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Introduction

In [10], [11], [12] E. Carlini, M. V. Catalisano and A. V. Geramita started a
detailed analysis of the Hilbert function of certain multiple structures on unions
of linear spaces, usually prescribing the Hilbert polynomial and then requiring
that the structure is general with the prescribed Hilbert polynomial. Let X ⊂ Pr
be a closed subscheme. X is said to have maximal rank if for all integers k ≥ 0
either h0(IX(k)) = 0 or h1(IX(k)) = 0, i.e. if for all integers k ≥ 0 the restriction
map ρX,k : H0(OPr(k)) → H0(OX(k)) is a linear map with maximal rank, i.e.

either it is injective or it is surjective, i.e. h0(IX(k)) = 0 if h0(OX(k)) ≥
(
r+k
r

)
and h1(IX(k)) = 0 if h0(OX(k)) ≤

(
r+k
r

)
.

We recall that for each P ∈ Pr the 2-point 2P of Pr is the zero-dimensional
subscheme of Pr with (IP )2 as its ideal sheaf. Hence 2P has degree r + 1. For
all integers r ≥ 3, t ≥ 0 and a ≥ 0 let Z(r, t, a) be the set of all disjoint
unions A ⊂ Pr of t lines and a 2-points. For each integer x > 0 and any
A ∈ Z(r, t, a) we have h0(A,OA(x)) = t(x + 1) + a(r + 1). The critical value
of the triple (r, t, a) or of any A ∈ Z(r, t, a) is the minimal positive integer k
such that

(
r+k
r

)
≥ (k + 1)t + a(r + 1). Fix A ∈ Z(r, t, a). The Castelnuovo-

Mumford’s lemma gives that A has maximal rank if and only if h1(IA(k)) = 0
and h0(IA(k − 1)) = 0. The key starting point of our paper is a theorem of R.
Hartshorne and A. Hirschowitz which says that for all integers r ≥ 3 and t > 0
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a general union of lines X ⊂ Pr has maximal rank ([18]). A famous theorem
of J. Alexander and A. Hirschowitz says that a general union of 2-points of Pr
has maximal rank, except in a few well-understood exceptional cases ([19], [2],
[3], [4], [9], [13], [14], [15]). In this paper we consider (but do not solve) the
problem for a general union of a prescribed number of lines and a prescribed
number of 2-points in Pr. Since the disjoint union A of two 2-points in Pr,
r 6= 1, has h0(IA(2)) > 0 and h1(IA(2)) > 0, we do not consider the restriction
map ρX,2 : H0(OPr(2)) → H0(OX(2)), or rather we restrict to cases in which
this map is injective. It is easy to check for which (r, t, a) ∈ N3, r ≥ 3, ρX,2
is injective for a general X ∈ Z(r, t, a) and to determine for all (r, t, a) the
dimension of ker(ρX,2) (Lemma 1). The next case is when k = 3 and here there
is a case in which a general X ∈ Z(3, 2, 3) has not maximal rank (Example 1).
For r = 3, 4, 5 we did not found any other exceptional case with respect to ρX,k,
k ≥ 3, (except of course the case (r, t, a) = (4, 0, 7), which is in the exceptional
list for the Alexander-Hirschowitz theorem).

In this paper we prove the following result.

Theorem 1. Fix r ∈ {4, 5}, (t, a) ∈ N2 \ {0, 0} and an integer k ≥ 3.
Assume (r, t, a, k) /∈ {(4, 0, 7, 3), (4, 0, 14, 3)}. Fix a general X ∈ Z(r, t, a). Then
ρX,k has maximal rank.

In the case r = 3 we only have partial results (Propositions 4 and 5). The
latter one look at general disjoint unions of lines, 2-points and reducible conics.
In [18] both reducible conics and sundials are used as a tool to get their main
theorem related to disjoint unions of lines. Sundials may simplify the proofs
in [18] ([10]). We use sundials, but we found easier to avoid reducible conics
and use instead the +lines introduced in [6]. As usual for fat points we use the
very powerful Differential Horace Lemma ([5, Lemma 2.3]), although only for
2-points.

Remark 1. After this paper was submitted we solved the general case for
r = 3 ([7]) (it does not cover Proposition 5, but it could be used to shorten the
proof of the case r = 4 done here in section 4).

We work over an algebraically closed field with char(K) = 0. To apply the
Differential Horace Lemma for double points it would be sufficient to assume
char(K) 6= 2 or the characteristic free [14, Lemma 5], but for a smooth quadric
surface we also use [20, Propositions 4.1 and 5.2 and Theorem 7.2].

1 Preliminaries

For each integer x > 0 and any A ∈ Z(r, t, a) we have h0(A,OA(x)) =
t(x+1)+a(r+1). The critical value of the triple (r, t, a) or of any A ∈ Z(r, t, a)
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is the minimal positive integer k such that
(
r+k
r

)
≥ (k + 1)t + a(r + 1). Fix

A ∈ Z(r, t, a). The Castelnuovo-Mumford lemma gives that A has maximal rank
if and only if h1(IA(k)) = 0 and h0(IA(k− 1)) = 0. Let Z(r, t, a)′ the closure of
Z(r, t, a) in the Hilbert scheme of Pr. Fix natural numbers r, t, a, k with r ≥ 3.
By the semicontinuity theorem for cohomology ([17, III.12.8]) to prove that
h1(IX(k)) = 0 (resp. h0(IX(k)) = 0) it is sufficient to prove the existence of
at least one W ∈ Z(r, a, t)′ such that h1(IW (k)) = 0 (resp. h0(IW (k)) = 0).
The set Z(r, t, a) is irreducible and hence Z(r, t, a)′ is irreducible. Therefore to
prove that a general element of Z(r, t, a) has maximal rank it is sufficient to
find A,B ∈ Z(r, t, a)′ such that h1(IA(k)) = 0 and h0(IB(k − 1)) = 0, where
k is the critical value of the triple (r, t, a). A sundial B ⊂ Pr is an element of
Z(r, 2, 0)′ ([10]).

Lemma 1. Fix a general X ∈ Z(r, t, a), r ≥ 3.

(a) We have h0(IX(2)) = 0 if and only if either a ≤ r−3 and 3t ≥
(
r+2−a

2

)
or a = r − 2 and t ≥ 3 or a = r − 1, r and t > 0 or a ≥ r + 1.

(b) Assume 0 < a ≤ r − 3. Then h0(IX(2)) = max{
(
r−a+2

2

)
− 3t, 0}.

(c) Assume a = r−2. We have h0(IX(2)) = 6−2t if t ≤ 1, h0(IX(2)) = 1
if t = 2 and h0(IX(2)) = 0 if t ≥ 3.

Proof. Write X = Y t A with Y ∈ Z(r, t, 0) and A = ∪P∈S2O, ](S) = a, and
S general in Pr. The case a = 0 is covered by [18]. Assume a > 0. Let 〈S〉 be
the linear span of S. Since S is general, then dim(〈S〉) = min{r, a − 1}. The
linear system |IX(2)| is the linear system of all quadric cones containing Y and
with vertex containing 〈S〉. In particular we get h0(IX(2)) = 0 if a ≥ r + 1 or
a = r and t > 0. Now assume 1 ≤ a < r. Let ` : Pr \ 〈S〉 → Pr−a be the linear
projection from 〈S〉. If a ≤ r− 2, then Y ∩ 〈S〉 = ∅ and `(Y ) is a general union
of t lines of Pr−a (it is P1 if a = r− 1). We get the lemma in the case a = r− 2,
because 3 distinct lines of P2 are not contained in a conic. If 1 ≤ a ≤ r−3, then
`(Y ) is a general element of Z(r − a, t, 0) and we apply [18] to `(Y ), because
h0(IX(2)) = h0(Pr−a, I`(Y )(2)). QED

Fix an integral variety T , an effective divisor D of T and any closed sub-
scheme X ⊂ T . The residual scheme ResD(X) of X with respect to D is the
closed subscheme of T with IX : ID as its ideal sheaf. For each L ∈ Pic(T ) we
have an exact sequence of coherent OT -sheaves

0→ IResD(X) ⊗ L(−D)→ IX ⊗ L → L|D ⊗ IX∩D,D → 0. (1)

From (1) we get the following inequalities:

(1) h0(T, IX ⊗ L) ≤ h0(T, IResD(X) ⊗ L(−D)) + h0(D,L|D ⊗ IX∩D,D);
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(2) h1(T, IX ⊗ L) ≤ h1(T, IResD(X) ⊗ L(−D)) + h1(D,L|D ⊗ IX∩D,D).

As in [11], [12], [10] we say that something is true by “ the Castelnuovo’s se-
quence ” if it is true by one of the two inequalities above for suitable T , D, X,
L.

We use the following form of the Differential Horace Lemma for double points
([2, (1.3), (1.4)(5)], [14, Lemma 5] (although stated only in Pn); [5, Lemma 2.3]
contains the case with arbitrary multiplicities).

Lemma 2. Let T ⊂ Pr be a degree t irreducible hypersurface. Fix a closed
subscheme X ⊂ Pr not containing T and integers α > 0, k ≥ t. Fix a general
S ⊂ T such that ](S) = α and set B := ∪O∈S2O, B′ := B ∩ T . Let W be the
union of X and α general 2-points of Pr. Then hi(IW (k)) ≤ hi(IResT (X)∪B′(k−
t)) + hi(T, I(X∩T )∪S(k)), i = 0, 1.

Take the set-up of Lemma 2. Since S is general in T , then

(1) h0(T, I(X∩T )∪S(k)) = max{0, h0(T, IX∩T (k))− α};

(2) h1(T, I(X∩T )∪S(k)) = h1(T, IX∩T (k)) + max{0, α− h0(T, IX∩T (k))}.

The following result is an elementary consequence of [10]. We will not use it
here. Sometimes it may be used in a situation in which we would like to apply
Lemma 4 below.

Lemma 3. Fix integers n ≥ 3, k > 0, e ≥ 0 and t ≥ 0. Let X ⊂ Pn be a
general union of t lines and e reducible conics.

(a) If e(2k + 1) + t(k + 1) ≤
(
n+k
n

)
− e, then h1(IX(k)) = 0.

(b) If
(
n+k
n

)
− e < e(2k + 1) + t(k + 1) ≤

(
n+k
n

)
, then h1(IX(k)) ≤ e(2k +

1)+t(k+1)−
(
n+k
n

)
+e and h0(IX(k)) = h1(IX(k))+

(
n+k
n

)
−e(2k+1)−t(k+1).

(c) If e(2k + 1) + t(k + 1) ≥
(
n+k
n

)
− e, then h0(IX(k)) ≤ e.

Proof. For each P ∈ Sing(X) let CP ⊂ X the connected component of X
containing P . Write X = Y t

⋃
P∈Sing(X)CP . For each P ∈ Sing(X) let NP ⊆

Pn be a general 3-dimensional linear space containing CP . Let EP ⊂ NP be
the sundial with CP as its support. Set W := Y t

⋃
P∈Sing(X)EP . Since X

and each NP is general, W is a general union of e lines and f sundials. Hence
either h0(IW (k)) = 0 (case (t + 2e)(k + 1) ≥

(
n+k
n

)
) or h1(IW (k)) = 0 (case

(t+ 2e)(k + 1) ≤
(
n+k
n

)
). Let η be the nilradical of OW , i.e. let η the OW -ideal

sheaf of the subscheme X of W . We have η ≡ IX/IW . Hence we have the exact
sequence

0→ IW (k)→ IX(k)→ η(k)→ 0. (2)

Since η is supported by finitely many points, we have h1(η(k)) = 0 and h0(η(k)) =
e. Hence (2) gives h1(IX(k)) ≤ h1(IW (k)) ≤ h1(IX(k)) + e and h0(IX(k)) ≤
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h0(IW (k)) + e. In the set-up of part (a) we have h1(IW (k)) = 0 and hence
h1(IX(k)) = 0. In the set-up of part (c) we have h0(IW (k)) = 0 and hence
h0(IX(k)) ≤ e. In the set-up of part (b) we have h1(IW (k)) = e(2t+ 1) + t(k+
1) − e −

(
n+k
n

)
and hence h1(IX(k)) ≤ e(2k + 1) + t(k + 1) −

(
n+k
n

)
+ e. The

equality “ h0(IX(k)) = h1(IX(k)) +
(
n+k
n

)
− e(2k + 1) − t(k + 1) ” in part (b)

is true, because h0(OX(k)) = e(2k + 1) + t(k + 1). QED

Lemma 4. Fix integers n ≥ 2 and k > t > 0, s > 0. Let T ⊂ Pn be
an integral degree t hypersurface and let Y ⊂ Pn be a closed subscheme such
that h1(IY (k)) = 0. Let S be a general subset of T with ](S) = s. We have
h1(IY ∪S(k)) = 0 if h0(IResT (Y )(k − t)) ≤ h

0(IY (k))− s.

Proof. Set Y0 := Y . We order the points P1, . . . , Ps of S. For each integer
i ∈ {1, . . . , s} set Yi := Y ∪ {P1, . . . , Pi}. Notice that ResT (Yi) = ResT (Y ) for
all i. Since h1(IY (k)) = 0, we have h1(IY ∪S(k)) = 0 if and only if h0(IY ∪S(k)) =
h0(IY (k))− s. Therefore by induction on s we may assume that h0(IYs−1(k)) =
h0(IY (k)) − s + 1. It is sufficient to prove that h0(IYs(k)) = h0(IYs−1(k)) − 1.
Assume that the last inequality is not true. Since Ps is a general point of T ,
we get that T is in the base locus of |IYs−1(k)|. Hence h0(IY (k)) − s + 1 =
h0(IYs−1∪T (k)) = h0(IResT (Y )(k − t)), a contradiction. QED

Lemma 5. Fix a projective variety W , R ∈ Pic(W ), a closed subscheme U
of W with U = Y t A, with A union of some of the connected components of
U and A zero-dimensional. Let B ⊂W be a zero-dimensional scheme such that
A ⊆ B and B ∩ Y = ∅. Set V := Y t B. Then h1(IU,W ⊗ R) ≤ h1(IV,W ⊗ R)
and h0(IV,W ⊗R) ≤ h0(IU,W ⊗R).

Proof. Since U ⊆ V , we obviously have h0(IV,W ⊗R) ≤ h0(IU,W ⊗R). The ideal
sheaf IU,V of U in V is isomorphic to the ideal sheaf IA,B of A in B. Since B
is zero-dimensional and IA,B is supported by Bred, we have h1(IA,B ⊗ R) = 0.
Hence a trivial exact sequence gives h1(IU,W ⊗R) ≤ h1(IV,W ⊗R). QED

2 +lines

For any P ∈ Pn, n ≥ 1, a tangent vector of Pn with P as its support is a
degree two connected zero-dimensional scheme v ⊂ Pn such that vred = {P}. If
X ⊆ Pn and P ∈ X we say that v is tangent to X or that it is a tangent vector
of X if v is contained in the Zariski tangent space TPX ⊆ Pn of X at P . Fix
a line L ⊂ Pn, n ≥ 2, O ∈ L, and a tangent vector v of Pn at O which is not
tangent to L (i.e. assume that L is not the line spanned by v). Set A := L ∪ v.
We say that A is a +line, that A is the support of L, that O is the support of



28 E. Ballico

the nilradical of OA and that v is the tangent vector of A. The scheme A has
p(t) = t+ 2 as its Hilbert polynomial. For all t > 0 we have h1(OA(t)) = 0 and
h0(OA(t)) = t+ 2. We say that L is the support of A and that O is the support
of the nilradical of A. For all integers r ≥ 3, t ≥ 0 and c ≥ 0 let L(r, t, c) be
the set of all disjoint unions of t lines and c +lines. Now assume r ≥ 4 and
fix a hyperplane H ⊂ Pn. Let L(r, t, c)H be the set of all A ∈ L(r, t, c) such
that the nilradical OA is supported by points of H (we do not impose that the
c tangent vectors of A are contained in H; we only impose that their support
is contained in H). The set L(r, t, c)H is an irreducible variety of dimension
(t+ c)(2r − 2) + c(r − 1).

