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1 Introduction and notations

The introduction of the concept of m-isometric transformation in Hilbert
spaces by Agler and Stankus yielded a flow of papers generalizing this concept
both in Hilbert and Banach spaces, for example (see [8,9,10,11,12,13,14, 15,16, 17,21, 22]).

An operator T acting on a Hilbert space H is called m-isometric for some integer
m>1if

3 (-pymh @) TRk = (1.1)

0<k<m

where (7;) be the binomial coefficient. A simple manipulation proves that (1.1)
is equivalent to

Z (—1)mk <TZ> |T*z||? =0, forallzcH (1.2)

0<k<m

Evidently, an isometric operator (i.e., a 1-isometric operator) is an m-isometric
for all integers m > 1. Indeed the class of m-isometric operators is a generaliza-
tion of the class of isometric operators and a detailed study of this class and in
particular 2-isometric operators on a Hilbert space has been the object of some
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intensive study, especially by J.Agler and M. Stankus in [2], [3] and [4], but
also by S.M. Patel [23]. B.P.Duggal [15, 16] studied when the tensor product of
operators is an m-isometry.

A generalization of m-isometries to operators on general Banach spaces has
been presented by several authors in the last years. Botelho [14] and Sid Ahmed
[21] discussed operators defined via (1.2) on (complex) Banach spaces. Bayart
introduced in [8] the notion of (m,p)-isometries on general (real or complex)
Banach spaces. An operator T on a Banach space X into itself is called an
(m, p)-isometry if there exists an integer m > 1 and a p € [1,00), with

Ve X, 1 k<m> Tk g|P =0 1.3
oggzm( g )] | (1.3)
It is easy to see that, if X = H is a Hilbert space and p = 2, this definition
coincides with the original definition (1.1) of m-isometries. In [19] the authors
took off the restriction p > 1 and defined (m, p)-isometries for all p > 0 . They
studied when an (m, p)-isometry is an (u, q)-isometry for some pair (u,q). In
particular, for any positive real number p they gave an example of an operator
T that is a (2, p)-isometry, but is not a (2, ¢)-isometry for any ¢ different from
p. In [9,10] it is proven that the powers of an m-isometry are m-isometries and
some products of m-isometries are again m-isometries.

The authors, O.A.M. Sid Ahmed and A. Saddi introduced the concept of
(A, m)-isometric operators. They gave several generalizations of well known facts
on m-isometric operators according to semi-Hilbertian space structures. We refer
the reader to [22] for more details about (A, m)-isometric operators. Recently,
B.P. Duggal has introduced the concept of an A(m,p)-isometry of a Banach
space, following a definition of Bayart in the Banach space.

Definition 1.1. ([17]) Let 7" and A € B(X) (the set of bounded linear
operators from X into itself), m is a positive integer and p > 0 a real number.
We say that T is an A(m, p)-isometry if, for every z € X

3 (-t <TZ> |AT™ ([P = 0. (1.4)

0<k<m

For any T' € B(H) we let
,_ k[T psknk
On(T) = (-1) (k>T Tk (1.5)
0<k<m

The Concept of completely hyperexpansive operators on Hilbert space has at-
tracted much attention of various authors. In [1], J. Agler characterized subnor-
mality with the positivity of 6,,(T) in (1.5) and also extended his inequalities to
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the concept of m-isometry (cf. [2—4]). On the other hand, A. Athavale considered
completely hyperexpansive operators in [5]. In further studies, mainy authors
have studied k-hyperexpansive (cf. [7,18]). The concept of (A4, m)-expansive op-
erators on Hilbert space was introduced in [20].

Definition 1.2. ([18]) An operator T' € B(H) is said to be
(i) m-isometry (m >1)if 6,,(T)=0.
(ii) m-expansive (m > 1) if 6,,(T) < 0.
(iii) m-hyperexpansive (m > 1), if 6;(T) <0 for k =1,2,...,m.
(iv) Completely hyperexpansive if 6,,(T) < 0 for all m.
We refer the reader to [6, 7, 18] for recent articles concerning this subject.
In [8] the author defined ,Bl(cp)(T, J: X —R: z+—— B,(Cp)(T, x) by
BT, x) :% ST (1) <’;>|zj||17, VaoeX (1.6)
0<j<k
For k,n € N denote the (descending Pochhammer) symbol by n®) ie.
0, if n=0

n®) — Oifn>0 and k>n

(Z)k:‘ if n>0 and k <n.

