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Abstract. In this work we are interested in the existence and uniqueness of solutions for
the Navier problem associated to the degenerate nonlinear elliptic equations

A(v(x) |Au""?Au) =Y " D; [w(@) Ay (2, u, Vu)| +b(z, u, Vu) w(@) = fo(z)=»_ D;fi(x), in Q
j=1 j=1
in the setting of the Weighted Sobolev Spaces
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Introduction

In this work we prove the existence and uniqueness of (weak) solutions in
the weighted Sobolev space X = W2P(Q, v)N Wol’p(Q,w) (see Definition 3 and
Definition 4) for the Navier problem

P) Lu(z) = fo(x) — ;Djfj(l‘)» in Q

u(z) = Au(x) =0, on 9N
where L is the partial differential operator
Lu(z) = A(v(x) \Au]p_2Au)—Z Djw(z)A;(z,u(x), Vu(z))] +b(z, u, Vu) w(z)
j=1

where D; = 0/0z;, Q is a bounded open set in R", w and v are two weight
functions, A denotes the Laplacian operator, 2<p < oo and the functions
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Aj + OxRxR"=R (j = 1,...,n) and b : QxRxR"—=R satisfy the following
assumptions:

(H1) The function —A;(x,n,§) is measurable on 2 for all (n,£) € RxR™. The
function (1, {)—A;(z,n,§) is continuous on RxR"™ for almost all €€,

(H2) there exists a constant 6; > 0 such that

[A(z,1,8) — Az, ', £)].(€ — €)=01 | — "I,

whenever &, &'eR"™, ££E' where A(x,n,€&) = (A1(z,1,£), ... An(x,1,§)) (where
a dot denote here the Euclidian scalar product in R™).

(H3) A(z,1n,8).£ > M [E|P + A1|n|’, where \; and Ay are nonnegative constants.
(H4) |A(z,1,6)| < K1(x) 4+ by () |[n|P'?" + ho(2)|€[P/P", where K1, hy and hy are
nonegative functions, with h; and ho€L™(Q), and K,€LP' (Q,w) (with 1/p +
1/p’=1).

(H5) The function z+—b(z,n, ) is measurable on Q for all (7,£) € RxR™. The
function (n,&)—b(z,n,£) is continuous on RxR™ for almost all z€€Q.

(H6) there exists a constant 62 > 0 such that

[b(x,n,&) = b(x,n', ) (n—n") =02 n—n'|

whenever n, ' €R, n#£n'.

(HT) b(x,n,&)n> Xao|&|P + Aa|n|?, where Ao and Ay are nonnegative constants.
(H8) [b(z,n,&)| < Ka(z) + hs(z)|n[P/P" + ha(2)|£|PP", where Ky, hs and hy are
nonnegative functions, with Ko€LP'(Q, w), hs and hy€L>(S).

(H9) A1 + A2 > 0and A; + Ay > 0.

By a weight, we shall mean a locally integrable function w on R" such that
w(z) > 0 for a.e. x€R"™. Every weight w gives rise to a measure on the mea-
surable subsets on R” through integration. This measure will be denoted by pu.
Thus, pu(E) = [,w(z) dz for measurable sets E CR™.

In general, the Sobolev spaces W*P(Q) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities
in the coefficients, it is natural to look for solutions in weighted Sobolev spaces
(see [1], [2], [4], [8] and [13]).

A class of weights, which is particularly well understood, is the class of A,-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[10]). These classes have found many useful applications in harmonic analysis
(see [12]). Another reason for studying A,-weights is the fact that powers of the
distance to submanifolds of R™ often belong to A, (see [9]). There are, in fact,
many interesting examples of weights (see [8] for p-admissible weights).
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In the non-degenerate case (i.e. with w(z) = 1), for all f € LP(§2) the Poisson
equation associated with the Dirichlet problem

—Au = f(z), in Q
{ u(x) =0, on 09

is uniquely solvable in W?2P(Q)N VVO1 P(Q) (see [7]), and the nonlinear Dirichlet
problem

—Apu = f(x), in Q
u(z) =0, on 9N

is uniquely solvable in Wy () (see [3]), where Apu = div(|Vu[P~2Vu) is the p-
Laplacian operator. In the degenerate case, the weighted p-Biharmonic operator
has been studied by many authors (see [11] and the references therein), and the
degenerated p-Laplacian has been studied in [4]. The problem with degenerated
p-Laplacian and p-Biharmonic operators

{ A(w(@)|Auf 2 Au) — diviw(2)|VulP2Vu] = f(z) — div(G(x)), in Q
u(z) = Au(x) =0, on 09

has been studied by the author in [2].
The following theorem will be proved in section 3.