For all integers r ≥ 3 and k ≥ 0 define the integers ur,k and vr,k by the
relations

(k + 1)mr,k + nr,k =

(
r + k

r

)
, 0 ≤ nr,k ≤ k. (3)

For all integers r ≥ 4 and k ≥ 1 consider the following assertions Br,k:

Br,k, r ≥ 4, k > 0 : A general X ∈ L(r,mr,k−nr,k, nr,k)H satisfies h0(IX(k)) = 0

Remark 2. A statement like Br,k, r ≥ 4, k ≥ 1, but with X ∈ L(r, t, c)
instead of X ∈ L(r, t, c)H was proved in [6], §4. Br,1 is trivially true for all r ≥ 4.
It is easy to check that the quoted proof in all cases gives X ∈ L(r, t, c)H if as
Y we take some Y ∈ L(r, t′, c′)H , suitable t′, c′, i.e. if we use induction on k for
a fixed r for the assertion Br,k as stated here, not as in [6].

Lemma 6. Fix integers r ≥ 4, k > 0, t ≥ 0 and c ≥ 0 such that c ≤ k and
(k + 1)t+ (k + 2)c ≤

(
r+k
r

)
. Then h1(IX(k)) = 0 for a general X ∈ L(r, t, c)H .

Proof. We use induction on k, the case k = 1 being obvious. Assume k ≥ 2 and
that the lemma is true in Pr for the integer k − 1. Set e :=

(
r+k
r

)
− (k + 1)t −

(k + 2)c. Increasing if necessary t we may assume that e ≤ k. Fix a general
Y ∈ L(r,mr,k − nr,k, nr,k)H . We have hi(IY (k − 1)) = 0, i = 0, 1 (Remark 2).

Since (k + 1)t+ (k + 2)c+ e =
(
r+k
r

)
, we have

(k+1)(t−mr,k−1 +nr,k−1)+(k+2)(c−nr,k−1)+e+mr,k−1 =

(
r + k − 1

r − 1

)
. (4)

Since e ≤ k and c ≤ k, either t = mr,k − c, c ≤ nr,k and e = nr,k − c or
c > nr,k, t = mr,k − c − 1 and e = k + 1 − c + nr,k. The case c > nr,k is done
in step (a) of the proof of [6, Theorem 1 for r ≥ 4]. Now assume c ≤ nr,k.
Fix any W ∈ L(r,mr,k − nr,k, nr,k)H with hi(IW (k)) = 0, i = 0, 1. Take any
X ∈ L(r, t, c) with Wred ⊂ X ⊆ W and use the surjectivity of the restriction
map H0(W,OW (k))→ H0(X,OX(k)). QED
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3 P3

Example 1. Take r = 3, k = 3, t = 2 and a = 3. Fix a general X ∈
Z(3, 2, 3). Then h0(IX(3)) = h1(IX(3)) = 1. Indeed, since (k+ 1)t+ (r+ 1)a =
20 =

(
6
3

)
, we have h1(IX(3)) = h0(IX(3)). Write X = U tA with A = ∪O∈S2O,

S ⊂ P3 the union of 3 non-coplanar points and U a disjoint union of two lines.
Let H be the plane spanned by S. Since U is general, there is a unique quadric
surface Q containing U ∪ S. We have Q ∪H ∈ |IX(3)|. Take any T ′ ∈ |IX(3)|.
Since T ′|H has 3 non-collinear singular points, S, and contains two general
points, U ∩H, of H, H must be a component of T ′. Hence h0(IX(3)) = 1.

Proposition 1. Fix a general X ∈ Z(3, t, a)

(i) If (t, a) ∈ {(1, 4), (3, 2), (4, 1)}, then h0(IX(3)) = h1(IX(3)) = 0.

(ii) If (t, a) 6= (2, 3), then either h0(IX(3)) = 0 or h1(IX(3)) = 0.

Proof. First assume (t, a) = (3, 2). Let Q ⊂ P3 be a smooth quadric surface. Fix
a general S ⊂ Q with ](S) = 2 and set A := ∪O∈S2O, where 2O is a 2-point
of P3. Let Y ⊂ P3 be a general line. Let E ⊂ Q be a general union of two lines
of type (0, 1). We have h1(Q, IQ∩A(3, 1)) = 0 ([20, Propositions 4.1 and 5.2
and Theorem 7.2]). Since hi(IY ∪S(1)) = 0, i = 0, 1, we get hi(IY ∪E∪A(3)) = 0,
i = 0, 1.

Now assume (t, a) = (4, 1). Let H ⊂ P3 be a plane. Fix a general union
Y ⊂ P3 of 3 lines, a general line L ⊂ H and a general O ∈ H. We obviously
have hi(IY ∪{O}(2)) = 0, i = 0, 1, and h1(H, I(2O∩H)∪L(3)) = 0. Since Y ∩H is
a general union of 3 points, we have hi(H, I(Y ∪L∪2O)∩H(3)) = 0, i = 0, 1. Hence
hi(IY ∪L∪2O(3)) = 0, i = 0, 1.

Now assume (t, a) = (1, 4). Let Y ⊂ P3 be a general union of one line and
one 2-point. Take a general S ⊂ H with ](S) = 3 and let A be the union of
the 2-points of P3 with the points of S as their support. It is sufficient to prove
h1(IY ∪A(3)) = 0. We have hi(H, I(Y ∪A)∩H(3)) = 0, because h1(H, IA∩H(3)) = 0

and deg(H ∩ (Y ∪A)) =
(

5
2

)
. Since h1(IY (2)) = 0 and h0(IY (1)) = 0, Lemma 4

gives hi(IY ∪S(2)) = 0, i = 0, 1.

Now assume (t, a) = (2, 4). Fix a general Y ∈ Z(3, 2, 3) and a general O ∈ P3.
Since h0(IY (3)) = 1 (Example 1), we have h0(IY ∪2O(3)) = 0.

The other cases of part (ii) follow from part (i) and the case (t, a) = (2, 4)
just done. QED

Proposition 2. Fix a general X ∈ Z(3, t, a).

(a) If (t, a) ∈ {(1, 7), (2, 6), (3, 5), (4, 3), (5, 2), (6, 1), (7, 0)}, then we have
h1(IX(4)) = 0.

(b) If (t, a) ∈ {(1, 8), (2, 7), (4, 4), (5, 3), (6, 2)}, then h0(IX(4)) = 0.
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Proof. The case (t, a) = (7, 0) is true by [18]. Let Sx ⊂ Q be a general union
of x points and let Ey ⊂ Q be a general union of y lines of type (0, 1). Set
Ax := ∪O∈Sx2O. Let H ⊂ P3 be a plane and let Q ⊂ P3 be a smooth quadric
surface.

(i) Assume (t, a) = (1, 7). Fix a general line Y ⊂ P3. We have h1(IY (2)) =
0 and h0(IY ) = 0. Hence hi(IY ∪S7(2)) = 0, i = 0, 1 (Lemma 4). We have
h1(Q, IA7∩Q(4)) = 0 ([20, Propositions 4.1 and 5.2 and Theorem 7.2]) and
hence h1(Q, I(Y ∪A7)∩Q(4)) = 0. Hence h1(IY ∪A7(4)) = 0.

(ii) Assume (t, a) = (2, 6). Fix a general Y ∈ Z(3, 1, 3). Proposition 1 gives
h1(IY (3)) = 0. Since a double plane only contains a two-dimensional family of
lines, we have h0(IY (2)) = 0. Hence h1(IY ∪S(3)) = 0 for a general S ⊂ H with
](S) = 3 (Lemma 4). Set A := ∪O∈S2O. We have h1(H, IA∩H(3)) = 0 and hence
hi(H, I(Y ∪A)∩H(3)) = 0, i = 0, 1. Hence hi(H, IL∪(Y ∪A)∩H(4)) = 0, i = 0, 1, for
a general line L ⊂ H. Therefore h1(IY ∪L∪A(4)) = 0.

(iii) Assume (t, a) = (3, 5). Take a general Y ∈ Z(3, 3, 1). We have
h1(IY (3)) = 0 and h0(IY (2)) = 0. Hence hi(IY ∪S(3)) = 0, i = 0, 1, for a
general S ⊂ H with ](S) = 4. Set A := ∪O∈S2O. We have h1(H, IA∩H(4)) = 0
and hence hi(H, I(Y ∪A)∩H(4)) = 0, i = 0, 1. Therefore h1(IY ∪A(4)) = 0, i = 0, 1.

(iv) Assume (t, a) = (4, 3). Let Y ⊂ P3 be a general union of two lines.
We have h1(IY (2)) = 0 and h0(IY ) = 0 and hence h1(IY ∪S3(2)) = 0. We have
h1(Q, IQ∩A3(4, 2)) = 0 ([20, Propositions 4.1 and 5.2 and Theorem 7.2]) and
hence hi(Q, IQ∩(Y ∪A3)(4)) = 0, i = 0, 1. Hence h1(IY ∪E2∪A3(4)) = 0.

(v) Assume (t, a) = (5, 2). Fix a general Y ∈ Z(3, 2, 0). We have h1(IY (2))
= 0 and hence h1(IY ∪S2(3)) = 0. Since h1(Q, IA2∩Q(4, 1)) = 0 and Y ∩ Q is
a general union of 4 points, we have h1(Q, I(Y ∪A2)∩Q(4, 1)) = 0, i.e. we have
h1(Q, IE3∪(Y ∪A2)∩Q(4)) = 0. Hence h1(IY ∪E3∪A2(4)) = 0.

(vi) Assume (t, a) = (6, 1). Fix a general Y ∈ Z(3, 3, 0). We obviously
have hi(IY ∪S1(2)) = 0, i = 0, 1. Since h1(Q, I2O1∩Q(4, 1)) = 0, we obtain
h1(Q, I(2O∪Y ∪E3)∩Q(4)) = 0. Hence h1(IY ∪E3∪2O1(4)) = 0.

(vii) Assume (t, a) = (1, 8). Fix a general line Y ⊂ P3. We have h1(IY (2)) =
0 and h0(IY ) = 0. Hence h0(IY ∪S8(2)) = 0, i = 0, 1 (Lemma 4). We have
h1(Q, IA8∩Q(4)) = 0 ([20, Propositions 4.1 and 5.2 and Theorem 7.2]) and
hence h0(Q, I(Y ∪A8)∩Q(4)) = 0. Hence h0(IY ∪A8(4)) = 0.

(viii) Assume (t, a) = (2, 7). Fix a general Y ∈ Z(3, 1, 3). Lemma 1 gives
h1(IY (3)) = 0. Since a double plane contains only a two-dimensional family of
lines, we have h0(IY (2)) = 0. Hence h1(IY ∪S(3)) = 0 for a general S ⊂ H with
](S) = 4 (Lemma 4). Set A := ∪O∈S2O. We have h0(H, IA∩H(3)) = 0. Hence
h0(H, IL∪(A∩H)(4)) = 0 for a general line L ⊂ H. Therefore h0(IY ∪L∪A(4)) = 0.

(ix) Assume (t, a) = (4, 4). Let Y ⊂ P3 be a general union of two lines. We
have h1(IY (2)) = 0 and h0(IY ) = 0 and hence hi(IY ∪S4(2)) = 0, i = 0, 1. We
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have h1(Q, IQ∩A4(4, 2)) = 0 ([20, Propositions 4.1 and 5.2 and Theorem 7.2])
and hence we get h0(Q, IQ∩(Y ∪A4)(4, 2)) = 0, i.e. h0(Q, IE2∪(Y ∪A)4∩Q(4)) = 0.
Hence h0(IY ∪E2∪A4(4)) = 0.

(x) Assume (t, a) = (5, 3). Fix a general Y ∈ Z(3, 3, 0). Notice that
h0(IY ∪S3(2)) = 0. Since h1(Q, IA3∩Q(4, 2)) = 0, then h0(Q, I(Y ∪A3)∩Q(4, 2)) =
0. Hence h0(Q, IE2∪(Y ∪A3)∩Q(4)) = 0. Hence h0(IY ∪E2∪A3(4)) = 0.

(xi) Assume (t, a) = (6, 2). Fix a general Y ∈ Z(3, 3, 0). Notice that
h0(IY ∪S2(2)) = 0. We have h1(Q, IA2∩Q(4, 1)) = 0. Hence h0(Q, I(Y ∪A3)∩Q(4, 1))
= 0, i.e. h0(Q, IE3∪(Y ∪A3)∩Q(4)) = 0. Hence h0(IY ∪E3∪A2(4)) = 0. QED

Proposition 3. Fix a general X ∈ Z(3, t, a).

(a) If (t, a) ∈ {(1, 12), (2, 11), (3, 9), (4, 8), (5, 6), (6, 5), (7, 3), (8, 2), (9, 0)},
then h1(IX(5)) = 0 and h0(IX(5)) = 56− 6t− 4a.

(b) If (t, a) ∈ {(1, 13), (3, 10), (5, 7), (7, 4), (9, 1)}, then h0(IX(5)) = 0.

Proof. The case (t, a) = (9, 0) is true by [18]. Let Q ⊂ P3 be a smooth quadric
surface. Let Sx ⊂ Q be a general union of x points and let Ey ⊂ Q be a general
union of y lines of type (0, 1). Set Ax := ∪O∈Sx2O. Let H ⊂ P3 be a plane.

(i) Assume (t, a) = (e, 13 − e) with e = 1, 2. Fix a general Y ∈ Z(3, e, 4)
and a general S t S′ ⊂ H such that ](S) = 6, ](S′) = 3 − e and S ∩ S′ = ∅.
Set A := ∪O∈S2O, B := ∪O∈S′2O and B′ := B ∩ H. Since h1(H, IA∩H(5)) =
0 by the Alexander-Hirschowitz theorem, we have hi(IS′∪((Y ∪A)∩H)(5)) = 0,
i = 0, 1. By the Differential Horace Lemma (Lemma 2) to prove that a general
union W of Y ∪ A and 3 − e 2-points satisfies h1(IW (5)) = 0 it is sufficient
to prove h1(IY ∪S∪B′(4)) = 0. We have h0(IY (3)) = 0 by Lemma 1. There-
fore Lemma 4 shows that it is sufficient to prove that h1(IY ∪B′(4)) = 0. We
have h1(H, IB′∪(Y ∩H)(4)) = 0, because ](B′red) ≤ 3 and Y ∩ H is general
union of e points of H. Since h1(IY (3)) = 0, the Castelnuovo’s sequence gives
h1(IY ∪B′(4)) = 0.

(ii) Assume (t, a) = (3, 9). Let S ⊂ H be a general subset with ](S) = 6.
Set A := ∪O∈S2O. Fix a general Y ∈ Z(3, 3, 3). We have h1(IY (4)) = 0,
e.g., by the case (t, a) = (3, 3) of Proposition 2. Since h0(IY (3)) = 0 by
the case (t, a) = (3, 2) of Proposition 1, Lemma 4 gives h1(IY ∪S(4)) = 0.
We have h1(H, IA∩H(5)) = 0 by the Alexander-Hirschowitz theorem and so
hi(H, I(Y ∪A)∩H(5)) = 0, i = 0, 1. The Castelnuovo’s sequence gives
h1(IY ∪A(5)) = 0.

(iii) Assume (t, a) = (4, 8). Fix a general S ⊂ H such that ](S) = 4 and
a general line L ⊂ H. Fix a general Y ∈ Z(3, 3, 4). We have h1(IY (4)) = 0
(case (t, a) = (3, 5) of Proposition 3) and h0(IY (3)) = 0 (Proposition 1). Hence
hi(IY ∪S(4)) = 0, i = 0, 1. We have h1(H, IA∩H(4)) = 0 by the Alexander-
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Hirschowitz theorem. Hence hi(H, IL∪((Y ∪A)∩H)(5)) = 0. The Castelnuovo’s se-
quence gives hi(IY ∪L∪A(5)) = 0, i = 0, 1.

(iv) Assume (t, a) = (5, 6). Fix a general Y ∈ Z(3, 2, 2). We have h1(IY (3))
= 0 (Proposition 1) and h0(IY (1)) = 0. Hence h1(IY ∪S4(3)) = 0 (Lemma 4).
Since (Y ∪A4)∩Q is a general union of four 2-points of Q and 4 points, we have
h1(Q, I(Y ∪A4)∩Q(5, 2)) = 0 ([20, Propositions 4.1 and 5.2 and Theorem 7.2]).
Hence h1(Q, I(Y ∪A4∪E3)∩Q(5)) = 0. Hence h1(IY ∪A4∪E3(5)) = 0.

