ASPECTS OF THE METRIC THEORY OF TENSOR PRODUCTS AND OPERATOR IDEALS

Andreas Defant
and
Klaus Floret

SUMMARY:

We give an introduction to Grothendieck's metric theory of tensor products with special emphasis on normed operator ideals.

CONTENTS

§1 TENSORNORMS

§2 THE FOUR BASIC LEMMAS
§3 DUAL TENSORNORMS
§4 TENSORNORMS AND OPERATOR IDEALS
§5 ${ }^{\circ}$ FURTHER TENSOR PRODUCT CHARACTERIZATIONS OF MAXIMAL OPERATOR IDEALS
§6 \mathcal{L}_{p}-SPACES
§7 MINIMAL OPERATOR IDEALS
§8 PROJECTIVE AND INJECTIVE TENSORNORMS
§9 ACCESSIBLE TENSORNORMS AND OPERATOR IDEALS
$\S 10$ MORE ABOUT $\alpha_{p, q}$
§11 FINAL REMARS

0. INTRODUCTION

0.1. In the history of Functional Analysis there are few papers which were as influential as Grothendieck's «Résumé de la théorie métrique des produits tensoriels topologiques» submitted in 1954 and published in 1956 in the Bulletin of the Mathematical Society of São Paulo. It was written without proofs (with the exception of the fundamental theorem) and it seems that there were not many people who understood it - this was also due to the fact that there was some reluctance in the functional analysis community to accept thinking in terms of tensor products. It was the famous paper of Lindenstrauss and Pełczyński «Absolutely summing operators in \mathcal{L}_{p}-spaces and applications» (Studia Mathematica 1968) which stated Grothendieck's deep «théorème fondamental de la théorie métrique des produits tensoriels» as an inequality about $n \times n$ matrices and Hilbert spaces; fascinating applications were given in a «tensor-product-free» formulation about classes of operators, mainly absolutely-p-summing operators; Banach-space-theory (which had been considered as nearly completed in the midsixties by some people)was reactivated in an incredible way - and many of its important results nowadays are still related with the «Résumé». It is astonishing to see that many (certainly not all!) of the ideas of the Banach-space-theory of the last 20 years are even already contained in Grothendieck's paper though sometimes in a quite hidden way. The phrase «this result is implicitly contained in the Résumé» is fashionable, but nevertheless quite often true.
0.2. It seems that tensor products appeared in Functional Analysis for the first time during the late thirties in the work of Murray and John von Neumann on Hilbert-spaces. The first systematic study of classes of norms on tensor products of Banach-spaces is due to Schatten in 1943 who continued his work in a series of papers (partly together with von Neumann). Schatten's influential monograph «A Theory of Cross-Spaces» contains what was known in 1950; the most beautiful applications of the theory were on operator ideals on Hilbert spaces [75], the Hilbert-Schmidt operators, the trace-class or more generally the Schatten-von Neumannclasses S_{p}. Many of the more elementary aspects of Grothendieck's theory were known to Schatten but he was not aware of the important rôle of the finite-dimensional behaviour of tensornorms, e.g., in the study of the dual norms. On the other hand, the idea of operator ideals in the study of tensor products was always present. In 1968 Pietsch and his school started a systematic investigation of the notion of operator ideals on the class of Banach spaces and, ignoring tensor products, opened this way a method of thinking in a «categorical» manner which is as powerful as thinking in terms of tensor products - but it is certainly much easier to learn the basics of operator-ideal-theory than the basics of the theory of tensornorms. The development culminated in the publication of Pietsch's book «Operator Ideals» in 1978 which contains in a nearly encyclopaedic way everything known at this time about operator ideals. Though many of the ideas and results clearly came from the Résumé, tensor products were not at all used in the book.
0.3. Parallely with this development it was obvious that the use of the projective tensornorm π and the injective ε is very useful - and there were even sporadically papers dealing with general tensornorms. A highlight is Pisier's solution of the most famous problem stated in the Résume: There is an infinite-dimensional Banach space P such that $P \otimes_{\varepsilon} P=P \otimes_{\pi} P$ isomorphically.

Pisier's 1986-book «Factorization of Linear Operators and Geometry of Banach Spaces» centers around the question under which circumstances an operator between Banach spaces factors through a Hilbert space which leads to a solution of all of the six problems stated at the end of the Résumé with the exception that the exact constant of the Grothendieck-inequality (as the «theorème fondamental» is nowadays called) is not yet known (the approximationproblem was solved in the negative by Enflo in 1972). Reading Pisier's book, it becomes apparent that it is useful to think in terms of operator ideals and in terms of tensor products. Another strong indication in this direction is a trick due to Pietsch from 1983 when he used tensor products of operators in order to give a simple proof of the famous result concerning the distribution of eigenvalues of absolutely-p-summing operators due to Johnson, König, Maurey, and Retherford (see [40], [43], [61] and 11.5).
0.4. The beauty and power of «tensorial» thinking, unfortunately, only becomes clear after really getting used to it. The Résumé is very hard to read and so there have been various attempts to present the theory of tensornorms (Amemiya-Shiga [1], Lotz [55], LosertMichor [54], Michor [56], Gilbert-Leih [20] are known to us) but there seems to exist none which is easily accessible and, at the same time, incorporates the wonderful theory of operator ideals as it is nowadays. We hope that after having read this paper the reader knows that the theory of tensornorms is much less difficult than it seems sometimes and that she or he is convinced(and the historial development gives clear evidence for this) that both theories, the theory of tensornorms and of (normed!) operator ideals (if we consider them for a moment to be really different), are better understandable and richer if one works with both. It should become obvious that certain phenomena have their natural framework in tensor products and others in operators ideals.
0.5. We will give complete proofs - with the exception of Grothendieck's inequality (there are many proofs nowadays available, even in textbooks) and with the exception of characterizations of certain types of operators $((p, q)$-factorable and (p, q)-dominated ones). Though there will be many results on minimal and maximal (always normed) operator ideals, we do not need but a basic knowledge from the theory of operator ideals. Much information comes directly from the simple, but basic one-to-one correspondance between maximal operator ideals \mathcal{A} and tensornorms α (which are finitely generated as we shall say) given by: \mathcal{A} and α are said to be associated if

$$
\mathcal{A}(M, N)=M^{\prime} \otimes_{\alpha} N
$$

for finite-dimensional spaces. We think that the following two theorems (see 4.3 and 7.1) are fundamental for the understanding of the interplay between operator ideals \mathcal{A} and associated tensornorms α :

The representation theorem for maximal operator ideals

$$
\mathcal{A}\left(E, F^{\prime}\right)=\left(E \otimes_{\alpha^{\prime}} F\right)^{\prime} \quad \text { isometrically }
$$

and the representation theorem for the minimal operator ideals

$$
E^{\prime} \tilde{\otimes}_{\alpha} F \rightarrow \mathcal{A}^{\min }(E, F)
$$

(metric surjection), where E and F are arbitrary Banach spaces.
0.6. In view of the applications it is natural to study tensornorms α first on finite-dimensional normed spaces and then extend them to arbitrary normed or Banach spaces. There are two ways to do this - an inductive procedure

$$
\vec{\alpha}(z ; E, F):=\inf \{\alpha(z ; M, N) \mid z \in M \otimes N ; M, N \text { finite dim. }\}
$$

and a projective procedure

$$
\overleftarrow{\alpha}(z ; E, F):=\sup \left\{\alpha\left(Q_{L}^{E} \otimes Q_{K}^{F}(z) ; E / L, F / K\right) \mid E / L, F / K \text { finite dim. }\right\}
$$

Both coincide if (and somehow: only if, see 3.5) both spaces have the metric approximation property. Grothendieck chose the first one and this is justified when looking at the examples. But we found it very useful in our investigations to have also the «cofinite hull» $\overleftarrow{\alpha}$ at hand and we hope that we can convince the reader that it structures very well the way of thinking and is often very useful in finding and working out the proper statements and proofs. For operator ideals the cofinite hull gains importance by the fact that

$$
E^{\prime} \tilde{\otimes}_{\overleftarrow{\sigma}_{\alpha}} F \stackrel{1}{\hookrightarrow} \mathcal{A}(E, F)
$$

holds isometrically if α and \mathcal{A} are associated (see 4.4).
0.7. We shall use the common notations of Banach-space-theory; in particular B_{E} denotes the closed unit ball of the normed space E (over the real or complex scalar field). Concerning operator ideals we follow Pietsch's book. If $T: E \rightarrow F$ is an operator, we indicate that it is a metric injection $(\|T x\|=\|x\|)$ by writing

$$
T: E \stackrel{1}{\hookrightarrow} F
$$

and that it is a metric surjection (F has the quotient norm of E via T) by

$$
T: E \xrightarrow{1} F .
$$

If $G \subset E$ is a subspace $I_{G}^{E}: G \stackrel{1}{\hookrightarrow} E$ denotes the canonical metric injection and Q_{G}^{E} : $E \xrightarrow{1} E / G$ (if G is closed) the canonical metric surjection.

If E and F are normed spaces, the projective tensornorm π on $E \otimes F$ is defined by

$$
\pi(z ; E, F):=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\| \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

(this implies $\stackrel{\circ}{B}_{E \otimes_{\pi} F}=\Gamma \stackrel{\circ}{B}_{E} \otimes \stackrel{\circ}{B}_{F}$ for the open unit ball) and the injective tensornorm ε by

$$
\varepsilon(z ; E, F):=\sup \left\{|\langle\varphi \otimes \psi, z\rangle| \mid \varphi \in B_{E^{\prime}}, \psi \in B_{F^{\prime}}\right\}
$$

We assume the reader to be familiar with the basics of the tensomorms ε and π as they are presented e.g. in [37] or [45].

The universal property of the projective norm π says that

$$
\left(E \otimes_{\pi} F\right)^{\prime}
$$

is, isometrically, the space if continuous bilinear forms on $E \times F$ and therefore again isometrically, the space of continuous linear operators $E \rightarrow F^{\prime}$:

$$
\begin{aligned}
&\left(E \otimes_{\pi} F\right)^{\prime}=\mathcal{L}\left(E, F^{\prime}\right) \quad \text { isometrically } \\
& \varphi \leadsto L_{\varphi} \\
& B_{T} \sim T
\end{aligned}
$$

Clearly

$$
\left\langle L_{\varphi} x, y\right\rangle=\langle\varphi, x \otimes y\rangle \quad \text { and } \quad\left\langle B_{T}, x \otimes y\right\rangle=\langle T x, y\rangle .
$$

0.8. The trace tr_{E} on a normed space E is the linearization of the duality bracket

$$
\begin{array}{lll}
E^{\prime} \times E & \rightarrow & \mathbf{K} \\
(\varphi, x) & \sim & \langle\varphi, x\rangle
\end{array}
$$

whence

$$
\begin{array}{lll}
\operatorname{tr}_{E}: E^{\prime} \otimes E & \rightarrow & \mathbb{K} \\
\sum_{n=1}^{N} \varphi_{n} \otimes y_{n} & \sim & \sum_{n=1}^{N}\left\langle\varphi_{n}, y_{n}\right\rangle .
\end{array}
$$

For finite-dimensional spaces E this is the usual trace of operators in $E^{\prime} \otimes E=\mathcal{L}(E, E)$. Clearly tr_{E} is continuous on $E^{\prime} \otimes_{\pi} E$ and $\left\|\operatorname{tr}_{E}\right\|=1$. The extension of

$$
E^{\prime} \otimes F=\mathcal{F}(E, F) \hookrightarrow \mathcal{L}(E, F)
$$

(\mathcal{F} for the ideal of finite-dimensional operators) to the completion gives a metric surjection onto the nuclear operators $\mathcal{N}(E, F)$:

$$
E^{\prime} \tilde{\otimes}_{\pi} F \xrightarrow{\stackrel{1}{\longrightarrow}} \mathcal{N}(E, F)
$$

It is well-known ([37], p. 406) that for a Banach space E

$$
\tilde{\mathrm{t}}_{E}: E^{\prime} \tilde{\otimes}_{\pi} E \rightarrow \mathbb{K}
$$

factors through $\mathcal{N}(E, E)$ (i.e.: the trace is defined for nuclear operators) if and only if E has the approximation property - and this again is equivalent to the injectivity of

$$
F^{\prime} \tilde{\otimes}_{\pi} E \rightarrow \mathcal{N}(F, E)
$$

for all Banach spaces F.

1. TENSORNORMS

1.1. A tensornorm α on the class $N O R M$ of all normed spaces assigns to each pair (E, F) of normed spaces a norm $\alpha(\cdot ; E, \mathrm{~F})$ on the algebraic tensor product $E \otimes F$ (shorthand: $E \otimes_{\alpha} F$ and $E \tilde{\otimes}_{\alpha} F$ for the completion) such that the following two conditions are satisfied: (1)
(1) α is reasonable: $\varepsilon \leq \alpha \leq \pi$
(2) α satisfies the metric mapping property: If $T_{i} \in \mathcal{L}\left(E_{i}, F_{i}\right)$, then

$$
\left\|T_{1} \otimes T_{2}: E_{1} \otimes_{\alpha} E_{2} \rightarrow F_{1} \otimes_{\alpha} F_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|
$$

Clearly, the same detinition holds for subclasses of normed spaces: for the class FIN of all finite-dimensional spaces, for the class BAN of all Banach spaces or for the class NORM x $B A N$ of pairs (E, F) where E is a normed and F a Banach space.

It can happen that all tensomorms are equivalent on $E \otimes F$: Pisier [63] has constructed an infinite-dimensionai Banach space P such that

$$
P \otimes_{\varepsilon} P=P \otimes_{\pi} P
$$

holds isomorphically; this celebrated example solved various other problems in Banach-space-theory.

The following CRITERION (it will be formulated only for NORM) is easy to check:
α is a tensornorm on NORM if and only if
(1) $\alpha(\cdot ; E, F)$ is a seminorm on $E \otimes F$ for all pairs ($E, F)$ of normed spaces
(2) $\alpha(1 \otimes 1 ; \mathbb{K}, \mathbb{K})=1$
(3) α satisfies the metric mapping property.

Though it is simple, it saves much work in many situations. Clearly

$$
\alpha(x \otimes y ; E, F)=\|x\|\|y\| .
$$

If $G \subset F$ is a subspace, then, by the mapping property,

$$
\alpha(z ; E, F) \leq \alpha(z ; E, G) \quad z \in E \otimes G
$$

For $\alpha=\varepsilon$ there is equality ($« \varepsilon$ respects subspaces») but for $\alpha=\pi$ the space $E \otimes_{\pi} \mathrm{G}$ is in general not a topological subspace of $E \otimes_{\pi} F$ since there is no general Hahn-Banach-theorem for operators; if $E=L_{1}(\mu)$, then $E \otimes_{\pi} G \stackrel{1}{\hookrightarrow} E \otimes_{\pi} F$ and this characterizes L_{1}-spaces by a resul

[^0]of Grothendieck's ([26]; the fact that $E \otimes_{\pi} \mathrm{G}$ is always a topological subspace of $\mathrm{E} \otimes_{\pi} F$ characterizes the \mathcal{L}_{1}-spaces, see 8.14). If $P: F \rightarrow \mathrm{G}$ is a projection, then
$$
\alpha(z ; E, F) \leq \alpha(z ; E, G) \leq\|P\| \alpha(z ; E, F) \quad z \in \otimes G
$$
and whence
$$
E \otimes_{\alpha} G \stackrel{1}{\hookrightarrow} E \otimes_{\alpha} F
$$
if G is 1-complemented in F .
1.2. If α is a tensornorm, then α^{t}
$$
\alpha^{t}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i} ; E, F\right):=\alpha\left(\sum_{i=1}^{n} y_{i} \otimes x_{i} ; F, E\right)
$$
is a well-defined tensomorm, the transposed tensornorm of α. Obviously
\[

$$
\begin{array}{cc}
E \otimes_{\alpha^{t}} F & = \\
x \otimes y & \\
x \otimes_{\alpha} E \\
& y \otimes x
\end{array}
$$
\]

is an isometry.
1.3. If α is a tensornorm on the class FIN of all finite-dimensional normed spaces (same definition as in 1.1 by replacing NORM by FIN), men there are two natural ways to extend it to the class of all normed spaces. For this, define for normed spaces E

$$
\begin{gathered}
F I N(E): \\
\operatorname{COFIN}(E) \mid
\end{gathered}:=\{L \subset E \mid E / L \in F I N\}
$$

and

$$
\begin{gathered}
\vec{\alpha}(z ; E, F):=\inf \left\{\alpha(z ; M, N) \left\lvert\, \begin{array}{l}
M \in F I N(E) \\
N \in F I N(F)
\end{array}\right. ; z \in M \otimes N\right\} \\
\overleftarrow{\alpha}(z ; E, F):=\sup \left\{\alpha\left(Q_{K}^{E} \otimes Q_{L}^{F}(z) ; E / K, F / L\right) \left\lvert\, \begin{array}{l}
K \in \operatorname{COFIN}(E) \\
L \in \operatorname{COFIN}(F)
\end{array}\right.\right\}
\end{gathered}
$$

(the arrows come from me fact that the first procedure is inductive, the second projective). Obviously, it is enough to take cofinally many M, N and K, L, respectively, in the definitions. It is easy to see that thefznite hull $\vec{\alpha}$ and the cofinite hull $\overleftarrow{\alpha}$ are tensomorms such that

$$
\varepsilon \leq \overleftarrow{\alpha} \leq \vec{\alpha} \leq \pi,\left.\quad \overleftarrow{\alpha}\right|_{F I N}=\left.\vec{\alpha}\right|_{F I N}=\alpha
$$

and

$$
\overleftarrow{\alpha} \leq \alpha \leq \vec{\alpha}
$$

if α was defined on NORM. Since ε respects subspaces: $\varepsilon=\vec{\varepsilon}$ and whence $=\overleftarrow{\varepsilon}$. The definition of the projective norm shows $\pi=\vec{\pi}$ but it will be shown in 3.5 that $\pi \neq \overleftarrow{\pi}$. A tensomorm α on NORM is called finitely generated if $\alpha=\vec{\alpha}$ and cofinitely generated if $\alpha=\overleftarrow{\alpha}$. Though the usual tensomonns are all finitely generated we find that the cofinite hull $\overleftarrow{\alpha}$ of a tensomorm is natural as well and its consequent use is structuring well the theory, helps understanding better various ideas and simplifies many proofs; we hope that the reader is convinced about this point after the study of this paper. This is why we adopted a more general notion of a tensomorm that Grothendieck did in his Résumé; there, all tensomorms are finitely generated by definition (but see 3.4). Grothendieck had a reason not to worry too much about cofinitely generated tensomorms:

$$
\vec{\alpha}(\cdot ; E, F)=\overleftarrow{\alpha}(\cdot ; E, F)
$$

if both spaces \mathbf{E} and F have the metric approximation property (see 2.2 and below) and it was only in 1972 that Enflo discovered Banach spaces without the metric approximation property.