Then for n > 0, k£ > 0 and £k < n we have
n® =nn—-1)..(n—k+1).
It was proved in [8, Proposition 2.1] that
ITmalr = 32 n®BT, @) (1.7)
0<k<m—1

for all integers n > 0 and x € X. In particular,

M || P
89 (T, )= tim I
n—ro0 (mfl) (m - 1)'

with equality if and only if T is (m — 1; p)-isometric.

In recent work T. Bermudez, A. Martinén and V. Miiller introduced the concept
of (m, p)-isometric maps on metric spaces (see [13] ).

Let N be the set of positive integers and Ng = N U {0}.
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Definition 1.3. ([13]) Let E be a metric space. A map T': E — E is
called an (m, p)-isometry,( m > 1 integer and p > 0) if, for all z,y € F

> (=DF <7:>d(Tm_km,Tm_ky)p =0. (1.8)

0<k<m

For m > 2 | T is a strict (m, p)-isometry if it is an (m, p)-isometry, but is not
an (m — 1, p)-isometry.

For any p > 0; (1, p)-isometry coincide with isometry, that is d(Tz,Ty) =
d(:z:, y) for all z,y € E. Every isometry is an (m, p)-isometry for all m > 1 and
p > 0. Many results known in the Banach space setting are established in [13]
for metric spaces. For example, an (m,p)- isometry is an (m + 1, p)-isometry
and any power of (m, p)-isometry is again an (m, p)-isometry.

Let T : E — Eis an (m, p)-isometry. In [13] the authors defined fr(h, p, z,y)
for h € N, a positive real number p and z,y € E by :

fr(h, p, x,y) = Z (—1)h_k <Z>d(Tk:c,Tky)p. (1.9)

0<k<h

We have from (1.9) that

d(T”x,T”y)p = Z (Z) fr(k,p; z,y). (1.10)

0<k<m-—1

for all m > 0 and z,y € X (see [13]).
Definition 1.4. ([5]) A real- valued function ¥ on Nj is said to be

(1) completely monotone if ¥ > 0 and Z (—1)* <7Z)\Ii(n +k)>0,Yyn>0
0<k<m
and m > 1.

(2) completely alternating if Z (=1)* (7;) U(n+k)<0Vn>0andm > 1.
0<k<m

The content of this paper is as follows. In Section one we set up notation and ter-
minology. Furthermore, we collect some facts about (m, p)-isometries. In Section
two, we introduce and study the concept of (m, p)-expansive and hyperexpansive
mappings on a metric space and we investigate various structural properties of
this classes of mappings.We prove that (2, p)-hyperexpansive mappings which
are (m,p)-expansive must be (m — 1,p)-expansive for m > 2. Recall that if
T is an m-isometry (resp. k-expansive or (A, m)-expansive) operator, then so
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are all its power T"; for n > 1 (cf [9,18,20]). It turns out that the same as-
sertion remains true for (2, p)-hyperexpansive and completely p-hyperexpansive
mapping (Theorem 2.3 and Theorem 2.4). Moreover, we prove that the inter-
section of the class of completely p-hyperexpansive mapping and the class of
(m, p)-isometries for m > 2 is the class of (2, p)-isometries (Proposition 2.10).
The section three of this paper is an attempt to develop some properties of the
class of (m,p)-expansive mappings in seminormed spaces parallel to those of
m-isometries.

2 (m,p)-Hyperexpansive maps in metric spaces

In this section, let (X, d) be a metric space, T': X — X is a map, m € N
and p > 0 is a real number. We define the quantity

@gﬁ)(d, T;x,y) = Z (—1)k<77k%>d(Tk:n,Tky)p,

0<k<m

for all z,y € X and we give several results on (m,p) expansive and hyperex-
pansive mappings on a metric space.
In the following definition, 6$5)(d, T; z,y) < 0 (resp. 6%’?(6& T; z,y) > 0)

really means olr) (d,T; z,y) <0forall z,y € X (resp. o) (d,T; z,y) >0 for
all z,y € X).

Definition 2.1. Let T: X — X be a map. We say that

i) T is (m,p)-expansive if G)gff)(d, T; z,y) <0.

ii) T is (m,p)-hyperexpansive if @,(fp)(d,T; xz,y) <0 for k=1,2,...,m.
iii) 7T is completely p-hyperexpansive if T is (k, p)-expansive for all k € N.
iv) T is (m, p)-contractive if @gﬁ)(d, T;x,y) > 0.

v) T is (m,p)-hypercontractive if @,gp) (d, T; z,y) >0 for k=1,2,....m.