Theorem 1. Assume (H1)-(H9). If w,ve A, (with 2<p < oo0) and
fi/weLP (Qw) (5=0,1,....,n) then the problem (P) has a unique solution
ueX = WP(Q,v) ﬂWOI’p(Q,w). Moreover, we have

1 n p'/p
||u”X§7p//p<Hf0/wHLP'(Q,w) +y Hfj/w’LP'(Q,w)> )
j=1

where vy = min {\; + Ao, A1 + Ao, 1}.

1 DEFINITIONS AND BASIC RESULTS

Let w be a locally integrable nonnegative function in R™ and assume that
0 < w(x) < oo almost everywhere. We say that w belongs to the Muckenhoupt
class A,, 1 < p < oo, or that w is an A,-weight, if there is a constant C' = Cp,

such that
1 L[ ua-p !
Bl w(x)dx Bl w P)(x)dx <C
B B
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for all balls B C R™, where |.| denotes the n-dimensional Lebesgue measure in
R™ If 1 < ¢ <p, then A; C A, (see [6],[8] or [12] for more information about A,-
weights). The weight w satisfies the doubling condition if there
exists a positive constant C' such that p(B(z;2r)) < C u(B(x;r)) for every ball
B = B(x;r) CR", where u(B) = [pw(x)dx. If weA,, then p is doubling (see
Corollary 15.7 in [8]).

As an example of A,-weight, the function w(z) = |z|*, z€R™, is in A, if and
only if —n < a < n(p — 1) (see Corollary 4.4, Chapter IX in [12]).

P

If weA,, then <{§}> §C’ZE§; whenever B is a ball in R” and F is a
measurable subset of B (see 15.5 strong doubling property in [8]). Therefore, if
w(E) =0 then |E| = 0.

Definition 1. Let w be a weight, and let 2 CR" be open. For 0 < p < oo
we define LP(Q,w) as the set of measurable functions f on 2 such that

1/p
10wy = </Q |f($)|pW(fU)dl‘> < o0.

If weA, 1 < p < oo, then w1/ ®=1) is locally integrable and we have
LP(Q,w) C Li.(Q) for every open set  (see Remark 1.2.4 in [13]). It thus makes
sense to talk about weak derivatives of functions in LP(Q,w).

Definition 2. Let 2 CR" be open, k£ be a nonnegative integer and w € 4,
(1 < p < o0). We define the weighted Sobolev space WP (Q,w) as the set of
functions u € LP(Q, w) with weak derivatives D%u € LP(Q,w) for 1 <|a| < k. The
norm of u in W*P(Q,w) is defined by

e Y C L S | |D@u<x>|%<x>dm>l/p. (1)

1< o] <k

We also define Wg P(Q,w) as the closure of C§°(Q2) with respect to the norm
[

If w € Ay, then WFP(Q, w) is the closure of C*°(£2) with respect to the norm
(1.1) (see Theorem 2.1.4 in [13]). The spaces W"P(Q,w) and Wg’p(Q,w) are
Banach spaces.

It is evident that the weight function w which satisfies 0 < ¢; <w(z) < ¢y for
x €€ (c1 and co positive constants), gives nothing new (the space ng,p (Q,w)
is then identical with the classical Sobolev space Wg’p (Q)). Consequently, we
study all such weight functions w that either vanish in Q U 9 or increase to
infinity (or both).

In this article we use the following results.
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Theorem 2. Let wec Ay, 1 < p < oo, and let ) be a bounded open set in
R™. If upm—w in LP(Q,w) then there exist a subsequence {un,, } and a function
® e LP(Q,w) such that

(1) wm, ()= u(x), my — 00, p-a.e. on ;
(11) |um, (x)| < ®(z), p-a.e. on §;
(where p(E) = [pw(x)dz).

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [5].