It is obvious but it is good to have it always in mind that two finitely generated (or two cofinitely generated) tensomorms are equal for finite-dimensional spaces.
1.4. If \mathbf{M} and \mathbf{F} are normed spaces, \mathbf{M} finite-dimensional, then

$$
\mathcal{L}(M, F)^{\prime}=\left(M^{\prime} \otimes_{\varepsilon} F\right)^{\prime}=M \otimes_{\pi} F^{\prime}
$$

by the basic duality relation between the injective tensomorm ε and the projective tensomorm π (see [45], p. 246), whence

$$
\mathcal{L}(M, F)^{\prime \prime}=\left(M \otimes_{\pi} F^{\prime}\right)^{\prime}=\mathcal{L}\left(M, F^{\prime \prime}\right)
$$

isometrically. Helly's lemma ([60], p. 383) on the density of $G:=\mathcal{L}(\mathbf{M}, \mathbf{F})$ in $\mathrm{G}^{\prime \prime}=$ $\mathcal{L}\left(\mathbf{M}, \mathbf{F}^{\prime \prime}\right)$ with respect to the subspace

$$
M \otimes N \subset M \otimes_{\pi} F^{\prime}=G^{\prime}
$$

gives the
Weak principle of local reflexivity. Let M and F be normed spaces, M jinite dimensiona/ and $S \in \mathcal{L}\left(\mathbf{M}, \mathbf{F}^{\prime \prime}\right)$. Then for every $\varepsilon>\mathbf{0}$ and $\mathbf{N} \in \mathbf{F I N}\left(\mathbf{F}^{\prime}\right)$ there is an $\mathbf{R} \in \mathcal{L}(\mathbf{M}, \mathbf{F})$ such that

$$
\|R\| \leq(1+\varepsilon)\|S\|
$$

and

$$
\left\langle S x, y^{\prime}\right\rangle_{F^{\prime \prime}, F^{\prime}}=\left\langle R x, y^{\prime}\right\rangle_{F, F^{\prime}}
$$

for all $\left(x, y^{\prime}\right) E M \quad x \quad N$.

This will be basic for many investigations on tensomorms. The stronger version (R can be chosen such that $R x=$ SS whenever $\mathrm{x} \in S^{-1}$ (F) ,see e.g. [60], p. 384) will not be needed.
1.5. Many of the interesting tensomorms can be obtained from the ones introduced by Lapresté [49] generalizing those of Saphar [66], Chevet [6] and Cohen [8]. First some notations: let E be normed, $x_{1}, \ldots, x_{n} \in E$, and $p \in[1, \infty]$, then

$$
\begin{aligned}
& \ell_{p}\left(x_{i} ; E\right):=\ell_{p}\left(x_{i}\right):=\left\|\left(\left\|x_{i}\right\|_{E}\right)_{i=1, n}\right\|_{\ell_{p}^{n}} \\
& w_{p}\left(x_{i} ; E\right):=w_{p}\left(x_{i}\right):=\sup _{\varphi \in B_{E^{\prime}}}\left\|\left(\left\langle\varphi, x_{i}\right\rangle\right)_{i=1} \mid, n\right\|_{\ell_{p}^{n}}
\end{aligned}
$$

strong ℓ_{p}-norm
weak ℓ_{p}-norm

It is easy to see that in the definition of the weak ℓ_{p}-norm the unit ball $B_{E^{\prime}}$ can be replaced by any norming subset of B,.

For $p, q \in[1, \infty]$ with $\frac{1}{p}+\frac{1}{q} \geq 1$ define $r \in[1, \infty]$ by

$$
\frac{1}{r}:=\frac{1}{\mathrm{P}}+\frac{1}{q}-1 \quad \text { or, equivalently, } \quad 1=\frac{1}{r}+\frac{1}{\mathrm{P}},+\frac{1}{q^{\prime}}
$$

and for normed spaces E and F

$$
\alpha_{p, q}(z ; E, F):=\inf \left\{\ell_{r}\left(\lambda_{i}\right) w_{q^{\prime}}\left(x_{i}\right) w_{p^{\prime}}\left(y_{i}\right) \mid z=\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes y_{i}\right\}
$$

Obviously $\alpha_{1,1}=\pi$.

Proposition.

(1) $\alpha_{p, q}$ is a finitely generated tensornorm on NORM.
(2) $\alpha_{p_{2}, q_{2}} \leq \alpha_{p_{1}, q_{1}}$ if $p_{1} \leq p_{2}$ and $q_{1} \leq q_{2}$
(3) $\alpha_{p, q}^{t}=\alpha_{q, p}$

Proof :
(1) Using criterion 1.1 only the triangle inequality is not obvious: Take $z_{1}, z_{2} \in E \otimes F$ and $\varepsilon>0$, choose representations

$$
z_{j}=\sum_{i=1}^{n} \lambda_{i j} x_{i j} \otimes y_{i j} \quad j=1,2
$$

such that

$$
\begin{gathered}
\ell_{r}\left(\lambda_{i j}\right) \leq\left(\alpha_{p, q}\left(z_{j}\right)+\varepsilon\right)^{\frac{1}{r}} \\
w_{q^{\prime}}\left(x_{i j}\right) \leq\left(\alpha_{p, q}\left(z_{j}\right)+\varepsilon\right)^{\frac{1}{\rho^{\prime}}} \\
w_{p^{\prime}}\left(y_{i j}\right) \leq\left(\alpha_{p, q}\left(z_{j}\right)+\varepsilon\right)^{\frac{1}{p}}
\end{gathered}
$$

and whence

$$
\begin{aligned}
\alpha_{p, q}\left(z_{1}+z_{2}\right) & \leq \ell_{\tau}\left(\left(\lambda_{i j}\right)_{i, j}\right) w_{q^{\prime}}\left(\left(x_{i j}\right)_{i, j}\right) w_{p^{\prime}}\left(\left(y_{i j}\right)_{i, j}\right) \leq \\
& \leq\left(\alpha_{p, q}\left(z_{1}\right)+\alpha_{p, q}\left(z_{2}\right)+2 \varepsilon\right)^{\frac{1}{r}+\frac{1}{j^{\prime}+\frac{1}{j}}} .
\end{aligned}
$$

(2) There is nothing to prove for $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1$, whence assume $r_{1}<\infty$ and define

$$
\frac{1}{\mathrm{P}}:=\frac{1}{p_{1}}-\frac{1}{\mathrm{P} 2} \quad, \quad \frac{1}{4}:=\frac{1}{q_{1}}-\frac{1}{q_{2}}
$$

which implies

$$
\frac{1}{r_{1}}=\frac{1}{r_{2}}+\frac{1}{\mathrm{P}}+\frac{1}{q}
$$

Take $\mathrm{z} \in E \otimes F$ and, for $\varepsilon>0$, a representation

$$
z=\sum_{i} \lambda_{i} x_{i} \otimes y_{i} \quad \lambda_{i} \geq 0
$$

with

$$
\ell_{r_{1}}\left(\lambda_{\mathfrak{i}}\right) w_{q_{1}^{\prime}}\left(x_{\mathfrak{i}}\right) w_{p_{1}^{\prime}}\left(y_{\mathfrak{i}}\right) \leq(1+\varepsilon) \alpha_{p_{1}, q_{1}}(z)
$$

Now

$$
z=\sum_{i} \lambda_{i}^{\tau_{1} / \tau_{2}}\left(\lambda_{i}^{r_{1} / q} x_{i}\right) \otimes\left(\lambda_{i}^{\tau_{1} / p} y_{i}\right)
$$

and (by Hölder's inequality)

$$
\begin{gathered}
\ell_{r_{2}}\left(\lambda_{i}^{r_{1} / r_{2}}\right)=\left[\ell_{r_{1}}\left(\lambda_{i}\right)\right]^{r_{1} / r_{2}} \\
w_{q_{2}^{\prime}}\left(\lambda_{i}^{\tau_{1} / q} x_{i}\right) \leq\left[\ell_{r_{1}}\left(\lambda_{i}\right)\right]^{r_{1} / q} w_{q_{1}^{\prime}}\left(x_{i}\right) \\
w_{p_{2}^{\prime}}\left(\lambda_{i}^{r_{1} / p} y_{i}\right) \leq\left[\ell_{r_{1}}\left(\lambda_{i}\right)\right]^{r_{1} / p} w_{p_{1}^{\prime}}\left(y_{i}\right)
\end{gathered}
$$

whence

$$
\begin{aligned}
\alpha_{p_{2}, q_{2}}(z) \leq \ldots & \leq \ell_{r_{1}}\left(\lambda_{i}\right)^{r_{1} / r_{2}+r_{1} / q+r_{1} / p} w_{q_{1}^{\prime}}\left(x_{i}\right) w_{p_{1}^{\prime}}\left(y_{i}\right) \leq \\
& \leq(1+\varepsilon) \alpha_{p_{1}, q_{1}}(z)
\end{aligned}
$$

(3) is trivial.
1.6. To describe the completion of $E \otimes_{\alpha_{n s}} F$ infinite sums will be involved. The definition of the strong and weak ℓ_{p}-norm of a sequence $\left(x_{i}\right)$ is obvious.

Proposition.

(1) If $\left(\lambda_{n}\right) \in \ell_{\boldsymbol{r}}\left(\right.$ in c_{0} ifr $\left.=\operatorname{CO}\right), w_{q^{\prime}}\left(x_{n}\right)<\infty$ and $w_{p^{\prime}}(y)<,\infty$, then the series

$$
\sum\left(\lambda_{n} x_{n} \otimes y_{n}\right)
$$

converges unconditionally in $E \tilde{\otimes}_{\alpha_{p, q}} F$.
(2) For every $z \in E \tilde{\otimes}_{\alpha_{p, Q}} F$ there is a series as in (1) with

$$
z=\sum_{n=1}^{\infty} \lambda_{n} x_{n} \otimes y_{n}
$$

Moreover:

$$
\alpha_{p, q}(z ; E, F)=\inf \ell_{\tau}\left(\lambda_{i}\right) w_{q^{\prime}}\left(x_{\mathfrak{i}}\right) w_{p^{\prime}}\left(y_{i}\right)
$$

where the infimum is taken over all (finite or infinite) such representations.

Proof :

(1) is easy since the fact that $\left(\lambda_{i}\right) \in \ell_{r}\left(\right.$ or $\left.c_{0}\right)$ forces the series to be a $\alpha_{p q}$-Cauchy-series. To prove (2) take for $\mathrm{z} \in E \tilde{\otimes}_{\alpha_{p, Q}} F$ and $\varepsilon>0$ elements $z_{n} \in E \otimes F$ with $\mathrm{z}=\sum_{n=1}^{\infty} z_{n}$ and

$$
\sum_{n=1}^{\infty} \alpha_{p, q}\left(z_{n}\right) \leq(1+\varepsilon) \alpha_{p, q}(z)
$$

Choose $\left(\lambda_{i}^{n}\right),\left(x_{i}^{n}\right)$ and ($\left.y_{i}^{n}\right)$ (finite) with

$$
z_{n}=\sum \lambda_{i}^{n} x_{i}^{n} \otimes y_{i}^{n}
$$

and

$$
\begin{gathered}
\ell_{\tau}\left(\left(x_{i}^{n}\right)_{i}\right) \leq\left(\alpha_{p, q}\left(z_{n}\right)(1+\varepsilon)\right)^{1 / \tau} \\
w_{q^{\prime}}\left(\left(x_{i}^{n}\right)_{i}\right) \leq\left(\alpha_{p, q}\left(z_{n}\right)(1+\varepsilon)\right)^{1 / q^{\prime}} \\
w_{p^{\prime}}\left(\left(y_{i}^{n}\right)_{i}\right) \leq\left(\alpha_{p, q}\left(z_{n}\right)(1+\varepsilon)\right)^{1 / p^{\prime}}
\end{gathered}
$$

Then

$$
\ell_{r}\left(\left(\lambda_{i}^{n}\right)_{i, n}\right) w_{q^{\prime}}\left(\left(x_{i}^{n}\right)_{i, n}\right) w_{p^{\prime}}\left(\left(y_{i}^{n}\right)_{i, n}\right) \leq \alpha_{p, q}(z)(1+\varepsilon)^{2}
$$

and, by (1)

$$
z=\sum_{n=1}^{\infty} z_{n}=\sum_{n=1}^{\infty} \sum_{i} \lambda_{i}^{n} x_{i}^{n} \otimes y_{i}^{n}
$$

In particular, if β denotes the seminorm defined by the infimum in the statement of (2):

$$
\beta(z) \leq \alpha_{p, q}(z) \quad \text { for all } \quad z \in E \tilde{\otimes}_{\alpha_{p, 8}} F
$$

Conversely, if $\mathrm{z}=\sum_{n=1}^{\infty} \lambda_{n} x_{n} \otimes y_{n}$ and

$$
z^{N}:=\sum_{n=1}^{N} \lambda_{n} x_{n} \otimes y_{n}
$$

then

$$
\begin{aligned}
\ell_{\tau}\left(\lambda_{n}\right) w_{q^{\prime}}\left(x_{n}\right) w_{p^{\prime}}\left(y_{n}\right) & \geq \ell_{\tau}\left(\left(x_{n}\right)_{n=1}^{N}\right) w_{q^{\prime}}\left(\left(x_{n}\right)_{n=1}^{N}\right) w_{p^{\prime}}\left(\left(y_{n}\right)_{n=1}^{N}\right) \geq \\
& \geq \alpha_{p, q}\left(z^{N}\right) \rightarrow \alpha_{p, q}(z)
\end{aligned}
$$

this implies $\beta(z) \geq \alpha_{p, q}(z)$.
1.7. Special cases of $\alpha_{p, q}$-tensornorms are ($1 \leq \mathrm{p} \leq \infty$)

$$
\begin{array}{ll}
g_{p}:=\alpha_{p, 1} & (\mathrm{~g} \text { for «gauche») } \\
d_{p}:=\alpha_{1 p} & (d \text { for «droite») } \\
w_{p}:=\alpha_{p, p^{\prime}} & (\text { w for «weak») }
\end{array}
$$

and therefore

$$
g_{1}=d,=\pi, \quad w_{1}=d_{\infty}, \quad w_{\infty}=g_{1}, \quad g_{p}=d_{p}^{t}, \quad w_{p}=w_{p^{\prime}}^{t}
$$

and

$$
w_{p} \leq g_{p}, \quad w_{p^{\prime}} \leq d_{p}
$$

It is very simple to see that

$$
\begin{aligned}
& g_{p}(z ; E, F)=\inf \left\{\ell_{p}\left(x_{i}\right) w_{p}\left(y_{i}\right) \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\} \\
& d_{p}(z ; E, F)=\inf \left\{w_{p}\left(x_{i}\right) \ell_{p}\left(y_{i}\right) \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
\end{aligned}
$$

$$
w_{p}(z ; E, F)=\inf \left\{w_{p}\left(x_{i}\right) w_{p^{\prime}}\left(y_{i}\right) \mid z=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

Clearly, a result in the spirit of 1.6 with representations

$$
z=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}
$$

holds for g_{p} and d_{p} as well. The case w_{p} for $1<\mathrm{p}<$ CO reads as follows: If $w_{p}\left(x_{i}\right)<$ $\infty, w_{p^{\prime}}\left(y_{i}\right)<\infty$ and

$$
w_{p}\left(\left(x_{i}\right)_{i=N}^{\infty}\right) \underset{N \rightarrow \infty}{\rightarrow} 0
$$

then the series $\sum\left(x_{n} \otimes y,\right)$ converges unconditionally in $E \tilde{\mathbb{Q}}_{w_{p}} F$.
1.8. The following picture illustrates the situation:

Proposition. For $p, q \in] 1, \infty\left[\right.$ there are constants $c_{p q} \geq 1$ such that

$$
\alpha_{p, q} \leq c_{p, q} w_{2}
$$

In particular,

$$
w_{2} \leq \alpha_{p, q} \leq c_{p, q} w_{2}
$$

for all $p, q \in] 1,2]$.
The proof will make use of the Khintchine inequality: For this take

$$
\begin{aligned}
& D_{n}:=\{-1,1\}^{n} \\
& \varepsilon_{i}: D_{n} \rightarrow\{-1,1\} \quad \text { i-th projection }
\end{aligned}
$$

and μ_{n} the measure defined by $\mu_{n}(\{t\})=2^{-n}$ for all $t \in D_{n}$ (which is the normalized Haar measure). It follows easily that

$$
\int_{D_{n}} \varepsilon_{i} \varepsilon_{j} \mathrm{~d} \mu_{n}=\delta_{i j}
$$

The KHINTCHINE INEQUALITY says: For $1 \leq r<\infty$ there are constants $a_{\tau} \geq 1$ and $b_{r} \geq 1$ such that

$$
a_{r}^{-1}\left(\sum_{k=1}^{n}\left|\xi_{k}\right|^{2}\right)^{1 / 2} \leq\left(\int_{D_{n}}\left|\sum_{k=1}^{n} \xi_{k} \varepsilon_{k}(t)\right|^{r} \mu_{n}(\mathrm{~d} t)\right)^{1 / r} \leq b_{\tau}\left(\sum_{k=1}^{n}\left|\xi_{k}\right|^{2}\right)^{1 / 2}
$$

for all $n \in N$ and $\xi_{1}, \ldots, \xi_{n} \in \mathbb{K}$. For an easy proof see [43] p. 45. For the constants one can take

$$
\begin{array}{lll}
a_{r}=\sqrt{2} & 1 \leq r \leq 2 & \\
a_{r}=1 & 2 \leq r & \text { (obvious) } \\
b_{r}=1 & 1 \leq r \leq 2 & \text { (obvious) } \\
b_{r}=5 \sqrt{r} & 2 \leq r . &
\end{array}
$$

The best constants were calculated by Haagerup [28] in 1982; they are the same for the real and the complex field.