(v) Assume (t, a) = (6, 5). Fix a general Y ∈ Z(3, 3, 1). We have h1(IY (3))
= 0 (Lemma 1) and h0(IY (1)) = 0. Hence hi(IY ∪S4(3)) = 0, i = 0, 1 (Lemma 4).
Since (Y ∪A4)∩Q is a general union of four 2-points of Q and 6 points, we have
hi(Q, I(Y ∪A4)∩Q(5, 2)) = 0, i = 0, 1 ([20, Propositions 4.1 and 5.2 and Theorem
7.2]). Hence hi(Q, I(Y ∪A4∪E3)∩Q(5)) = 0, i = 0, 1. Hence hi(IY ∪A4∪E3(5)) = 0,
i = 0, 1.

(vi) Assume (t, a) = (7, 3). Fix a general Y ∈ Z(3, 4, 1). We have h1(IY (3))
= 0 (Proposition 1) and h1((Q, I(Y ∪A3)∩Q(5, 2)) = 0 ([20, Propositions 4.1 and
5.2 and Theorem 7.2]). We get h1(IY ∪E3∪A3(5)) = 0 and so h0(IY ∪E3∪A3(5)) =
2.

(vii) Assume (t, a) = (8, 2). Fix a general Y ∈ Z(3, 3, 2). We have hi(IY (3))
= 0, i = 0, 1 (Proposition 1). Since Y ∩Q is a general union of 6 points, we have
hi(I(Q∩Y )∪E5

(5)) = 0, i = 0, 1. Therefore hi(IY ∪E5(5)) = 0.

(viii) Assume (t, a) = (1, 13). Fix a general Y ∈ Z(3, 1, 1). Since h1(IY (3))
= 0 and h0(IY (1)) = 0, we have hi(IY ∪S12(3)) = 0, i = 0, 1 (Lemma 4). Since
hi(Q, IQ∩A12(5)) = 0, i = 0, 1, ([20, Propositions 4.1 and 5.2 and Theorem 7.2]),
we have h0(Q, IQ∩(Y ∪A12)(5)) = 0. Therefore h0(IY ∪A12(5)) = 0.

(ix) Assume (t, a) = (3, 10). Fix a general Y ∈ Z(3, 3, 0). Since h1(IY (3)) =
0 and h0(IY (1)) = 0, we have h0(IY ∪S10(3)) = 0. Since h1(Q, IA10∩Q(5)) = 0
([20, Propositions 4.1 and 5.2 and Theorem 7.2]), we have hi(Q, IQ∩(Y ∪A10)(5)) =
0, i = 0, 1. Hence h0(IY ∪A10(5)) = 0.

(x) Assume (t, a) = (5, 7). Fix a general Y ∈ Z(3, 3, 1). Since h1(IY (3)) =
0 (Proposition 3) (i.e. h0(IY (3)) = 4) and h0(IY (1)) = 0, we have h0(IY ∪S6(3)) =
0 (Lemma 4). Since h1(Q, IQ∩A6(5, 3)) = 0 ([20]), we have hi(IQ∩(Y ∪A6)(5, 3)) =
0, i = 0, 1. Therefore hi(IQ∩∪E2(5)) = 0. Hence h0(IY ∪E2∪A6(5)) = 0.

(xi) Assume (t, a) = (7, 4). Fix a general Y ∈ Z(3, 3, 2). Since hi(IY (3)) =
0, i = 0, 1 (Proposition 3), we have h0(IY ∪S2(3)) = 0. Since h1(Q, IA2∩Q(5, 1)) =
0, we have hi(IQ∩(Y ∪A2)(3)) = 0. Therefore h0(Q, IE4∪(Y ∪A2)(5)) = 0 and so
h0(IY ∪E2∪A2(5)) = 0.

(xii) Assume (t, a) = (9, 1). Fix a general Y ∈ Z(3, 5, 0). We have hi(IY (3))
= 0, i = 0, 1. Since h1(Q, IA1∩Q(5, 1)) = 0, we have h0(Q, IE4∪(Q∩(Y ∪A1))(5)) =
0 and so h0(IY ∪E4∪A1(5)) = 0. QED
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Lemma 7. Fix a line L ⊂ Q and take a general union S′ ⊂ L of 4 points
of L. Fix a general S ⊂ Q with ](S) = 4. Take a general W ∈ Z(3, 3, 3). Then
h1(IW∪S∪S′(4)) = 0.

Proof. Since h0(IW (2)) = 0 and S is general in Q, it is sufficient to prove
h1(IW∪S′(4)) = 0 (Lemma 4). It is sufficient to prove that h1(IW∪L(4)) = 0.
This is the case (t, a) = (4, 3) of Proposition 2. QED

Lemma 8. Let (t, a) be one of the following pairs: (9, 5), (8, 7), (w, z) (w ≥
9,z ≥ 6), (10, 4). Fix a general X ∈ Z(3, t, a). Then either h1(IX(6)) = 0 or
h0(IX(6)) = 0.

Proof. We have
(

9
3

)
= 84. In all cases we will take integers x ≥ 0 and y such

that 2t+5x+3y is near to 49, y ≤ a and y is as large as possible. In all cases we
will have x ≤ t. Let Y ⊂ P3 be a general union of t−x lines and a− y 2-points.
Fix a general S ⊂ P3 such that ](S) = y and set A := ∪O∈S2O. Let E ⊂ Q be
a general union of x lines of type (0, 1). We always use Y ∪ E ∪A ∈ Z(3, t, a).

First assume (t, a) = (9, 5). Take (x, y) = (5, 2). We have h1(Q, IA∩Q(6, 1)) =
0 and hence hi(Q, I(Y ∪E∪A)∩Q(6)) = 0. We have h0(IY (2)) = 0 (obvious) and
h1(IY (4)) = 0 (Proposition 2). Hence h1(IY ∪S(4)) = 0 (Lemma 4). Hence
h1(IY ∪E∪A(6)) = 0.

Now assume (t, a) = (w, z), with z ≥ 6 and w ≥ 9. Take a general M ∈
Z(3, 9, 5). We proved that h0(IM (6)) = 1. Hence h0(IM∪B(6)) = 0 if B contains
either a general line or a general 2-point.

Now assume (t, a) = (10, 4). We take (x, y) = (4, 3). We have h1(IA∩Q(6, 2))
= 0 and hence hi(Q, I(Y ∪E∪A)∩Q(6)) = 0, i = 0, 1. We have h0(IY (2)) = 0
(obvious) and h1(IY (4)) = 0 (Lemma 2). Hence hi(IY ∪S(4)) = 0, i = 0, 1
(Lemma 4). Hence hi(IY ∪E∪A(6)) = 0, i = 0, 1.

Now assume (t, a) = (8, 7). Let L ⊂ Q be a general line of type (1, 0) and
F ⊂ Q a general union of 4 lines of type (0, 1). Set S′ := F∩L and Γ := ∪O∈S′2O.
Notice that E ∪ L ∪ Γ is a flat limit of a family of disjoint unions of 5 lines of
P3. Let W ⊂ P3 be a general union of 3 lines and 3 2-points. Take y = 4. Set
M := W ∪L∪F ∪Γ∪A. We have M ∈ Z(3, 8, 7)′ and ResQ(M) = W ∪S ∪S′.
We have h0(IW (2)) = 0 (obvious) and h1(IW (4)) = 0 (Lemma 2). We have
hi(IW∪S∪S′(4)) = 0 (Lemma 7). Hence hi(IM (6)) = 0, i = 0, 1. QED

Proposition 4. Fix integers a ≥ 0, t ≥ 0 and k ≥ 3 such that (k + 1)t +
4a+ 3k ≤

(
k+3

3

)
. Let X ⊂ P3 be a general union of t lines and a 2-points of P3.

Then h1(IX(k)) = 0.

Proof. Increasing if necessary a we may assume that (k+1)t+4a+3k ≥
(
k+3

3

)
−3.

By [18] we may assume a > 0. By the Alexander-Hirschowitz theorem we may
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assume t > 0 at least if k ≥ 4. Fix a smooth quadric surface Q ⊂ P3. The
cases with k = 3, 4, 5 are true by Propositions 1, 2 and 3. Hence we may assume
k ≥ 6.

(a) Assume k = 6. We have 61 ≤ 7t+ 4a ≤ 66. Hence

(t, a) ∈ {(1, 14), (2, 13), (3, 11), (4, 9), (5, 7), (6, 6), (7, 4), (8, 2)}.

First assume a ≤ 8 and t ≤ 7. We specialize X to X ′ = Y tZ with Y the union of
t distinct lines of type (1, 0) on Q. Since t ≤ 7, we have h1(Q, IY (6)) = 0. Since
a ≤ 8, we have h1(IZ(4)) = 0 by the Alexander-Hirschowitz theorem. Hence
h1(IX′(6)) = 0 by the Castelnuovo’s sequence. Now assume (t, a) = (8, 2). We
specialize only 7 lines inside Q. We only need to use that h1(IL∪Z(4)) = 0 if L
is a line and Z is a general union of two 2-points. Now assume a ≥ 9. We have
2t+3a ≤ 49. We specialize X to Y tZ with Y a a general union of t lines and Z
a general union of 9 2-points with support on Q. We have h1(Q, IQ∩Z(6)) = 0
([20, Propositions 4.1 and 5.2 and Theorem 7.2]). Since 2t+ 3a ≤ h0(Q,OQ(6))
and Y ∩Q is a general union of 2t points, we get h1(Q, I(Y ∪Z)∩Q(6)) = 0. By the
Castelnuovo’s sequence it is sufficient to prove h1(IY ∪S(4)) = 0, where S is a
general union of a points of Q. Hence it is sufficient to prove that h1(IY (4)) = 0
and that h0(IY (2)) ≤ h0(IY (4))− a. This is true, because Y has maximal rank
by [18].

(b) Now assume k ≥ 6 and that the result is true for the integers k′ = k−2.
Recall that (k + 1)t + 4a + 3k ≥

(
k+3

3

)
− 3. Set u := b((k + 1)2 − 2t)/3c. Since

t ≤ (k + 3)(k + 2)/6 and k ≥ 7, we have u ≥ 4. Assume for the moment a ≥ u.
We specialize X to X ′ = Y t Z ′ t Z with Y ∪ Z ′ a general union of t lines and
a − u 2-points and Z a general union of u 2-points of Q with support in Q.
We have h1(Q, IZ∩Q(k)) = 0 ([20, Propositions 4.1 and 5.2 and Theorem 7.2]).
Since Y ∩ Q is the union of 2t general points of Q and 2t + 3u ≤ (k + 1)2, we
have h1(Q, IQ∩X′(k)) = 0. We have ResQ(X ′) = Y ∪Z ′ ∪ S, where S := Zred is
a general union of u points of Q. By the Castelnuovo’s sequence it is sufficient
to prove that h1(IY ∪Z′∪S(k − 2)) = 0. Since (k + 1)t + 4a + 3k ≤

(
k+3

3

)
and

2t + 3u ≥ (k + 1)2 − 2, we have (k − 1)t + 4(a − u) + u + 3k − 2 ≤
(
k+1

3

)
.

Since u ≥ 4, we get (k− 1)t+ 4(a− u) + 3(k− 2) ≤
(
k+1

3

)
. Hence the inductive

assumption gives h1(IY ∪Z′(k − 2)) = 0. Assume h1(IY ∪Z′∪S(k − 2)) > 0. Let
u′ ≤ u be the first integer such that h1(IY ∪Z∪S′(k − 2)) > 0 for some S′ ⊆ S
with ](S′) = u′. Fix P ∈ S′ and set S′′ = S′ \ {P}. By the minimality of
the integer u′ we have h1(IY ∪Z′∪S′′(k − 2)) = 0 and h0(IY ∪Z′∪S′′(k − 2)) =
h0(IY ∪Z′∪S′(k−2)). Since P is a general point of Q, we get that |IY ∪Z′∪S′′(k−2)|
has Q in its base locus. Since no irreducible component of (Y ∪Z ′)red is contained
in Q, we get h0(IY ∪Z′∪S′′(k − 2)) = h0(IY ∪Z′(k − 4)). Since u′ ≤ u, we get
h0(IY ∪Z′(k−2))−u+1 ≤ h0(IY ∪Z′(k−4)). Since h1(IY ∪Z′(k−2)) = 0, we have
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h0(IY ∪Z′(k−2)) =
(
k+1

3

)
−(k−1)t−4(a−u). Since (k−1)t+4(a−u)+u+3k−2 ≤(

k+1
3

)
, we get h0(IY ∪Z′(k − 4)) ≥ 3k − 2. Since (k + 1)t + 4a + 3k ≥

(
k+3

3

)
− 3

and (k + 1)2 − 2 ≤ 2t + 3u ≤ (k + 1)2, we get h1(IY ∪Z′(k − 4)) > 0. Since Y
has maximal rank by [18], we get Z ′ 6= ∅ and (k − 3)t ≤

(
k−1

3

)
− 3k + 2. Since

k− 4 ≥ 3, we may use the inductive assumption for the integer k′ := k− 4. Let
v be the maximal integer such that v ≤ a − u and (k − 3)t + 4v + 3(k − 4) ≤(
k−1

3

)
. Assume for the moment v ≥ 0 and take a union Z ′′ of v connected

components of Z ′. The inductive assumption gives h1(IY ∪Z′′(k− 4)) = 0. Since
h1(IY ∪Z′(k − 4)) > 0 we get v < a − u. Hence the maximality property of the
integer v gives (k − 3)t+ 4v + 3(k − 4) ≥

(
k−1

3

)
− 3. Since h1(IY ∪Z′′(k − 4)) =

0, we get h0((IY ∪Z′′(k − 4)) ≤ 3(k − 4) + 3 < 3k − 2. Since Z ′ ⊃ Z ′′ and
h0(IY ∪Z′(k − 4)) ≥ 3k − 2, we get a contradiction. If v < 0 we get the same
contradiction taking Y instead of Y ∪ Z ′′. QED

Proposition 5. Fix integers a ≥ 0, t ≥ 0, k ≥ 3 and e such that 0 ≤ e ≤ k,
and (2k + 1)e+ (k + 1)t+ 4a+ 5k ≤

(
k+3

3

)
. Let X ⊂ P3 be a general union of t

lines, e reducible conics and a 2-points of P3. Then h1(IX(k)) = 0.

Proof. If e = 0, then we may apply Proposition 4. Hence we may assume e >
0. In particular we get k 6= 3. Since (2k + 2)e + (k + 1)t ≤

(
k+3

3

)
, we may

assume a > 0 by part (a) of Lemma 3. Increasing if necessary a we may assume(
k+3

3

)
− 3 ≤ (2k + 1)e + (k + 1)t + 4a + 5k ≤

(
k+3

3

)
. Assume k = 4. Hence

e = a = 1 and t = 0. This case is obvious. Let Q ⊂ P3 be a smooth quadric
surface.

(a) Assume k = 5. We have 28 ≤ 11e + 6t + 4a ≤ 31. The triples (t, e, a)
are the following ones (0, 2, 2), (2, 1, 2), (1, 1, 3). Fix a plane H ⊂ P3 and a
reducible conic T ⊂ H. First assume (t, e, a) = (0, 2, 2). Let S ⊂ H be a general
subset with ](S) = 2. Set A := ∪O∈S2O. Let Y ⊂ P3 be a general reducible
conic. Since h1(IY (x)) = 0, x = 3, 4, we have h1(IY ∪S(4)) = 0 by Lemma 4.
We have h1(H, I(Y ∪T∪A)∩H(5)) = 0, because h1(H, I(T∪A)∩H(3)) = 0. Hence
h1(IY ∪A(5)) = 0. Now assume (t, e, a) = (2, 1, 2). Let Y1 ⊂ P2 be a general
union of two lines. Since h1(IY1∪S(4)) = 0, we get h1(IY1∪A(5)) = 0. Now
assume (t, e, a) = (1, 1, 3). Let Y ′ ⊂ P3 be a general union of a line and a
2-point. Since h1(IY ′(x)) = 0, x = 3, 4 (e.g., by Proposition 4)), we first get
h1(IY ′∪S(4)) = 0 and then h1(IY ′∪A(5)) = 0.

