
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(That is, EYy = H3SO(1,1)o, H3 N SO(1,1)g = {1} and Hj is normal in EY;.)
The Lie algebra of Ef;

0
et =19 [0 =zFE) +yEy+2E3+0FE; 1 x2,y,2,0 € R
0

o
o w8

is unimodular and completely solvable. Its (nonzero) commutator relations are
[E2, B3] = E, [E2, Ey] = E, [E3, E4] = —E3.
Proposition 2 (cf. [7]). The automorphism group Aut(ef;) is given by

Ty wr vy u —xy —vr —wy u
0O o« 0 w 0 0 Y v
0 0 y wl|’ 0 x 0
0 0 0 1 0 0 0 -1

cu,v,w, Yy €R, xy £ 0

The group of inner automorphisms Int(ef';) = {Ad, : g € EY,} takes the form

1 —ze? Y —yze‘e
0 e 0 e ?

Int(e}';) = 0 0 ) y—z ty,2,0 €R
0 0 0 1

(In each case, the automorphisms are identified with their matrices with respect
to (El, EQ, Eg, E4))

Remark 1. The group of automorphisms Aut(e7';) decomposes as the semi-
direct product of the normal subgroup Int(eﬁl) and

or?2 0 0 u —or2 0 0 U
0 or 0 O 0 0 or O
o o0 r ol 0 r 0 0 cu€eR, r#£0, ce{-1,1}
0 0 0 1 0 0o 0 -1

There exists an invariant scalar product on eil, i.e., a nondegenerate bilinear
form ((-,-)) such that ([A, B],C)) = (4, [B,C])) for every A, B,C € ¢f;.

Proposition 3. The Lie algebra eﬁl admits exactly one family (wq)acr of
invariant scalar products. In coordinates (with respect to (E1, Es, E3, Ey)),

0 0 0 1
0 0 -1 0
0 -1 0 O
1 0 0 «
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The orthogonal complement of a subspace I' (with respect to the symmetric
invariant scalar product ((-,-)) = wp) is the subspace

It ={Ac ¢ry 1 (A4, B)) =0 for every B € T'}.

Lemma 1. Let I't and Ty be vector subspaces of ¢f'y and ¢ € Int(ey ). If
¢o-T{ =Tg, then ¢ - Ty =Ts.

Vector subspaces of ¢},

We classify the vector subspaces of eﬁl under £-equivalence. As corollaries,
we obtain enumerations of the subalgebras and the ideals. The following simple
lemmas prove useful in distinguishing between equivalence classes. Let v : ei‘il —

¢}') be an automorphism and let ' be a subspace of ¢} ;. (Below E* denotes the
corresponding element of the dual basis.)

Lemma 2. E*(T) = {0} if and only if E*(z) - T') = {0}.
Lemma 3. Z(e¢7) C T if and only if Z(e7;) C ¢ - T

Proposition 4. Any proper vector subspace of eil 18 L£-equivalent to exactly
one of the following subspaces:

(E1), (Ba2), (E2+Es3), (Ei),
(Ev, Ep), (Ea, E3), (E1, Ei), (B2, Eu),
(E1,Eo+ E3), (E\+ Ey, Ey), (E2+ Es3, Ey),
(E1,E2, E3), (E1, Ea,Ey), (E2,E3,Ey), (E1, Es+ E3,Ey).

Proof. Throughout the proof, ¢ denotes the automorphism

-1

o o o

o= O O

o O = O
o O O

—1

Let I' = (3" a;E;) be a one-dimensional subspace. If ay # 0 (i.e., E4(T) #
{0}), then

e
oo

2a2a3—a1a4
2

S
2k
A

a2
a4
_as
a4

1

S O O =
S O o
S = O
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is an automorphism such that ¢ - I' = (Ey). If a4 = 0 and ag, ag # 0, then

as2as3 0 —a1a2 0
0 as 0 —aq
0 0 a 0
0 0 0 1

=

is an automorphism such that ¢ - I' = (Fy + E3). If ag,aq = 0 and a3 # 0, then

-1 0 2 90
13
» = 0 O s 0
0 as 0 —ai
0O 0 0 -1

is an automorphism such that 1 - I' = (E»). Likewise, if ag # 0 and a3, aq = 0,
then T' is £-equivalent to (Fs). Lastly, if as, as,aqs = 0, then I' = (Ey).