Proof of the proposition:
For $z=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in E \otimes F$ the biorthogonality of the ε_{i} gives a new representation:

$$
z=\sum_{i, j} \int_{D_{n}} \varepsilon_{i} \varepsilon_{j} \mathrm{~d} \mu_{n} x_{i} \otimes y_{i}=\sum_{t \in D_{n}} \frac{1}{2^{n}}\left(\sum_{i=1}^{n} \varepsilon_{i}(t) x_{i}\right) \otimes\left(\sum_{j=1}^{n} \varepsilon_{j}(t) y_{j}\right)
$$

Now

$$
\begin{aligned}
w_{q^{\prime}}\left(\left(\sum_{i=1}^{n} \varepsilon_{i}(t) x_{i}\right)_{t \in D_{n}}\right) & =\sup _{\left\|x^{\prime}\right\| \leq 1}\left(\sum_{t \in D_{n}}\left|\sum_{i=1}^{n} \varepsilon_{i}(t)\left\langle x_{i}, x^{\prime}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}} \leq \\
& =2^{n / q^{\prime}} \sup _{\left\|x^{\prime}\right\| \leq 1}\left(\int_{D_{n}}\left|\sum_{i=1}^{n}\left\langle x_{i}, x^{\prime}\right\rangle \varepsilon_{i}(t)\right|^{q^{\prime}} \mu_{n}(d t)\right)^{1 / q^{\prime}} \leq \\
& \leq 2^{n / q^{\prime}} b_{q^{\prime}} w_{2}\left(\left(x_{i}\right)_{i=1 ; \ldots n}\right) .
\end{aligned}
$$

Consequently,

$$
\alpha_{p, q}(z ; E, F) \leq \frac{1}{2^{n}}\left(2^{n}\right)^{1 / \tau+1 / q^{\prime}+1 / p^{\prime}} b_{q^{\prime}} b_{p^{\prime}} w_{2}\left(x_{i}\right) w_{2}\left(y_{i}\right)
$$

and therefore

$$
\alpha_{p, q} \leq b_{q^{\prime}}, b_{p^{\prime}} w_{2}
$$

The tensornorms g_{p} and d_{p} cannot be estimated by w_{2} : this will follow easily from the identification of $\left(E \otimes_{\alpha} \mathrm{F}\right.$) with a space of operators (by 4.9 the inequality $w_{\infty} \leq g_{p} \leq c w_{2}$ would imply that Hilbert spaces are \mathcal{L}_{∞}-spaces, see $\S 6$).
1.9. Take $x_{1}, \ldots, x_{n} \in E$ then for $1 \leq p \leq \infty$

$$
\begin{aligned}
w_{p}\left(x_{i}\right) & =\sup \left\{\left|\sum_{i=1}^{n} \xi_{i}\left\langle x_{i}, x^{\prime}\right\rangle\right| \mid x^{\prime} \in B_{E^{\prime}}\left(\xi_{i}\right) \in B_{\ell_{p^{\prime}}}\right\}= \\
& =\varepsilon\left(\sum_{i=1}^{n} x_{i} \otimes e_{i} ; E, \ell_{p}^{n}\right)
\end{aligned}
$$

(e_{i} the unit-vectors in ℓ_{p}^{n}). Sincc $w_{p},\left(e_{i}\right)=1$ it follows the
Remark. For every normod space E and $1 \leq p \leq \infty$

$$
\varepsilon\left(\sum_{i=1}^{n} x_{i} \otimes e_{i} ; E, \ell_{p}^{n}\right)=w_{p}\left(\sum_{i=1}^{n} x_{i} \otimes e_{i} ; E, \ell_{p}^{n}\right)=w_{p}\left(x_{i} ; E\right)
$$

for $\mathrm{x}, \in \mathrm{E}$. In particular: $\varepsilon=w_{p}$ on $E \otimes \ell_{p}^{n}$.
1.10. One of the most striking tools in the theory of tensor-norms and the operator theory is Grothendieck's «théorème fondamental de la théorie métriquc des produits tensoriels» which, since the work of Lindenstrauss and Pelczyński[51], is known in an cquivalentform as GROTHENDIECK INEQUALITY: There is a universal constant K_{G} such that for all $\mathrm{n} \in \mathrm{N}$, all matrices $\left(a_{i j}\right) \in \mathcal{L}\left(\mathbb{K}^{n}, \mathbb{K}^{n}\right)$ and all Hilbert spaces H

$$
\sup \left\{\left|\sum_{i, j=1}^{n} a_{i j}\left\langle x_{i}, y_{i}\right\rangle_{H}\right| \mid x_{i}, y_{i} \in B_{H}\right\} \leq K_{G} \sup \left\{\left|\sum_{i, j=1}^{n} a_{i j} s_{i} t_{j}\right| \mid s_{i}, t_{i} \in B_{\mathbb{K}}\right\}
$$

For a simple proof see e.g. [12]. K_{G} can bc chosen ≤ 2. The best constants (the one for the complex case is strictly smaller than that for the real case) are not yet known.

Onc of the dircct consequences of the incquality is that evcry opcrator $\ell_{1}(\Gamma) \rightarrow I$ is absolutely- 1 -summing (sec 6.5). The samc proof gives that evcry operator $\ell_{1} \rightarrow F$ is absolutely-1-summing if F satisfics the Grothendieck-inequality as above (with the duality bracket instead of the scalar-product $x_{i} \in B_{F}$ and $y_{i} \in B_{F^{\prime}}$; whence the natura1 quotient map

$$
\ell_{1}\left(B_{F}\right) \rightarrow F
$$

factors through a Hilbert space and F is isomorphic to a Hilbert space: Up to isomorphy only the Hilbert spaces satisfy Grothendieck's inequality ([51]; p. 289).
1.11. For $\varphi \in\left(\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}\right)^{\prime}=B\left(\ell_{\infty}^{n}, \ell_{\infty}^{n}\right)$ (bilinear forms) with representing matrix

$$
a_{i j}:=\left\langle\varphi, e_{i} \otimes e_{j}\right\rangle
$$

the norm is given by

$$
\|\varphi\|_{\left(\ell_{\infty}^{n} \otimes_{\infty} \ell_{\infty}^{n}\right)}=\sup \left\{\left|\sum_{i, j=1}^{n} a_{i j} s_{i} t_{j}\right| \mid\left(s_{i}\right),\left(t_{j}\right) \in B_{\ell_{\infty}^{n}}\right\} .
$$

This implies for x_{i}, y_{j} in the unit ball B_{H} of a Hilbert space H and

$$
z:=\sum_{i, j=1}^{n}\left\langle x_{i}, y_{j}\right\rangle_{H} e_{i} \otimes e_{j} \in \ell_{\infty}^{n} \otimes \ell_{\infty}^{n}
$$

that

$$
\pi\left(z ; \ell_{\infty}^{n}, \ell_{\infty}^{n}\right)=\sup \left\{|\langle\varphi, z\rangle| \mid \varphi \in\left(\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}\right)^{\prime},\|\varphi\|_{\ldots} \leq 1\right\} \leq K_{G}
$$

by Grothendieck's inequality, whence
Corollary. Let H be a Hilbert space. Then

$$
\pi\left(\sum_{i, j=1}^{n}\left\langle x_{i}, y_{j}\right\rangle_{H} e_{i} \otimes e_{j} ; \ell_{\infty}^{n}, \ell_{\infty}^{n}\right) \leq K_{G} \max _{i}\left\|x_{i}\right\| \max _{j}\left\|y_{i}\right\|
$$

for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \boldsymbol{H}$.
Everything is prepared for the
Theorem (Grothendieck's inequality in tensorial form). For every $n \in \mathbb{N}$

$$
w_{2} \leq \pi \leq K_{G} w_{2} \quad \text { on } \quad \ell_{\infty}^{n} \otimes \ell_{\infty}^{n}
$$

Inparticular: all $\alpha_{p, q}($ for $1 \leq \mathbf{p}, \mathbf{q} \leq \mathbf{2})$ are equivalent on $\ell_{\infty}^{n} \otimes \ell_{\infty}^{n}$ (with constants independent from n).

Proof. Take $\mathbf{H}:=\ell_{2}^{n}$ and equip H^{n} with the sup-norm, then

$$
\begin{array}{ccl}
H^{n} & \sim & \ell_{\infty}^{n} \otimes_{\varepsilon} H \\
\left(x_{1}, \ldots, x_{n}\right) & \sim & \sum_{i=1}^{n} e_{i} \otimes x_{i}
\end{array}
$$

isomctrically. Therefore, the real bilinear map (consider the spaces as real vector spaces)

$$
\begin{array}{rll}
\operatorname{Tr}:\left(\ell_{\infty}^{n} \otimes_{\varepsilon} H\right) \times\left(H \otimes_{\varepsilon} \ell_{\infty}^{n}\right) & \rightarrow & \ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n} \\
(u \otimes x, y \otimes v) & \sim & \langle x, y\rangle_{H} u \otimes v
\end{array}
$$

can be writtcn as

$$
\begin{array}{ccl}
H^{n} \times H^{n} & \rightarrow & \ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n} \\
\left(\left(x_{1} \ldots x_{n}\right),\left(y_{1} \ldots y_{n}\right)\right) & \sim & \sum_{i, j}\left\langle x_{i}, y_{j}\right\rangle e_{i} \otimes e_{j}
\end{array}
$$

The corollary gives that $\|\operatorname{Tr}\| \leq K_{G}$. Now take $z=\sum_{i=1}^{n} u_{i} \otimes v_{i} \in \ell_{\infty}^{n} \otimes \ell_{\infty}^{n}$, then

$$
\operatorname{Tr}\left(\sum_{i=1}^{n} u_{i} \otimes e_{i}, \sum_{i=1}^{n} e_{i} \otimes v_{i}\right)=z
$$

and, by 1.9,

$$
\begin{aligned}
& \varepsilon\left(\sum_{i=1}^{n} u_{i} \otimes \dot{e}_{i} ; \ell_{\infty}^{n}, H\right)=w_{2}\left(u_{i}\right) \\
& \varepsilon\left(\sum_{i=1}^{n} e_{i} \otimes u_{i} ; H, \ell_{\infty}^{n}\right)=w_{2}\left(v_{i}\right)
\end{aligned}
$$

It follows

$$
\pi\left(z ; \ell_{\infty}^{n}, \ell_{\infty}^{n}\right) \leq K_{G} w_{2}\left(u_{i}\right) w_{2}\left(v_{i}\right)
$$

and taking the mfimum over all representations of z gives the result.
1.12. Another direct consequence of Grothendicek's inequality is the Proposition. For every $\mathbf{n} \in \mathbb{N}$

$$
\pi \leq K_{G} d_{\infty} \quad \text { on } \quad \ell_{1}^{n} \otimes \ell_{2}^{n}
$$

Proof . If $x, \in \ell_{1}^{n}$ with $x,=\sum_{j=1}^{n} a_{i j} e_{j}$, then

$$
\begin{aligned}
w_{1}\left(x_{i} ; \ell_{1}^{n}\right) & =\sup _{\left|t_{j}\right| \leq 1} \sum_{i=1}^{m}\left|\left\langle x_{i},\left(t_{j}\right)\right\rangle\right|= \\
& =\left.\sup _{\left|t_{j}\right| \leq 1}\right|_{\left|s_{i}\right| \leq 1} \sum_{i, j} a_{i j} s_{i} t_{j} \mid
\end{aligned}
$$

whence

$$
\begin{aligned}
\pi\left(\sum_{i=1}^{m} x_{i} \otimes y_{i}\right) & =\pi\left(\sum_{j=1}^{n} e_{j} \otimes \sum_{i=1}^{m} a_{i j} y_{i}\right) \leq \\
& \leq \sum_{j=1}^{n}\left\|\sum_{i=1}^{m} a_{i j} y_{i}\right\|_{e_{2}}= \\
& =\sup _{z_{j} \in B_{\ell_{2}^{\prime}}}\left|\sum_{i, j} a_{i j}\left\langle\left[\ell_{\infty}\left(y_{k}\right)\right]^{-1} y_{i}, z_{j}\right\rangle\right| \cdot \ell_{\infty}\left(y_{k}\right) \leq \\
& \leq K_{G} w_{1}\left(x_{i}\right) \ell_{\infty}\left(y_{i}\right)
\end{aligned}
$$

and, passing to the infimum over all representations,

$$
\pi \leq K_{G} d_{\infty}
$$

on $\ell_{1}^{n} \otimes \ell_{2}^{n}$.

2. THE FOUR BASIC LEMMAS

2.1. This paragraph contains four lemmas which are basic for the understanding and use of tensornorms: the approximation, extension, embedding, and density lemma. The power and importance of these devices will become clear while working with them.
2.2. Reca11 that a normed space \mathbf{E} has the λ-approximation property if there is a net $\left(T_{\eta}\right)$ of finite-dimensional operators $\mathbf{E} \rightarrow \mathbf{E}$ with $\left\|T_{\eta}\right\| \leq \lambda$ and $T_{\eta}(x) \rightarrow x$ for all $\mathbf{x} \in E$. If $\lambda=1$, the space has the metric approximation property; if a space has the X-approximation property for some λ it is said to have the bounded approximationproperty. Approximation lemma. Let α and β be tensornorms (on NORM), E, F normed spaces, $c \geq 1$ and

$$
\alpha \leq c \beta \quad \text { on } \quad E \otimes N
$$

for cofinally many $N \in \operatorname{FIN}(F)$. If F has the X-approximation property, then

$$
\alpha \leq \lambda c \beta \mathbf{0} \quad \mathbf{n} \quad \mathbf{E} \otimes \mathbf{F}
$$

Proof. It is easy to see that

$$
\mathrm{id}_{E} \otimes T_{\eta}(z) \rightarrow z
$$

for the projective norm π and whence for all tensomorms. If η is such that

$$
\alpha\left(z-\mathrm{id}_{E} \otimes T_{n}(z) ; E, F\right) \leq \varepsilon
$$

and N as in the hypothesis with $T_{\eta}(F) \mathrm{c} \mathrm{N}$ then, by the metric mapping property of tensomorms,

$$
\begin{aligned}
\alpha(z ; E, F) & \leq \alpha\left(z-\mathrm{id}_{E} \otimes T_{\eta}(z) ; E, F\right)+\alpha\left(\mathrm{id}_{E} \otimes T_{\eta}(z) ; \mathbf{E}, \mathbf{F}\right) \leq \\
& \leq \varepsilon+\alpha\left(\mathrm{id}_{E} \otimes T_{\eta}(z) ; E, N\right) \leq \\
& \leq \varepsilon+c \beta\left(\mathrm{id}_{E} \otimes T_{\eta}(z) ; E, N\right) \leq \\
& \leq \varepsilon+c\left\|T_{\eta}\right\| \beta(z ; E, F)
\end{aligned}
$$

which implies the statement.
This lemma (and its transposed version) gives for the finite and cofinite hull of a tensomorm the

Proposition. If α is a tensornorm (on FIN), E and F have the bounded approximation property with constants λ_{E} and λ_{F}, respectively, then

$$
\overleftarrow{\alpha} \leq \vec{\alpha} \leq \lambda_{E} \lambda_{F} \overleftarrow{\alpha} \quad \text { on } \quad E \otimes F
$$

In particular: $\overleftarrow{\alpha}=\vec{\alpha}$ on $\mathrm{E} \otimes \mathrm{F}$, if both spaces have the metric approximation property.
2.3. If $\varphi \in\left(\mathrm{E} \otimes_{\pi} \mathrm{F}\right)^{\prime}=\mathcal{L}\left(E, \mathrm{~F}^{\prime}\right)$ and L_{φ} is its associated operator

$$
\langle\varphi, x \otimes y\rangle=\left\langle L_{\varphi} x, y\right\rangle_{F^{u}, F}
$$

then

$$
\left\langle\varphi, x \otimes Y^{\prime \prime}\right):=\left\langle L_{\varphi} x, y^{\prime \prime}\right\rangle_{F^{\prime}, F^{\prime \prime}}
$$

(for $\mathrm{x} \in F$ and $\mathrm{y} " \in F^{\prime \prime}$) defines a linear form φ^{\wedge} on $E \otimes F$ " which is clearly continuous:

$$
\|\varphi\|=\left\|L_{\varphi}\right\|=\left\|\varphi^{\wedge}\right\|
$$

The associated bilinear form is the unique $\sigma\left(E, E^{\prime}\right)-\sigma\left(F^{\prime \prime}, F^{\prime}\right)$ separately continuous extension of φ to Ex $F^{\prime \prime} . \varphi^{\wedge}$ is called the right canonical extension of φ to $E \otimes F^{\prime \prime}$. Similarly the left canonical extension ${ }^{\wedge} \varphi$ on $E^{\prime \prime} \otimes F$ is defined by $\left(\kappa_{F}: F \hookrightarrow F\right.$ " the canonical embedding)

$$
\left\langle^{\wedge} \varphi, x^{\prime \prime} \otimes y\right):=\left\langle L_{\varphi}^{\prime} \circ \kappa_{F}(y), x^{\prime \prime}\right\rangle_{E^{\prime} . E^{\prime \prime}}
$$

It is not difficult to see that

$$
(" \mathrm{cp}) "={ }^{\wedge}\left(\varphi^{\wedge}\right) \quad \text { on } \quad E^{\prime \prime} \otimes F^{\prime \prime}
$$

if and only if L_{φ} is weakly compact.
Extension lemma. Let $\varphi \in\left(E \otimes_{\pi} F\right)^{\prime}$ and α be a finitely generated tensornorm on NORM. Then:

$$
\varphi \in\left(E \otimes_{\alpha} F\right)^{\prime} \quad \text { if and only if } \quad \varphi^{\wedge} \in\left(E \otimes_{\alpha} F^{\prime \prime}\right)^{\prime}
$$

In this case: $\|\varphi\|_{\left(E \otimes_{\alpha} F\right)^{\prime}}=\left\|\varphi^{\wedge}\right\|_{\left(E \otimes_{\alpha} F^{\prime \prime}\right)^{\prime}}$.
Proof. The metric mapping property

$$
\left\|E \otimes_{\alpha} F \hookrightarrow E \otimes_{\alpha} F^{\prime \prime}\right\| \leq 1
$$

implies

$$
|M| \ldots \leq\left\|\varphi^{\wedge}\right\| \ldots
$$

Conversely, take $M \in F I N(E)$ and $\mathrm{N} \in F I N\left(F^{\prime}\right)$. Then the weak principle of loca1 reflexivity (1.4) gives for every $\varepsilon>0$ an $R \in \mathcal{L}(\mathrm{~N}, F)$ with $\|R\| \leq 1+\varepsilon$ such that for all $y^{\prime \prime} \in N$ and $x \in M$

$$
\left\langle y^{\prime \prime}, L_{\varphi} x\right\rangle_{F^{\prime \prime}, F^{\prime}}=\left\langle R y^{\prime \prime}, L_{\varphi} x\right\rangle_{F, F^{\prime}}
$$

This means

$$
\left\langle\varphi^{\wedge}, x \otimes \mathrm{Y}^{\prime \prime}\right)=\left\langle\varphi,(\mathrm{id} \otimes R)\left(x \otimes y^{\prime \prime}\right)\right\rangle
$$

and

$$
\left\langle\varphi^{\wedge}, z\right\rangle=\left\langle\varphi, \mathrm{id}_{E} \otimes R(z)\right\rangle
$$

for all $z \in M \otimes \mathrm{~N}$ and whence

$$
\left|\left\langle\varphi^{\wedge}, z\right\rangle\right| \leq\|\varphi\|\|R\| \alpha(z ; E, N) \leq\|\varphi\|(1+\varepsilon) \alpha(z ; E, N)
$$

which implies the result, since α is finitely generated.