(
(
(
(
(
(

vi) T is completely p-hypercontractive if T is (k, p)-contractive for all k& € N.

For any p > 0, (1,p)-expansive coincide with expansive; that is, maps T
satisfying d(T'z, Ty) > d(x,y), for all z,y € X.

For any p > 0, (1,p)-contractive coincide with contractive; that is, maps T
satisfying d(Tz,Ty) < d(z,y), for all z,y € X. (m,p)-isometries maps are
special cases of the class of (m, p)-expansive and contractive maps.
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We consider the following examples of (m, p)-expansive map and (m, p)-contractive
map which are not (m, p)-isometric map.

Example 2.1. Let X = R be equipped with the Euclidean metric
d(aj,y) = |z —y| for all z,y € X. Define T': X — X by Tx = 2x. Clearly
@g)(d, T; x,y) = (1 - 2p)m|x — y|P. So we can say that T is neither (m,p)
-isometric, for all m > 1 and p > 0. However, one can easily verify that T is

(m, p) expansive map for positive odd integer m and (m, p)-contractive map for
positive even integer m.

Remark 2.1. Every (m, p)-expansive map T is injective. In fact if Tz = Ty
then TFz = Ty for k = 1,2,...,m and from (i) of Definition 2.1 we obtain
d(z,y) <0iex =y. Hence T is an injective map.

We not that an (m, p)-expansive map is in general not an (m + 1, p)-expansive,
as we shown in the following example.

Example 2.2. Consider the usual metric d(z,y) = |x — y| on R. Let
T : (R,d) — (R,d) defined by Tz = 1 + 2x.Then it is easy to see that
d(Tz,Ty) > d(x,y) and

d(T?z, T?y)? — 2d(Tz, Ty)? + d(z,y)? = (28 = 1)*]z —y|” £ 0.

Clearly T is (1, p)-expansive which is not (2, p)-expansive.
Remark 2.2. We note the following:

(1) @%)(d,T, z,y) <0< @%)(d,T, Trz; T"y) <0, Va,y € X, Vn € Ny.

(2) @%)(d,T, z,y) >0 <= @%)(d,T, Trz; T"y) >0, Va,y € X, Vn € Ny.
Remark 2.3. We deduce from ([5], Proposition 1 and Proposition 2 ) the

following characterizations of completely p-hyperexpansive and completely p-
hypercontractive maps.

(1) A map T : X — X is completely p-hyperexpansive if and only if for
every z,y € X, the map n — ¥ (n) = d(T”x,T”y)p is completely
alternating.

T7 p? "L.7y)

(2) Amap T : X — X is completely p-hypecontractive if and only for every
r,y € X, the map n +—— Wi p o.y(n) = d(T”:c, T”y)p is completely monotone.

In the next proposition we invoke the following relation which plays an
important role in the proof of main results.

Proposition 2.1. Foramap T : X — X, m € N, real number p > 0 and
xz,y € X, we have that

OP(d,T; x,y) = 0% (d,T; z,y) — %) (d,T; Tx,Ty). (2.1)
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Proof. By the standard formula (T) = (mj_l) + (?:11) for binomial coefficients
we have the equalities

O)(d, T; x,y)
= Z (—1)k<m>d(Tkx,Tky)p
0<k<m J
SR DI SV G LT ST i
1<k<m-—1
m — 1 m—1
= a3 (") (LT s
1<k<m-1
+(=1)"d(T"x, T"y)"
= 955)—1(da T; x,y) — 655)_1(d,T; Tz, Ty).

QED

Remark 2.4. We note the following equivalences:

(1) T is (m,p) — expansive <= Vz,y € X
m m
Z <k>d(Tkx,Tky)p < Z <k>d(Tka;,Tky)p

0<k<m 0<k<m
k even k odd

(2) T is (m,p) — contractive <=V z,y € X

m m
> <k>d(Tkx,Tky)p >y <k>d(Tk:r,Tky)p
0<k<m 0<k<m
k even k odd

Lemma 2.1. Let T': X — X be an (2, p)-expansive mapping. Then the
following properties hold

P> nT_ld(x,y)p, n>1, z,y € X.
Tz, Ty)" > d(x,y)p for all x,y € X.
T”x,T”y)p + (n— 1)d(:1:,y)p < n.d(Ta:,Ty)p, z,ye X, n=0,1,2,...