QED

Lemma 1. Let 1 < p < oco. (a) There exists a constant o, such that

222 — [yl 2y | < apla — yl(lz] + )2,

for all x,y e R™;
(b) There exist two positive constants [3,, vy, such that for every x,y € R"

Bp (2] + [P 2|z — yl? < (2P "%z — [yP2y).(x — y) <7 (| + [y 2z —yl*.
Proof. See [3], Proposition 17.2 and Proposition 17.3. QED

Definition 3. We denote by X = W*P(Q,v)N Wol’p(Q,w) with the norm

1/p
ull x = (/ \u]pwdx—i-/ \Vu|pwdx+/ Au|pvd:c> )
Q Q Q

Definition 4. We say that an element u€ X = W2P(Q,v)N Wol’p(Q, ,w) is
a (weak) solution of problem (P) if, for all p € X,

/Q|AU‘P2 AuApvdr + Z/Qw.Aj(x,u(x),Vu(:v))chp(az)dm
j=1

+/Qb(x,u,Vu)g0wdx:/Qfo(x)go(x)dx+jz;/ﬂfj($)ng0(x)dx.

2 PROOF OF THEOREM 1

The basic idea is to reduce the problem (P) to an operator equation Au =T
and apply the theorem below.
Theorem 3. Let A : X—X* be a monotone, coercive and hemicontinuous

operator on the real, separable, reflexive Banach space X. Then the following
assertions hold:
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(a) For each T € X* the equation Au =T has a solution u€X;
(b) If the operator A is strictly monotone, then equation Au = T is uniquely
solvable in X.
Proof. See Theorem 26.A in [15]. QED
We define B, B1,Bs, B3 : X x X >R and T : X - R by
B(“’a SO) = Bl(uv SO) +B2(U, QO) +B3(U, SO)

Bi(u,p) = Z/QwAj(x,u,Vu)chpd:U—/Qw.A(x,u,Vu).chdx
7j=1

By(u,) = /Q]Au\p_QAuAgovdx

Baluw) = [ bloou, V) pwds

Q
T(0) = [ fola)p@de+ [ 1@ Dipta)da.
j=1

Then v € X is a (weak) solution to problem (P) if, for all ¢ € X, we have
B(u, ¢) = Bi(u, ) + Ba(u, ) + Bs(u, ) = T().
Step 1. For j =1,...,n we define the operator Fj : X —ILP'(Q,w) by
(Fju)(z) = Aj(z, u(z), Vu(z)).

We have that the operator F} is bounded and continuous. In fact:
(i) Using (H4) we obtain

HFjuH]ZP/(Q’w) = /Q\Fju(:cﬂp wdz:/Q]Aj(x,u,Vu)‘P wdz

! ’ p
/<K1+h1|u|p/p +h2|Vu|p/p> wdzx
Q

IN

IN

cp/ [(Kf’ + B [ulP + hgl|Vu]p)w] da
Q

= Cp[/Kf/wdx—i—/hﬁ)’]u\pwdx
Q Q

+ / hg/Vu|pwd:L‘], (2.1)
Q
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where the constant C), depends only on p. We have,

e < g [ oo < Pl g Tl

and
| 1 19uPide < allfn g [ V0P do < [l gl

Therefore, in (2.1) we obtain

IFjull 0w < Co (uKluLpfm,w) (1l ey + Wl e ) Tl )

(i) Let up— u in X as m — oo. We need to show that Fju,,—Fju in LP' (Q,w).
If wp—w in X, then uy,—w in LP(Q,w) and |Vuy,|— |Vul in LP(,w). Using
Theorem 2, there exist a subsequence {u;,, } and two functions ®; and ®; in
LP(Q,w) such that

U, (x)—u(x), p—ae. in Q,

‘umk (33)|§(I)1(:E), n—a.e. in Qv
|V, (2)|=|Vu(z)|, p—a.e. in €,
|V, (7)|[<Pa(z), p— ae. in Q.