(b) Assume k = 6. We have e > 0 and 53 ≤ 13e + 7t + 4a ≤ 56. Hence
e ≤ 4. Let E ⊂ Q be a union of e distinct lines of type (0, 1). For each integer
x ≥ 0 let Ex ⊂ Q be a general union of x lines of type (0, 1). First assume
e + t ≥ 5. Fix a general Y ∈ Z(3, e + t − 5, a) and write Y = Y ′ ∪ Y ′′ with
Y ′′ ∈ Z(3, 2e + t − 5, a) and Y ′ ∈ Z(3, e, 0). Since Y ∩ Q is a general union of
4e + 2t − 10 ≥ e points of Q we may find E with Y ′ ∪ E a disjoint union of e
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reducible conics, E ∩Y ′′ = ∅. We have h1(IY (4)) = 0 by Proposition 2, because
5(e+ t− 5) + 4a ≤ 56− 35− 2(e+ t− 5). We claim that h1(IY ∪E∪E5−e(6)) = 0.
The claim would prove Proposition 5 in this case. Since h1(IY (4)) = 0, it is
sufficient to prove h1(Q, IE∪E5−e∪(Y ∩Q)(6)) = 0. Since each line of Y ′ meets
E, Y ∩ (Q \ E) is the union, B, of e + 2(t − 5 + e) = 3e + 2t − 10 general
points of Q and some points of E. To prove the claim it is sufficient to prove
that h1(Q, IB(6, 1)) = 0. Since B is general, it is sufficient to have ](B) ≤ 14,
which is true. Now assume e + t ≤ 4. Set b := min{a, 6} if e + t = 4, b := 6 if
(e, t) = (3, 0) and b := min{a, 9} in all other cases. Fix a general Y ′ ∈ Z(3, e, 0),
a general U ∈ Z(3, 0, a − b) and a general S ⊂ Q such that ](S) = b. Set
A := ∪O∈S2O. We may assume that each line of E contains a point of Y ′ ∩ Q
so that Y ′ ∪ E is a disjoint union of e reducible conics. The set Y ′ ∩ (Q \ E)
is a general union of e points of Q. To prove Proposition 5 in these cases it
is sufficient to prove that h1(IY ′∪U∪A∪Et(6)) = 0. We have h1(IY ′∪U (4)) = 0
(Proposition 2) and h0(IY ′∪A(4)) ≥ h0(IY ′∪U (2))+b. Hence h1(IY ∪U∪S(4)) = 0.
Therefore it is sufficient to prove that h1(Q, IY ′∩(Q\E)∪(A∩Q)(6, 6− e− t)) = 0.
We have h1(Q, IA∩Q(6, 6 − e − t)), because 3b ≤ 7(7 − e − t) and, if e + t = 4,
then ](S) ≤ 6 ([20, Propositions 4.1 and 5.2 and Theorem 7.2]). Therefore it is
sufficient to check that e+ 3b ≤ 7(7− e− t), i.e. 8e+ 7t+ 3b ≤ 49. This is true,
because 13e+ 7t+ 4a ≤ 56, e > 0, b ≤ a and e+ t ≤ 4.

(c) From now on we assume k ≥ 7 and that Proposition 5 is true for the
integers k − 2 and k − 4. Increasing if necessary a we reduce to the case(

k + 3

3

)
− 5k − 3 ≤ (2k + 1)e+ (k + 1)t+ 4a ≤

(
k + 3

3

)
− 5k. (5)

Let Q ⊂ P3 be a smooth quadric surface. Set ε := max{0, e − k + 2}. Hence
0 ≤ ε ≤ 2 and either ε = 0 or e− ε = k − 2. Since (2k + 1)e+ (k + 1)t ≤

(
k+3

3

)
,

we have 4(e− ε) + 2t ≤ (k + 1)(k + 1− ε). Let X1 ⊂ Q be a general union of of
ε lines of type (0, 1). Set b := min{b((k + 1)(k + 1 − ε) − 4(e − ε) − 2t)/3c, a}.
Since k+ 1− ε ≥ 3, we have h1(Q, IB(k+ 1, k+ 1− ε)) = 0 for a general union
B ⊂ Q of b 2-points of Q ([20, Propositions 4.1 and 5.2 and Theorem 7.2]). Set
S := Bred. The set S is a general union of b points of Q. Let A ⊂ P3 be the
union of b 2-points with S as its support. Notice that Q ∩ A = B (as schemes)
and ResQ(A) = S.

(c1) Here we assume b = b((k + 1)(k + 1 − ε) − 4(e − ε) − 2t)/3c. Let
Y ⊂ P3 be a general union of a − b 2-points, e − ε reducible conics, t lines,
ε lines, each of them intersecting one of the components of X1, so that Y ∪
X1 ∪ A is a disjoint union of e reducible conics, t lines and a 2-points. Set
W := Y ∪X1∪A. By the semicontinuity theorem for cohomology it is sufficient
to prove that h1(IW (k)) = 0. We have ResQ(W ) = Y ∪ S. The scheme W ∩Q
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is the disjoint union of X1, B and 4(e − ε) + 2t general points of Q. Since
h1(Q, IB(k + 1, k + 1 − ε)) = 0 and 3b + 4(e − ε) + 2t ≤ (k + 1)(k + 1 − ε),
we have h1(Q, IW∩Q(k)) = 0. By the Castelnuovo’s sequence it is sufficient
to prove that h1(IY ∪S(k − 2)) = 0. Since X1 is a general union of two lines
of type (0, 1) of Q and every line of P3 meets Q, Y may be considered as a
general union of a − b 2-points, t + ε lines and e − ε reducible conics. We have
h0(OY ∪S(k−2)) = h0(OW (k))−3b−4(e−ε)−kε, because for all x ≥ 0 we have
h0(OE(x)) = 2x+1 if E is a reducible conic and h0(OE(x)) = x+1 if E is a line.
Since (k+1)(k+1−ε)−4(e−ε)−2t ≥ (k+1)2−2 and

(
k+3

3

)
−
(
k+1

3

)
= (k+1)2,

we get
(
k+1

3

)
− h0(OY ∪S(k − 2)) ≥

(
k+3

3

)
− h0(OW (k)) − 2 ≥ 5k − 2. Since Y

is a general union of e − ε reducible conics, t + ε lines and a − b 2-points and
h0(OY (k−2))+5(k−2) ≤

(
k+1

3

)
, the inductive assumption gives h1(IY (k−2)) =

0. We also have h0(IY (k−2)) ≥ ](S)+5k−2. Hence if either h0(IY (k−4)) = 0
or h0(IY (k− 2)) ≥ ](S) +h0(IY (k− 4)), then we may apply Lemma 4. Assume
h0(IY (k−4)) > 0. We have h0(OY (k−2))−h0(OY (k−4)) = 4(e− ε)+2(t+ ε),
while

(
k+1

3

)
−
(
k−1

3

)
= (k−1)2. However, we cannot claim that h1(IY (k−4)) = 0,

because we cannot claim that h0(OY (k−4)) + 5(k−4) ≤
(
k−1

3

)
. Assume for the

moment h0(OY (k − 4)) + 5(k − 4) >
(
k−1

3

)
. Take E ⊂ Y with E a union of all

2-points of Y , all degree 1 connected components of Y , some of the reducible
conics of Y , at least one the components of each reducible conic of Y so that
E is minimal with the property that h0(OE(k − 4)) ≥

(
k−1

3

)
− 5(k − 4). Set

x := deg(Y )−deg(E). First assume h0(OE(k−4)) =
(
k−1

3

)
−5(k−4). In this case

the inductive assumption gives h1(IE(k−4)) = 0. Hence h0(IE(k−4)) = 5(k−4).
Each line contained in Y , but not contained in E may be considered as a general
line intersecting one of the lines of E. Hence this line may contain a general point
of P3. Hence h0(IY (k − 4)) ≤ max{0, h0(IE(k − 4))− x} = 5(k − 4)− x. Since
h0(IY (k−2)) ≥ ](S)+5k−2, we get h1(IY ∪S(k−2)) = 0 in this case by Lemma
4. Now assume h0(OE(k−4)) >

(
k−1

3

)
−5(k−4). The scheme E ⊂ Y is minimal,

either because it contains no reducible conic or because it contains at least one
reducible conic, but h0(OE(k− 4)) ≤

(
k+1

3

)
− 5(k− 4) + (k− 5). Assume that E

contains at least one conic, but h0(OE(k− 4)) ≤
(
k+1

3

)
− 5(k− 4) + (k− 5). Let

F ⊂ E be obtained from E taking only one component of one of the conics of E.
We have h0(OF (k−4)) = h0(OE(k−4))−(k−4) <

(
k+1

3

)
−5(k−4) and hence we

may apply the inductive assumption to F (with a separate analysis of the case
k = 6) and get h0(IY (k−4)) ≤ −x−1+h0(IF (k−4)) ≤ 5(k−4)+(k−5)−x−1.
Now assume that E is maximal, because it contains no reducible conic, i.e. Y
is the union of E and e− ε suitable lines. If h0(OE(k − 4)) ≤

(
k−1

3

)
− 3(k − 4),

then Proposition 4 gives h1(IE(k − 4)) = 0. Now assume h0(OE(k − 4)) >(
k−1

3

)
− 3(k− 4). Let G ⊂ Y the union of all of the 2-points of E and of some of

the lines of E with deg(G) maximal among all subschemes with h0(OG(k−4)) ≤
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(
k−1

3

)
− 3(k− 4). The maximality of G gives h0(OG(k− 4)) ≥

(
k−1

3

)
− 4(k− 4).

Proposition 4 gives h1(IG(k − 4)) = 0 and hence h0(IG(k − 4)) ≤ 4(k − 4).
Since h0(IY (k− 4)) ≤ h0(IG(k− 4)) and h0(IY (k− 2)) ≥ ](S) + 5k− 2, we get
h1(IY ∪S(k − 2)) = 0 by Lemma 4.

(c2) Here we assume b < b((k+1)(k+1−ε)−4(e−ε)−2t)/3c. Hence b = a
in this case. Since e ≤ k and 3b ≤ (k+1)2−4e−2t, the first inequality in (5) gives
t ≥ k−1 (otherwise one has to adapt the definition of f below). Let f be maximal
integer such that 0 ≤ f ≤ k−1−ε and 4+2(t−f)+3b ≤ (k+1)(k+1−ε−f). Let
E ⊂ Q be a general union of f+ε lines of type (0, 1). In this step we take as Y a
general union of e reducible conics and t′ := t−f − ε lines. Set W := Y ∪A∪E.
Since k − (f + ε) > 0 and e > 0, we have h1(Q, I(Y ∩Q)∪B∪E(k)) = 0 ([20,
Propositions 4.1 and 5.2 and Theorem 7.2]). Since ResQ(W ) = Y ∪ S, it is
sufficient to prove h1(IY ∪S(k − 2)) = 0. Y is a general union of t′ lines and e
conics. We first check that (t′+e)(k−1) ≤

(
k+3

3

)
. We have

(
k+3

3

)
−h0(OW (k)) =(

k+1
3

)
−h0(OY ∪S(k−2))+δ, where δ = h0(Q,OQ(k))− (k+1)(f+ε)−3b−4e−

2(t − f − ε). We have h0(OQ(k)) = (k + 1)2 =
(
k+3

3

)
−
(
k+1

3

)
. The maximality

of the integer f gives the inequality δ ≤ 3k + 2. Hence h0(OY ∪S(k − 2)) ≤(
k+1

3

)
− 5k + 3k + 2 ≥ e. Part (a) of Lemma 3 gives h1(IY (k − 2)) = 0. Since

h0(OY ∪S(k− 2)) ≤
(
k+1

3

)
− 5k+ 3k+ 2, we have h0(IY (k− 2)) ≥ ](S) + 2k− 2.

By Lemma 4 to prove that h1(IY ∪S(k − 2)) = 0 it is sufficient to prove the
inequality h0(IY (k − 4)) ≤ h0(IY (k − 2)) − ](S). Lemma 3 gives that either
h0(IY (k−4)) ≤ e or h1(IY (k−4)) ≤ e. Since e ≤ k, h0(IY (k−2)) ≥ ](S)+2k−2,(
k+1

3

)
−
(
k−1

3

)
= (k− 1)2 and h0(OY (k− 2))− h0(OY (k− 4)) = 2t′ + 4e, we are

done. QED

4 P4

In this section we handle the case r = 4. Let H ⊂ P4 be a hyperplane.

Lemma 9. Fix a hyperplane H ⊂ P4, O ∈ H, a general Y ∈ Z(4, 1, 0) and
a general P ∈ P4. Set B′ := 2O ∩H. Then h1(IY ∪B′∪2P (2)) = 0.

Proof. Let ` : P4 \ {P} → P3 denote the linear projection from P . For general
P, Y,O, the scheme `(Y ∪ B′) is a general element of Z(3, 1, 1). Therefore we
have h1(P3, I`(Y ∪B′)(2)) = 0, i.e. h0(P3, I`(Y ∪B′)(2)) = 3. Since |IY ∪B′∪2P (2)| is
the set of all quadrics cones containing Y ∪ B′ and with vertex containing P ,
we get h0(IY ∪B′∪2P (2)) = 3, i.e. h1(IY ∪B′∪2P (2)) = 0. QED

Lemma 10. Fix integers t ≥ 0, a ≥ 0 such that (t, a) 6= (0, 7). Fix a general
X ∈ Z(4, t, a). Then either h0(IX(3)) = 0 or h1(IX(3)) = 0.
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Proof. All cases with a = 0 are true by [18]. Hence we may assume a > 0.
Among the X’s with h0(OX(3)) = 4t + 5a ≤

(
7
4

)
= 35 it is sufficient to check

the pairs (t, a) ∈ {(1, 6), (5, 3)}. Among the pairs (t, a) with 4t + 5a > 35 it
is sufficient to check the pairs (t, a) ∈ {(0, 8), (1, 7)}. All cases with t = 0 are
covered by the Alexander-Hirschowitz theorem, because we excluded the case
(t, a) = (0, 7).

We need to check all pairs (t, a) with a > 0, t > 0, and 32 ≤ 4t + 5a ≤ 38.
We may also exclude all cases with 4t + 5a ≥ 37 and t > 0, because any two
general points of P4 are contained in a line and hence to prove the case (t, a) it is
sufficient to check the case (t′, a′) = (t−1, a). Hence (t, a) is one of the following
pairs (7, 1), (6, 2), (5, 3), (4, 4), (3, 4), (2, 5). All cases with either a ≥ 9 or a = 8
and t > 0 or a = 7 and t 6= 1 are obvious and the remaining ones are reduced
(increasing or decreasing t, but with a fixed a) to a case with 32 ≤ 4t+ 5a ≤ 36
or to the case (t, a) = (2, 6).

Let H ⊂ P4 be a hyperplane. Let E ⊂ H be a general union of f lines and
let Sx ⊂ H be a general union of x points. Set Ax := ∪P∈Sx2O.

(a) In this step we assume a = 1 and t = 7. Notice that |30 − 4t| = 2.
Let Y ⊂ P4 be a general union of 4 lines. We have h1(IY ∪S1(2)) = 0 and
h0(IY ∪S1(2)) = 2. Take f = 3. Proposition 1 gives hi(I(Y ∩H)∪E∪(A1∩H)(3)) = 0,
i = 0, 1. Use Y ∪ E ∪A1.

(b) In this step we assume a = 2 and t = 6. Let Y be a general union of 4
lines. We have h1(IY ∪S2(2)) = 0. Take f = 2. e h1(H, I(Y ∩H)∪E∪(A2∩H)(3)) = 0.
Use Y ∪ E ∪A2 and the Castelnuovo’s sequence.

(c) In this step we assume a = 3 and t = 5. Let Y ⊂ P4 be a gen-
eral union of 4 lines. Take f = 1. Since Y ∩ H is general in H, we have
hi(H, I(Y ∩H)∪E∪(A3∩H)(3)) = 0, i = 0, 1 (Proposition 1). We have hi(IY ∪S3(2))
= 0, i = 0, 1, by [18] and the case t = 1 of Lemma 4. Use Y ∪ E ∪ A3 and the
Castelnuovo’s sequence.