Tz, Ty) < Q%d(a:, y) Vx,y € R(T) (the range of T).



24 Ould Ahmed and Mahmoud Sid Ahmed

Proof. Using the fact that T is (2, p)-expansive map , we get
d(TQx,TQy)p — d(T:c,Ty)p < d(Tac,Ty)p — d(w,y)p.
Replacing = by T"x and y by T"*y leads to
d(Tka,TkHy)p _ d(TkHa:,Tk“y)p < d(Tk“x,TkHy)p _ d(Tkx,Tky)p,
for k > 0. Hence

d(T”:U, T”y)p

Z (d,(Tkx,Tky)p — d(Tk_lav,Tk_ly)p) + d(m,y)p
1<k<n

< n(d(Tx,Ty)p—d(:c,y)p) —|—d(m,y)p
< nd(T:c,Ty)p +(1- n)d(:r:,y)p.

Which implies 1. and 3. Letting n — oo in 1. yields 2.

4. The (2, p)-expansivity of T" implies that
d(T2x,T2y)p < 2d(Tx, Ty)p — d(w,y)p < Zd(T:L‘,Ty)p.
Thus,
1
d(T?z,T?y) < 2vd(Tz,Ty).
QED
Remark 2.5. We make the following remarks:
(1) (2,p)-isometric is completely p-hyperexpansive.
(2) Every (k + 1,p)-hyperexpansive is (k, p)-hyperexpansive for k = 1,2, ....
Lemma 2.2. Let T : X — X be an (2, p)-expansive map, then for all
integer kK > 2 and x,y € X, we have
d(Tk:U,Tky)p — d(Tk_lx,Tk_ly)p < d(TJ:,Ty)p — d(:ﬂ,y)p.

Proof. We prove the assertion by induction on k. Since T is an (2, p)-expansive
the result is true for k = 2. Now assume that the result is true for k i.e.; for all
z,y € X,
d(T 2, T*y)" — d(T" 2, TF 1Y)’ < d(Tz, Ty)" — d(z,y)", (2.2)
and let us prove it of k + 1. From (2.2) we obtain the following inequalities
d(T* e, T" 1Y) — d(T%2, TFy)" < d(T%x, T%)" — d(Tx, Ty)"
< d(T:J:,Ty)p — d(x,y)p.

QED
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Proposition 2.2. Let T : X — X be a (2, p)-expansive map.Then the

following statements hold.

(1) T is (2,p)-hyperexpansive map.

(2) d(T:c,Ty)Qp > d(m,y)pd(T2x,T2y)p for all z,y € X.
(3) For each n and z,y € X such that = # y,the sequence

(d(TnJrlx, Tn+1y>p>
d(Tn:E7 Tny)p n>0

is monotonically decreasing to 1.

Proof. (1) Follows from part (2) of Lemma 2.1.
(2) Since from (1) T is (2, p)-hyperexpansive map, we have that

<d(ac, y)" +d(T?%a, T2y)p>2

d(T:U,Ty)2p > >
p 9 2 y 2
> <d(:1:,y)2d(T 2T y)2>

> d(m,y)pd(TQ:c,TQy)p.

(3) Observe that the (2, p)-expansivity of T' implies that

d(T" 2, T"y)? — 2d(T"z, T"y)" + d(T" 2, T y)" < 0.

On the other hand, since

r
2

2
<d(Tn1x’Tn1y) _ d(Tn+1x’Tn+1y)§> >0
it follows that

D
2

d(Tn_ICC,Tn_ly) d(Tn+1$,Tn+1y)
d(Tn+l$’Tn+1y)p_i_d(Tnfll.’Tnfly)p
2

IN

< d(T"z,T"y)" (by (2.4)).

Thus,
d(T’n—lx’ Tn_ly)pd(Tn+1.%', T’n-l—ly)p < d(Tnx, Tny)Zp

(2.3)

(2.4)
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and hence,

d(T" Mz, T y)P - d(T"z, T"y)"
d(Trz, Try)?  — d(T7 1z, T 1y)"’

so the sequence (2.3) is monotonically decreasing. To calculate its limit in view
of part (2) of Lemma 2.1, divide (2.4) by d(T™ 'z, T"‘ly)][J to get

d(TnCL‘,Tny)p d(Tn+1$,Tn+1y)p d(Tnvany)p

1-2 <0.
d(T" 1z, Tn1y)" d(Trz, Try)?  d(T 1z, T 1y)" —
and let n tend to infinity we obtain that
d(T”gc7 T"y)p
7 — 1 as n— o0
d(Tnflx’ Tnfly)
QED

The following theorem gives a sufficient condition for (m, p)-expansive map to
be (m — 1, p)-expansive map for m > 3.