Hence, using (H4), we obtain
(| Ejtim,, — Fju”ip/(ﬂ,w) - /Q | Fjum, () — Fju(z)[” wdz
= / | A (2, Uy, V) — Aj(z, u, Vu)\p/ wdx
Q
<G, / (!Aj(x,umk, V)P + [ Aj(z, u, Vu)\p/>wdx
Q

! / pl
Q

/ / p
+/ <K1+h1|up/p +h2|Vu\p/p> wdx]
Q
/v’ )"
§2Cp/Q<K1+h1<I>€p +h2<1>§’p> wdzr
<20, [/Kf,wdm—i—/hf@fwdx—i—/hg,(l)gwdx}
Q Q Q

ggcp[nmngp,m,w) T, /Q O da



8 A.C.Cavalheiro

Q
<26, (1K1 g+ Wy 1911
el o 192l |

By condition (H1), we have
Fium(z) = Aj(x, um (), Vum (x))—= Aj(z, u(z), Vu(z)) = Fju(x),

as m — +o0o. Therefore, by the Lebesgue Dominated Convergence Theorem, we
obtain
HFjumk - F]'UHLP/(Q,UJ)—) 0,

that is,
Fitum, = Fju in LP (Q,w).

By the Convergence Principle in Banach spaces (see Proposition 10.13 in [14]),
we have
Fjupm— Fju in LP (Q,w). (2.2)

Step 2. We define the operator
G: X —LP(Q,0)
(Gu)(x) = |Au(z) P~ Au()

We also have that the operator G is continuous and bounded. In fact:
(i) We have

1Cull? o = /QHAu\P—QAuV’ vdz

= /|Au|(p_2)p/|Au|p/vdaz
Q
= [ 18 de < ul

Hence, [|Gull 1 ) < lull3”".
(ii) If up, —w in X then Auy— Au in LP(,v).By Theorem 2, there exist a

subsequence {u,,, } and a function ®3 € LP(2,v) such that

A, () = Au(z), g1 —a.e. in Q
‘Aumk(‘r)’ <®3(x), p1 — a.e. in Q,
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where i1 (E) = [, v(x) dz. Hence, using Lemma 1 (a), we obtain, if p# 2

|G, — GUH‘ZP,(Q?U) = /Q | Gy, — Gul|P vdx
p/

:/ ‘\Aumk\p_QAumk — | AufP 2 Au| vda
Q

/

p
< [ Jap 3, = (18 + 12002 v
Q

gag'/ | Aty — Ayl (285) PP 4 dg
Q

, , p'/p
<ah 2(P=2)p </ | A, —Au]pvdx> X
Q

, , (p—p")/p
% (/ (I)gp—Q)pp /(p—p )vda:>
Q

’ _ / ! —p’
<o 2077 Ju, — % @I, f, ),

since (p —2)pp’/(p—p') =pif p#£2. If p =2, we have

2 2 2
Gy, — Gull72(0.) = /Q |Attyy, — Aul” v dx < ||, — ully.

Therefore (for 2<p < 00), by the Lebesgue Dominated Convergence Theorem,
we obtain

|G, — Gul|x —0,

that is, G, — Gu in LP '(Q, v). By the Convergence Principle in Banach spaces
(see Proposition 10.13 in [14]), we have

Gy — Gu in LP' (9, v). (2.3)
Step 3. We define the operator H : X — LPI(Q, w) by
(Hu)(x) = bla, u(x), V().

We also have that the operator H is continuous and bounded. In fact,
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(i) Using (H8) we obtain

/
‘|Hu|‘ip/(g’w)

Hence,

= / |Hul’' wdz
Q

= /|b(x,u,Vu)|p,wdx
Q
!/ !/ p/
< /(K2+h3|u|p/p +h4|Vu|p/p> wdz
Q
< cp/ [(Kg’+h§’|uyp+h{;’yvu\p)w]dx
Q
= Cp[/Kg/wdx—i—/hgl\mpwda:—l—/hil\Vu|pwdx]
Q Q Q

< cp<||K2||§,,/(M T (1032 iy + Nl ) ||u||X).

HHU’HLP/(Q,W) <Cp [||K2||Lp’(sz,w) + (Hh3||L°°(Q) + ||h4HL°°(Q))HUHZ))(/p ]

(ii) By the same argument used in Step 1(ii), we obtain analogously, if u,, — u

in X then

Hupy— Hu, in LP'(Q,w). (2.4)

Step 4. We also have

T(#)l

IN

A

[ 1fallelds + Y [ 151050l ds

Q o

/W|<,0|wdx+2/|fj||ng0|wdx

Q W = o W

ool g 19l oy + 3 15/l o (0n 1 D3
j=1

(1ol + 3 Wl
j=1
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Moreover, using (H4), (H8) and the Holder inequality, we also have