(d) Assume a = 4 and t ∈ {3, 4}. Take f = 0. Let Y ⊂ P4 be a union of
t lines. Use Y ∪A4. We have h1(H, I(Y ∪A4)∩H(3)) = 0 and h0(I(Y ∪A4)∩H(3)) =
t− 4 (Proposition 1). We have h1(IY ∪S4(2)) = max{0, 11− 3t}.

(e) Assume a = 5 and t = 2. Let Y ⊂ P4 be a general union of 2 lines and
one 2-point. Use Y ∪A4. We have hi(IY ∪S4(2)) = 0, i = 0, 1 (Lemmas 1 and 4).
We have h1(H, IH∩(Y ∪A4)(3)) = 0 (Proposition 1).

(f) Assume a = 6 and t = 1. Fix O ∈ S5 and set S4 := S5 \ {O}. Set
B′ := 2O ∩H. Fix a general Y ∈ Z(4, 1, 1). We have h1(IY ∪B′(2)) = 0 (Lemma
9). We have h1(H, IA4∩H(3)) = 0 and hence h1(H, I(Y ∪A4)∩H∪{O}(3)) = 0. Since
h0(IY (1)) = 0 and h0(OY ∪B′(2)) = 16, Lemma 4 gives h1(IY ∪B′∪S4(2)) = 0.
The Differential Horace Lemma (Lemma 2) gives that a general union W of
Y ∪A4 and a 2-point satisfies h1(IW (3)) = 0.
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(g) Assume a = 6 and t = 2. Let Y ⊂ P4 a general union of two lines
and one 2-point. We have h0(IY ∪S5(2)) = 0 and h0(H, I(Y ∪A5)∩H(3)) = 0 (even
without the two points of Y ∩H). QED

Lemma 11. Fix integers a ≥ 0 and t ≥ 0 with (t, a) 6= (0, 14). Fix a general
X ∈ Z(4, t, a). Then either h0(IX(4)) = 0 (case a + t ≥ 14) or h1(IX(4)) = 0
(case a+ t ≤ 14).

Proof. Since
(

8
4

)
= 70, it would sufficient to do the case a + t = 14, but the

case (t, a) = (0, 14) is an exceptional case in the Alexander-Hirschowitz list (it
has h0(IX(4)) = h1(IX(4)) = 1 by [15], Proposition 2.1). By the Alexander-
Hirschowitz theorem all cases (0, a) with a 6= 14 are true. Hence it is sufficient
to do the cases with a = 14 − t and 1 ≤ t ≤ 14. The case a = 0 is true by
[18] and hence we may assume t ≤ 13. For all (x, y) ∈ N2 let Sx ∪ S′y ⊂ H
denote a general union of points with ](Sx) = x, ](S′y) = y and Sx ∩S′y = ∅. Set
Ax := ∪O∈Sx2O, By := ∪O∈S′y2O and B′y := By ∩H. Let Ex ⊂ H, x ≥ 0, be a
general union of x lines.

(a) Assume 1 ≤ t ≤ 7. Define the integers u, v by the relations t+4u+v =
35, 0 ≤ v ≤ 3. The quadruples (t, a, u, v) are the following ones: (1, 13, 8, 2),
(2, 12, 8, 1), (3, 11, 8, 0), (4, 10, 7, 3), (5, 9, 7, 2), (6, 8, 7, 1), (7, 7, 7, 0). In all cases
we have a ≥ u+v and u ≥ v. Let Y ⊂ P4 be a general element of Z(4, t, a−u−v).
Since v ≤ 3 and any 3 points of P4 are contained in a hyperplane, Y ∪ Bv
may be considered as a general element of Z(4, t, a − u). In all cases we have
h1(IY (3)) = h1(IY ∪Bv(3)) = 0 by Lemma 10 (when t = 1 we have a−u− v = 3
and a− u = 5). Lemma 5 gives h1(IY ∪B′v(3)) = 0, i.e. h0(IY ∪B′v(3)) = u. Since
obviously h0(IY (2)) = 0, we get hi(IY ∪B′v∪Su(3)) = 0, i = 0, 1. Since a ≤ 8, in
all cases we have h1(H, IAu∩H(4)) = 0 by the Alexander-Hirschowitz theorem.
Hence hi(H, IH∩(Y ∪Au)∪S′v(4)) = 0. The Differential Horace Lemma for double
points (Lemma 2) gives that a general union X of Y ∪Au and v 2-points satisfies
hi(IX(4)) = 0, i = 0, 1.

(b) Assume 8 ≤ t ≤ 13. Let f be the minimal integer such that t +
4f + 4a ≥ 35. Set f ′ := t + 4f + 4a − 35. Notice that 0 ≤ f ′ ≤ 3 and that
t − f − f ′ + 4a + 5f = 35. The quadruple (t, a, f, f ′) are the following ones:
(8, 6, 1, 1), (9, 5, 2, 0), (10, 4, 3, 3), (11, 3, 3, 0), (12, 2, 4, 1), (13, 1, 5, 2). In all cases
we have f ≥ f ′ and t ≥ f + f ′. Fix Ef ⊂ H and write Ef = Ef−f ′ t Ef ′ .
Let Y ⊂ P4 be a general union of t − f lines, with the only restriction that
f ′ of the lines of Y meet H in a point of a different component of Ef ′ , so
that Y ∪ Ef is a disjoint union W t F of W ∈ Z(4, t − 2f ′, 0) and a disjoint
union F of f ′ reducible conics. Let G ⊂ P4 be general sundials with F =
Gred. The scheme ResH(G) is a general union of f ′ +lines of P4 with nilradical
supported by a point of H. Proposition 2 gives h1(H, IEf∪(Aa∩H)(3)) = 0, i.e.
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h0(H, IEf∪(Aa∩H)(3)) = t− f − f ′. Hence hi(H, I(W∪G∪Aa)∩H(4)) = 0, i = 0, 1.

Since f ′ ≤ 3, Lemma 6 gives h1(IW∪ResH(G)(3)) = 0. Since h0(IY (2)) = 0,

Lemma 4 gives hi(IW∪ResH(G)∪Sa(3)) = 0, i = 0, 1. Hence hi(IW∪G∪Aa(4)) = 0,

i = 0, 1. Since W ∪Aa ∈ Z(4, t− 2f ′, a) and G is a disjoint union of f ′ sundials,
we are done. QED

Remark 3. Fix integers t > 0, r ≥ 4 and k ≥ 4 and a ≥ dk/re + r − 1.
Let f be the minimal integer such that t − f + (k + 1)f + ru′ + v′ =

(
r+k−1
r−1

)
(i.e. such that t+ kf + ru′ + v′ =

(
r+k−1
r−1

)
) for some integers u′, v′ with u′ ≥ 0,

0 ≤ v′ ≤ r−1 and u′+v′ ≤ a. There is such an integer, because a ≥ dk/re+r−1
and hence among the integers ru′+v′ with u′+v′ ≤ a we may realize all integers
x with 0 ≤ x < k.

Claim : We have a− u′ ≤ bk/rc+ r − 1.

Proof of the Claim: Write k = e1r+e2 with e1 = bk/rc and 0 ≤ e2 ≤ r−1.
Let u′′, v′′ be the only integers such that 0 ≤ v′′ ≤ r−1 and k(f−1)+ru′′+v′′ =
kf + ru′ + v′, i.e.

−k + ru′′ + v′′ = ru′ + v′. (6)

Since f − 1 < f , the minimality of f gives that either u′′ < 0 or a < u′′ + v′′.
Since u′ ≥ 0 and v′′ ≤ r − 1, we have u′′ ≥ 0. Hence a ≤ u′′ + v′′ − 1. Since
a ≥ u′+v′, we get u′′+v′′ ≥ u′+v′+1. From (6) we get that either v′′ = e2 +v′

and u′′ = u′ + e1 (case v′ + e2 ≤ r − 1) or v′′ = e2 + v′ − r and u′′ = u′ + e1 + 1
(case v′ + e2 ≥ r). Since a ≤ u′′ + v′′ − 1, 0 ≤ v′′ ≤ r− 1 and 0 ≤ v′ ≤ r− 1, we
get a − u′ ≤ e1 + r − 2 in the first case and a − u′ ≤ e1 + r − 1 in the second
case.

To conclude the proof of the case r = 4 of Theorem 1 it is sufficient to prove
the following result.

Proposition 6. Fix non-negative integers k, a, t such that k ≥ 4. Let X ⊂
P4 be a general union of t lines and a 2-points. If k = 4, then assume (t, a) 6=
(0, 14). Then either h1(IX(k)) = 0 (case (k+1)t+5a ≤

(
k+4

4

)
) or h0(IX(k)) = 0

(case (k + 1)t+ 5a ≥
(
k+4

4

)
).

Proof. If k = 4, then the result is true (Lemma 11). We fix an integer k ≥ 5
and we almost use induction on k, in the sense that we use the result for the
integers k′ := k − 1 and k′ = k − 2, except that if 2 ≤ k′ ≤ 3, then we quote
Lemma 1 and Proposition 1.

(a) In this step we assume t(k + 1) + 5a ≤
(
k+4

4

)
. Increasing if necessary

the integer a we may assume t(k+ 1) + 5a ≥
(
k+4

4

)
− 4. Set u := b(

(
k+3

3

)
− t)/4c

and v :=
(
k+3

3

)
− t− 4u. Notice that 0 ≤ v ≤ 3.

Claim 1: u+ 4v ≤
(
k+2

3

)
− t if k ≥ 8.
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Proof of Claim 1: Assume u+4v ≥
(
k+2

3

)
− t+1. Since 4u+v =

(
k+3

3

)
− t,

we get 15v ≥ 4
(
k+2

3

)
−
(
k+3

3

)
− 3t+ 4. Since v ≤ 3, we get

41 + 3t ≥ (k + 2)(k + 1)(3k − 3)/6. (7)

Since (k+1)t ≤ (k+4)(k+3)(k+2)(k+1)/24, we get 41+(k+4)(k+3)(k+2)/8 ≥
(k + 2)(k + 1)(k − 1)/2. The last inequality is false if k ≥ 8.

(a1) Here we assume a ≥ u+ v.
(a1.1) We check here Claim 1 (with the assumption a ≥ u + v) for k =

5, 6, 7. First assume k = 5. From (7) we get t ≥ 14. Since 6t + 5a ≤ 126,
we get a ≤ 8. Since t + 4u + v = 56 and a ≥ u + v, we get t ≥ 24. Hence
6t > 126, a contradiction. Now assume k = 6. From (7) we get t ≥ 33. Hence
7t > 210 =

(
10
4

)
, a contradiction. Now assume k = 7. From (7) we get t ≥ 65.

Hence 8t > 330 =
(

11
4

)
.

Let Y ⊂ P4 be a general union of t lines and a−u−v 2-points. Set J := Y ∩H.
J is a general union of t points of H. Fix a general S ∪ S′ ⊂ H with ](S) = u,
](S′) = v and S ∩ S′ = ∅. Let A ⊂ P4 (resp. A′) be the union of the 2-points of
P4 with S (resp. S′) as its support. Let B ⊂ H (resp. B′ ⊂ H) be the union of
the 2-points of H supported by the points of S (resp. S′). The definition of the
integers u and v gives h0(H,OJ∪B∪S′(k)) =

(
k+3

3

)
− t.

Claim 2: We have u ≥ v and hi(H, IJ∪B∪S′(k)) = 0, i = 0, 1.
Proof Claim 2: We have v ≤ 3. Assume u < v and hence u ≤ 2. We

get t ≥
(
k+2

3

)
− 11. Since t ≤ (k + 4)(k + 3)(k + 2)/24 and k ≥ 5, we get a

contradiction. Since S′ is general in H and h0(H,OJ∪B∪S′(k)) =
(
k+3

3

)
− t, it

is sufficient to check that h1(H, IJ∪B∪S′(k)) = 0. Since k ≥ 5, then Claim 2
follows from the Alexander-Hirschowitz theorem, because v′ ≥ 0.

By the Differential Horace Lemma (Lemma 2) and Claim 2 to get h1(IX(k))
= 0 it is sufficient to prove that h1(IY ∪S∪B′(k − 1)) = 0. We have

(
k+3

4

)
−

h0(OY ∪S∪B′(k− 1)) =
(
k+4

4

)
− h0(OX(k)). By Lemma 4 it is sufficient to prove

h1(IY ∪B′(k− 1)) = 0 and h0(IY (k− 1)) ≥ deg(S ∪B′) +h0(IY (k− 2)). Lemma
5 gives h1(IY ∪B′(k− 1)) ≤ h1(IY ∪A′(k− 1)). Since ](S′) ≤ 3, S′ is general in H
and any 3 points of P4 are contained in a hyperplane, Y ∪A′ may be considered
as a general union of t lines and a−u 2-points. Assuming for the moment k ≥ 6
the inductive assumption gives that h1(IY ∪A′(k−1)) = 0 if h0(OY ∪A′(k−1)) ≤(
k+3

4

)
. We have h0(OY ∪S∪B′(k − 1)) =

(
k+3

4

)
− (
(
k+4
k

)
− h0(OX(k)) ≤

(
k+3

4

)
and deg(A′) = deg(B′) + v. Hence to prove that h1(IY ∪B′(k − 1)) = 0 it is
sufficient to note that u ≥ v (Claim 2). In the case k = 5 we also need that
either t > 0 or a−u < 9; assume k = 5 and t = 0; in this case h1(IX(k)) = 0 by
the Alexander-Hirschowitz theorem (alternatively, in this case we have a = 25,
u = 19 and v = 0).

(a1.2) In this step we check that h0(IY (k − 2)) = 0.
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Claim 3: We have h0(OY (k − 2)) ≥
(
k+2

4

)
.

Proof Claim 3: We have
(
k+4

4

)
=
(
k+2

4

)
+
(
k+3

3

)
+
(
k+2

3

)
. We have h0(OY (k−

2)) = (k−1)t+5(a−u−v). We have (k+1)t+5a ≥
(
k+4

4

)
−4 and t+4u+v =

(
k+3

3

)
.

Hence 2t + 8u + 2v = 2
(
k+3

3

)
. Hence it is sufficient to check that 3u − 3v ≥(

k+2
2

)
+ 4, i.e 4u− 4v ≥ 2(k + 2)(k + 1)/3 + 16/3. We have 4u =

(
k+3

3

)
− t− v

and hence it is sufficient to check that 2(k+ 2)(k+ 1)/3 + 16/3 + 5v ≤
(
k+3

3

)
− t.

Since v ≤ 3, it is sufficient to check that t ≤ (k+ 2)(k+ 1)(k− 1)/6− 15− 16/3.
We have (k + 1)((k + 2)(k + 1)(k − 1)/6 − 15 − 16/3) >

(
k+4

4

)
for all k ≥ 6.

Now assume k = 5. First of all Y is a general union of t lines and a − u − v
2-points. To get h0(IY (3)) = 0 it is sufficient to have 4t + 5(a − u − v) ≥ 35
and either t 6= 0 or a − u − v ≥ 8 (Proposition 10). Hence we may assume
t ≤ 8. Since 122 ≤ 6t+ 5a ≤ 126 and t+ 4u+ v = 56 we get the following values
for the quadruples (t, a, u, v): (8, 14, 2, 0), (7, 16, 12, 1), (6, 18, 12, 2), (5, 19, 12, 3),
(4, 20, 13, 0), (3, 21, 13, 1), (2, 22, 13, 2), (1, 24, 13, 3). All the values for (t, a−u−
v) gives h0(IY (3)) = 0 by Proposition 10.

(a2) Now assume k ≤ a < u + v. Let f be the minimal integer such that
t−f +(k+1)f +4u′+v′ =

(
k+3

3

)
for some integers u′, v′ with u′ ≥ 0, 0 ≤ v′ ≤ 3

and u′ + v′ ≤ a. There is such an integer, because a ≥ k ≥ 3 + bk/4c and hence
among the integers 4u′ + v′ we may realize all integers x with 0 ≤ x ≤ k. Since
(k + 1)t+ 5a ≥

(
k+4

4

)
− 4, we have(

k + 3

4

)
− 4 ≤ k(t− f) + 5a− 4u′ − v′ ≤

(
k + 3

4

)
. (8)

The minimality of the integer f gives a− u′ ≤ 3 + bk/4c (Remark 3). Since
a ≥ k ≥ 3 + u′ + bk/4c, we have u′ ≥ v′.