Let T'= (3" a;F;, Y. b;F;) be a two-dimensional subspace. Suppose E4(I") #
{0}. We may assume a4 = 0 and bg = 1. Then

1 —by —by 2bobg — by
o1 by
e P —bs
0 0 0 1

is an automorphism such that ¢1 - T' = (@] F1 + aeEs + a3Es, E4). If ag, a3 # 0,
then

/ !
ajaz _ ajaz

asas — 3 3 0
a/
. 0 as 0 — 71
wQ - al
0 0 as  —%

0 0 0

1
is an automorphism such that 1911 -I' = (Es+ E3, E4). If ag = 0 and o}, az # 0,
then

> 0 0 0
0 0 L o
g as
e 0 -% 0 0
0o 0 0 -1

is an automorphism such that v - ¢ - T' = (Ey 4+ E, E4). On the other hand,
if aj,a2 = 0 and a3 # 0, then ¢ - ¢y - I' = (Es, E4). Similarly T is £-equivalent
to (1 + Eo, Ey) (if a},a2 # 0, a3 = 0) or (Es, Ey) (if ag # 0, af,a3 = 0). If
az,az = 0, then 1y - T' = (E1, Ey).
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Suppose E4(T') = {0} and by, b3 # 0. Then

T
0 b 0o -4
0 0 by -4
0 0 0 1

Y=

is an automorphism such that ¢y - I' = (a| E1 + a4y Es, B + Es). If af, # 0, then
we have an automorphism

1 -9 9
ay  aj
al
=0 1 0 @
0o 0 1 =%
2
0 0 0 1

such that 9 -9 - T' = <E2,E3>. If a’2 =0, then ¢; - T' = <E1,E2 + E3>.
Suppose E4(I') = {0}, by = 0 and b3 # 0. We may assume a3z = 0 and b3 = 1.
If as # 0, then

1 b

1
0 0 1 Z—;
0 0 0 1

is an automorphism such that ¢ - I' = (E», E3). If ay = 0, then ¢ - I" = (E}, E»).
Likewise, if E4(I") = {0}, by # 0 and b3 = 0, then I' is £-equivalent to (Fs, E3)
or (E1, Es).

Suppose E4(I') = {0} and by, b3 = 0. We may assume a; = 0 and by = 1. If
az,az # 0, then ¢ = diag(azas, as,as, 1) is an automorphism such that ¢ - I' =
<E2 +E3,E4>. If as = 0 and ag 7& 0, then¢-I' = <E1,E2>. If as # 0 and ag = 0,
then clearly I' = (Ey, E»).

Let T be a three-dimensional subspace with orthogonal complement I't =
> a;E;). If EXTY) = {0} and az,a3 = 0, then I' = (E», E3, E4). Suppose
E4(T+) = {0} and ag, a3 # 0. We may assume ag = 1. Then

10—&10
_010—a1
Zloo 1 o0
00 0 1

is an inner automorphism such that ¢ -T't = (a2 Ey + E3). Consequently, ¢-TI' =
(E1, —agEs+ Es, Ey4); hence ¢ = diag (—%, —a—12, 1, 1) is an automorphism such
that ¢ - ¢ - I'= (E1, B2 + B3, Eu).
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Suppose E4(I't) = {0}, a2 = 0 and a3 # 0. We may assume a3 = 1. Then

10—@1 0
01 0 —a
“loo 1 o0
00 0 1

is an inner automorphism such that ¢-I't = (E3). Hence ¢+ -T' = (Ey, Fa, Ey).
Likewise, if E4(I'Y) = {0}, az # 0 and a3 = 0, then T' is £-equivalent to
(E1, Eo, Ey).

Suppose E4(I't) # {0}. We may assume a4 = 1. Then

1 —a3 —as asas

10 1 0 —ao

PZ1o 0 1 —as
0 0 0 1

is an inner automorphism such that ¢ - 't = (a\Ey 4+ E;). Hence ¢ - T =
(Es, B3, —a\ Ey + E4) and so

1 0 0 a)
010 0
Y= 0 01 0
0 00 1

is an automorphism such that ¢ - ¢ - ' = (Es, B3, Ey).

Finally, using a straightforward argument (together with the foregoing lem-
mas), one verifies that none of the representatives obtained are £-equivalent to
each other. QED

Corollary 2. Any proper subalgebra of e"f,l 18 L-equivalent to exactly one

of the following subalgebras:
<E1>7 <E2>a <E2 + E3>7 <E4>7
(Er, Ea), (Er, Ey), (E2,Ei), (E1,Ey+ E3),
(B, Eo, E3),  (E1, B, Ey).