[B(u, )l < [Bi(u, )| + [Ba(u, )| + | Bs(u, ¢)|

> [ A VulDselwds+ [ [AuP | Aul| Aglvda
j=1

IN

+ /|b(x,u,Vu)||<p\wdx. (2.5)
Q

In (2.5) we have

/ |A(z,u, Vu)| V| wdr < / <K1 + h1|u\p/p/ + hg|Vu‘p/p’> |Vo|wdx
Q Q

< MK 0y I99l 0y + e iy 022 1900
+ hall g IVl 0 ) IVl o0
< (HKIHLP’(Q,W) (Wl ooy + ol e N7 )nsoux,
and
/\Au\p2]Au||Acp|vdx:/\Au\p1]Agp|vdm
Q Q
1/p’ 1/p ,
< < / \Aupvdx> ( / Aw|pvdm> < 1l el
Q Q
and

/|b(x,u,Vu)]|<p\wdx§/ (K2+h3”u,’p/p,+h4|Vu‘p/p’)’(p‘wdx
Q Q

< /Q Ko lplwds + sl /Q PP o] w d

S TH . /Q VulP’? || w de

s(nmnm/(g,w) + 113l oo e 1l B2+ Nlall o g Il 7 )Hwa

Therefore, in (2.5) we obtain, for all u,p € X

Bl < (1l + el
+ (1Pl ooy + 1Rl Lo () F 1A3]| oo (@)
ol gy + DIl ] lelly.
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Since B(u,.) is linear, for each u € X, there exists a linear and continuous
operator A : X — X* such that (Au, p) = B(u, @), for all u, ¢ € X (where (f, x)
denotes the value of the linear functional f at the point z) and

lAul, < 1Kl + 1Kl 0
(Il gy + 2l ) + Wsl ey + 1all ey + DIl

Consequently, problem (P) is equivalent to the operator equation
Au=T, ue X.
Step 5. Using condition (H2), (H6) and Lemma 1 (b), we have

(Auy — Aug,uy — ug) = B(ug,u; — ug) — B(ug,u; — u2)

_ /QwA(:c,ul,Vul).V(ul—ug)da:+/Q|Au1]p_2 Aur Alur — ) vda
+ /Qb(:r,ul,Vul)(ul —ug) wdzx

- /Qu).A(:E,uQ,VUQ).V(ul—uz)dx—/Q|Au2|p_2 Aug Alug — up) vdz
_ /Qb(x,uQ,qu)(ul — up)wdz

= /Qw (A(:c,ul,Vul) - A(:L',UQ,VU2))-V(UI — up) dx

+ /Q(| Aug[P7? Aug — | AualP ™ Aug) A(ug — ug) vda

+ /(b(x,ul,Vul) — b(z,uz, Vug))(u; — uz) wdx
Q

v

Gl/w\V(ul —u2)|pdx+ﬁp/(]Au1]—i—]AuQ])p_?Aul—Au2|21)dx
Q Q

+ 02/|u1—uQ|pwde‘
Q

v

01/w|V(u1 —u2)|pdﬂc+ﬁp/(|Au1 —Au2|)p_2|Au1 —Au2|2vdfv
Q Q
+ 02/ lur — uolPw dx

Q

= 01/w|V(u1—uQ)|pdx+ﬁp/ |Au1—AuQ|pvd:U—|—02/ lur — uolPw dx
Q Q Q

0 [lur — ualy

v
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where 6 = min {6, 62, Bp}.
Therefore, the operator A is strongly monotone, and this implies that the
operator A is strictly monotone. Moreover, using (H3) and (H9), we obtain

<AU, U> = B(’U,, U) = Bl(U,U) + BQ(U,U) + B3(u7 U)
/ wA(z,u, Vu).Vudz +/ | AulP™? AuAu v dx +/ b(z,u, Vu) uw dx
Q Q Q

>/()\1Wu|p—|—A1|u]p)wdx—|—/ ]Au!pvdx—i-/()\2|Vu\p+A2]u\p)wdx
Q Q Q

(A +A2)/ |ul? wdx + (M +)\2)/ |Vu|pwd$+/ |Aul? v dx
Q Q Q

where v = min {\; + A2, A1 + A2, 1}. Hence, since p > 2, we have

(Au, u)