Claim 4: We have f ≤ t.
Proof of Claim 4: Assume f ≥ t + 1. From the first inequality in (8) we

get
(
k+3

4

)
≤ 4 + 5a − 4u′ − v′ − k. Since 5a − 5u′ ≤ 15 + 5k/4 and v′ ≥ 0, we

get u′ + 11 + k/4 ≥
(
k+3

4

)
. Since 4u′ ≤

(
k+3

3

)
, we get (k+ 3)(k+ 2)(k+ 1)/24 +

11 + k/4 ≥
(
k+3

4

)
(false for all k ≥ 5).

Claim 5: If k ≥ 7, then t− f + v′ ≥ 3k.
Proof of Claim 5: Assume t− f ≤ 3k− v′− 1. From the first inequality in

(8) we get 3k2− k− kv′+ 5a− 4u′− v′ ≥
(
k+3

4

)
− 4. Since 5a− 5u′ ≤ 15 + 5k/4,

we get 3k2 + u′ − (k + 1)v′ + 15 + 5k/4 ≥
(
k+3

4

)
− 4. Since 4u′ + v′ ≤

(
k+3

3

)
and

v′ ≥ 0, we get 3k2 + (k+ 3)(k + 2)(k+ 1)/24 + 5k/4 ≥
(
k+3

4

)
− 4, which is false

for all k ≥ 7.
Assume for the moment t− f + v′ ≥ 3k (e.g., assume k ≥ 7). Fix a general

S ∪ S′ ⊂ H with ](S) = u′, ](S′) = v′ and S ∩ S′ = ∅. Let E ⊂ H be a general
union of f lines. Set A := ∪O∈S2O, Z := A∩H, B := ∪O∈S′2O and B′ := B∩H.
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Let Y ⊂ P4 be a general union of t−f lines and a−u′−v′ 2-points. As in step (a1)
it is sufficient to prove that h1(H, I(Y ∩H)∪S′∪Z(k)) = 0 and h1(IY ∪S∪B′(k−1)) =
0. Since (Y ∪ H) ∪ S′ is a general union of t − f + v′ ≥ 3k points of H and
deg((Y ∩ H) ∪ S′ ∪ Z) =

(
k+3

3

)
, Proposition 4 gives h1(IY ∪S∪B′(k − 1)) = 0.

We first check that h1(IY ∪B′(k − 1)) = 0. Since B′ ⊂ B and B′ is a union of
connected components of Y ∪B′, we have h1(IY ∪B′(k− 1)) ≤ h1(IY ∪B(k− 1)).
Hence to prove that h1(IY ∪B′(k − 1)) = 0 it is sufficient to prove h1(IY ∪B(k −
1)) = 0. Since v′ ≤ 3 and any 3 points of P4 are contained in a hyperplane,
Y ∪B may be considered as a general union of t− f lines and a− u′ 2-points.
Since u′ ≥ v′ (Claim 3) and h0(OY ∪B(k)) = h0(OY ∪S′∪Z′(k))+v′−u′ =

(
k+3

3

)
+(

k+4
4

)
−(k+1)t−5a, the inductive assumption (see below for the case k = 5) gives

h1(IY ∪B(k−1)) = 0 and hence h1(IY ∪B′(k−1)) = 0; if k = 5 we need that either
a − u′ ≤ 13 or t − f > 0; the latter inequality is obvious, because we assumed
t − f ≥ 3k. Therefore h0(IY ∪Z′(k − 1)) ≥ u′. Since S is general in H, to get
h1(IY ∪S∪B′(k − 1)) = 0, it is sufficient to prove that either h0(IY (k − 2)) = 0
or h0(IY (k − 2)) ≤ h0(IY (k − 1)) − u′ − 4v′ (Lemma 4). We assume for the
moment that Y has maximal rank (this is true by the inductive assumption and
Proposition 10 if either k ≥ 6 or k = 5 and (t−f, a−u−f) 6= (0, 7)). Hence the
inequality h0(IY (k−2)) ≤ h0(IY (k−1))−u′−4v′ is equivalent to t−f+u′+4v′ ≤(
k+2

3

)
. Assume t−f+u′+4v′ ≥

(
k+2

3

)
+1. Since t−f+(k+1)f+4u′+v′ =

(
k+3

3

)
,

we get (k + 1)f + 3u′ − 3v′ ≤
(
k+2

2

)
+ 1. Since a < u+ v, we have f > 0. Hence

u′ ≤ v′ + (k2 + k + 2)/2. Hence t− f + 5v′ + (k2 + k + 2)/2 ≥
(
k+2

3

)
+ 1. Since

v′ ≤ 3, we get t − f ≥ (k3 − k − 90)/6, contradicting the second inequality in
(8) for all k ≥ 7. Now assume k = 5, 6. We assumed t− f +u′+ 4v′ ≥

(
k+2

3

)
+ 1.

Since a ≥ u′ + v′, we have 5a− 4u′ − v′ ≥ u′ + 4v′. Hence the last inequality in
(8) gives (k − 1)(t− f) +

(
k+2

3

)
+ 1 ≤

(
k+3

4

)
. Since t− f ≥ (k3 − k − 90)/6, we

get a contradiction even if k = 5, 6.

(a3) Now assume a ≤ k − 1. Since (k + 1)t + 5a ≥
(
k+4

4

)
− 4, we have

(k + 1)t+ 5k − 1 ≥
(
k+4

4

)
. Let f be the minimal integer such that t− f + (k +

1)f +4a ≥
(
k+3

3

)
. Set f ′ := t−f +(k+1)f +5a−

(
k+3

3

)
. We have 0 ≤ f ′ ≤ k−1

and

t− f − f ′ + (k + 1)f + 4a =

(
k + 3

3

)
. (9)

From (9) we get(
k + 3

4

)
− 4 ≤ (k + 1)(t− f − f ′) + kf ′ + a ≤

(
k + 3

4

)
. (10)

Claim 6: We have f ≥ 0.

Proof of Claim 6: Assume f ≤ −1, i.e. assume t − k + 4a ≥
(
k+3

3

)
. Since



Lines and 2-points 45

a ≤ k−1, we get t ≥ (k3+6k2−19k+36)/6. Since k ≥ 5, we get (k+1)t >
(
k+4

4

)
,

a contradiction.

Claim 7: We have t− f − f ′ ≥ 0.

Proof of Claim 7: Since (k+ 1)t+ 5a ≥
(
k+4

4

)
− 4, we have f ≤ t. Assume

t − f − f ′ ≤ −1. Since f ′ ≤ k − 1 we also get f ≥ t − k + 2. Hence (9) gives
−1 + (k − 2)(k + 1) + (k + 1)t+ 4a ≤

(
k+3

3

)
. Since a ≤ k − 1 and k ≥ 5, we get

(k + 1)t+ 5a <
(
k+4

4

)
− 4, a contradiction.

Claim 8: If k ≥ 7, then t− f − f ′ ≥ 3k.

Proof of Claim 8: Assume t−f−f ′ ≤ 3k−1. Since a ≤ k−1 and f ′ ≤ k−1,
from the first inequality in (10) we get

(
k+3

4

)
− 4 ≤ (k + 1)(3k − 1) + k2 − 1,

which is false for all k ≥ 7.

Claim 9: Take k = 5, 6 and take a pair (t, a) for which t− f − f ′ ≤ 3k− 1
and 0 < a ≤ k − 1. The pair (t1, a1) with t1 := f and a1 := a is covered by
Lemmas 3 and 8.

Proof of Claim 9: First assume k = 5. We have 122 ≤ 6t + 5a ≤ 126,
t+ 5f + 4a− f ′ = 56 and 1 ≤ a ≤ 4. Since 1 ≤ a ≤ 4, we get that (t, a, f, f ′) is
one of the following quadruples: (17, 4, 5, 2), (18, 3, 6, 4), (19, 2, 6, 1), (20, 1, 7, 3).
The pairs (5, 4), (6, 3), (6, 2) and (7, 1) are covered by Proposition 3.

Now assume k = 6. We have 206 ≤ 7t+ 5a ≤ 210 and t+ 6f + 5a− f ′ = 84
and 1 ≤ a ≤ 5, the quadruple (t, a, f, f ′) is one of the following quadruples:
(26, 5, 7, 4), (27, 4, 7, 1), (27, 3, 8, 3), (28, 2, 8, 0), (29, 1, 9, 3). The pairs (7, 4),
(8, 3) and (9, 3) are covered by Lemma 8. Fix a general S ⊂ H and set A :=
∪O∈S(A). Let E ⊂ H be a general union of f lines. Write E = E1 t E2 with
deg(E2) = f ′ and deg(E1) = t−f−f ′. We have h1(H, IE∪(A∩H(k)) = 0 (Claims
7 and 8 and Proposition 4).

Since f ′ ≤ k − 1, either h1(IY (k − 1)) = 0 or h0(IY (k − 1)) = 0 for a
general Y ∈ L(4, t− f − f ′, f ′)H by B4,k−1. Since h0(OY (k − 1)) =

(
k+3

4

)
− a−

(
(
k+4

4

)
− (k + 1)t − 5a), we get h1(IY (k − 1)) = 0 and h0(IY (k − 1)) ≥ a. For

a general Y ∈ L(4, t− f − f ′, f ′)H we have h0(IY (k − 2)) ≤ h0(IYred(k − 2)) =
0 ([18]). Hence h1(IY ∪S(k − 1)) = 0 (Lemma 4). Write Y = Y1 t Y2 with
Y1 ∈ L(4, t − f − f ′, 0), Y2 ∈ L(4, 0, f ′). Any f ′ general lines of H have the
property that picking a general point of each of them we get a general union
of f ′ points of H. Hence for fixed Y, S,E1 we may assume that E2 of f ′ lines
of H pass through f ′ general points of H. Hence we may find S, E and Y so
that h1(IY ∪S(k − 1)) = 0, h1(H, IE∪(A∩H(k)) = 0, S, E1 and Y1 are general,
but each line of E2 contains one of the points of Y2 ∩H. In this case Y ∪ E is
a disjoint union of t− 2f ′ lines and f ′ sundials. Hence Y ∪ E ∪ A ∈ Z(4, t, a)′.
The Castelnuovo’s sequence gives h1(IY ∪E∪A(k)) = 0.

(b) In this step we assume t(k+ 1) + 5a >
(
k+4

4

)
. Set δ := t(k+ 1) + 5a−(

k+4
4

)
. Decreasing if necessary a we reduce to the cases in which either δ ≤ 4 or
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a = 0 and t(k+1) ≤
(
k+4

4

)
+k. In the latter case we have h0(IX(k)) = 0 by [18].

Hence we may assume 1 ≤ δ ≤ 4. We may also assume a > 0 ([18]) and t > 0
(by the Alexander-Hirschowitz theorem). Since h0(IW (k)) = 5− δ for a general
W ∈ Z(4, t, a − 1) and any 2-point contains a point, the case δ = 4 follows
from the case (t, a − 1) proved in step (a). Every 2-point contains a tangent
vector. Hence in characteristic zero if h0(IW (k)) = 2, then h0(IW∪2O(k)) = 0
for a general O ∈ P4 ([16], [8], Lemma 1.4). Hence in characteristic zero we may
assume δ ∈ {1, 2}. We will easily adapt step (a3) to the case t(k+1)+5a >

(
k+4

4

)
.

To adapt steps (a1) and (a2) we need the following observations. In steps (a1)
and (a2) we needed to prove that h1(IY ∪B′(k − 1)) = 0, where B′ is a general
union of v (or v′) 2-points of H. In our set-up we need h0(IY ∪S∪B′(k)) = 0.
Of course, if h0(IY ∪B′(k − 1)) = 0, then we are done; however we always have
h0(IY ∪B′(k − 1)) ≥ v − δ (case a ≥ u + v) or h0(IY ∪B′(k − 1)) ≥ v′ − δ
(case k ≤ a < u + v). To get h0(IY ∪S∪B′(k)) = 0 it is sufficient to prove
that h0(IY (k − 2)) = 0 (easy) and that h1(IY ∪B′(k)) = 0 (the difficult part).
Let A′ ⊂ P4 the the union of the 2-points of P4 with the points B′red as their
support. We saw that it is sufficient to prove that h1(IY ∪A′(k)) = 0. We have
h0(OY ∪A′(k)) = δ + v − u (case a ≥ u+ v) or h0(OY ∪A′(k)) = δ + v′ − u′ (case
k ≤ a < u+v) by the inductive assumption (see below for cases k = 5, 6). Hence
we introduce the integers u, v as in step (a1) and if a ≥ u+ v we need to check
the following numerical condition £:

£: u ≥ v + δ.

If k ≤ a < u+ v we introduce the integers u′, v′, f as in step (a2). We need
to check the following numerical condition ££:

££: u′ ≥ v′ + δ.

(b1) Assume k = 5. We have 127 ≤ 6t+5a ≤ 129. We get that (t, a, δ, u, v)
is one of the following quintuples: (2, 23, 1, 13, 2), (3, 22, 2, 13, 1), (4, 21, 3, 13, 0),
(7, 17, 1, 12, 1), (8, 16, 2, 12, 0), (9, 15, 3, 11, 3), (12, 11, 1, 11, 0), (13, 10, 2, 10, 3),
(14, 9, 3, 10, 2), (17, 5, 1, 9, 3), (18, 4, 2, 9, 2), (19, 3, 3, 9, 1). In all cases we have
u ≥ v+ δ. Among the previous quintuples with 5 ≤ a < u+ v we get the follow-
ing sextuples (t, a, δ, f, u′, v′): (13, 10, 2, 2, 8, 1), (14, 9, 3, 2, 8, 0), (17, 5, 1, 5, 3, 2).
We always have u′ ≥ v′+δ. We get the following pairs (f, u): (2, 8), (5, 3). Propo-
sition 3 covers these cases. Now assume 1 ≤ a ≤ 4, i.e. (t, a, δ) = (19, 3, 3). We
have (t, a, δ, f, f ′) = (19, 3, 3, 5, 0). We have t− f − f ′ ≥ 0 and f ≥ f ′. The pair
(f, a′) = (5, 3) is covered by Proposition 3.

(b2) Assume k = 6. We have 211 ≤ 7t+5a ≤ 213. We get that (t, a, δ, u, v)
is one of the following quintuples: (2, 40, 2, 20, 2), (4, 37, 1, 20, 0),(5, 36, 3, 19, 3),
(6, 34, 2, 19, 2), (8, 31, 1, 19, 0), (9, 30, 3, 18, 3), (11, 29, 2, 18, 1), (13, 24, 1, 17, 3),
(14, 23, 3, 17, 2), (16, 22, 2, 17, 0), (18, 19, 1, 16, 2), (19, 18, 3, 16, 1), (21, 15, 2, 15, 3),
(23, 11, 1, 15, 1), (24, 10, 3, 15, 0), (26, 8, 2, 14, 2), (28, 3, 1, 14, 0), (29, 2, 3, 13, 3).
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The ones with a ≥ u + v (i.e. the ones with t ≤ 19) have u ≥ v + δ and
hence we may quote [18] in these cases. The quintuples with 6 ≤ a < u + v
give the following sextuples (t, a, δ, f, u′, v′): (21, 15, 2, 1, 4, 1), (23, 11, 1, 4, 9, 1),
(24, 10, 3, 9, 0), (26, 8, 2, 7, 3, 0). We always have u′ ≥ v′+ δ and t− f ≥ 18. The
latter inequality allows us to apply Proposition 4 (alternatively, use Proposi-
tion 8). The ones with 1 ≤ a ≤ 5, give the following quintuples: (t, a, δ, f, f ′):
(28, 3, 1, 8, 4), (29, 2, 3, 8, 1), (29, 2, 3, 8, 1). In these cases we always have f ≥ f ′
and t− f − f ′ ≥ 0 and hence we may apply Lemma 2.

(b3) From now on we assume k ≥ 7. To repeat steps (a1) (case a ≥ u+ v)
or (a2) (case k ≤ a < u+ v), we need to check the numerical conditions used in
those steps plus £ and ££.

Claim 10 Assume a ≤ u+ v. Then Claim 1 is true.
Proof of Claim 10: Since a > 0 and δ ≤ 4, we have (k+ 1)t ≤ (k+ 4)(k+

3)(k + 2)(k + 1)/24. By (7) we get a contradiction if k ≥ 8, while if k = 7 we
get t ≥ 58. Since 58 · 6 > 330 =

(
11
4

)
, Claim 10 is true.