Theorem 2.1. Let T': X — X be an (m, p)-expansive map for m > 3. If
T is (2, p)-expansive,then T is (m — 1, p)-expansive.

Proof. The conditions d(m, y)p — d(Tm, Ty)p <0 and

d(m,y)p — 2d(Tac,Ty)p + d(TQx,T2y)p <0

guarantee that the sequence <d(T"+1x, T Hy)? —d(T", T”y)p> is mono-
n>0
tonically non-increasing and bounded, so that is converges.Thus there exists a
constant C such that
d(T”+1$,T”+1y)p — d(T":p,T”y)p — C as n — 0.
Since ©%)(d, T; z,y) < 0 with m > 2. By Proposition 2.1

we have that
0" (d,T; z,y) <O (d,T; Tz, Ty).

An induction argument shows that



(m, p)-hyperexpansive mappings on metric spaces 27

Thus,it suffices to show that
@gll(d,T; Tz, T"y) — 0 asn — oo.
Note that
655)_1(CL Ta .Z', y) = @g)_z(dv T7 CU, Z/) - 955)—2(d7 T7 va Ty)?
so that
P (d,T; T"xz,T"y)

_ Z (_1)] <mj— 2) [d(Tn+]m7 Tn+jy)p—d(Tn+1+jCE, Tn+1+jy)p] )
0<j<m—-2

Letting n — oo in the preceding equality leads to

m—2
o0 (a1 ety — ¥ (" )=
0<j<m—2 J

This completes the proof. QED

Example 2.3. Let us consider again Example 2.2. T : R — R,
Tx = 1+ 2z. This example shows that T is (5, p)-expansive,but not (4,p)-
expansive, so the assumption for T to be (2, p)-expansive in Theorem 2.1 below
is necessary.

The following criterion for (m,p)-hyperexpansivity follows from Theorem 2.1

Corollary 2.1. Let T be (m,p)-expansive and (2, p)-expansive mapping.
Then T is (m, p)-hyperexpansive.

Proposition 2.3. Let T': X — X be an (2, p)-expansive map and assume
that T is a (m, p)-isometric for some m > 2. Then T is a (2, p)-isometric.

Proof. Assume that @%)(d,T; x,y) =0 for all z,y € X. Since
O (d,T; w,y) = OF) \(d,T; ,y) — OF),(d, T; T, Ty)
we deduce that
oW\ (d,T; 2,y) = OF)(d, T; Ta,Ty) = O], (d, T; T"z, T"y);

for n =1,2,.... In the same way as in the proof of Theorem 2.1 we obtain that
@g)_l(d,T; x,y) = 0. Applying the corresponding results of the (m — 1,p)-
)

isometric, we have that @gﬁfQ(d,T; x,y) = 0. Continue the above process to
get @;p) (d,T; z,y) =0 and so T is (2, p)-isometric. QED
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In the following lemma we generalize Lemma 1.3 in [14] and Proposition
2.11 in [13].

Lemma 2.3. Let T : X — X be a contractive mapping. If T is an (m, p)-
isometry then 7T is an (m — 1, p)-isometry.

Proof. Since T is contractive,we have the following inequality

d(T™ 1z, T y)? < d(T"z, T"y)" for all z,y € X and n € Ny. This means
that (d (T”:c, T”y)p ) neNo is deceasing sequence, so convergent.
Using the fact that T is an (m, p)-isometry and together (2.1), we obtain

Ggll(d,T;x, y) = @iﬁll(d, T;Tz,Ty) = ... = @gﬁll(d, T;T"x, T"y).
Note that

@%ll(d, T;T"x, T"y) = @55)72@1, T:T"x, T"y) — @gg)d(d, T; T, Ty,
so that

@gs)_l(d, T;T"x, T"y)
m—2

— (_1)j <m]_ 2> [d(Tn-i-jx’ T"+jy)p . d(T"+1+jx, Tn+1+jy)P}'
j=0

Letting n — oo in the preceding equality leads to
@ggll(d,T;T"x,T"y) — 0.
Thus, @gg)_l(d, T;x,y) = 0 and hence, T is an (m— 1, p)-isometry. QED

As a consequence of the lemma, we have the following proposition.