Sometimes the relation (\star) is helpful.
Problem 1. Does the extension lemma hold for cojìitely generated tensornorms?
Problem 2. There are two «canonical» embeddings

$$
I_{j}: E^{\prime \prime} \otimes F^{\prime \prime} \hookrightarrow\left(E \otimes_{\alpha} F\right)^{\prime \prime}
$$

dejined by

$$
\begin{aligned}
& \left(1,\left(x^{\prime \prime} \otimes y^{\prime \prime}\right), \varphi\right):=\left\langle^{\wedge}\left(\varphi^{\wedge}\right), x^{\prime \prime} \otimes Y^{\prime}\right) \\
& \left\langle I_{2}\left(x^{\prime \prime} \otimes y^{\prime \prime}\right), \varphi\right\rangle:=\left\langle\left(^{\wedge} \varphi\right)^{\wedge}, x^{\prime \prime} \otimes y^{\prime \prime}\right\rangle
\end{aligned}
$$

What are the norms induced on $E^{\prime \prime} \otimes F^{\prime \prime}$?
If the induced norm were α in reasonable situations, this would solve easily the problem of the bidual mappings which will be treated in 5.8.
2.4. Tensomorms do not respect subspaces (see 1.1) but the embedding to the bidual usually is respected:

Embedding lemma. If α is a finitely or cofinitely generated tensomorm (on NORM), then

$$
\mathrm{id}_{E} \otimes \kappa_{F}: E \otimes_{\alpha} F \stackrel{1}{\hookrightarrow} E \otimes_{\alpha} F^{\prime \prime}
$$

is an isometry for all normed spaces \mathbf{E} and \mathbf{F}.
Proof . The mapping property implies that

$$
\alpha(z ; \mathbf{E}, \mathbf{F} ") \leq \alpha(z ; \mathbf{E}, \mathbf{F}) \quad z \in E \otimes F
$$

holds always (the map id ${ }_{E} \otimes \kappa_{F}$ will not be written).
(1) Let α be finitely generated. Then, by the extension lemma

$$
\begin{aligned}
\alpha(z ; E, F) & =\sup \left\{|\langle\varphi, z\rangle| \mid \varphi \in\left(E \otimes_{\alpha} F\right)^{\prime},\|\varphi\| \leq 1\right\}= \\
& =\sup \left\{\left|\left\langle\varphi^{\wedge}, z\right\rangle\right| \mid \varphi \in\left(E \otimes_{\alpha} F\right)^{\prime},\|\varphi\| \leq 1\right\} \leq \\
& \leq \sup \left\{|\langle\psi, z\rangle|\left|\psi \in\left(E \otimes_{\alpha} F^{\prime \prime}\right)^{\prime},\right| \mathrm{M} . . \leq 1\right\}= \\
& =\alpha\left(z ; \mathrm{E}, \mathrm{~F}^{\prime \prime}\right)
\end{aligned}
$$

which is the reverse inequality.
(2) If α is colinitely generated, $K \in \operatorname{COFIN}(\mathrm{E})$ and $L \in \operatorname{COFIN}(F)$, then the canonical diagram ($L^{\infty \circ}$ formed in $F^{\prime \prime}$)

commutes and the lower map is an isometry. It follows that

$$
\begin{aligned}
\alpha\left(Q_{K}^{E} \otimes Q_{L}^{F}(z) ; E / K, F / L\right) & =\alpha\left(\left(Q_{K}^{E} \otimes Q_{L^{\circ \circ}}^{F^{\prime \prime}}\right) \circ\left(\mathrm{id}, \otimes \kappa_{F}\right)(z) ; E / K, F^{\prime \prime} / L^{\circ 0}\right) \leq \\
& \leq \overleftarrow{\alpha}\left(z ; E, F^{\prime \prime}\right)=\alpha\left(z ; E, F^{\prime \prime}\right)
\end{aligned}
$$

Taking the supremum for $\overleftarrow{\alpha}$ gives the missing inequality.
The calculation in (1) (or the extension lemma directly) and the bipolar theorem give the Corollary. If α isjinitely generated, then the unit ball $B_{E \otimes_{\alpha} F}$ is $\sigma\left(E \otimes F^{\prime \prime},\left(E \otimes_{\alpha} F\right)^{\prime}\right)$. dense in the unit ball $B_{E \otimes_{\alpha} F^{\prime \prime}}$.
2.5. Since the completion \tilde{F} of F and F have the samc biduals the embedding lemma gives that

$$
E \otimes_{\alpha} F \stackrel{1}{\hookrightarrow} E \otimes_{\alpha} \tilde{F}
$$

is an isometric (dense) subspace, whencver α is finitely or cofinitely generated.
Density lemma. Let α be a finitely or cofinitely generated tensornorm, E and F normed spaces, E_{0} and F_{0} dense subspaces of E and F, respectively. If G is a locally convex space and $T \in \mathcal{L}\left(E \otimes_{\pi} F, G\right)$ such that
then
then

$$
\begin{aligned}
\left.T\right|_{E_{0} \otimes F_{0}} & \in \mathcal{L}\left(E_{0} \otimes_{\alpha} F_{0}, G\right) \\
\mathbf{T} & \in \mathcal{L}\left(E \otimes_{\alpha} F, G\right)
\end{aligned}
$$

Proof . Since $E \otimes_{\alpha} F$ is normed and whence a Mackey space it is enough to take $\mathrm{G}=\mathbb{K}$ and $\varphi \in\left(E \otimes_{\pi} F\right)^{\prime}$. The space $E_{0} \otimes_{\alpha} F_{0}$ is a dense isometric subspace of $E \otimes_{\alpha} F$ therefore

$$
\psi:=\widetilde{\left.\varphi\right|_{E_{n} \otimes F_{0}}} \in\left(E \otimes_{\alpha} F\right)^{\prime} \hookrightarrow\left(E \otimes_{\pi} F\right)^{\prime}
$$

and $\varphi=\psi$ on $E_{0} \otimes F_{0}$, and whence $\varphi=\psi$ on $E \otimes_{\pi} F$.
A particularly interesting special case is given in the
Corollary. Let α and β be tensornorms, α finitely or cofinitely generated. If $T_{i} \in \mathcal{L}\left(E_{i}, F_{i}\right)$ and $G_{i} \subset E_{i}$ are dense subspaces such that

$$
\begin{array}{lr}
& \left.T_{1} \otimes T_{2}\right|_{G_{1} \otimes G_{2}} \in \mathcal{L}\left(G_{1} \otimes_{\alpha} G_{2}, F_{1} \otimes_{\beta} F_{2}\right) \\
\text { then } & T_{1} \otimes T_{2} \in \mathcal{L}\left(E_{1} \otimes_{\alpha} E_{2}, F_{1} \otimes_{\beta} F_{2}\right) .
\end{array}
$$

Since

$$
T_{1} \otimes T_{2}: E_{1} \otimes_{\pi} E_{2} \rightarrow F_{1} \otimes_{\pi} F_{2} \rightarrow F_{1} \otimes_{\beta} F_{2}=: G
$$

is continuous, the proof is obvious.

3. DUAL TENSORNORMS

3.1. Given two (separating) dual pairings $\left\langle E_{i}, F_{i}\right\rangle$, then

$$
\begin{array}{ccc}
\left(E_{1} \otimes E_{2}\right) \times\left(F_{1} \times F_{2}\right) & \rightarrow & \mathbb{K} \\
\left(\sum_{n} x_{n}^{1} \otimes x_{n}^{2}, \sum_{m} y_{m}^{1} \otimes y_{m}^{2}\right) & \sim & \sum_{n, m}\left\langle x_{n}^{1}, y_{m}^{1}\right\rangle\left\langle x_{n}^{2}, y_{m}^{2}\right\rangle
\end{array}
$$

gives a dual (separating) pairing. This simplc and natural pairing is sometimes called truce duality for the following reason: for normed spaces G the tracc tr_{G} is defined on the finitedimensional opcrators

$$
\begin{array}{cll}
G^{\prime} \otimes G & = & \mathcal{F}(G, G) \\
z & \sim & \mathrm{~L}_{z}
\end{array}
$$

(see 0.8). Take now \mathbf{M} and N finite-dimensional normed spaces, $u \in \mathbf{M} \otimes N$ and $v \in$ $\mathbf{M}^{\prime} \otimes N^{\prime}$, then the associated lincar operators satisfy

$$
\begin{array}{ll}
L_{u} \in \mathcal{L}\left(M^{\prime}, N\right), & L_{u}^{\prime}=L_{u^{t}} \in \mathcal{L}\left(N^{\prime}, M\right) \\
L_{v} \in \mathcal{L}\left(M, N^{\prime}\right), & L_{v}^{\prime}=L_{v^{t}} \in \mathcal{L}\left(N, \mathbf{M}^{\prime}\right)
\end{array}
$$

and

$$
\begin{aligned}
\langle u, \mathbf{v}) & =\operatorname{tr}_{M^{\prime}}\left(L_{u^{i}}, \mathbf{L}{ }^{\prime \prime}\right)=\operatorname{tr}_{N}\left(L_{u}, L_{v^{u}}\right)= \\
& =\operatorname{tr}_{M^{\prime}}\left(L_{v^{i}} L_{u}\right)=\operatorname{tr}_{N^{\prime}}\left(L_{v} \cdot L_{u^{i}}\right)
\end{aligned}
$$

(this need only be checked on elementary tensors). Note that transposing u means gomg to the dual of L_{u}.
3.2. The purpose of this paragraph is to study the embeddings

$$
\begin{aligned}
& E \otimes F \quad \hookrightarrow\left(E^{\prime} \otimes_{\varepsilon} F^{\prime}\right)^{\prime} \quad \hookrightarrow \quad\left(E^{\prime} \otimes_{\beta} F^{\prime}\right)^{\prime} \\
& E^{\prime} \otimes F^{\prime} \hookrightarrow\left(E \otimes_{\varepsilon} F\right)^{\prime} \hookrightarrow\left(E \otimes_{\beta} \mathbf{F}\right)
\end{aligned}
$$

given by the natural pairing, i.e. the trace duality. For this, dual tensornorms will be introduced - and first constructed on finite-dimensional tensor products $\mathbf{M} \otimes N$; note that

$$
M \otimes N=\left(M^{\prime} \otimes_{\alpha} N^{\prime}\right) \mid \quad M, N \in F I N
$$

Proposition. Let α be a tensornorm on FIN. Then α defined by

$$
\alpha^{\prime}(z ; M, N):=\sup \left\{\mid\langle z, u\rangle \| \alpha\left(u ; \mathbf{M}^{\prime}, \mathbf{N}^{\prime}\right) \leq 1\right\}
$$

for $z \in \mathbf{M} \otimes \mathbf{N}$ is a tensornorm on FIN.
Proof . To apply the criterion in 1.1 (for FIN), observe first that α^{\prime} is a norm, (2) follows from $\varepsilon=\alpha=\pi$ on $\mathbb{K} \otimes \mathrm{IK}$ and (3) from

$$
\left\langle\left(T_{1} \otimes T_{2}\right) z, u\right\rangle=\left\langle z,\left(T_{1}^{\prime} \otimes T_{2}^{\prime}\right) u\right\rangle
$$

In other words:

$$
\mathbf{M} \otimes_{\alpha^{\prime}} \mathbf{N}:=\left(\mathbf{M}^{\prime} \otimes_{\alpha} \mathbf{N}^{\prime}\right)^{\prime}
$$

The finite hull $\overrightarrow{\alpha^{\prime}}$ of α^{\prime} on NORM will bc callcd the dual tensornorm α^{\prime} (on NORM) (the tensornorm α (on FIN or NORM).
3.3. The following properties are obvious:
(1) If $\alpha \leq c \beta$, then $\beta^{\prime} \leq c \alpha^{\prime}$.
(2) $\alpha=\alpha^{\prime \prime}$ on FIN and $\vec{\alpha}=\alpha^{\prime \prime}$.
(3) $\alpha=\alpha^{\prime \prime}$ on NORM if and only if α is finitely generated.

The relation $\varepsilon \leq \mathrm{cr}^{\prime} \leq \pi$ implies for $\alpha=\varepsilon$ by dualization

$$
\varepsilon \leq \pi^{\prime} \leq \varepsilon^{\prime \prime}=\varepsilon
$$

and whence

$$
\pi^{\prime}=\varepsilon \quad \text { and } \quad \varepsilon^{\prime}=\pi
$$

This is part of the duality rclation between the projective and the injective tensornorms mentioned in 1.4.
3.4. Clearly, it is highly desirable to.know whether the following isometric relation for finite-dimensional M and N

$$
M^{\prime} \otimes_{\alpha} N^{\prime} \hookrightarrow\left(M \otimes_{\alpha^{\prime}} N\right)^{\prime}
$$

holds also for infinite-dimensional normed spaces. The answer is given by the duality theorem.

Theorem. Let α be a tensornorm (on FIN). Then for all normed spaces E and F the following natural mappings are isometries:
(1) $E^{\prime} \otimes_{\overleftarrow{\alpha}} F^{\prime} \stackrel{1}{\hookrightarrow}\left(E \otimes_{\alpha^{\prime}} F\right)^{\prime}$
(2) $E^{\prime} \otimes_{\overleftarrow{\alpha}} F \stackrel{1}{\hookrightarrow}\left(E \otimes_{\alpha^{\prime}} F^{\prime}\right)^{\prime}$
(1) $E \otimes_{\overleftarrow{\alpha}} F \stackrel{1}{\longleftrightarrow}\left(E^{\prime} \otimes_{\alpha^{\prime}} F^{\prime}\right)^{\prime}$

Proof . To prove (3), observe first that

$$
\operatorname{FIN}\left(E^{\prime}\right)=\left\{K^{0} \mid K \in \operatorname{COFIN}(E)\right\}
$$

and, for $(K, L) \in \operatorname{COFIN}(E) \times \operatorname{COFIN}(F)$,

$$
\langle z, u\rangle=\left\langle Q_{K}^{E} \otimes Q_{L}^{F}(z), u\right\rangle
$$

if $z \in E \otimes F$ and $u \in K^{0} \otimes L^{0} \subset E^{\prime} \otimes F^{\prime}$. Now, by the valid duality rclation for finitedimensional spaces

$$
\begin{aligned}
\overleftarrow{\alpha}(z ; E, F) & =\sup _{K, L} \alpha\left(Q_{K}^{E} \otimes Q_{L}^{F}(z) ; E / K, F / L\right) \\
& =\sup _{K L \alpha^{\prime}\left(u ; K^{0}, L^{0}\right\rangle<1} \sup _{K}\left|\left\langle Q_{K}^{E} \otimes Q_{L}^{F}(z), u\right\rangle\right|= \\
& =\sup _{\alpha^{\prime}\left(u ; E^{\prime}, F^{\prime}\right)<1}|\langle z, u\rangle|
\end{aligned}
$$

and this is (3). The commutative diagram and the extension lemma

$$
\begin{array}{rccc}
E^{\prime} \otimes_{-\alpha} F & \stackrel{1}{\hookrightarrow} & \left(E^{\prime \prime} \otimes_{\alpha^{\prime}} F^{\prime}\right)^{\prime} & \ni{ }^{\wedge} \varphi \\
& \searrow & J_{1} & \\
& \left(E \otimes_{\alpha^{\prime}} F^{\prime}\right)^{\prime} & \ni & \varphi
\end{array}
$$

imply (2) and (1) follows the same way.

The proof shows that the result is, more or less, a rcformulation of the dchnition of the cotinitc hull. The theorem indicates that the use of $\overleftarrow{\alpha}$ is a helpful device. Since $\overleftarrow{\alpha} \leq \alpha$, it follows that all mappings $\otimes_{\alpha} \rightarrow \ldots$ in the theorcm $\left(\otimes_{\overleftarrow{\alpha}}\right.$ rcplaced by $\left.\otimes_{\alpha}\right)$ are continuous and of norm 1. (Note that, by the theorem, the cofinite hull $\overleftarrow{\alpha}$ is identical with Grothendicek's norm $\|.\|_{\alpha} ; \sec [27]$, p. 11).
3.5. Having this result and $\pi^{\prime}=\varepsilon$ in mind the usual proofs of the characterization of the X -approximation propcrty by the cmbedding

$$
E \otimes_{\pi} F \hookrightarrow\left(E^{\prime} \otimes_{\varepsilon} F^{\prime}\right)^{\prime}
$$

show (sec e.g.[37], p. 409 or [45], p. 315 for $\lambda=1$):
Corollary. For every normcd space E and $\lambda \geq 1$ are equivalent.
(1) E has the X-approximation property.
(2) For every normed space F (or only $F=E^{\prime}$)

$$
\pi(\cdot ; E, F) \leq \lambda \overleftarrow{\pi}(\because E, F)
$$

In particular: $\pi=\overleftarrow{\pi}$ on $E \otimes E^{\prime}$ if and only if E has the metric approximation property.
3.6. For every tensomorm α on NORM the relation $\overleftarrow{\alpha} \leq \alpha \leq \vec{\alpha}$ holds. α is called right-accessible (shortly (r)-accessible) if

$$
\overleftarrow{\alpha}(\cdot ; M, F)=\vec{\alpha}(\cdot ; M, F)
$$

whenever $(\mathbf{M}, \mathbf{F}) \in \mathbf{F I N} \times \mathbf{N O R M}$ left-accessible $\left(=(\ell)\right.$-accessible) if α^{t} is rightaccessible and accessible if it is right- and left- accessible. α is called totally accessible, if

$$
\overleftarrow{\alpha}=\vec{\alpha}
$$

i.e. if α is finitely and cofinitely generated. ε is totally accessible (this was already mentioned in 1.3) and π is accessible: This follows from the isometries

$$
M \otimes_{\pi} E \stackrel{1}{\hookrightarrow}\left(M \otimes_{\pi} E\right)^{\prime \prime} \stackrel{1}{=}\left(\mathcal{L}\left(M, E^{\prime}\right)\right)^{\prime} \stackrel{1}{=}\left(M^{\prime} \otimes_{\varepsilon} E^{\prime}\right)^{\prime}
$$

and the duality theorem 3.4 ; but π is not totally accessible by 3.5 . It will be shown in $\S 9$ that all $\alpha_{p q}$ are accessible and all $\alpha_{p q}^{\prime}$ are totally accessible.