Claim 11: Assume a ≥ u+ v. Then £ is true
Proof of Claim 11: We have (k+ 1)t =

(
k+2

3

)
(k+ 1)−4(k+ 1)u− (k+ 1)v.

Since a ≥ u+ v, we have (k + 1)t ≤
(
k+4

4

)
− 5u− 5v + δ. Hence

(
k+2

3

)
(k + 1)−

4(k + 1)u − (k + 1)v ≤
(
k+4

4

)
− 5u − 5v + δ, i.e. u(1 − 4k) + v(4 − k) − δ ≤

(k+ 2)(k+ 1)(−5k2 + k+ 12)/24. Assume u ≤ v− 1 + δ. Since v ≤ 3 and δ ≤ 2,
we get −4− 16k+ 8− 2k− 2 ≤ (k+ 2)(k+ 1)(−5k2 + k+ 12)/24, which is false
for all k ≥ 7.

Claim 12: Assume k ≤ a < u+ v. Then ££ is true.
Proof of Claim 12: Assume u′ ≤ v′ + δ′ − 1. Hence u′ ≤ 6. Since a− u′ ≤

3 + bk/4c (Remark 3), we get bk/4c ≤ k − 3, which is false for all k ≥ 7.
(b3.1) Assume 0 < a ≤ k − 1. In this case the proof of step (a3) works

verbatim (here we prove that h0(IY ∪S(k − 1)) = 0, because h0(IY (k − 1)) =
max{0, a− δ} and hence h0(IY (k − 2)) = 0). QED

5 P5

Lemma 12. Fix a hyperplane H ⊂ Pr, r ≥ 5, O ∈ H and set B′ := 2O∩H.
Fix an integer t ≥ 0. Let X be a general element of Z(5, t, 1). Then either
h0(IX∪B′(2)) = 0 or h1(IX∪B′(2)) = 0.

Proof. Write X = Y t 2P with Y ∈ Z(r, t, 0). Let `P : Pr \ {P} → Pr−1.
For general H,O, Y, P , the map ` sends isomorphically Y ∪ B′ onto its image
`(Y ∪ B′) and `(Y ∪ B′) is a general element of Z(r − 1, t, 1). Lemma 1 gives
h0(Pr−1, I`(Y ∪B′(2)) = max{0,

(
r+1

2

)
−r−3t} and |IY ∪B′∪2P (2)| ∼= |I`(Y ∪B′)(2)|.

Therefore h0(IX(2)) = max{0,
(
r+2

2

)
− h0(OX(2))}. QED
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Lemma 13. Fix integers t ≥ 0, t′ ≥ 0. Fix a hyperplane H ⊂ P5, a general
O ∈ H, a general P ∈ P5 and a general U ∈ L(5, t, t′)H . Set B′ := 2O ∩ H
and W := U ∪ 2P ∪ B′. Then either h0(IW (2)) = 0 (case 3t + 4t′ ≥ 10) or
h1(IW (2)) = 0 (case 3t+ 4t′ ≤ 10).

Proof. Let E ⊂ P3 be the image of the linear projection of U by the line `
spanned by O and P . For general O,P, U the scheme E is a general element of
L(3, t, t′) and it is general (we use that P is general, so that the condition that the
nilradical of U is supported by t′ points of H give no restriction to E). By [6] E
has maximal rank. Since the linear system |I2P∪B′(2)| is the projective space of
all quadric cones with vertex containing `, we have h0(IW (2)) = h0(P3, IE(2)).

QED

Lemma 14. Fix (t, a) ∈ N2 \ {(0, 0)}. Fix a general X ∈ Z(5, t, a). Then
either h0(IX(3)) = 0 or h1(IX(3)) = 0.

Proof. We have
(

8
3

)
= 56 and

(
7
3

)
= 35. Set e := 56 − 4t − 6a. Increasing or

decreasing if necessary t it is sufficient to cover all pairs (t, a) with −3 ≤ e ≤ 3.
By [18] and the Alexander-Hirschowitz theorem all cases with either t = 0 or
a = 0 are true. Let H ⊂ P5 be a hyperplane. Let Sx ⊂ H denote a union of x
general points of H. Set Ax := ∪O∈Sx2O.

Assume for the moment t > 0 and e ∈ {−3,−2}. We have 56 − 4(t − 1) −
6a ∈ {1, 2}. Assume that Lemma 14 is true for the pair (t − 1, a) and take
Y ∈ Z(5, t− 1, a) such that h1(IY (3)) = 0, i.e. such that h0(IY (3)) = 4 + e ≤ 2.
Since any two points of P5 are contained in a line, we get h0(IY ∪L(3)) = 0
for a general line L. Hence Lemma 14 is true for the pair (t, a). Therefore it is
sufficient to prove Lemma 14 for all pairs (t, a) with t > 0, a > 0 and −1 ≤ e ≤ 3,
i.e. for the triples (t, a, e): (2, 8, 0), (3, 7, 2), (5, 6, 0), (6, 5, 2), (8, 4, 0), (9, 3, 2),
(11, 2, 0), (12, 1, 2).

(a) Take (t, a) = (2, 8). Fix a general line L ⊂ P5 and a general line R ⊂ H
containing the point L ∩ H. Let U ⊂ P5 a general sundial with L ∪ R as its
support. Set L′ := ResH(U). The scheme L′ is a general +line with L as its
support and R ∩ L as the support of its nilradical. Fix a general P ∈ P5 and
set Y := L′ ∪ 2P . Fix a general S ∪ S′ ⊂ H with ](S) = 6, ](S′) = 1 and
S ∩ S′ = ∅. Let A (resp. B) the union of the 2-points of P5 with the points of
S (resp. S′) as their support. Set B′ := B ∩H. Since h1(H, IR∪(A∩H)(3)) = 0
(case (t, a) = (1, 6) of Lemma 10), we have hi(H, IR∪(A∪H)∪S′(3)) = 0, i = 0, 1.
To prove the case (t, a) = (2, 8) it is sufficient to prove that a general union
W of A, the sundial U and a general 2-point satisfies h0(IW (3)) = 0. By the
Differential Horace Lemma (Lemma 2), this is the case if h0(IY ∪S∪B′(2)) = 0.
Since Y contains a 2-point, we have h0(IY (1)) = 0. Hence by Lemma 4 it is
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sufficient to prove h1(IY ∪B′(2)) = 0. This is true by the case (t, t′) = (0, 1) of
Lemma 13.

(b) Take (t, a, e) = (3, 7, 2). Let Y ⊂ P5 be a general union of 3 lines
and one 2-point. We have h1(IY (2)) = 0 (Lemma 1), i.e. h0(IY (2)) = 6. Since
h0(IY (1)) = 0, we get hi(IY ∪S6(2)) = 0, i = 0, 1. Since h1(H, IA6∩H(3)) = 0 by
the Alexander-Hirschowitz theorem, we have h0(H, IA6∩H(3)) = 6 and hence
h1(H, I(Y ∪A)∩H(3)) = 0. Hence h1(IY ∪A(3)) = 0.

(c) Take (t, a, e) = (5, 6, 0). Let Y ⊂ P5 be a general union of 5 lines and
one 2-point. We have hi(IY (2)) = 0, i = 0, 1 (Lemma 1). We have h1(H, IA∩H(3))
= 0 and hence hi(I(Y ∪A)∩H(3)) = 0. Hence hi(IY ∪A(3)) = 0, i = 0, 1.

(d) Take (t, a, e) = (6, 5, 2). Let Y ⊂ P5 be a general union of one
2-point and 2 lines. We have h1(IY (2)) = 0 (Lemma 1), i.e. h0(IY (2)) =
6 Obviously h0(IY (1)) = 0. Hence h1(IY ∪S4(2)) = 0 (Lemma 4). We have
h1(H, IE3∪(A4∩H)(3)) = 0 (Lemma 1) and hence hi(H, I(Y ∩H)∪E3∪(A4∩H)(3)) =
0, i = 0, 1. Therefore we have h1(IY ∪E3∪A4(3)) = 0.

(e) Take (t, a, e) = (8, 4, 0). Let Y ⊂ P5 be a general union of 4 lines
and 2 +lines with nilradical supported by points of H. We have h1(IY (2)) = 0
(Lemma 6). Obviously h0(IY (1)) = 0. Hence hi(IY ∪S4(2)) = 0, i = 0, 1 (Lemma
4). Since E2 contains two general points of H, without loss of generality we may
assume that each line of E2 contains the support of the nilradical of one of the
+lines of Y , so that Y ∪E2 a disjoint union of 4 lines and two sundials. We have
h1(H, IE2∪(A4∩H)(3)) = 0 (Lemma 10) and hence h1(H, I(Y ∩H)∪E2∪(A∩H)(3)) =
0. Therefore h1(IY ∪A4∪E2(3)) = 0. Since Y ∪ A4 ∪ E2 is a disjoint union of an
element of Z(5, 4, 4) and two sundials, we are done.

(f) Take (t, a, e) = (9, 3, 2). Let Y ⊂ P5 be a general union of one 2-point
and 4 lines. We have h1(IY (2)) = 0 (Lemma 1) and hence h1(IY ∪S2(2)) = 0.
We have h1(H, IE5∪(A5∩H)(3)) = 0 (Lemma 10). Hence h1(IA5∪E5∪Y (3)) = 0.

(g) Take (t, a, e) = (11, 2, 0). We have h1(H, I(A2∩H)∪E5
(3)) = 0 (Lemma

10). Fix a general Y ∈ L(5, 5, 1)H . We have h1(IY (2)) = 0 (Lemma 6). Ob-
viously h0(IYred(1)) = 0. Hence hi(IY ∪S2(2)) = 0, i = 0, 1 (Lemma 4). Since
E3 is general, we may assume that D ∩ H is a point of E. Therefore we have
hi(H, I(Y ∩H)∪E5∪(A∩H)(3)) = 0, i = 0, 1. Hence hi(IY ∪A∪E4(3)) = 0, i = 0, 1.
Since Y ∪ A ∪ E4 is a disjoint union of an element of Z(5, 9, 2) and a sundial,
we are done.

(h) Take (t, a, e) = (12, 1, 2). Let Y ⊂ P5 be a general union of 5 lines and
one 2-point. We have hi(IY (3)) = 0, i = 0, 1. We have h1(H, IE7(3)) = 0 and
hence h1(H, I(Y ∩H)∪E7

(3) = 0. Hence h1(IY ∪E7(3)) = 0. QED

Lemma 15. Fix any t, a and a general X ∈ Z(5, t, a). Then either h0(IX(4))
= 0 or h1(IX(4)) = 0.
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Proof. We have
(

9
5

)
= 126 and

(
8
4

)
= 70. Set e := 126−5t−6a. For a fixed t and

any f ∈ N define the integers u, v, uf , vf by the relations t+5u+v = 70, 0 ≤ v ≤
4, t+ 4f + 5uf + vf = 70, 0 ≤ vf ≤ 4. Increasing or decreasing if necessary t it
is sufficient to cover all pairs (t, a) with −4 ≤ e ≤ 4. By [18] and the Alexander-
Hirschowitz theorem all cases with either t = 0 or a = 0 are true. Assume for
the moment t > 0 and e ∈ {−4,−3}. We have 70−5(t−1)−6a ∈ {1, 2}. Assume
that Proposition 15 is true for the pair (t − 1, a) and take Y ∈ Z(5, t − 1, a)
such that h1(IY (4)) = 0, i.e. such that h0(IY (4)) = 5 + e ≤ 2. Since any
two points of P5 are contained in a line, we get h0(IY ∪L(4)) = 0 for a general
line L. Hence Lemma 15 is true for the pair (t, a). Therefore it is sufficient
to prove Lemma 15 for all pairs (t, a) with t > 0, a > 0 and −2 ≤ e ≤ 4.
The quintuples (t, a, e, u, v) are the following ones: (1, 20, 1, 13, 4), (2, 19, 2, 13, 3),
(3, 18, 3, 13, 2), (4, 17, 4, 13, 1), (4, 18,−2, 13, 1), (5, 17,−1, 13, 0), (6, 16, 0, 12, 4),
(7, 15, 1, 12, 3), (8, 14, 2, 12, 2), (9, 13, 3, 12, 1), (10, 12, 4, 12, 0), (10, 13,−2, 12, 0),
(11, 12,−1, 11, 4), (12, 11, 0, 11, 3), (13, 10, 1, 11, 2), (14, 9, 2, 11, 1), (15, 8, 3, 11, 0),
(16, 7, 4, 10, 4), (16, 8,−2, 10, 4), (17, 7,−1, 10, 3), (18, 6, 0, 10, 2), (19, 5, 1, 10, 1),
(20, 4, 2, 10, 0), (21, 3, 3, 9, 4), (22, 2, 4, 9, 3), (22, 3,−2, 9, 3), (23, 2,−1, 9, 1).

Let H ⊂ P5 be a hyperplane. For any positive integer x let Sx ∪ Sy ⊂ H
be general subsets of H with ](Sx) = x, ](S′y) = y and Sx ∩ S′y = ∅. Set
Ax := ∪O∈Sx2O, By := (∪O∈S′y2O and B′y := H ∩By.

(a) Assume 1 ≤ t ≤ 10. In all cases we have a ≥ u + v. Let Y ⊂ P5 be a
general union of t lines and a−u−v 2-point. In all cases we have h1(IY ∪Bv(3)) =
0 by Lemma 14, because u ≥ v, u ≥ v−e if e < 0 and if t = 1, 2, then a−u < 8.
Hence h1(IY ∪B′v(3)) = 0. In all cases we have h0(IY (2)) = 0. Lemma 4 gives
that either h0(IY ∪B′v∪Su(3)) = 0 (case e ≤ 0) or h1(IY ∪B′v∪Su(3)) = 0 (case
e ≥ 0). The Differential Horace Lemma (Lemma 2) gives all these cases.

(b) Assume (t, a, e) = (11, 12,−1). Let Y ⊂ P5 be a general union of 11
lines. We have h1(IY (3)) = 0, h0(IY (2)) = 0 and hence hi(IY ∪S12(3)) = 0. We
have h1(H, IA12∩H(4)) = 0, i.e., h0(H, IA12∩H(4)) = 10. Therefore we obtain
h0(H, I(Y ∪A12)∩H(4)) = 0. Hence h0(IY ∪A12(4)) = 0.

(c) Assume 11 ≤ t ≤ 24 and (t, a, e) 6= (11, 12,−1). Let f be the min-
imal integer such that t + 4f + 5a ≥ 70. Set f ′ := t + 4f + 5a − 70. The
quadruples (t, a, e, f, f ′) are the following ones: (23, 2,−1, 10, 3), (23, 1, 5, 11, 4),
(22, 3,−2, 9, 3), (22, 2, 4, 10, 2), (21, 3, 3, 9, 2), (20, 4, 2, 8, 2), (19, 5, 1, 7, 2),
(18, 6, 0, 6, 2), (17, 7,−1, 5, 2), (17, 6, 5, 6, 1), (16, 8,−2, 4, 2), (16, 7, 4, 5, 1),
(15, 8, 3, 4, 1)), (14, 9, 2, 3, 1), (13, 10, 1, 2, 1), (12, 11, 0, 1, 1), (11, 11, 5, 1, 0). In all
cases we have f ′ ≤ f and t ≥ f+f ′ and t−f ≥ 5. Let Y ⊂ P5 be a general union
of t−f−f ′ lines and f ′ +lines with nilradical supported by a general point of H.
Since f ≥ f ′ and Ef is a general union of f ′ lines of H, we may assume that each
+line of Y meets H in a line of Ef so that Y ∪Ef is a disjoint union of t−2f ′ lines
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and f ′ sundials. In all cases we have h1(H, IEf∪(Aa∩H)(4)) = 0 by Proposition 7.

Since t−f−f ′+5f+uf +vf = 70, we get hi(H, I(Y ∪Ef∪Aa)∩H(4)) = 0, i = 0, 1.