Among these subalgebras, only (E2, E4) = aff(R), (E1, B2, E4) = aff(R) ®R and
(E1, Eo, E3) = b3 are not Abelian.

Corollary 3. Any proper ideal of efl s L-equivalent to exactly one of the
following ideals:

Z(e¥y) = (E1), (E1,Ey), Z(e}y)" = (E1, By, E3).

The ideals (Ey) and (Eq, Ea, E3) are fully characteristic (i.e., ¥ -i =1 for every
b € Aut(eh).
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4 Classification

We classify the bracket-generating left-invariant affine (and vector) distribu-
tions on Eil. This is accomplished by classifying the bracket-generating affine
(and vector) subspaces of ¢]';. Henceforth, all subspaces under consideration are
assumed to be bracket gene’rating.

The following classification of vector subspaces follows from proposition 4.

Theorem 1. Any (bracket-generating) proper vector subspace I is £-equiva-
lent to exactly one of the following subspaces:

F(2’0) = <E2 + Eg, E4>
I = (B, B3, Ey) Z(ey) LT

130 = (B, By + Es, Ey) Z(e¥)) CT.

We now proceed to classify the affine subspaces of e7';. We provide details
for both the one- and two-dimensional case; the three-dimensional case is similar
and so the proof will be omitted. As before, we denote by ¢ the automorphism

-1

o o O

O = OO

o O = O
o O O

—1

Theorem 2. Any (bracket-generating) one-dimensional strictly affine sub-
space T' = A+TV is £-equivalent to exactly one of the following affine subspaces:

ngl) = BE) + By + E3 + (Ey) EXT?) # {0}
3. = aBy + (Es + Es) E4(T°) = {0}.

Here a > 0 and 8 > 0 parametrize families of class representatives, each differ-
ent value corresponding to a distinct (non-equivalent) representative.

Proof. Since I'V is a one-dimensional vector subspace, it is £-equivalent to ex-
actly one of (Ei), (E2), (Ea + E3) or (Ey) (see proposition 4). However, no
subspace A + (E1) or A+ (E») is bracket generating (for any A € ef';).
Suppose E4(I'%) # {0}. Then there exists ¢ € Aut(ey';) such that 1 -
I' = a1E1 + asEy + a3Es + (Ey4), where ag, a3 # 0 (by the bracket-generating
condition). Hence ¢, = diag (a21a3, é, %, 1) is an automorphism such that s -
1. = a’1E1+E2—|—E3+<E4>. Ifa’l < 0, then ¢-9p9-21-T' = —a’1E1+E2+E3—|—<E4).

Therefore T' is £-equivalent to I‘glg), where 3 = |a}| > 0.
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Suppose E*(I'’) = {0}. Then there exists 11 € Aut(e}'|) such that ¢, - T' =
Y a;E; + (E2 + Es3). Since ; - I' is bracket generating, as # 0 and so

1 @2-as _ag—az _ (a2—a3)%+2a1a4
2a4 2a4 Qai
_ a2—as
Wy = 0 1 0 . 2((114
2—a3
0 0 1 Sas
0 0 0 1

is an automorphism such that ¢y - ¢ - T' = a4 Ey + (E2 + E3). If a4 < 0, then
G g1 -I' = —ayFq + (B2 + E3). Therefore I' is £-equivalent to Fgl 1)
a = |ag| > 0.

As (Ey4) and (E3 + E3) are not £-equivalent (proposition 4), it follows that
I’glﬁl) is not L£-equivalent to I’g a) We claim that F(l U i L-equivalent to Fglﬁl/)

only if 3 = 3. Indeed, suppose

where

Ty wr vy U
0O x« 0 w
V= 0 0 y w
0O 0 0 1

is an automorphism such that - Fgl’ﬁ ) = Fglﬂl,) Then (wz +vy+ By — ') Er +
(l’ — 1)E2 + (y - 1)E3 € B’E1+ Ey+ Es + <E4> and uF| +vEy +wks € <E4>

Thusu=v=w =0,z =y =1and so 8= /. On the other hand, if

—xy —vr —wy u
1 O 0 Yy v
v= 0 x 0 w
0 0 0 —1
. . (1,1) (1,1)
is an automorphism such that ¢ - I'y 15 = Iy B then u = v = w = 0 and
x =y = 1; whence 8 = —f'. As 3,3 > 0, this implies that 8 = ' =
(1,

Likewise, Fg al) is L£-equivalent to F ,) only if a = o/. QED

Theorem 3. Let I' = A+ TV be a (bracket-generating) two-dimensional
strictly affine subspace.