Proposition 2.4. If T' is a contractive mapping on X, then T is an (m, p)-
isometry if and only if T is an isometry.

Proposition 2.5. Let T : X — X be a map for which 7?2 is isometric ,
then the following properties hold

(i) T is (m, p)-expansive map if and only if T' is expansive.

(ii) T is (m, p)-contractive if and only if 7" is contractive.
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Proof. (i) If we assume that m is odd integer i.e., m = 2q + 1 we have by the
assumption that

_ Z [<2q + 1>d(T2j:B’T2jy)p B <2q + 1>d(T2j+1x,T2j+1y)p]

0<j<q 2 27+
2¢g+1 2g+1
= Z [< % )d(m,y)p — <2j N 1>d(Ta:,Ty)p]
0<j<q

2 1
Since Z (—1)k< 7+ ) =0, it follows that

k
0<k<2q+1
~ \2j+1) & 2j
0<j<q 0<j<q
and we deduce that
(p) 2q + 1 p P
@2q+1(d7T; xay) = Z . (d(:v,y) —d(T{L‘,Ty) )
052q \ 2

Similarly if m is even integer i.e.,m = 2q we have

eY)(d, T; x,y)

2q . . g 2q - -
= Y (2 A>d(T2]x,T2]y)p -3 <2j - 1>d(T2] Lp, 7% y)P

0<j<q j=1

2q 2q
= Z d(x,y)p — Z d(Ta:,Ty)p
. 27 - 27 —1
0<j<q 1<j<q
Since Z (—1)* 2q = 0, we have that Z 24 = Z 24
k ’ A 25 — 1 A 27
0<k<2q 1<j<gq 0<j<q

and hence

OV AT: xy) = 3 @j) <d(m,y)p—d(Tx,Ty)p>.

0<j<q

Therefore,we conclude that (i) and (ii) hold and this establishes the proposition.

QED
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Proposition 2.6. If T : X — X be an map satisfies 72 = T, then the
following properties hold

(i) T is (m, p)-expansive if and only if T' is expansive.
(ii) T is (m, p)-contractive if and only if T is contractive.
Proof. By the assumption on T, we have that
@ff?(d,T; x,y) = d(m,y)p — d(T:c,Ty)p, V z,y € X.

It is clear from the foregoing that a sufficient condition for 7" to be (m,p)-
expansive (resp. (m,p)-contractive) is that 7' is expansive (resp. contractive).

Proposition 2.7. ([13]) If T is a bijective (m, p)-isometry, then T~ is also
an (m, p)-isometry.

We have the following result about bijective (m, p)-expansive and contractive
maps.

Proposition 2.8. Let 7' : X — X be an bijective map, we have the
following properties

(1) If T is (m, p)-expansive, then
(i) for m even , T7! is (m, p)-expansive.
(ii) for m odd , T~!is (m, p)-contractive.
(2) If T is (m, p)-contractive, then
(i) for m even , T~!is (m, p)-contractive.
(i) for m odd , T~!is (m, p)-expansive.
Proof. (1) Assume that @gﬁ)(d, T; x,y) <0 Vax,y€ X and for positive integer
m. By a computation stemming essentially from the formula

(m) = < m ,);forj:(),l,...,m,
J m—J

0w (d, T z,y) = (~1)"OW(d, T; T ™z, T~™y).

we deduce that

It follows that 6%)(d, T 2,y)
expansive, and @gﬁ)(d, T 2,y)
contractive.

0 for even integer m i.e., T7! is (m, p)-

<
> ! is (mvp)_

0 for odd integer m i.e., T

(2) The proof is similar. QED
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Proposition 2.9. Let T : X — X be an bijective (2, p)-expansive map,
then 7' is (1, p)-isometric.

Proof. Since T is (2, p)-expansive, we have by Lemma 2.1 that d(T:U,Ty)p >
d (a:, y)p .This means that 7" is (1, p)-expansive. Moreover if T" is bijective (2, p)-
expansive, then 77! is (2, p)-expansive, hence d(T_lu, T_lv)p > d(u, U)p for all
u,v € X. Letting u = Tx and v = Ty, this implies

d(Tx,Ty)p = d(m,y)p
for all z,y € X. This means that T is (1, p)-isometric. QED

Theorem 2.2. Let T; S : X — X two maps such that ST = Ix (the iden-

tity mapping). Assume that there exists an integer m > 1 such that @T(f;) (d,S; z,y) <
0 for all z,y € R(T™),the following statements hold.