Problem. Is every finitely generated tensornorm accessible?
This problem seems to be hard, since, by the approximation lemma, the non-accessibility of a tensornorm appears only on spaces without the metric approximation property. (In view of this problem it is suange to define right -accessible tensomorms; we do this in order to make some results «smoother» and since there are parallel notions for Banach-operator ideals, see §9).

Proposition. Let α be a tensornorm on NORM
(1) α is right-accessible if and only if α^{\prime} is right-accessible.
(2) If α is accessible, then the transposed tensornorm α^{t}, the dual tensornorm α^{\prime} and the adjoint (or contragradient) tensornorm $\alpha^{*}:=\left(\alpha^{t}\right)^{\prime}=\left(\alpha^{\prime}\right)^{t}$ are accessible.

If α is totally accessible, α^{\prime} is accessible, but not necessarily totally accessible (for example $\alpha=\varepsilon$).

Proof . Clearly only (1) has to bc shown: Since, by theorem 3.4

$$
M^{\prime} \otimes_{\vec{\alpha}} F^{\prime}=M^{\prime} \otimes_{\overleftarrow{\alpha}} F^{\prime}=\left(M \otimes_{\alpha^{\prime}} F\right)^{\prime}
$$

for finite-dimensiona1 M. it follows that

$$
M \otimes_{\vec{\alpha}} F=M \otimes_{\alpha^{\prime}} F \stackrel{1}{\hookrightarrow}\left(M \otimes_{\alpha^{\prime}} F\right)^{\prime \prime}=\left(M^{\prime} \otimes_{\alpha^{\prime \prime}} F^{\prime}\right)^{\prime}
$$

holds isometrically; whence $\overrightarrow{\alpha^{\prime}}=\overleftarrow{\alpha^{\prime}}$ on $\mathbf{M} \otimes \mathbf{F}$ by 3.4.
3.7. Summarizing the dchnitions and results of this paragraph (and using the approximation lemma) the relations

$$
E \otimes_{\alpha} F=E \otimes_{\overleftarrow{\alpha}} F \quad \text { and } \quad E \tilde{\otimes}_{\alpha} F \stackrel{1}{\hookrightarrow}\left(E^{\prime} \otimes_{\alpha^{\prime}} F^{\prime}\right)^{\prime}
$$

hold isometrically in each of the following three cases:
(1) E and F have the metric approximation property.
(2) α is right-accessible and E has the metric approximation property.
(2') α is left-accessiblel and F has the mctric approximation property.
(3) α is totally accessiblc.

So, «two ingredients» are nccessary to have the «good» relation between α and α^{\prime}. For the bounded approximation property the relations would hold isomorphically.

4. TENSORNORMS AND OPERATOR IDEALS

4.1. If $[\mathbf{d}, \mathbf{A}]$ is Banach operator ideal, then

$$
\mathrm{M} \otimes_{\alpha} \mathrm{N}:=\mathrm{d}\left(\mathbf{M}^{\prime}, \mathrm{N}\right)
$$

defines a tensomorm on $F I \dot{N}$; in other words: if $z \in \mathbf{M} \otimes \mathbf{N}$ and $T_{z} \in \mathcal{L}\left(\mathbf{M}^{\prime}, N\right)$ is the associated operator, then

$$
\alpha(z ; \mathbf{M}, \mathbf{N}):=A\left(T_{z}: \mathbf{M}^{\prime} \rightarrow \mathbf{N}\right)
$$

The fact that α is a tensomorm on FIN can be checked easily: the idcal property of d corresponds to the metric mapping property of α
4.2. Vice-versa: if α is a tensomorm on FIN, define [d, A] for finite-dimensiona1 spaces $M, \mathrm{~N}$ by

$$
\begin{align*}
\mathcal{A}(\mathbf{M}, N) & :=M^{\prime} \otimes_{\alpha} \mathbf{N} \\
\mathbf{A}(\mathbf{T}) & :=\alpha\left(z_{T} ; \mathbf{M}^{\prime}, \mathbf{N}\right)
\end{align*}
$$

and extend this to all Banach spaces \mathbf{E} and \mathbf{F} by defining $\mathrm{T} \in \mathrm{d}(\mathbf{E}, \mathbf{F})$ if and only if

$$
\mathbf{A}(\mathbf{T}):=\sup \left\{A\left(Q_{K}^{F} \circ T \circ I_{N}^{E}\right) \mid N \in F I N(E), K \in \operatorname{COFIN}(F)\right\}<\infty
$$

It is easily seen that $[\mathcal{A}, A]$ is a Banach operator ideal which, by [60], 8.7.5, is even maximal. Since maximal Banach operator ideals $[\mathcal{A}, A]$ and finitely generated tensomorms α are uniquely determined by their «behaviour» on finite-dimensional spaces the

Definition. A maximal Banach operator ideal $[\mathcal{A}, A]$ and a jnitely generated tensornorm α on NORM are called associated, in symbols:

$$
[\mathcal{A}, A] \sim \alpha
$$

iffor all $\mathbf{M}, \mathbf{N} \in \operatorname{FIN}$

$$
\mathcal{A}(M, N)=M^{\prime} \otimes_{\alpha} \mathbf{N}
$$

establishes (via (\star) and ($* *$)) a one-to-one correspondence behven maximal Banach operator ideals and jnitely generated tensornorm. This link between the theory of operator ideals and the metric theory of tensor products is very fruitful for both theories.
4.3. Ila maximal operator ideal \mathcal{A}, A and a finitcly gencrated tensornorm are associated, then

$$
\mathcal{A}(M, N)=M^{\prime} \Theta_{\alpha} N=\left(M \otimes_{\alpha} \mathrm{N}^{\prime}\right)^{\prime} \quad M, N \in F I N
$$

holds isometrically. The externsion of this to infinite-dimensional spaces, the representation theorem for maximal opcrator ideals is hasic.

Theorem. Lel $\mid \mathcal{A}, A] \sim \alpha$. Then. for all Banach spaces \mathbf{E} und \mathbf{F}

$$
A\left(F, F^{\prime}\right)=\left(E \otimes_{\alpha^{\prime}} F\right)^{\prime}
$$

isometricallg
und

$$
\mathcal{A}(E, F)=\left(E \otimes_{\alpha^{\prime}} F^{\prime}\right)^{\prime} \cap \mathcal{L}(E, F) \quad \text { isometrically }
$$

This shows $\varepsilon \sim \mathcal{L}$ (the ideal of all opcrators) which, of course, was already clear from the definition, and $\pi \sim \mathcal{I}$, the ideal of integral opcrators (sec e.g. the dcfinitions [45], p. 304 of integral opcrators); the latter example explains why the opcrators in \mathbf{d} are sometimes called α-integral operators.

The theorem is due to Lotz [55]. His approach to tensomorms was different from ours and vcry influential to the devclopment of the theory of operator ideals: He took, more or less, the rcpresentation theorem as a definition for tensomorms and pointed this way at the one-to-one corrcspondence between maximal normcd operator ideals and tcnsomorms.

Proof . The second formula will bc proved first, i.e. it is to show for $\mathbf{T} \in \mathcal{L}(E, \mathbf{F})$ that $\mathrm{T} \in \mathrm{d}(E, \mathbf{F})$ if and only if

$$
\mathbf{B}_{\kappa_{F^{\circ} T} T} \in\left(E \otimes_{\alpha^{\prime}} F^{\prime}\right)^{\prime}
$$

(with equa1 norms). But this is easy: $\mathbf{T} \in \mathrm{d}(\mathbf{E}, \mathbf{F})$ and $\mathbf{A}(\mathbf{T}) \leq \mathrm{c}$ iff

$$
A\left(Q_{L}^{F} \circ T \circ I_{M}^{E}\right) \leq c
$$

for all $(M, L) \in F I N(E) \times \operatorname{COFIN}(F)$, iff (by $\left.\mathcal{A}(M, F / L)=\left(M \otimes_{\alpha^{\prime}} L^{0}\right)^{\prime}\right)$ for all $z \in M \otimes L^{0}$

$$
\left|\left\langle B_{\kappa_{F} \circ T}, z\right\rangle\right|=\left|\left\langle B_{Q_{L}^{F} \circ T \circ I E}, z\right\rangle\right| \leq c \alpha^{\prime}\left(z ; M, L^{0}\right) .
$$

This implies the result, since α^{\prime} is finitely generated. To see the first formula just look at the diagram

$$
\begin{array}{ccc}
\varphi \in\left(E \otimes_{\alpha^{\prime}} F\right)^{\prime} & \hookrightarrow & \left(E \otimes_{\pi} F\right)^{\prime}=\mathcal{L}\left(E, F^{\prime}\right) \\
\mathfrak{l}_{1} & \% & \downarrow \\
\varphi^{\wedge} \in\left(E \otimes_{\alpha} F^{\prime \prime}\right)^{\prime} & \hookrightarrow & \left(E \otimes_{\pi} F^{\prime \prime}\right)^{\prime}
\end{array}
$$

and the extcnsion lemma.
4.4. This theorem has various direct consquences

Corollary 1. If $[A, A] \sim \alpha$, then

$$
\begin{array}{ll}
E^{\prime} \otimes_{\overleftarrow{\alpha}} F^{\prime} \stackrel{1}{\hookrightarrow} \mathcal{A}\left(E, F^{\prime}\right) & \text { isometrically } \\
E \otimes_{\overleftarrow{\alpha}} \dot{F} \stackrel{1}{\hookrightarrow} \mathcal{A}\left(E^{\prime}, F\right) & \text { isometrically } \\
E^{\prime} \otimes_{\overleftarrow{\alpha}} F \stackrel{1}{\hookrightarrow} \mathcal{A}(E, F) & \text { isometrically }
\end{array}
$$

This follows from the duality theorem 3.4 abour tensomorms and will be referred to as the embedding theorem. Looking at

$$
\mathcal{A}(E, F) \hookrightarrow\left(E \otimes_{\alpha} F^{\prime}\right)^{\prime}=\mathcal{A}\left(E, F^{\prime \prime}\right)
$$

gives the following result (which is clearly well-known from «pure» operator theory).
Corollary 2. Maximal Banach operator ideals [A, A] are regular, i.e. $T \in A(E, F)$ ifand only if κ_{F} o $T \in \boldsymbol{A}(E, F$ "). In this case:

$$
A(T)=A\left(\kappa_{F} \circ T\right)
$$

The diagram

$$
\begin{array}{ccc}
T \in \mathcal{L}(E, F) & \hookrightarrow\left(E \otimes_{\pi} F^{\prime}\right)^{\prime} \ni \varphi \\
\downarrow & \% & \downarrow \\
T^{\prime \prime} \in \mathcal{L}\left(E^{\prime \prime}, F^{\prime \prime}\right) & = & \left(E^{\prime \prime} \otimes_{\pi} F^{\prime}\right)^{\prime} \ni^{\wedge} \varphi
\end{array}
$$

(and the extension lemma) implies the (again well-known)
Corollary 3. Let $[A, A]$ be a maximal Banach operator ideal, then $T \in A(E, F)$ if and only if $T^{\prime \prime} \in A\left(E^{\prime \prime}, F^{\prime \prime}\right)$. In this case:

$$
A(T)=A\left(T^{\prime \prime}\right)
$$

4.5. The following diagram commutes

$$
\begin{aligned}
& T \in \mathcal{L}(E, F) \hookrightarrow\left(E \otimes_{\pi} F^{\prime}\right)^{\prime} \ni \varphi \\
& \downarrow 1 \\
& T^{\prime} \in \mathcal{L}\left(F^{\prime}, E^{\prime}\right)= \\
&\left(F^{\prime} \otimes_{\pi} E\right)^{\prime} \ni \varphi^{t}
\end{aligned}
$$

Hence, if $\alpha \sim[\mathcal{A}, \mathrm{Al}$ and if $[\mathcal{B}, B]$ is the unique maximal-Banach operator ideal associated with α^{t}, then, by the representation thcorem for maximal operator ideals.

$$
\begin{aligned}
\mathcal{B}(E, F) & =\left(E \otimes_{\left(\alpha^{\prime}\right)^{\prime}} F^{\prime}\right)^{\prime} \cap \mathcal{L}(E, F) \\
& =\left\{T \in \mathcal{L}(E, F) \mid B_{T^{\prime}} \in\left(F^{\prime} \otimes_{\alpha^{\prime}} E\right)^{\prime}\right\} \\
& =\left\{T \in \mathcal{L}(E, F) \mid T^{\prime} \in \mathcal{A}\left(\mathrm{F}^{\prime}, \mathrm{E}^{\prime}\right)\right\}
\end{aligned}
$$

holds isometrically, i.e., $\mathrm{T} \in \mathcal{B}(E, \mathrm{~F})$ iff $\mathrm{T}^{\prime} \in \mathrm{d}\left(\mathrm{F}^{\prime}, E^{\prime}\right)$ and $\mathrm{B}(\mathrm{T})=A\left(T^{\prime}\right)$. This means that $[\mathcal{B}, B]$ coincides with the dual Banach idcal $\left[\mathcal{A}^{\text {dual }}, A^{\text {dual }}\right]$ of $[\mathrm{d}, \mathrm{A}]$ defined by Pietsch [60], 8.2.1. Note that the proof included that $\mathcal{A}^{\text {dual }}$ is maximal.

If $[\mathcal{D}, D]$ is the maximal Banach ideal associated with $\alpha^{*}=\left(\alpha^{t}\right)^{\prime}$, then for all $\mathrm{M}, \mathrm{N} \in$ FIN the trace duality gives the isometric equalitics

$$
\begin{gathered}
\mathcal{D}(M, N)=M^{\prime} \otimes_{\alpha^{\prime}} . N=\left(N^{\prime} \otimes_{\alpha} M\right)^{\prime}= \\
\begin{array}{c}
\mathrm{w} \\
\mathrm{~T}
\end{array}
\end{gathered}
$$

Therefore, $\mathrm{T} \in \mathcal{D}(E, F)$ iff

$$
\begin{aligned}
\mathrm{D}(\mathrm{~T}) & =\sup \left\{D\left(Q_{L}^{F} T I_{M}^{E}\right) \mid M \in F I N(E), L \in \operatorname{COFIN}(F)\right\} \\
& =\sup \left\{\left|\mathrm{tr}_{F / L}\left(Q_{L}^{F} T I_{M}^{E} S\right)\right| \quad \mathrm{M} \ldots \mathrm{~N} \ldots A(S: F / L \rightarrow M) \leq 1\right\}
\end{aligned}
$$

which implies that $[\mathcal{D}, D]$ and the adjoint Banach ideal $\left[\mathcal{A}^{*}, A^{*}\right]$ of $[\mathcal{A}, A]$ in the sense of Pietsch [60], 9.1 are identical.

Proposition. If $\alpha \sim[\mathrm{d}, A]$, then
(1) $\alpha^{t} \sim\left[. A^{\text {dual }}, A^{\text {dual }}\right]$; in particular: T is α^{t}-integral if and only if T^{\prime} is α-integral.
(2) $\alpha^{*} \simeq\left[\mathcal{A}^{*}, A^{*}\right]$
(3) $\left[\mathcal{A}^{* *}, A^{* *}\right]=[\mathcal{A}, A]$.

The last result follows form (2) and $\alpha^{* *}=\alpha$. Note that $\alpha^{\text {tt }}=\alpha \operatorname{gives}\left(\mathcal{A}^{\text {dual }}\right)^{\text {dual }}=\mathcal{A}$ and this is another proof of corollary 3.
4.6. Let $p, q \in[1, \infty]$ with $\frac{1}{p}+\frac{1}{q}>1$ and define $r \in[1, \infty]$ by $\frac{1}{r}:=\frac{1}{p}+\frac{1}{q}-1$. It was proved in 1.6 that for ali $M, N \in F I N$ and $\mathrm{T} \in \mathcal{L}(\mathrm{M}, \mathrm{N})$

$$
\alpha_{p, q}\left(z_{T} ; M^{\prime}, N\right):=\inf \ell_{r}\left(\lambda_{i}\right) w_{q^{\prime}}\left(\varphi_{i}\right) w_{p^{\prime}}\left(y_{i}\right)
$$

where the infimum is taken over all finite or infinite series representations $T=\sum \lambda_{i} \varphi_{i} \otimes y$, (convcrgence in $\mathcal{L}(M, N)$). Hence by [60], 18.1.1 and 18.4.1

$$
M^{\prime} \otimes_{\alpha_{p, q}} N=\mathcal{N}_{r, p, p}(N, M)
$$

where $\left[\mathcal{N}_{r, p, q}, N_{r, p, q}\right.$] denotes the ideal of all (r, p, q)-nuclear operators. By detinition (see [60], 19.4.1) the maximal Banach ideal $\left[\mathcal{L}_{p, q}, L_{p, q}\right]$ of all (p, q) -factorable operators coincides with $\mathcal{N}_{r, p, q}$ on finite-dimensiona1 Banach spaces and whence is the unique maximal ideal associated with $\alpha_{p q}$, i.e.,

$$
\left[\mathcal{L}_{p, q}, L_{p q}\right] \sim \alpha_{p, q}
$$

Special cases are

$$
\begin{aligned}
{\left[\mathcal{L}_{p}, L_{p}\right] } & :=\left[\mathcal{L}_{p, p^{\prime}}, L_{p, p^{\prime}}\right] \sim \alpha_{p, p^{\prime}}=w_{p} \\
{\left[\mathcal{I}_{p}, I_{p}\right] } & :=\left[\mathcal{L}_{p, 1}, I_{p, 1}\right] \sim \alpha_{p, 1}=g_{p}
\end{aligned}
$$

the ideals of all p-factorable and p-integral operators (see [60], 19.2.1 and 19.3.2). $\mathcal{I}_{1}=$ $\mathcal{I} \sim \pi=g_{1}$ are the usual integral operators.