(i) If E*(T°) # {0}, then T is £-equivalent to exactly one of the following
affine subspaces:

I‘(271) = B3+ (B3, Ey) Lie(I"Y) # e;q,lv Z(eﬁl) Z (T)
F(2 D _ =vE3+ (E1 + E2, Ey) Lie(T?) # e?,lv Z(ef
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1Y = By + Bs + (Ey, Ey) Lie(I%) # e}y, Z(ey) € ()
P& = BBy + By + (By + Es, B4 Lie(I) = ef 1, Z(e},) Z (T)
FéZ’l) = FE1 + (E2 + B3, Ey) Lie(T?) = e?,l? Z(e?,l) c ().

(ii) If EXT%) = {0}, then T' is £-equivalent to exactly one of the following
affine subspaces:

T = By + (By, ) Z(e5 ) Z (1)
r(ﬁj) = aFy + (E1, By + E3) Z(eX,) C (I).

Here o> 0, 8> 0 and v # 0 parametrize families of class representatives, each
different value corresponding to a distinct (non-equivalent) representative.

Proof. Since I'V is a two-dimensional vector subspace, it is £-equivalent to ex-
actly one of <E1,E2>, <E1,E4>, <E2,E3>, <E2,E4>, <E1,E2+E3>, <E1 + Fs, E4> or
(B2 + E3, Ey4) (see proposition 4). However, no subspace A+ (E1, E9) is bracket
generating (for any A € 7 ;).

(i) Assume E*(TY) # {0}. First, suppose Lie(I'?) # ery and Z(efy) Z (I).
Then there exists ¢ € Aut(efl) such that ¢; - I' = a1 E1 + asE3 + (Ea, Ey) or
1 -T'=agFy + asEs + (E1 + Ey, Eyg), where az # 0. If ¢1 - I' = a1 By 4+ asEs +
(Fa, Ey), then we have an automorphism

1 0 —Z—; 0
o 0 as 0 —aq
2=y g i
0 O 0 1

such that g1 T = Es+(Ep, Ba) = TV £ 41 T = ayBy-+as By +(Ey+ Ea, Ey),
then
as 0 as az
o 0 as 0 as
2=10 0 1 o0
0 0 0 1

is an automorphism such that g - 91 - T' = agEs + (E1 + Eo, Ey) = Fg%l), where

v=a3#0.
Suppose Lie(T
such that 1/11 F

dlag (a2a3’ ag’ a3

(Ey, Eg) =T,

0) # ¢f; and Z(ef';) C (T'). Then there exists ¢ € Aut(e]';)
= a9Fs + agF3 + <E1,E4> with ag,as # 0. Hence 1o =
) is an automorphism such that o -1 - T' = Fy 4+ E3 +
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Suppose Lie(T?) = efy and Z(ef;) < (T'). Then there exists an automor-
phism v such that ¢y - I' = a1Ey + agEs + (Ey + Es, Ey), where ag # 0.
Hence we have an automorphism 9 = diag ( L1l 1) such that ¥y -1, -T' =

g7£7aa
a’lEl + E5 + (Ey + E3, Ey). If a’l < 0, then

1 0 0 0
0 0 -1 0
=19 1 0 0
0 0 0 -1

is an automorphism such that ¥s - g - Yy - ' = —a1E1 + E3 + (Ey + E3, Ey).
Hence I' is £-equivalent to Ff’ﬁl), where 8 = |a1]| > 0.

Lastly, suppose Lie(I'%) = ey and Z(e7';) € (I'). Then there exists an auto-
morphism v such that ¢y - I' = a1 Ey + (F2 + E3, E4). Hence we have an auto-

morphism 9 = diag (i, \/%, \/%7 1) such that ¢9-11-I' = E1 4+ (Ey+ Es, Ey) =
&,

(ii) Assume E*(I'%) = {0}. First, suppose Z(ey'y) Z (I'). Then there exists
an automorphism v, such that ¢ - T' = a1 E1 + a4 Ey + (E2, E3), where a4 # 0.
Hence
_a
4

Yo =

S O O =
o O = O
o= O O
— O Og

is an automorphism such that vy - 91 - I' = a4 Ey + (Eo, E3). If a4 < 0, then
S g1 - = —agFy + (Ea2, E3). Thus T' is £-equivalent to Fé?&l),
a = |ag| > 0.