(i) If m is even, then T is (m, p)-expansive map.

(ii) If m is odd, then T is (m, p)-contractive map.

Proof. Since @%)(d, S; T™u, T™v) <0 for all u,v € X , we have that

o> > (—1)’“(7:>d(SkTmu,Skva)p

0<k<m
> (_1)k m dTm_k’LL,Tm_k’Up
3 () )
> (D)™ > (—1)’“<7Z>d(Tku,Tkv)p
0<k<m

QED

Note that every power of k-expansive (resp. (A, m)-expansive ) operators on a
Hilbert space is k-expansive (resp. (A, m)-expansive ). See ( [18], Theorem 2.3)
and (]20], Proposition 3.9).

In the following theorem we investigate the powers of (2, p)-expansive maps as
well as (2, p)-expansive maps by using Lemma 2.2.

Theorem 2.3. Let T: X — X be an (2, p)-expansive map. Then for any
positive integer n , T™ is (2, p)-expansive map.
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Proof. We will induct on n, the result obviously holds for n = 1. Suppose then
the assertion holds for n > 2, i.e

d(T2”aj,T2”y)p — 2d(T”x,T”y)p + d(m,y)p <0, Vz,y € X.

Then
d(T2"+2x,T2"+2y)p Qd(T"Hx 7"t )p—I—d(m,y)p
= d(T°T*"x, T*T*"y)" — 2d(T" 2, T" )" + d(x,y)"
< 9 d(T2n+1 T2n+1 y)p (T2n 72 )
—2d(T" 2, T"y)” + d(z,y)"
< 22d(T"Mz, T y) —d(Tz, Ty)")—d(T* "z, T*"y)"
2d(T”+1x T”'Hy)p—}—d( )
< Qd(T”H TP d(TZ” T2n )
—Zd(T:L‘ Ty) d(:c, )
< 2d(T"+1x T"Hy)p (2d( T T"y)p d($ y))
—2d(T:U Ty) d( ,y)p
< 2d(T”+laj T"'Hy) —2d(T”x,T”y)p —2d(Ta:,Ty)p—|—2d(:U,y)p
< (d(TCL‘ Ty)p d(m,y)p)de(Tx,Ty)p+2d(:v,y)p (by Lemma 2.2).
< 0.
Thus means that 7™ is (2, p)-expansive map. QED

In the following theorem we investigate the powers of completely p-hyperexpansive
mapping as well as completely p-hyperexpansive mapping.

According to [ 5, Remark 1.] for every completely p-hyperexpansive map, the
condition that n — d (T”x, T"y)p be completely alternating on N implies the
representation, for every x,y € X,

d(T 2, T"y)" = d(x,y)" + npe, ({1}) + /[D 1)(1 - t”)wa (2.5)

where [, is a positive regular Borel measure on [0; 1] (for more details see
[5])-

Theorem 2.4. Any positive integral power of a completely p-hyperexpansive
mapping is completely p-hyperexpansive.
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Proof. Let T be a completely p-hyperexpansive map and let £ > 1. In view of
(2.5) we have that

d((Tk)n.Z', (Tk)ny)p _ d(Tnk(I}, Tnky)p

= d(ﬂf,y)unkuw,y({uw/ (1 oy Bt (t)

[0,1) -t

o AH  (5)

— d(m,y)p+n(kux7({l}))+/ (1—s™)—
[0,1) 1—s%

Therefore the map n — d (T Ry, T”ky)p is completely alternating and so that
T* is completely p-hyperexpansive. QED

The next proposition describes the intersection of the class of completely p-
hyperexpansive maps with the class of (m, p)-isometries.

Proposition 2.10. Let T be a mapping on metric space X into itself. If T
is completely p-hyperexpansive as well as (m, p)-isometric (m > 2), then 7" is a
(2, p)-isometric.

Proof. First, if T' is isometric, then T' is a (2, p)-isometric. Assume that 7" is a

(m, p)-isometric with m > 2, then we have that @gﬁ)(d,T; x,y) = 0 and from
(2.5) it follows that

0= ¥ (—1>’f<7;‘)kux,y<{1}>

0<k<m

C E ) oo

0<k<m

- / (1= )™ gy (1)
[0,1)

Now / (1 — )™ Ydpuy ,(t) = 0 gives that
[0, 1)

d(Tk:v,Tky)p =d(z,y)" + kpey({1}) for all k

and therefore

@gp)(d,T; x,y) =0.