[l x

— —|—OO, as ||u||X—>+ 0,

that is, A is coercive.
Step 6. We need to show that the operator A is continuous.
Let u,,— u in X as m — oo. We have,

|B1(um, ) — Bi(u, 9)| < Z/QIAj(w,um,Vum)Aj(fcau,VU)llewlwdx
j=1

and

n

= 3 [ 1Py~ Fyull Dyl da
j=1
n

< Z [ Ejtim — Fj“”m’(g,w)”DjSDHLp(Q,w)
j=1
n
< Z (| Ejtim — FjUHLp’(Q,w)”SOHXa
j=1

| Ba(um, ) — Ba(u, ¢)|
/|Aum|p2AumAgovdx/ | AulP?AuAp v de
Q Q

<,

= / |Gup, — Gu| |Ap|vdx
Q

<|Gum — GUHLp/(Q,v) el x

| Aty [P Ay, — | AufP 2 Au | | Ap| v da
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and

| B3 (um, ) — Bs(u, )| < /le(fﬂ,um,Vum)—b(m,u,Vu)llsOdefv

= / |Hupy, — Hul|p|w dzx
Q

[ Hum — Hull 1o g ) 1]l x»

IN

for all ¢ € X. Hence,

| B(um, @) = B(u, 9)|
<|B1(um, ) = B1(u, @)| + [B2(tum, ¢) = Ba(u, )| + |Bs(um, ) — Bs(u, ¢)|

n
< [Z |yt — Fyll gt gy + 1Gtim — Gl o7
j=1

+| Huy, — Hu!m/(g,w)] ol x-
Then we obtain

n
[Aum — Aull, < Z ([ Ejtim — FjuHLp/(Q,w) + [|Gum — GUHLP'(Q,U)
j=1
+ HHum - HUHLPI(Q,DJ).

Therefore, using (2.2),(2.3) and (2.4) we have ||Auy, — Aul|,— 0 as m — o0,

that is, A is continuous (and this implies that A is hemicontinuous).
Therefore, by Theorem 3, the operator equation Au = T has a unique solu-

tion u € X and it is the unique solution for problem (P).

Step 7. In particular, by setting ¢ = u in Definition 4, we have

B(u,u) = By(u,u) + Ba(u,u) + Bs(u,u) = T(u). (2.6)
Hence, using (H3), (H7), (H9) and v = min {\; + A2, A1 + Ag, 1}, we obtain
By (u,u) + Ba(u,u) + Bs(u,u)
= /Qw A(z,u, Vu).Vudr + /Q | AuP™? AuAuv dzx

+/b(:c,u,Vu)uwda:

Q

2/(A1|Vu]p+A1|u]p)wda:+/ | AulP v dx
Q Q

+/(A2]u|p+)\1\Vu|p)wd:C
Q

> ylull%
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and

T(u) = /foudx—i—Z/ijjud:c
Q =e
< ||f0/w||Lp’(Q,w)HUHLP(QM) + Z ”fj/w|LP'(Q)||DJ'UHLP(Q7W)
j=1
<

(1ol + 3 Wl ) Bl
j=1

Therefore, in (2.6), we have

lulfe < (1ol + 3 163/l ) Bl

Jj=1
and we obtain

!/

1 n p'/p
lullx < 75 (ofellran + S Ui lelian)
i=1

Example 1. Let Q = {(2,9) €R? : 22 + y?> < 1}. Consider the weight
functions w(z,y) = (22 + y?)~Y? and v(z,y) = (22 + y*) "3 (w,v € Ay, p = 2),
and the functions A: Q x RxR?2—R? and b: O x Rx RZ—= R

A((%y)ﬂ%@ = hQ(Jjay) £,

b((2,y),1,€) = n (cos*(zy) + 1),
where h(z,y) = 2e(@*+¥*) Let us consider the partial differential operator

Lu(z,y) A((2* + %) 72| Au] Aw) = div (2% +y*) 712 Al(2, ), u, V)
+ @+ V2 bz, u, Vu).

Therefore, by Theorem 1, the problem
Lu(z) = cos(zy) 0 < sin(zy) ) d <
(P)

V2t O\t 2 Oy

sin(zy) > 0O
———, in
Va2 + y?
u(z) = Au(x) =0, on 02

has a unique solution v € X = W22(Q,v) N W, (Q,w).

15
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