The following important factorization theorems are proved by ultra product techniques (see [60], 19.2.6, 19.3.7, 19.3.9 and 19.4.6):

If $\frac{1}{p}+\frac{1}{q}>1$, then $T \in \mathcal{L}_{p, q}(E, F)$ if and only if there are a probability space (Ω, μ) and operators $R \in \mathcal{L}\left(E, L_{q^{\prime}}(\mu)\right)$ and $S \in \mathcal{L}\left(L_{p}(\mu), F^{\prime \prime}\right)$ such that

$$
\begin{array}{rlr}
E \xrightarrow{T} F \stackrel{\kappa_{F}}{\hookrightarrow} & F^{\prime \prime} & \\
R \downarrow & \uparrow S & \\
L_{q^{\prime}}(\mu) \stackrel{I_{p, g}}{\longrightarrow} & L_{p}(\mu) & \left(I_{p, q}\right. \text { the canonica1 } \\
& & \\
\text { embedding })
\end{array}
$$

In this case $L_{p, q}(T)=\inf \|R\|\|S\|$.
Note that this gives in particular the factorization theorem for the p-integral operators ($\mathcal{I}_{p}=\mathcal{L}_{p, 1}$ if $1 \leq \mathrm{p}<\infty$). For the p -factorable operators the following factorization holds:
$T \in \mathcal{L}_{p}(E, F)=\mathcal{L}_{p, p^{p}}(E, F) \quad(1 \leq p \leq C 0)$ iff there is a (strictly localizable) measurespace (Ω, μ) and appropriate operators R and S with

Again: $L,(T)=\inf \|R\|\|S\|$.
It is easy to sec that for $\mathrm{p}=2$ in these statements the operator S can be chosen $L_{2} \rightarrow F$ thus avoiding the bidual. So \mathcal{L}_{2} is the ideal of operators factoring through a Hilbert space: $\mathcal{L}_{2} \sim w_{2}$.
4.7. For $p, q \in[1, \infty]$ with $\frac{1}{\mathrm{P}}+\frac{1}{q} \leq 1$ define $r \in[1, \infty]$ by $\frac{1}{r}:=\frac{1}{\mathrm{P}}+\frac{1}{q}$. In particular, $\frac{1}{\mathrm{P}},+\frac{1}{q^{\prime}} \geq 1$ and $\frac{1}{r^{\prime}}+\frac{1}{p}+\frac{1}{q}=1$. Then for every $T \in \mathcal{L}(E, F)$

$$
\mathrm{B}_{\kappa_{\mathrm{F}} \mathrm{O} T} \in\left(E \otimes_{\alpha_{\mathrm{f}, \mathrm{p}}} F^{\prime}\right)^{\prime}
$$

iff

$$
\sup \left\{\left|\sum_{i=1}^{n} \lambda_{i}\left\langle T x_{i}, \varphi_{i}\right)\right| \mid \ell_{r^{\prime}}\left(\lambda_{i}\right) \leq 1, w_{p}\left(x_{i}\right) \leq 1, w_{q}\left(\varphi_{i}\right) \leq 1\right\}<\infty,
$$

and in this case the latter supremum equals $\left|\left|B_{\kappa_{F} O T}\right| \ldots\right.$.... Hence, by the representation theorem for maximal operator ideals (and Holder's inequality), an operator $T \in \mathcal{L}(E, F)$ belongs to the maximal Banach ideal

$$
\left[\mathcal{D}_{p, q}, D_{p q}\right] \sim \alpha_{q^{\prime}, p^{\prime}}^{\prime}=\alpha_{p^{\prime}, q^{\prime}}^{*}
$$

if and only if there is a constant $c \geq 0$ such that for all $x_{1}, \ldots, x_{n} \in E$ and $\varphi_{1}, \ldots, \varphi_{n} \in F^{\prime}$

$$
\ell_{r}\left(\left\langle\varphi_{i}, T x_{i}\right\rangle\right) \leq c w_{p}\left(x_{i}\right) w_{q}\left(\varphi_{i}\right),
$$

and moreover $D_{p, q}(T)=\inf \mathrm{c}$. Operators satisfying such inequalities are defined in [60], 17.4.1 and called (p, q) -dominated. Important special cases are

$$
\left[\mathcal{D}_{p}, D_{p}\right]:=\left[\mathcal{D}_{p, p^{\prime}}, D_{p, p^{\prime}}\right] \sim \alpha_{p^{\prime}, p}^{*}=w_{p^{\prime}}^{*}=w_{p}^{\prime}
$$

the p-dominated operators, and

$$
\left[\mathcal{P}_{p}, P_{p}\right]:=\left[\mathcal{D}_{p, \infty}, D_{p, \infty}\right] \sim \alpha_{p^{\prime}, 1}^{*}=g_{p^{\prime}}^{*}=d_{p^{\prime}}^{\prime}
$$

that absolutdy-p-surming operators (note $\mathcal{P}_{\infty}=\mathcal{L}$).
By Proposition 4.5 it is obvious that
Proposition. If $\underset{\mathrm{P}}{\underline{1}} \underset{q}{\underset{\sim}{\underset{1}{1}} \underset{1}{ } \text {, then }}$

$$
\begin{array}{ll}
\mathcal{L}_{p, q}^{*}=\mathcal{D}_{p^{\prime}, q^{\prime}} & \text { isometrically } \\
\mathcal{I}_{p}^{*}=\mathcal{P}_{p^{\prime}} & \text { isomatrically }
\end{array}
$$

4.8. There is an integral characterization of ($p, q)$-dominated operators due to Kwapien which is an extension of the Grothendieck-Pietsch-domination theorem ([60], 17.3.2)

$$
T \in \mathcal{P}_{p}(E, F) \quad\|T x\|^{p} \leq c \int_{B_{E^{\prime}}}\left|\left\langle x^{\prime}, x\right\rangle\right|^{p} \mu\left(\mathrm{~d} x^{\prime}\right)
$$

and basic for the applications of the theory. For bilinear forms it reads as follows:

Let $\varphi \in(E \otimes F)^{*}$. Then

$$
\left.\varphi \in\left(E \otimes_{\alpha_{p A}} F\right)^{\prime} \quad \text { (i.e. } L_{\varphi} \in \mathcal{D}_{q^{\prime}, p^{\prime}}\left(E, \mathbf{F}^{\prime}\right)\right)
$$

if and only if there are $\mathbf{c} \geq \mathbf{0}$ and Borel probability measures μ on $B_{E^{\prime}}$ and ν on $B_{F^{\prime}}$ such thatfor all $x \in E$ and $y \in F$

$$
|\langle\varphi, x \otimes y\rangle| \leq c\left(\int_{B_{E^{\prime}}}\left|\left\langle x^{\prime}, x\right\rangle\right|^{q^{\prime}} \mu\left(\mathrm{d} x^{\prime}\right)\right)^{\frac{1}{q^{\prime}}}\left(\int_{B_{F^{\prime}}}\left|\left\langle y^{\prime}, y\right\rangle\right|^{p^{\prime}} \nu\left(\mathrm{d} y^{\prime}\right)\right)^{\frac{1}{p^{\prime}}}
$$

In this case $\|\varphi\|_{. . .}=\inf \mathrm{c}$.

For $\mathbf{q}^{\prime}=\infty\left(\right.$ or $\left.\mathrm{p}^{\prime}=\infty\right)$ the integrals have to be replaced by $\|x\|($ or $\|y\|)$; this is just the case of L_{φ} (or its dual) being absolutely-p'-summing (or absolutely-q'-summing). The proof of this result is the same as in [60], 17.4.2.

A relatively simple consequences of this is (see [60], 17.4.3).
Kwapien's factorization theorem. For $\frac{1}{\mathbf{P}}+\frac{\mathbf{1}}{q} \leq 1$

$$
\mathcal{D}_{p, q}=\mathcal{P}_{q}^{\text {dual }} \circ \mathcal{P}_{p}
$$

isometrically
4.9. It is good to have a list about the tensomorm and their associated operator ideals. Let $p, q \in[1, \infty]$ with $\frac{1}{\mathrm{P}}+\frac{1}{q} \geq 1$,then

$$
\begin{array}{ll}
\varepsilon \sim \mathcal{L} & \text { all operators } \tag{1}\\
\pi \sim \mathcal{I}=\mathcal{I}_{1}=\mathcal{L}_{1.1}=\mathcal{L}^{*} & \text { integral operators }
\end{array}
$$

$$
\begin{align*}
& \alpha_{p, q} \sim \mathcal{L}_{p, q} \tag{2}\\
& \alpha_{p, q}^{*} \sim \mathcal{D}_{p^{\prime}, q^{\prime}}=\mathcal{L}_{p, q}^{*} \\
& w_{p} \sim \mathcal{L}_{p}=\mathcal{L}_{p, p^{\prime}} \tag{3}\\
& w_{p}^{*} \sim \mathcal{D}_{p^{\prime}}=\mathcal{D}_{p^{\prime}, p}=\mathcal{L}_{p}^{*} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& w_{p} \sim \mathcal{L}_{p}=\mathcal{L}_{p, p^{\prime}} \\
& w_{p}^{*} \sim \mathcal{D}_{p^{\prime}}=\mathcal{D}_{p^{\prime}, p}=\mathcal{L}_{p}^{*}
\end{aligned}
$$

(p, q) -factorable operators
(p^{\prime}, q^{\prime}) -dominated operators
p-factorable operators
p'-dominated operators
p-integral operators
absolutely-p-summing operators
(with $\mathcal{P}_{\infty}:=\mathcal{L}$)
4.10. It is an essential goal of the theory to compare different tensomorms/maximal operator ideals. The very definition of $[\mathrm{d}, A] \sim \alpha$ (by finite-dimensional spaces) implies the

Remarkl. Let $[\mathcal{A}, A] \sim \alpha,[\mathcal{B}, B] \sim \beta$ and $c \geq 0$. Then:

$$
\alpha \leq c \beta \quad \text { if and only if } \quad A(\cdot) \leq c B(\cdot) .
$$

inthiscase: $\mathcal{B} \subset \mathcal{A}$.
For example, $\alpha_{p, q} \leq c_{p, q} w_{2}$ if $\left.p, q \in\right] l, \infty[$ (see 1.8) implies

$$
\mathcal{L}_{2} \subset \mathcal{L}_{p, q} \quad \text { and } \quad \mathcal{D}_{p, q} \subset \mathcal{D}_{2}
$$

and $\alpha_{p, q}=\alpha_{q, p}^{t}$ for all $p, q \in[1, \infty]$ gives, togehter with 4.5,

$$
\mathcal{L}_{p, q}^{\text {dual }}=\mathcal{L}_{q, p}=\mathcal{L}_{q, p} \quad \text { and } \quad \mathcal{D}_{p, q}^{\text {dual }}=\mathcal{D}_{q p}
$$

The factorization theorems for \mathcal{I}_{p} and \mathcal{P}_{p} imply

$$
\begin{array}{lll}
\mathcal{I}_{p} \subset \mathcal{P}_{p} & \text { and } & P_{p}(\cdot) \leq I_{q}(\cdot) \\
\mathcal{P}_{2} \subset \mathcal{L}_{2} & \text { and } & L_{2}(\cdot) \leq P_{2}(\cdot)
\end{array}
$$

whence

$$
\begin{array}{ll}
g_{p^{\prime}}^{*} \leq g_{p} & \text { for } 1 \leq \mathrm{p} \leq \infty \\
w_{2} \leq g_{2}^{*} \leq w_{2}^{*} &
\end{array}
$$

where the latter inequality follows from $\alpha_{2,1} \geq \alpha_{2}$ which in turn implies

$$
\mathcal{D}_{2} \subset \mathcal{P}_{2} \quad \text { and } \quad P_{2}(\cdot) \leq D_{2}(\cdot)
$$

Very interesting phenomena occur from estimates on special Banach spaces. The representation theorem for maximal operator ideals and its corollary 1

$$
E^{\prime} \otimes_{\overleftarrow{\alpha}} F^{\prime} \hookrightarrow \mathcal{A}\left(E, F^{\prime}\right) \stackrel{1}{=}\left(E \otimes_{\alpha^{\prime}} F\right)^{\prime}
$$

imply the

Remark 2. Let $[\mathcal{A}, A] \sim \alpha$ und $[\mathcal{B}, B] \sim \beta$ be associated, $c \geq 0$ and E and F Banach spaces. Consider the following conditions:
(a) $\beta^{\prime} \leq \mathrm{CQ}$ ' on $E \otimes F$
(b) $\mathcal{B}\left(E, F^{\prime}\right)$ с $\mathcal{A}\left(E, F^{\prime}\right)$ und $A(\cdot) \leq c B(\cdot)$ on $\mathcal{B}\left(E, F^{\prime}\right)$
(c) $\overleftarrow{\alpha} \leq c \overleftarrow{\beta}$ on $E^{\prime} \otimes F^{\prime}$

Then
(1) (a) \curvearrowleft (b) \curvearrowright (c)
(2) If E^{\prime} and F^{\prime} have the metric approximation propcrty, or: α and β are accessible and E^{\prime} or F^{\prime} has the metric approximation property then: (a) \curvearrowleft (b) \curvearrowleft (c).
(2) is a conscquence of

$$
E \otimes_{\gamma^{\prime}} F \hookrightarrow\left(E^{\prime} \otimes_{\gamma} F^{\prime}\right)^{\prime}=\left(E^{\prime} \otimes_{\overleftarrow{\gamma}} F^{\prime}\right) \mid \quad \gamma=\alpha \quad \text { or } \quad \beta
$$

which holds under the given conditions by the duality results of 93 . Clearly, if $\mathcal{B}\left(E, F^{\prime}\right) \subset$ $\mathrm{d}\left(E, F^{\prime}\right)$ the closed graph thcorcm gives a constant $\mathrm{c} \geq 0$ satisfying (b).

Thesc two remarks are essential for the interplay between the theorics of tensornorms and operator ideals; they will be refcrred to as the «transfer argument». Note that (2) includes conditions under which the full dualization holds:

$$
\alpha \leq c \beta \quad \text { on } \quad E^{\prime} \otimes F^{\prime} \quad \text { iff } \quad \beta^{\prime} \leq c \alpha^{\prime} \quad \text { on } \quad E \otimes F
$$

5. FURTHER TENSOR PRODUCT CHARACTERIZATIONS OF MAXIMAL OPERATOR IDEALS

5.1. There are very useful characterizations of a-integrai operators $T \in \mathcal{L}(\mathbf{E}, \mathbf{F})$ in terms of tensor product mappings

$$
T \otimes \mathrm{id}_{G}: E \otimes G \rightarrow F \otimes G
$$

with appropriate tensomorms. There are three simple formulas (check on elementary tensors) which connect $\mathbf{T} \in \mathcal{L}(\mathbf{E}, \mathbf{F})$ and $\mathbf{T} \otimes$ id ${ }_{G}$ (remember the notation B_{S} and L_{φ} from 0.7).
(1) For $\varphi \in\left(F \otimes_{\pi} G\right)^{\prime}$ and $z \in E \otimes G$

$$
\left\langle B_{L_{\varphi} \circ T}, z\right\rangle=\left\langle\varphi, T \otimes \mathrm{id}_{G}(z)\right\rangle
$$

(2) For $z \in \mathbf{E} \otimes \mathbf{F}^{\prime}$

$$
\left\langle B_{\kappa_{F} \circ T}, z\right\rangle=\left\langle\mathrm{t}_{F}, T \otimes \mathrm{id}_{F^{\prime}}(z)\right\rangle=\left\langle\mathrm{t}_{E}, \mathrm{id}_{E} \otimes T^{\prime}(z)\right\rangle
$$

(3) For $\varphi \in\left(\mathbf{G} \otimes_{\pi} \mathbf{E}^{\prime}\right)^{\prime}$ and $z \in \mathbf{G} \otimes F^{\prime}$

$$
\left\langle B_{T^{\prime \prime} \circ L_{\boldsymbol{v}}}, z\right\rangle=\left\langle\varphi, \mathrm{id}_{G} \otimes T^{\prime}(z)\right\rangle .
$$

5.2. The first of the announced characterizations is the

Theorem. Let $[\mathrm{d}, \mathrm{A}] \sim \alpha$ and $\mathbf{T} \in \mathcal{L}(\mathbf{E}, \mathbf{F})$. Then the following statements are equivaIeni:
(1) $T \in \mathcal{A}(E, F)$
(2) For all Banach spaces \mathbf{G} (or only $\mathbf{G}=\mathbf{F}$ or $\mathbf{G}=\mathbf{L}$ with $\mathrm{L}^{\prime}=\mathrm{F}$ isometrically)

$$
\mathbf{T} \otimes \mathrm{id}_{G}: E \otimes_{\alpha} G \rightarrow F \otimes_{\pi} G
$$

is continuous.
(3) For all Banach spaces G (or only G = E)

$$
T^{\prime} \otimes \operatorname{id}_{G}: F^{\prime} \otimes_{\alpha^{*}} G \rightarrow E^{\prime} \otimes_{\pi} G
$$

is continuous.
In this case

$$
\begin{aligned}
& \mathbf{A}(\mathbf{T})=\left\|T \otimes \operatorname{id}_{F^{\prime}}: \otimes_{\alpha^{\prime}} \rightarrow \otimes_{\pi}\right\| \geq\left\|T \otimes \mathrm{id},: \otimes_{\alpha^{\prime}} \rightarrow \otimes_{\pi}\right\| \\
& \mathbf{A}(\mathbf{T})=\left\|T^{\prime} \otimes \operatorname{id}_{E}: \otimes_{\alpha^{*}} \rightarrow \otimes_{\pi}\right\| \geq\left\|T^{\prime} \otimes \mathrm{id}_{G}: \otimes_{\alpha^{\prime}} \rightarrow \otimes_{\pi}\right\|
\end{aligned}
$$

Proof:

(1)
$\curvearrowright(2):$ If $\mathrm{T} \in \mathrm{d}(E, F)$, then, by formula (1) and the representation theorem for maximal operator ideals,

$$
\left|\left\langle\varphi, T \otimes \operatorname{id}_{G}(z)\right\rangle\right| \leq A\left(L_{\varphi} \circ T\right) \alpha^{\prime}(z ; E, G) \leq\|\varphi\| A(T) \alpha^{\prime}(z ; E, G)
$$

for all $\varphi \in\left(F \otimes_{\pi} G\right)$ ' which shows:

$$
\pi\left(T \otimes \mathrm{id}_{G}(z) ; F, G\right) \leq A(T) \alpha^{\prime}(z ; E, G)
$$

(2) $\curvearrowright(1)$: Assume (2) is satisfied for $G=F^{\prime}$. Since \mathbf{d} is regular (4.4) one has to prove

$$
\kappa_{F} o T \in \mathbf{d}\left(E, F^{\prime \prime}\right)=\left(E \otimes_{\alpha^{\prime}} F^{\prime}\right)^{〔}
$$

For $\mathrm{z} \in E \otimes_{\alpha^{\prime}} F^{\prime}$ formula (2) gives

$$
\begin{aligned}
\left|\left\langle B_{\kappa_{P} \circ T}, z\right\rangle\right| & =\left|\left\langle\mathrm{tr}_{F}, T \otimes \operatorname{id}_{F^{\prime}}(z)\right\rangle\right| \leq\left\|\mid \mathrm{tr}_{F}\right\| \pi\left(T \otimes \mathrm{id}_{F^{\prime}}(z) ; F, F^{\prime}\right) \leq \\
& \leq\left\|T \otimes \mathrm{id}_{F^{\prime}}: \otimes_{\alpha^{\prime}} \rightarrow \otimes_{\pi}\right\| \alpha^{\prime}\left(z ; E, F^{\prime}\right) .
\end{aligned}
$$

The proof for the predual L (if it exists) is the same.
$(1) \curvearrowleft(3)$ follows from (1) \curvearrowleft (2) by observing that T is α-integral (i.e. $\mathrm{T} \in \mathrm{d}$) if and only if T ' is α^{t}-integral (see 4.5).