On the other hand, suppose Z(eY;) C (I'). Then there exists an automor-
phism v such that ¢y - T' = a3Es3 + a4 E4 + (E1, B2 + E3) with aq # 0. Hence

where

1 -2 0 0
0 1 0 0
2= 1o g 1 -
0 0 0 1

is an automorphism such that ¥ -1 -I' = ay By + (E1, E2 + E3). If ag < 0, then
-9 - - I' = —ayEy + (Ey, B2 + E3). Therefore I' is £-equivalent to Fg&l),
where o = |ay| > 0.

Since the conditions E4(I'?) = {0}, Lie(T?) = ery and Z(ey';) C (') are
invariant under automorphisms, in most cases it follows that no two (families

of) representatives are £-equivalent. The only exception is ng’l) and I’S&l) )
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which are not £-equivalent as (E9, Fy4) is not £-equivalent to (Eq + Ea, E4). It
remains to be shown that within each one-parameter family of affine subspaces,
different values of the parameter yield distinct representatives. We shall treat

only the family Fé?’wl);

We claim that ng;l) is £-equivalent to Féal,) only if v = +/. Indeed, suppose

the remaining cases are very similar.

TY wr VY U
0 r 0 w
Y= 0O 0 y w
0 0O 0 1

is an automorphism such that 1) - Fg?,’yl) = Fé%l,). Then (yvy)E1 +yyFEs € v Es+
(E1 4 E9, Ey) and (z(w +y)E1 + xFE,ulb) + vEy +wEs + Ey) = (E1 + Es, Ey).
Hence w = 0, y = 1 and so v = 7. On the other hand, if

—xy —vr —wy U

0 0 Y v

0 T 0 w

0 0 0 -1
. . (2,1) _ (2,1) B -
is an automorphism such that ) - F277 = F2,v’ , then w = 0 and vy = 0, a
contradiction.

Theorem 4. Let T' = A +1T° be a (bracket-generating) three-dimensional
strictly affine subspace.

(i) If EX(TY) # {0}, then T is £-equivalent to exactly one of the following
affine subspaces:

r*Y = By + (1, B, Eu) Lie(TV) # i,
1Y = By + (B, Bs, Ey) Lie(T0) = ¥, Z(eX,) ¢ TO

1“:(33’1) = B3+ (B, B> + B3, Ey) Lie(I"?) = e?,l? Z(ef,) ST

(ii) If EXT%) = {0}, then T' is £-equivalent to exactly one of the following
affine subspaces:

IV = aBy + (E1, By, Es).

Here a > 0 parametrizes a family of class representatives, each different value
corresponding to a distinct (non-equivalent) representative.
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5 Two demonstrative examples

Invariant control systems

To every invariant control affine system one can canonically associate an
invariant affine distribution (on the same state space). Two systems are (de-
tached feedback) equivalent if and only if their associated affine distributions
are £-equivalent. Accordingly, the classification of affine distributions on Eil
may be interpreted as a classification of (invariant) control affine systems.

A left-invariant control affine system ¥ on a (real, finite-dimensional) matrix
Lie group G may be regarded as a family (Z,),cre of left-invariant vector fields
on G affinely parametrized by controls, i.e.,

Eu(9) = 9(A+u1 By + - -+ ugBy), geG, ueR:

Here A, By, ..., B, are elements of the Lie algebra g of G and By,..., By are
linearly independent. It is assumed that A, B, ..., By generate g. We write a
control affine system ¥ in the abbreviated form ¥ : A+ w1 By + -+ + wBy. An
admissible control is a piecewise continuous map u(-) : [0, T] — R, A trajectory,
corresponding to an admissible control u(-), is an absolutely continuous curve
g(-) : [0,T] — G such that g(t) = Z,;)(g(t)) for almost every t € [0,T].

Two systems Y and X' on G are detached feedback equivalent if there exist

diffeomorphisms ¢ : G — G and ¢ : R — R’ such that T,¢-Z,(g) = Efp(u) (9(9))

for every g € G and u € R%. The map ¢ establishes a one-to-one correspondence
between trajectories of equivalent systems. We associate to each system X a
(bracket-generating) affine distribution D given by D, = {Z,(g) : u € R}. ¥ is
detached feedback equivalent to ¥’ exactly when their associated distributions
D and D' are £-equivalent (cf. [3, 5]).

Accordingly, we have the following classification of systems on ETJ.