Lemma 6 gives h1(IY (3)) = 0. Since t − f ≥ 5, we have h0(IY (2)) = 0 ([18]).
Lemma 4 gives that either h0(IY ∪Sa(3)) = 0 (case e ≤ 0) or h1(IY ∪Sa(3)) = 0
(case e ≥ 0). Therefore either h0(IY ∪Ef∪Aa(k)) = 0 or h1(IY ∪Ef∪Aa(k)) = 0.
Since Y ∪Ef ∪Aa is a disjoint union of a 2-points, t− 2f ′ lines and f ′ sundials,
the lemma is true in these cases. QED

Proof of Theorem 1 for r = 5:

By Lemmas 14 and 15 we may assume k ≥ 5. Let H ⊂ P5 be a hyperplane.

(a) In this step we assume (k + 1)t + 6a ≤
(
k+5

5

)
. Set δ′ :=

(
k+5

5

)
−

(k + 1)t − 6a. Increasing if necessary a we may assume that 0 ≤ δ′ ≤ 5. Set
u := b(

(
k+4

4

)
− t)/5c and v :=

(
k+4

4

)
− t − 5u. Notice that 0 ≤ v ≤ 4. See step

(a4) for the case k = 5.

(a1) Here we assume a ≥ u+ v.

Claim 1: u+ 5v ≤
(
k+3

4

)
− t.

Proof of Claim 1: Assume u+5v ≥
(
k+3

4

)
− t+1. Since 5u+v =

(
k+4

4

)
− t,

we get 4u−4v ≤
(
k+3

3

)
, i.e. u ≤ v+

(
k+3

3

)
/4. Since a ≥ u+v, we have 6u+ 6v ≤(

k+5
5

)
−δ′−(k+1)t =

(
k+5

5

)
−δ′+(k+1)5u+(k+1)v−(k+1)

(
k+4

4

)
, i.e (k+1)

(
k+4

4

)
−(

k+5
5

)
+δ′ ≤ u(5k−1)+v(k−5). Hence (k+1)

(
k+4

4

)
−
(
k+5

5

)
≤ (5k−1)

(
k+3

3

)
/4+

v(4k+4). Since v ≤ 4, we get (k+1)
(
k+4

4

)
−
(
k+5

5

)
≤ (5k−1)

(
k+3

3

)
/4+4(3k+4).

Hence (k+4)(k+3)(k+2)(k+1)k/30 ≤ (5k−1)(k+3)(k+2)(k+1)/24+4(3k+4),
which is false for all k ≥ 6.

Fix a general Y ∈ Z(5, t, a−u− v). Fix a general S ∪S′ ⊂ H with ](S) = u,
](S′) = v and S ∩ S′ = ∅. Let A ⊂ Pr (resp. A′) be the union of the 2-points of
Pr with S (resp. S′) as its support. Let B ⊂ H (resp. B′ ⊂ H) be the union of
the 2-points of H supported by the points of S (resp. S′).

Claim 2: We have u ≥ v.

Proof Claim 2: Since 5u+ v =
(
k+4

4

)
− t, Claim 2 follows from Claim 1.

Claim 3: We have hi(H, I(Y ∩H)∪B∪S′(k)) = 0, i = 0, 1.

Proof of Claim 3: The definitions of the integers u and v are done to get
h0(O(Y ∩H)∪B∪S′(k)) =

(
k+4

4

)
. Hence to prove Claim 3 it is sufficient to prove

that h1(H, I(Y ∩H)∪B∪S′(k)) = 0. We first check that h1(H, I(Y ∩H)∪B(k)) = 0.

Since h0(O(Y ∩H)∪B(k)) =
(
k+4

4

)
− v − δ′ ≤

(
k+4

4

)
and Y ∩H is a general subset

of H with cardinality t, it is sufficient to prove that h1(H, IB(k)) = 0. This is
true by the Alexander-Hirschowitz theorem. Lemma 5 gives h1(IY ∪B′(k−1)) ≤
h1(IY ∪A′(k− 1)). Since ](S′) ≤ 4, S′ is general in H and any 4 points of P5 are
contained in a hyperplane, Y ∪ A′ may be considered as a general union of t
lines and a−u 2-points. Let z be the maximal integer such that kz+5v ≤

(
k+4

4

)
.

Since u ≥ v (Claim 2) we have z ≥ t. Hence we have h1(IY ∪A′(k − 1)) = 0 by
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the inductive assumption on k. Therefore h1(IY ∪B′(k−1)) = 0. By Lemma 4 to
prove Claim 3 it is sufficient to prove that h0(IY (k − 2)) = 0. Since k ≥ 5, the
inductive assumption on k and Lemmas 14 and 15 give that either h0(IY (k −
2)) = 0 or h1(IY (k − 2)) = 0. Assume h1(IY (k − 2)) = 0. By Claim 3 we have
h1(H, I(Y ∩H)∪S∪B′(k − 1)) = 0. Since u ≥ v, we have 5u + v ≥ u + 5v. Hence

the inductive assumption on k, the relation t+ 5u+ v =
(
k+4

4

)
, the theorem in

P4 and the Castelnuovo’s sequence

0→ IY (k − 2)→ IY ∪S∪B′(k − 1)→ IY ∪S∪B′,H(k − 1)→ 0

give h1(IY ∪S∪B′(k − 1)) = 0.

(a2) Now assume bk/5c + 8 ≤ a < u + v. Let f be the minimal integer
such that t− f + (k+ 1)f + 5u′ + v′ =

(
k+4

4

)
(i.e. t+ kf + 5u′ + v′ =

(
k+4

4

)
) for

some integers u′, v′ with u′ ≥ 0, 0 ≤ v′ ≤ 4 and u′ + v′ ≤ a. There is such an
integer by Remark 3. We have

k(t− f) + 6(a− u′ − v′) + u′ + 5v′ =

(
k + 4

5

)
− δ′. (11)

We have a − u′ ≤ bk/5c + 4 (Remark 3). Since a − u′ ≤ bk/5c + 4 and
a ≥ bk/5c+ 8, we have u′ ≥ 4. Hence u′ ≥ v′.

Claim 4: We have f ≤ t.
Proof of Claim 4: Assume f ≥ t+1. We get −k+(k+1)t+5u′+v′ ≥

(
k+4

4

)
with 0 ≤ v′ ≤ 4 and a ≥ u′ + v′. Since δ′ ≤ 5, (11) gives

(
k+4

4

)
≤ 5 + 6a− 5u′ −

v′ − k, i.e., 6a − 5u′ − v′ ≥
(
k+4

4

)
+ k − 5. Since a − u′ ≤ 4 + bk/5c, we get

u′+ 24 + 6k/5 + 5− k ≥
(
k+4

4

)
. Hence 5u′ ≥ 5

(
k+4

4

)
− k− 145. Since 5u′ ≤

(
k+4

4

)
and k ≥ 6, we get a contradiction.

Fix a general S ∪ S′ ⊂ H with ](S) = u′, ](S′) = v′ and S ∩ S′ = ∅. Let
E ⊂ H be a general union of f lines. Let A ⊂ P5 (resp. A′) be the union of the
2-points of P5 with S (resp. S′) as its support. Let B ⊂ H (resp. B′ ⊂ H) be
the union of the 2-points of H supported by the points of S (resp. S′).

Claim 5: We have h1(IY ∪B′(k − 1)) = h1(IY ∪A′(k − 1)) = 0.

Proof of Claim 5: Since B′ is a union of connected components of Y ∪B,
A′ is zero-dimensional and A′ ⊇ B′, to prove Claim 5 it is sufficient to prove
that h1(IY ∪A′(k − 1)) = 0. Since S′ is general in H and any 4 points of P5 are
contained in a hyperplane, Y ∪ A′ may be considered as a general element of
Z(5, t−f, a−u′). We have k(t−f)+6(a−u′) =

(
r+k−1
r

)
−δ′−u′+v′ ≤

(
k+4

5

)
−δ′

by (11). Hence we may use the inductive assumption on k; the case k = 5 is
done below in step (a4), but it needs the cases k = 3 and k = 4 done in Lemmas
14 and 15.

Claim 6: We have hi(H, I(Y ∩H)∪S′∪(A∩H)∪E(k)) = 0, i = 0, 1.
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Proof of Claim 6: Since h0(O(Y ∩H)∪S′∪(A∩H)∪E(k)) =
(
k+4

4

)
, Y ∩ H is

formed by t− f general points of H and S′ is general, it is sufficient to use the
inductive assumption.

Since h1(IY ∪B′(k−1)) = 0 (Claim 5), we have h0(IY ∪B′(k−1)) = u′+δ′ ≥ u′.
As in step (a1) to prove Theorem 1 in the case (a2) it is sufficient to use Claims
5 and 6 and check that h0(IY (k−2)) = 0. We have h0(OY (k−2)) = (k−1)(t−
f) + 6(a−u′− v′) =

(
k+4

5

)
− (t− f)−u′− 5v′− δ′. By the inductive assumption

either h0(IY (k − 2)) = 0 or h1(IY (k − 2)) = 0. Hence it is sufficient to prove
that h0(OY (k− 2)) ≥

(
k+3

5

)
, i.e. that t− f + δ′+ u′+ 5v′ ≤

(
k+3

4

)
. Assume that

t − f − 1 + δ′ + u′ + 5v′ ≥
(
k+3

4

)
. Since t − f + 5u′ + v′ =

(
k+4

4

)
, δ′ ≥ 0 and

u′ ≥ v′, we get −1 + δ′ ≥
(
k+3

3

)
, contradicting the inequality δ′ ≤ 5.

(a3) Now assume a ≤ bk/5c + 7. Let f be the minimal integer such that
t− f + (k+ 1)f + 5a ≥

(
k+4

4

)
. Set f ′ := t− f + (k+ 1)f + 5a−

(
k+4

4

)
. We have

0 ≤ f ′ ≤ k − 1 and

t− f − f ′ + (k + 1)f + 5a =

(
k + 4

4

)
. (12)

From (12) we get

(k + 1)(t− f − f ′) + kf ′ + a =

(
k + 4

5

)
− δ′. (13)

Claim 7: We have f ≥ f ′.
Proof of Claim 7: Assume f ≤ f ′− 1. We get t− f ′+ 1 + k(f ′− 1) + 5a ≥(

k+4
4

)
. Hence t+ 36 + (k− 1)f ′ ≥

(
k+4

4

)
. Hence t+ 36 + k(k− 1) ≥

(
k+4

4

)
. Hence

(k+ 1)t+ (k− 1)(k+ 1)(k− 1) + 36(k+ 1) ≥ (k+ 1)
(
k+4

4

)
. Since

(
k+5

5

)
+ 36(k+

1) + (k + 1)(k − 1)(k − 1) < (k + 1)
(
k+4

4

)
, we get a contradiction.

Claim 8: We have t− f − f ′ ≥ 0.
Proof of Claim 8: Since (k+ 1)t+ 6a ≥

(
k+5

5

)
− 5, we have f ≤ t. Assume

t − f − f ′ ≤ −1. Since f ′ ≤ k − 1 we also get f ≥ t − k + 2. Hence (12) gives
−1 + (k − 2)(k + 1) + (k + 1)t + 5a ≤

(
k+4

4

)
. Since a ≤ k − 1, k ≥ 6, we have

−1 + (k − 2)(k + 1) + k + 1 ≤
(
k+4
r

)
− 6. Therefore (k + 1)t+ 6a <

(
k+4

4

)
− 5, a

contradiction.
The inequalities f ≥ f ′ and t ≥ f + f ′ allows everybody to copy the proof

given in P4.
(a4) Now assume k = 5. Increasing or decreasing a we reduce to the case

6t+ 6a =
(

10
5

)
= 256 (i.e. to the cases t+ a = 42), even without the assumption

“ (k + 1)t+ 6a ≤
(
k+5

5

)
”. We may assume t > 0 and a > 0, i.e. 1 ≤ t ≤ 41 and

a = 42− t.
First assume 1 ≤ t ≤ 21. We have the following quadruples (t, a, u, v):

(1, 41, 25, 0), (2, 40, 24, 4), (3, 39, 24, 3), (4, 38, 24, 2), (5, 37, 24, 1), (6, 36, 24, 0),
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(7, 35, 23, 4), (8, 34, 23, 3), (9, 33, 23, 2), (10, 32, 23, 1), (11, 31, 23, 0),
(12, 30, 22, 4), (13, 29, 22, 3), (14, 28, 22, 2), (15, 27, 24, 1), (16, 26, 22, 0),
(17, 25, 21, 4), (18, 24, 21, 3), (19, 23, 21, 2), (20, 22, 21, 1), (21, 21, 21, 0).

In all cases we have a ≥ u+ v and u ≥ v.

Now assume 22 ≤ t ≤ 36. Since t+ 5f + 5u′+ v′ = 126, v′ is the only integer
such that 0 ≤ v′ ≤ 4 and v′ ≡ 126− t (mod 5), while u′ + f = (126− t− v′)/5.
The quintuples (t, a, f, u′, v′) are the following ones:
(22, 20, 4, 16, 4), (23, 19, 4, 16, 3), (24, 18, 4, 16, 2), (25, 17, 4, 16, 1), (26, 16, 4, 16, 0),
(27, 15, 8, 11, 4), (28, 14, 8, 11, 3), (29, 13, 8, 11, 2), (30, 12, 8, 11, 1), (31, 11, 8, 11, 0),
(32, 10, 12, 6, 4), (33, 9, 12, 6, 3), (34, 8, 12, 6, 2), (35, 7, 12, 6, 1), (36, 6, 12, 6, 0). We
always have t ≥ f and u ≥ v.

Now assume 37 ≤ t ≤ 41. The quadruples (t, a, f, f ′) are the following ones:
(37, 5, 13, 1), (38, 4, 14, 2), (39, 3, 15, 0), (40, 2, 16, 4), (41, 1, 16, 0). In all cases we
have f ≥ f ′ and t ≥ f + f ′.

(b) In this step we assume (k+ 1)t+ (r+ 1)a >
(
k+5

5

)
. Set δ := (k+ 1)t+

6a −
(
k+5

5

)
. Decreasing a if necessary we reduce to the case δ ≤ 5. Hence by

step (a4) we may assume k ≥ 6. By [18] we may assume a > 0. By part (a) we
have h1(IW (k)) = 0 (i.e. h0(IW (k)) = 6 − δ) for a general W ∈ Z(5, t, a − 1).
Since a 2-point contains a point, we get h0(IX(k)) = 0 if δ = 5. Hence we may
assume 1 ≤ δ ≤ 4. A general 2-point contains a general tangent vector. Hence
in characteristic zero we may even get for free the case δ = 4. As in the case
of P4 we need to check the inequalities considered in steps (a1), (a2) and (a3)
and, in (a1), that u ≥ v + δ, in (a2) that u′ ≥ v′ + δ.

(b1) Assume a ≥ u + v. Claims 1, 2, 3 are true (and easier) using −δ
instead of δ′. See step (b2) below for a proof (taking f = 0) of the inequality
u ≥ v + δ.

(b2) Assume bk/5c + 8 ≤ a < u + v. Claims 4 and 5 OK (and easier)
with −4 ≤ δ ≤ −1 instead of δ′ ≤ 5. As in the case of P4 to get Claim 6 it
is sufficient to prove that u′ ≥ v′ + δ. Assume u′ ≤ v′ + δ − 1. Since u′ ≥ 4,
we get 5 − v′ ≤ δ. Let S1 ⊂ H be a general set with ](S1) = u + 1. Set A1 :=
∪O∈S12O. Fix a general Y1 ∈ Z(5, t− f, a− u− 1). It is sufficient to prove that
h0(IY1∪A1(k)) = 0. Hence it is sufficient to prove that h0(IY1∪S1(k−1)) = 0 and
that h0(H, I(Y1∪A1)∩H(k)) = 0. The latter vanishing is true by the theorem in

P4, because ](Y1)+5(u′+1) = t−f+5u′+5 > t−f+5u′+v′ =
(
k+4

4

)
. The former

vanishing is true for the following reasons. We checked that h0(IY1(k− 2)) = 0.
Since S1 is general in H, by the inductive assumption on k it is sufficient to
prove that h0(OY1(k− 1)) + u′ + 1 ≥

(
k+4

5

)
. We have h0(OY1(k− 1)) + u′ + 1 =(

k+4
5

)
+ δ − (5− v′) ≥

(
k+4

5

)
.

(b3) This easy step is similar to step (a3). It is sufficient to use δ instead
of −δ′ in (13). QED
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