Note that these are statements about the composition of operators, e.g. (3)

5.3. In order to obtain characterizations with ε being involved (this is a sort of dualization as will be seen) the following natural statement is needed. Recall that the Johnson spaces C_{p} (for $1 \leq \mathrm{p}<\infty$, see [39]) are separable Banach spaces (reflexive for $1<\mathrm{p}<\infty$) with the metric approximation property such that for every $M \in F I N$ and $\varepsilon>0$ there is a 1-complemented subspace N c C_{p} and an isomorphism $S \in \mathcal{L}(M, \mathrm{~N})$ such that $\|S\|\left\|S^{-1}\right\| \leq 1+\varepsilon$.

Lemma. Let β and γ be tensornorms, β junitely generated, $c \geq 0$ and $T \in \mathcal{L}(E, F)$.
(a) Iffor a normed space G

$$
\left\|T \otimes i d_{M}: E \otimes_{\beta} M \rightarrow F \otimes_{\gamma} M\right\| \leq c
$$

for cofinally many $\mathbf{M} \in \operatorname{FIN}(\mathbf{G})$, then

$$
\left\|T \otimes i d_{G}: E \otimes_{\beta} G \rightarrow F \otimes_{\gamma} G\right\| \leq c
$$

(b) If (for some $1 \leq \mathrm{p} \leq \infty$)

$$
\left\|T \otimes \operatorname{id}_{C_{\mathrm{p}}}: E \otimes_{\beta} C_{p} \rightarrow F \otimes_{\gamma} C_{\mathrm{p}}\right\| \leq \mathrm{d}
$$

rhen

$$
\left\|T \otimes \operatorname{id}_{G}: E \otimes_{\beta} G \rightarrow F \otimes_{\gamma} G\right\| \leq \downarrow
$$

for all normed spaces \mathbf{G}.
The proof is vcry easy using the mctric mapping propcrty of tensomorms.
Corollary. Let α be an accessible, finitely generated tensornorm, $[\mathbf{d}, A]$ the associated maximal operator $\mathbf{i d e a} 1$ and $\mathbf{T} \in \mathcal{L}(\mathbf{E}, \mathbf{F})$. Then the following are equivalent:
(1) $T \in \mathcal{A}(E, F)$
(2) For all Banach spaces \mathbf{G} (or only $\mathbf{G}=C_{p}$ for some \mathbf{p})

$$
\mathbf{T} \otimes \mathrm{id}_{G}: E \otimes_{\varepsilon} G \rightarrow F \otimes_{\alpha^{\prime}} G
$$

is continuous.
(3) For all Banach spaces \mathbf{G} (or only $\mathbf{G}=C_{p}$ for some p)

$$
\mathbf{T}^{\prime} \otimes \mathrm{id}_{G}: F^{\prime} \otimes_{\varepsilon} G \rightarrow E^{\prime} \otimes_{\alpha} G .
$$

In this case the operators in (2) and (3) have norms $\leq A(T)$ and

$$
A(T)=\left\|T \otimes \operatorname{id}_{C_{p}}: \otimes_{\varepsilon} \rightarrow \otimes_{a^{\prime}}\right\|=\left\|T^{\prime} \otimes \operatorname{id}_{C_{p}}: \otimes_{\varepsilon} \rightarrow \otimes_{\alpha}\right\| .
$$

Proof . To prove (1) \curvearrowleft (2) it is enough, by the theorcm and the lemma, to show that for all $M \in \operatorname{FIN}$

$$
\left\|T^{\prime} \otimes \mathrm{id},,: \mathbf{F}^{\prime} \otimes_{\alpha^{\prime}} \cdot \mathbf{M}^{\prime} \rightarrow \mathbf{E}^{\prime} \otimes_{\boldsymbol{\pi}} M^{\prime}\right\| \leq \mathbf{c}
$$

if and only if

$$
\left\|T \otimes \operatorname{id}_{M}: E \otimes_{\varepsilon} M \rightarrow F \otimes_{\alpha^{\prime}} M\right\| \leq c .
$$

But this follows from

$$
\left(\mathbf{E} \otimes_{\varepsilon} \mathbf{M}\right)^{\prime} \stackrel{1}{=} \mathbf{E}^{\prime} \otimes_{\pi} \mathbf{M}^{\prime} \quad \text { and } \quad F \otimes_{\varsigma_{\alpha}} \mathbf{M} \stackrel{1}{\hookrightarrow}\left(F^{\prime} \otimes_{\alpha} . \mathbf{M}^{\prime}\right)^{\prime}
$$

and the fact that

$$
\left\|F^{\prime} \otimes_{\alpha^{\prime}} M^{\prime} \rightarrow\left(F \otimes_{\alpha^{\prime}} M\right)^{\prime}\right\| \leq 1
$$

As bcforc, the cquivalcncc (1) \curvearrowleft (3) is a consequence of (1) \curvearrowleft (2) by obscrving that T is α-integral if and only if T^{\prime} is α^{t}-integral.

If α is not necessarily accessible the proof showed that (1) $\curvearrowleft(2)$ holds if F has the metric approximation property and (1) $\curvearrowleft(3)$ if E^{\prime} has the metric approximation property.

For special operator ideals it is possible to find «better» fixed spaces G (than C_{p}); for example: If $\mathbf{d}=\mathcal{P}_{p}$ it is enough to take $G=\ell_{p}$; this is the tensor product formulation of the simple, but useful characterization of absolutely-p-summing operators due to Kwapicn: $T \in \mathcal{L}(E, F)$ is in \mathcal{P}_{p} iff $T S \in \mathcal{P}_{p}$ for all $S \in \mathcal{L}\left(\ell_{p^{\prime}}, E\right)$.
5.4. To see some particular cases of these results take

$$
g_{p} \sim \mathcal{I}_{p} \quad \text { and } \quad d_{p^{\prime}}^{\prime}=g_{p^{\prime}}^{*} \sim \mathcal{P}_{p}
$$

Since g_{p} and $d_{p^{\prime}}^{\prime}$ are accessible (see later 9.4) it follows
Proposition. Take $1 \leq \mathrm{p} \leq \infty$.
(1) For $\mathrm{T} \in \mathcal{L}(E, F)$ are equivalent:
(a) T is p-integral,
(b) for all Banach spaces G (or only $G=F^{\prime}$)

$$
\mathrm{T} \otimes \mathrm{id}_{G}: E \otimes_{g_{p}^{\prime}} G \rightarrow F \otimes_{\pi} G
$$

is continuous,
(c) for all Banach spaces G

$$
\mathrm{T} \otimes \mathrm{id}_{G}: E \otimes_{\varepsilon} G \rightarrow F \otimes_{d_{p}} G
$$

is continuous.
(2) $T \in \mathcal{L}(E, F)$ is integra1 if and only iffor all Banach spaces (or only $G=F$)

$$
T \otimes \mathrm{id}_{G}: E \otimes_{\varepsilon} G \rightarrow F \otimes_{\pi} G
$$

is continuous.
(3) For $T \in \mathcal{L}(E, F)$ are equivalent:
(a) T is absolutely-p-summing ,
(b) for all Banach spaces G (or only $G=F^{\prime}$)

$$
T \otimes \operatorname{id}_{G}: E \otimes_{d_{p}} G \rightarrow F \otimes_{\pi} G
$$

is continuous,
(c) for all Banach spaces

$$
\mathrm{T} \otimes \operatorname{id}_{G}: E \otimes_{\varepsilon} G \rightarrow F \otimes_{g_{p_{j}^{\prime}}^{\prime}} G
$$

is continuous.

Clearly, there are norm estimates as in 5.2, for example,

$$
I(T)=\left\|T \otimes \operatorname{id}_{F^{n}}: \otimes_{\varepsilon} \rightarrow \otimes_{\pi}\right\|
$$

5.5. Another interesting and very important consequence of the theorem (and its corollary) is the

Proposition. Let $[\mathcal{A}, A]$ be a maximal operator idea 1 such that the associated tensornorm α is accessible. Then

$$
\mathcal{A}^{*} \circ \mathcal{A} \subset \mathcal{I} \quad \text { and } \quad I(T \circ S) \leq A^{*}(T) A(S)
$$

In 9.2 accessibility of α will be explained in terms of the operator ideal d . If CY is not necessarily accessible (remember that there is no example known!) it follows

$$
\mathcal{A}^{*}(F, G) \circ \mathcal{A}(E, F) \subset \mathcal{I}(E, G)
$$

with norm inequality, if \mathbf{F} has the metric approximation property as the proof will show as well.

Proof. If $\mathbf{d} \sim \alpha$, then $\mathbf{d}^{*} \sim \alpha^{*}$. This implies that for $S \in \mathbf{d}(E, F)$ and $T \in \mathbf{d}^{*}(\mathbf{F}, \mathbf{G})$ the map

$$
(T \circ S) \otimes \mathrm{id}_{G^{\prime}}: E \otimes_{\otimes_{\mathbf{t}}} G^{\prime} \rightarrow F \otimes_{\alpha^{t}} G^{\prime} \rightarrow G \otimes_{\pi} G^{\prime}
$$

has norm $\leq \mathbf{A}^{*}(\mathrm{~T}) \mathbf{A}(\mathrm{S})$ by 5.3 and 5.2 , whence T o $S \in \mathcal{I}$ with the norm estimate by 5.4 .■

To see a concrete example (see also [22])

$$
\mathcal{D}_{p^{\prime}, q^{\prime}} \circ \mathcal{L}_{p, q} \subset \mathcal{I} \quad \text { and } \quad I(T \circ S) \leq D_{p, q^{\prime}}(T) L_{p, q}(S)
$$

and even

$$
\mathcal{D}_{p^{\prime}, q^{\prime}} \circ \mathcal{L}_{p, q} \subset \mathcal{N} \quad \text { and } \quad N(T \circ S) \leq D_{p^{\prime}, q^{\prime}}(T) L_{p, q}(S)
$$

if $(p, q) \notin\{(1,1),(1, \infty),(\infty, 1)\}$. In the excluded cases the product is nof contained in the ideal of nuclear operators.

Proof. It will be shown in 9.4 that $\alpha_{p, q}$ is accessible, whence the first statement is clear. Coming to the second statement take $S \in \mathcal{L}_{p q}(\mathbf{E}, \mathbf{F})$ and $\mathbf{T} \in \mathcal{D}_{p^{\prime} q^{\prime}}(F, \mathbf{G})$ and observe first that for $1<\mathbf{q}<\infty$

$$
\mathcal{D}_{p^{\prime}, q^{\prime}} \subset \mathcal{P}_{q^{\prime}}^{\text {dual }} \subset \mathrm{w} \quad \text { (weakly compact operators) }
$$

whence the astriction $T^{\pi}: F^{\prime \prime} \rightarrow G$ of $T^{\prime \prime}$ is (by the results of 4.4) also ($\mathrm{p}^{\prime}, \mathrm{q}^{\prime}$)-dominated Since S is (p,q)-factorable 4.6 implies the factorization

$$
\begin{array}{rlllll}
E \hookrightarrow & E^{\prime \prime} & \xrightarrow{S^{\prime \prime}} & F^{\prime \prime} \xrightarrow{T^{m}} G \\
1 & & \downarrow V & \\
L_{q^{\prime}} & \xrightarrow{J} & L_{p} &
\end{array}
$$

whence $R:=T^{\pi} V J$ is an integral operator on a reflexive space with the approximation property and therefore nuclear with $\mathrm{I}(\mathrm{R})=N(R)$ (see [13], p. 248).

If $q=1$ and $1<p<\infty$

$$
\mathcal{D}_{p^{\prime}, \infty} \circ \mathcal{L}_{p, 1}=\mathcal{P}_{p^{\prime}} \circ \mathcal{I}_{p}=\mathcal{W} \circ \mathcal{P}_{p^{\prime}} \circ \mathcal{P}_{p^{\prime}}^{*} \subset \mathcal{W} \circ \mathcal{I} \subset \mathcal{N}
$$

(again by Radon-Nikodym arguments, see e.g. [60] 24.6.2). For (p, q) $=(1,1)$

$$
\mathcal{D}_{\infty, \infty} \circ \mathcal{L}_{1,1}=\mathcal{L} \circ \mathcal{I} \neq \mathcal{N}
$$

For the remaining two cases $(\mathrm{p}, q)=(1, \infty)$ or $(\infty, 1)$ take an operator $\mathrm{T}: C\left[0,11 \rightarrow c_{0}\right.$ which is absolutely-l-summing and not nuclear ([13], p. 175). Then T^{v} is not nuclear as well ([13], p. 243) and

$$
\begin{aligned}
& T \in \mathcal{P}_{1} \circ \mathcal{L}_{\infty}=\mathcal{D}_{1, \infty} \circ \mathcal{L}_{\infty, 1} \\
& T^{\prime} \in \mathcal{P}_{1}^{\text {dual }} \circ \mathcal{L}_{1}=\mathcal{D}_{\infty, 1} \circ \mathcal{L}_{1, \infty}
\end{aligned}
$$

and this completes the proof.
A special case is Grothendieck's

$$
\begin{gathered}
\mathcal{P}_{2} \circ \mathcal{P}_{2}=\mathcal{P}_{2} \circ \mathcal{I}_{2}=\mathcal{P}_{2} \circ \mathcal{P}_{2}^{*} \subset \mathcal{N} \\
N(T S) \leq P_{2}(T) P_{2}(S)
\end{gathered}
$$

5.6. The rest of this paragraph will contain some more applications of this type of characterizations of α-integral operators/maximal operator ideals. First, when is the natural map

$$
I: E \tilde{\otimes}_{\alpha} F \rightarrow E \tilde{\otimes}_{\varepsilon} F \stackrel{1}{\hookrightarrow} \mathcal{L}\left(E^{\prime}, F\right)
$$

injective? If α is totally accessible the duality theorem 3.4 for tensomorms implies

$$
\begin{gathered}
E \tilde{\otimes}_{\alpha} F=E \tilde{\otimes}_{\overleftarrow{\sigma}_{\alpha}} F \underset{\searrow}{\stackrel{1}{\hookrightarrow}}\left(E^{\prime} \tilde{\otimes}_{\alpha^{\prime}} F^{\prime}\right)^{\prime} \underset{{ }^{\prime}}{\hookrightarrow} \\
E \tilde{\otimes}_{\varepsilon} F
\end{gathered}
$$

whence I is injective.