Proposition 5. Every left-invariant control affine system is detached feed-
back equivalent to exactly one of the following systems:

=0 BEL + By + B3 + uEy Sha : aBi+u(Es + Es)

20 uy(Ey + Bs) + usEs SV ¢ B3+ w1 By + un By

=3 By + ui(By + Ba) +us By =Y By + By + wi By + uzEy
=3 BB+ By v w(Ba + Bs) + wEy S5 1 B+ ui(By + Es) + us By
E((f&l) :aFEy +u1Ey + usFs E%MI) s By +u1 By 4+ ug(Es + E3)
253’0) tur By + ugE3 + usEy 253’0) cur By 4 ug (B + E3) + uzEy

253’1) By 4+ ui By +usFEs + usky 253’1) P By +unBa +ug B3 +uz By
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2:(;)3’1) By +u By + UQ(EQ + E3) + ug by 24(5&1) caFy +u1 B+ uo By + usEs
2(4’0) cur B + usFo 4+ usEs + ug Fy.

Here o > 0, > 0 and v # 0 parametrize families of class representatives, each
different value corresponding to a distinct (non-equivalent) representative.

Invariant sub-Riemannian structures

A left-invariant sub-Riemannian structure on a (real, finite-dimensional)
connected Lie group G consists of a nonintegrable left-invariant distribution D
and a left-invariant Riemannian metric G on D. It is assumed that D is bracket
generating.

Two sub-Riemannian structures (D,G) and (D',G’) on G are isometric if
there exists a diffeomorphism ¢ : G — G such that ¢,D = D’ and G = ¢*G.
If, in addition, ¢ is a group automorphism, then we shall say that they are £-
isometric. If G is simply connected, then (D, G) is L£-isometric to (D', G’) if and
only if there exists a Lie algebra automorphism ¢ such that ¢ - D1 = D} and
G1(X,)Y)=Gi(¢- X,¢-Y) for every X,Y € Dy (cf. [17, 2]).

Accordingly, one need only normalize the metric in order to obtain a classi-
fication of sub-Riemannian structures on Ebf’l.

Proposition 6. Let (D, G) be a left-invariant sub-Riemannian structure on

EY,.
(i) If rank D = 2, then (D, G) is £-isometric to exactly one of the following
structures:
LB
D1:<E2+E37E4>7 g].:)\ B 1 6<1

1 18 identified with its matriz with respect to (Eo + E3, Fy).
g dentified with h E>+ E3 E
(ii) If rankD = 3 and E*(Di) # {0}, then (D,G) is L-isometric to exactly

one of the following structures:

_Otl v a1 — ’)/2 >0
D pr— pr— ’
1= (Eo, B3, Ey), Gi=A|v a2 1 det[Ga] > 0
111
' 8 1]
Dy = (Ey,F3,Ey), Gi=XA|8 1 0 a—p3>>1
(1 0 1]
g o
Dl = <E2,E3,E4>, gl =\ ﬁ 1 0 ﬂ < 1.
0 0 1
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(G1 is identified with its matriz with respect to (Ea, Es, Ey).)

(iii) If rankD = 3 and E*(Di) = {0}, then (D,G) is £-isometric up to scale
with exactly one of the following structures:

a 0 0
Dy = (E1, By + E3, Ey), Gi=A[0 1 p g <1
08 1

(G1 is identified with its matriz with respect to (E1, Ey + E3, Ey).)

Here \,a >0, a1 > as >0, >0 and v € R (with additional constraints given
adjacent to each representative) parametrize families of class representatives,
with different values corresponding to distinct (non-equivalent) representatives.

Proof. We treat only the case when D has rank two. (The rank-three case is
similar.) Let (D, G) be a left-invariant sub-Riemannian structure on Ey';, where
D is a rank-two distribution. By theorem 1, there exists 11 € Aut(eil) such
that 91 - Dy = (Ey+ E3, E4). Hence (D, G) is £-isometric to a structure (D', G’),
where D} = (E2+ E3, E4). The subgroup of automorphisms leaving D] invariant

is given by
z 0 z 0
Ao 1[5 2o

_ are written with respect to (Ez + E3, Ey).) Let

Dy

Gy = [C;)l abQ]' We have 1)y = diag( Z%, 1) S Aut(efl) >

Aut(eil)

(The elements of Aut(e;)

) such that

1
Tg/w_ 1 b/
2 Y1¥2 = a2 ¥o1l:

) and
1

If o <0, then ¢3 = diag(1, —1) € Aut(ey)

1y 1y Gibaths = as [—1b’ _16] :

Therefore (D, G) is £-isometric to (D', G"”), where G = A [; ﬂ with A > 0

and 8 > 0. As G is positive definite, we have < 1. It is easy to verify that
two representatives are £-isometric only if their parameters are equal. QED
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