QED
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Example 2.4. Consider the map T : (R,d) — (R, d) defined by

2¢ — 1, for £ <0
Tx =
2x +1 for = > 0.

It is easy to verify that T is a (1, p)-expansive, but T is neither continuous
nor linear.

3 (m,p)-hyperexpansive maps in seminormed space

Let X be a linear vector space and considering a seminorm s on X, we may
define the quantity

oW (s, Tsz):= Y (—1>k<Z>S(T%)p

0<k<m

for all x € X, and introducing a concept similar to that of (m,p)-expansive
maps.

Definition 3.1. Let T : X — X be amap , m € N and p > 0. We say
that

(1) T is s(m,p)-isometric if G)(p)(s T; z) =0 for all z € X.
(2) T is s(m,p)-expansive if ®(p)(3 T;2)<0 VzeX
(3) T is s(m,p)-hyperexpansive 1f®(p)(3 T; z)<0for k=1,..,mand z € X.

(4) T is completely s-hyperexpansive if T' is s(k, p)-expansive for all k£ € N.

T is s(m, p)-hypercontractive if ®(p)(3 T; ) >0 for k =1,2,...,m and
X.

(6

)
)
)

(5) T is s(m, p)-contractive if G)(p)(s T;z)>0VzelX.
)
S
)

7) T is completely s- hypercontractive if T' is s(k, p)-contractive for all k € N.

For any p > 0, s(1, p)-expansive coincide with s-expansive; that is, maps T'
satisfying s(Tx) > s(z), for all x € X. Every s-isometry is an s(m, p)-isometry
for all m > 1 and p > 0. s(m, p)-isometries maps are special cases of the class
of s(m , p)-expansive maps.

If X is a normed space with norm ||.|] and 7' : X — X we have that

oW (| T:0) = 3 <‘”'“@>HT%HP.

0<k<m
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Clearly m-hyperexpansivity on Hilbert spaces agree with (m, 2)-hyperexpansivity.
Example 3.1. Let D denote the open unit disk in the complex plane. An
analytic function f on DD is said to be Bloch if

s(f) = sup(1 — |2*)|f'(2)| < oo.
z€D

The mapping f —— s(f) is a semi-norm on the space B of Bloch functions,
called the Bloch space. See [24] for some additional details. Consider for A € C
the map T\ : B — B: T (f) = \f.

A simple computation shows that

> (st

0<k<m

= —R(™ ksup(1 = |z (2
= 3 (st - BRI

0<k<m
= (1= [A)"sup(1 = [2])|f'(2)]
z€D

and it follows that
0w (s, Ty, f) <0, if [\ > 1, for odd m.

0w (s, Ty, f) = 0if [A| =1 and for all m

0w (s, Ty, f) > 0 if |A| < 1 and for all m.

Setting

. T =y 35 04 (Jalref v rex. @)

T 0<j<k

In the following theorem, we generalized the identities (1.7) and (1.10) to semi-
normed space. We omit the proof which is very similar to [13, Theorem 2.5] and
[8, Proposition 2.1].

Theorem 3.1. Let (X, s) be seminormed space and T : X — X be a map,
we have that

(i) s(T"z)P = Z n(j)ﬁj(-p)(s, T; z); VneN.
0<j<n
(i) T is an s(m, p)-isometry if and only if

s(T"x)p = Z n(j)ﬁj(.p)(s, T; x); VneN
0<j<m—1
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Proposition 3.1. Let (X, s) be a seminormed space and 7' : X — X be
a map. The following are true

(i) T is s(m,p)-expansive if and only if, AT is s(m, p)-expansive for all A\ € C:
IAl=1,

(i) If T' is s(2, p)-expansive, then
(1) AT is s(2,p)-expansive for |\| < 1, if A\T? is s-expansive.
(2) AT is s(2,p)-expansive for |A| > 1, if AT? is s-contractive.
Proof. (i) Note that, for all p > 0, A € C, and all x € X, we have
0P (s, T ) = OW) (s, \T; ), |\ = 1.
(ii) If T is s(2, p)-expansive, then
—2APs(Tz)? < [AP[ - S(TQx)p — s(z)?] for every A€ C.
So we have for every A € C
IAPs(T%2)7 — 2|\Ps(Tz)? + s(x)? < (AP — 1) (IAPs(T%2)" — s(x)P)
This finishes the proof. QED
Acknowledgements. The author would like to thank the referee for a
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