Proposition. If α is a finitely generated tensornorm, E and F Banach spaces, one of which has the approximation property, then the natural map

$$
I: E \tilde{\otimes}_{\alpha} F \rightarrow E \tilde{\otimes}_{\varepsilon} F
$$

is injective.
Proof. Assume that F has the approximation property, $z \in E \tilde{\otimes}_{\alpha} F$ and $I(z)=0$. It is to show that $\langle\varphi, z\rangle=0$ for all

$$
\varphi \in\left(E \tilde{\otimes}_{\alpha} F\right)^{\prime} \hookrightarrow \mathcal{L}\left(E, F^{\prime}\right) .
$$

By theorem 5.2 (and, clearly, the correspondence between maximal operator ideals and tensomorms)

$$
L_{\varphi} \otimes \mathrm{id}_{F}: E \tilde{\otimes}_{\alpha} F \rightarrow F^{\prime} \tilde{\otimes}_{\pi} F
$$

is continuous. The lower map in the diagram

$$
\begin{array}{rll}
E \tilde{\otimes}_{\alpha} F & \xrightarrow{I} & E \tilde{\otimes}_{\varepsilon} F \\
L_{\varphi} \bar{\otimes}_{\alpha, \pi}, \mathrm{id} F \\
& \ddots & \downarrow L_{\varphi} \tilde{\otimes}_{\boldsymbol{\varepsilon}} \mathrm{id} F \\
F^{\prime} \tilde{\otimes}_{\pi} F & \rightarrow & F^{\prime} \tilde{\otimes}_{\varepsilon} F
\end{array}
$$

is injective by the approximation property, whence

$$
L_{\varphi} \tilde{\otimes}_{\alpha, \pi} \operatorname{id}_{F}(z)=0 \in F^{\prime} \tilde{\otimes}_{\pi} F
$$

and formula (2) in 5.1 implies

$$
\langle\varphi, z\rangle=\left\langle\mathrm{tr}_{F}, L_{\varphi} \tilde{\otimes}_{\alpha, \pi} \mathrm{id}_{F}(z)\right\rangle=0 .
$$

Since

$$
E^{\prime} \otimes_{\alpha} F \rightarrow \mathcal{A}(E, F)=\left(E \otimes_{\alpha} F^{\prime}\right)^{\prime} \cap \mathcal{L}(E, F)
$$

is continuous and

$$
E^{\prime} \tilde{\otimes}_{\varepsilon} F \stackrel{1}{\hookrightarrow} \mathcal{L}(E, F)
$$

it follows: If $[\mathcal{A}, A]$ and α are associated, then the natural map

$$
E^{\prime} \tilde{\otimes}_{\alpha} F \rightarrow \mathbf{d}(E, F)
$$

is injective if E^{\prime} or F has the approximation property (or if α is totally accessible).
5.7. For the bounded approximation property of Banach spaces one obtains the Proposition. Let α^{\prime} be totally accessible and $\alpha \sim[\mathcal{A}, A]$. Every Banach space E with id $_{E} \in \mathrm{~d}$ has the bounded approximation property with constant $\leq A\left(\operatorname{id}_{E}\right)$.
Proof . To apply the criterion 3.5 (about $\pi \leq \lambda \overleftarrow{\pi}$) for the bounded approximation property, take $z \in E \otimes E^{\prime}$ and apply theorem 5.2 to id ${ }_{E} \in \mathcal{A}$.

$$
\begin{aligned}
\pi\left(z ; E, E^{\prime}\right) & \leq A\left(\mathrm{id}_{E}\right) \alpha^{\prime}\left(z ; E, E^{\prime}\right)=A\left(\mathrm{id}_{E}\right) \overleftarrow{\alpha^{\prime}}\left(z ; E, E^{\prime}\right) \leq \\
& \leq A\left(\mathrm{id}_{E}\right) \overleftarrow{\pi}\left(z ; E, E^{\prime}\right)
\end{aligned}
$$

id, \in d means: $E \in$ space(d) in the terminology of Pietsch [60]; by 5.2. this is equivalent to

$$
E \otimes_{\alpha^{\prime}} G=E \otimes_{\pi} G \quad \text { for all } \mathrm{G}\left(\text { or } \mathrm{G}=E^{\prime}\right)
$$

(isomorphically) - or, by 5.3 (if α is accessible),

$$
E \otimes_{\varepsilon} G=E \otimes_{\alpha^{t}} G . \quad \text { forall } \mathrm{G}\left(\text { or } \mathrm{G}=C_{p}\right)
$$

(isomorphically). The proposition has also a negative favour: If there is a Banach space $E \in$ space(d) without the bounded approximation property, then α^{\prime} is not totally accessible. Anticipating theresults of $\S 8$ take $w_{p} \backslash \sim \mathcal{L}_{p}^{i n j}$ and recall that all ℓ_{p} (for $p \neq 2$) have subspaces without the approximation property; then the proposition says that $\left(w_{p} \backslash\right)^{\prime}=w_{p}^{\prime} /$ is not totally accessible $(p \neq 2)$.
5.8. For tensomorms α and β, and operators $S \in \mathcal{L}(X, Y)$ and $\mathrm{T} \in \mathcal{L}(E, F)$ it is not exactly known, under which circumstances the continuity of

$$
S \otimes T: X \otimes_{\alpha} E \rightarrow Y \otimes_{\beta} F
$$

implies the continuity of

$$
S \otimes T^{\prime \prime}: X \otimes_{\alpha} E^{\prime \prime} \rightarrow Y \otimes_{\beta} F^{\prime \prime}
$$

(see also problem 2 in 2.3). If $\alpha=\overleftarrow{\pi}$ and $\beta=\pi$

$$
\mathrm{S}:=\mathrm{id},, \quad T:=\mathrm{id},
$$

the continuity of id, $\otimes \mathrm{id},: \otimes_{\Pi_{\pi}} \rightarrow \otimes_{\pi}$ is, by 3.5 , the bounded approximation property of E which does not imply the one of E^{\prime}, i.e. the continuity of id ${ }_{E^{\prime}} \otimes \mathrm{id}_{E^{\prime \prime}}: \otimes_{\pi} \rightarrow \otimes_{\pi}$. So, the answer to the above problem is negative for arbitrary CY and β !

To obtain at least some positive answers, fix $S \in \mathcal{L}(X, Y)$ with $\|S\|=1$ and consider for Banach spaces \mathbf{V}, W

$$
\begin{gathered}
\mathcal{A}(V, W):=\left\{R \in \mathcal{L}(V, W) \mid S \otimes R: X \otimes_{\vec{\alpha}} V \rightarrow Y \otimes_{\stackrel{\leftarrow}{\beta}} W \quad \text { continuous }\right\} \\
A(R):=\left\|S \otimes R: \otimes_{\vec{\alpha}} \rightarrow \otimes_{\stackrel{\rightharpoonup}{\beta}}\right\|
\end{gathered}
$$

It is easily seen that $[\mathrm{d}, A]$ is a maximal Banach operator ideal (for the maximality use the property stated in 4.2). The fact that $\mathbf{R} \in \mathbf{d}$ if and only if $\mathbf{R} " \in \mathbf{d}$ (by corollary 3 in 4.4) is the key for the

Proposition. Let α and β be tensornorms, α finitely generated, $\mathbf{X}, Y, \mathbf{E}$ and \mathbf{F} Banach spaces, $\mathbf{S} \in \mathcal{L}(X, \mathbf{Y})$ and $\mathbf{T} \in \mathcal{L}(\mathbf{E}, \mathbf{F})$ such that

$$
S \otimes T: X \otimes_{\alpha} E \rightarrow Y \otimes_{\beta} F
$$

is continuous. Then in each of the following five cases

$$
S \otimes T^{\prime \prime}: X \otimes_{\alpha} E^{\prime \prime} \rightarrow Y \otimes_{\beta} F^{\prime \prime}
$$

is continuous:
(1) β is totally accessible,
(2) β is accessible and: Y or $F^{\prime \prime}$ has the bounded approximation property,
(3) Y and $F^{\prime \prime}$ have the bounded approximation property,
(4) T is weakly compact,
(5) whenever $G_{1} \mathrm{c} G_{2}$ then $\mathrm{Y} \otimes_{\beta} G_{1}$ is an isomorphic subspace of $\mathrm{Y} \otimes_{\beta} G_{2}$.

Proof . To apply the construction above, observe that $\alpha=\vec{\alpha}$ and $\beta=\overleftarrow{\beta}$ in the cases (1) - (3) by the definition and the approximation lemma. Case (4) follows by using that $\mathrm{T}^{\prime \prime}\left(\mathbf{E}^{\prime \prime}\right) \subset \mathbf{F}$: it is not too difficult (using the extension lemma) to check that for the astricition $T^{\pi}: \mathbf{E "}^{\prime \prime} \rightarrow \mathbf{F}$ even

$$
S \otimes T^{\pi}: X \otimes_{\alpha} E^{\prime \prime} \rightarrow Y \otimes_{\beta} F
$$

is continuous. The last case follows from a refinement of the construction of d : Define first a tensomorm 7 by

$$
\gamma(z ; V, W):=\sup \left\{\beta\left(\operatorname{id}_{V} \otimes Q_{L}^{W}(z) ; V, W / L\right) \mid L \in \operatorname{COFIN}(W)\right\} ;
$$

7 coincides with β on NORM x FIN whence, by the approximation lemma, on all spaces $\mathrm{Y} \otimes \ell_{\infty}(\Gamma)$. Now use the maximal Banach operator ideal

$$
\left\{R \in \mathcal{L}(V, W) \text { IS } \otimes R: X \otimes_{\alpha} \mathbf{V} \rightarrow \mathrm{Y} \otimes_{\gamma} W \quad \text { continuous }\right\}
$$

the continuous maps

$$
Y \otimes_{\beta} F \rightarrow Y \otimes_{\gamma} F, \quad Y \otimes_{\gamma} F^{\prime \prime} \rightarrow Y \otimes_{\gamma} \ell_{\infty}\left(B_{F^{\prime \prime}}\right)
$$

and the isomorphic embcdding

$$
Y \otimes_{\beta} F^{\prime \prime} \rightarrow Y \otimes_{\beta} \ell_{\infty}\left(B_{F^{\prime \prime}}\right)=Y \otimes_{\gamma}\left(B_{F^{\prime \prime}}\right) .
$$

Unfortunately, this result does not cover the general case of $\beta=\pi-$ which seems to be unknown. It is clear (by 4.4) that in case (1) $\|S \otimes T: \ldots\|=\| S \otimes \mathrm{~T}$ " $: \ldots \|-$ and this is also true in (2) and (3) if the spaces have the metric instead of the bounded approximation property. For $\alpha=\varepsilon, \beta=\pi$ and Y having the metric approximation property the result was proven in [38], p. 355.

6. \mathcal{L}_{p}-SPACES

6.1. A Banach space \mathbf{E} is called an $\mathcal{L}_{p, \lambda}^{g}$-space (for $1 \leq p \leq \infty$ and $1 \leq \lambda<\infty$) if for each $\varepsilon>0$ and $N \in \operatorname{FIN}(\mathrm{E})$ there exist a natura1 number n and a factorization

such that $\|T\|\|S\| \leq \lambda+\varepsilon$. A space is called \mathcal{L}_{p}^{g} if it is an,$\$$,-space for some λ. Obviously, every $\mathcal{L}_{p, \lambda}$-space in the sense of Lindenstrauss and Petczyński ([51], for every $N \in \operatorname{FIN}(\mathrm{E})$ there is an $M \in \mathrm{FIN}(\mathrm{E})$ with $N \subset M$ and Banach-Mazur-distante $\left.\mathrm{d}\left(M, \ell_{p}^{\operatorname{dim} M}\right) \leq \lambda\right)$ is an $\mathcal{L}_{p, \lambda}^{g}$-space and it will be seen soon (6.3) that the difference between these two classes of spaces is not very large; the great advantage of the class of $\mathcal{L}_{p \lambda}^{g}$-spaces is that the constant λ does not vary under dualization -a fact which is false for $\mathcal{L}_{p, \lambda}$-spaces and seemingly unknown if an additional ε is allowed.

Since $L_{p}(\mu)$-spaces are $\mathcal{L}_{p, 1+\varepsilon}$-spaces for all $\varepsilon>0$ they are $\mathcal{L}_{p 1}^{g}$-spaces and it follows the same way that the spaces $\mathrm{C}(\mathrm{K})$ are $\mathcal{L}_{\infty, 1}^{g}$-spaces .

Following Pietsch, a Banach spaces \mathbf{E} is in space (d) (for an operator ideal d) if id ${ }_{E} \in$ d . Recall that $\left(\mathcal{L}_{p}, L_{p}\right)$ is the maximal normed operator ideal of the p-factorable operators which is associated with the tensomorm w_{p}. Anticipating the fact that w_{p} is accessible (9.4) the equivalences (2) - (5) of the following proposition are immediate from the characterizations 5.2 and 5.3:

Theorem. Let $1 \leq \mathbf{p} \leq \infty$ and $1 \leq \lambda<\infty$. Thenfor every Banach space \mathbf{E} thefollowing statements are equivalent:

(1) E is an $\mathcal{L}_{p, \lambda}^{g}$-space
(2) E is in $\operatorname{space}\left(\mathcal{L}_{p}\right)$ and $L_{p}\left(\right.$ id $\left._{E}\right) \leq \lambda$
(3) For all Banach spaces \mathbf{G} (or only $\mathbf{G}=E^{\prime}$ or \mathbf{G} some predual of \mathbf{E})

$$
w_{p}^{\prime} \leq \pi \leq \lambda w_{p}^{\prime} \mathbf{o} \quad \mathbf{n} \quad E \otimes G
$$

(4) For all Banach spaces G

$$
\varepsilon \leq w_{p} \leq \lambda \varepsilon \quad \circ \quad n \quad G \otimes E
$$

(5) E^{\prime} is in $\operatorname{space}\left(\mathcal{L}_{p^{\prime}}\right)$ and $L_{p^{\prime}}\left(\mathrm{id}_{E^{\prime}}\right) \leq \lambda$
(6) For every ${ }_{E}>0$ there is a factorization of id $E_{E^{\prime \prime}}$ through some $L_{p}(\mu)$

with $\left||S| \|||T|| \leq \lambda+\varepsilon\right.$. (Inparticular: $E^{\prime \prime}$ is isomorphic to a complemented subspace of some $L_{p}(\mu)$).

It is clear form (6) that the \mathcal{L}_{2}^{g}-spaces are exactly those isomorphic to Hilbert spaces. (4) implies that \mathcal{P}_{λ}-spaces (i.e. spaces with the X -extension property) are $\mathcal{L}_{\infty, \lambda}^{g}$-spaces.

Proof :

(2) \curvearrowleft (6): id ${ }_{E}$ is in \mathcal{L}_{p} iff id ${ }_{E^{\prime}}$ is in \mathcal{L}_{p} by corollary 3 in 4.4; now the factorization theorem 4.6 for p-factorable operators shows the equivalence.
(4) \curvearrowright (1): Take $N \in \operatorname{FIN}(\mathrm{E})$ and

$$
I_{N}^{E} \in \mathcal{F}(N, E) \stackrel{1}{=} N^{\prime} \otimes_{\varepsilon} E=N^{\prime} \otimes_{w_{p}} E
$$

then there is a reprcsentation of I_{N}^{E} by $z=\sum_{m=1}^{n} \varphi_{m} \otimes y_{m}$ with

$$
w_{p}\left(z ; N^{\prime}, E\right) \leq w_{p}\left(\varphi_{m}\right) w_{p^{\prime}}\left(y_{m}\right) \leq \varepsilon\left(z ; N^{\prime}, E\right)(\lambda+\delta)=\lambda+\delta
$$

and whence

$$
\begin{array}{rlll}
N & \stackrel{1}{\hookrightarrow} & E & S(x):=\left(\left\langle\varphi_{m}, x\right\rangle\right) \\
s \searrow & \% & \nearrow T & T\left(\xi_{m}\right):=\sum_{m=1}^{n} \xi_{m} y_{m}
\end{array}
$$

is the desired factorization since

$$
\|S\|=w_{p}\left(\varphi_{m}\right), \quad\|T\|=w_{p^{\prime}}\left(y_{m}\right)
$$

(1) \curvearrowright (4): Observe first that for all Banach spaces G

$$
E=w_{p} \quad \text { on } \quad G \otimes \ell_{p}^{n}
$$

by 1.9; now the implication is immediate from the following lemma which is of its own interest.

Corollary. \mathbf{E} is un $\mathcal{L}_{p \lambda}^{g}$-space ifand only if E^{\prime} is an $\mathcal{L}_{p, \lambda}^{g}$-space.
6.2. The «local techniques» for the \mathcal{L}_{p}^{g}-spaces are somehow concentrated in the Loca1 technique lemma. Let α and β be tensornorms, $\mathbf{c}>0$ and \mathbf{G} a normed space such that

$$
\alpha \leq c \beta \quad \text { on } \quad G \otimes \ell_{p}^{n}
$$

for all $\mathbf{n} \in \mathbf{N}$, then

$$
\vec{\alpha} \leq c \lambda \vec{\beta} 0 \quad \text { n } \quad G \otimes E
$$

for every $\mathcal{L}_{p, \lambda}^{g}$-space \mathbf{G}.
Proof . Take a factorization

$\|T\|\|S\| \leq \lambda+\varepsilon$
then, for every $\mathrm{z} \in \mathrm{G} \otimes N$,

$$
\begin{aligned}
\alpha(z ; G, M) & =\alpha\left(\left(\mathrm{id}_{G} \otimes T \circ S\right)(z) ; G, M\right) \leq\|T\| \alpha\left(\mathrm{id}_{G} \otimes S(z) ; G, \ell_{p}^{n}\right) \leq \\
& \leq\|T\| c \beta\left(\mathrm{id}_{G} \otimes S(z) ; G, \ell_{p}^{n}\right) \leq\|T\|\|S\| c \beta(z ; G, N) \leq \\
& \leq(\lambda+\varepsilon) c \beta(z ; G, N)
\end{aligned}
$$

This implies the statement.
(Note that the finite hull only was taken on the right side of the tensor product; this will be used in 8.8 and 8.9). It is obvious by the definition, that more or less the same local techniques for operafors apply for \mathcal{L}_{p}^{g}-spaces as they do for \mathcal{L}_{p}-spaces.
6.3. To obtain the precise conncction between the \mathcal{L}_{p}-spaces and the \mathcal{L}_{p}^{g}-spaces, observe first that for every $1<\mathrm{p}<\infty$ the Hilbert space ℓ_{2} (by using Rademacher functions) is a complemented subspace of $L_{p}[0,1]$, whence an Cg -space; it follows now easily from the definition that every Hilbert space is an Li-space for all $1<\mathrm{p}<\infty$ (but ℓ_{2} is not an Cr-space for $p \neq 2$). Results of Lindenstrauss-Rosenthal ([52], 2.1 and 3.2) even imply (with the aid of 6.1 (6))
$1<p<\infty: \quad$ A Banach space is an \mathcal{L}_{p}^{g}-space if and only if it is an L ,-space or isomorphic io a Hilbert-space.
$p=1$ or ∞ : The class of \mathcal{L}_{p}^{g}-spaces coincides with the class of \mathcal{L}_{p}-spaces.
Note that $\mathcal{L}_{p, \lambda}^{g}$-spaces are exactly those which were used in the assumption of [52], theorem 4.3. Again using 6.1 (6) it follows that

> A Banach space is an Li-space if and only if it is isomorphic to a complemente subspace of an \mathcal{L}_{p}-space.

This implies that tensomorm inequalities hold for \mathcal{L}_{p}^{g}-spaces if and only if they hold fc \mathcal{L}_{p}-spaces - but the constants may vary.
6.4. Grothendieck's inequality in tensorial form 1.11 stated that

$$
\pi \leq K_{G} w_{2} \quad \text { on } \quad \ell_{\infty}^{n} \otimes \ell_{\infty}^{m}
$$

whence, by the local technique lemma for \mathcal{L}_{p}^{g}-spaces

$$
\pi \leq K_{G} \lambda \mu w_{2} \quad \text { on } \quad E \otimes F
$$

whenever E is an $\mathcal{L}_{\infty \lambda}^{g}$-space and F and $\mathcal{L}_{\infty, \mu}^{g}$-space. Since

$$
\begin{array}{ll}
\mathcal{L} \sim \varepsilon & 6^{\prime}=\pi \\
\mathcal{D}_{2} \sim w_{2}^{*} & w_{2}^{* \prime}=w_{2} \\
\mathcal{P}_{2} \sim g_{2}^{*} & g_{2}^{* \prime}=d_{2}
\end{array}
$$

and, by 1.5 ,

$$
w_{2}=\boldsymbol{\alpha}_{2,2} \leq \alpha_{1,2}=d_{2}
$$

the «transfer argument» 4.10 implies the Proposition. If \mathbf{E} is an \mathcal{L}_{∞}^{g}-space and \mathbf{F} an $\mathcal{L}_{1, \mu}^{g}$-space, then

$$
\begin{aligned}
& \mathcal{L}(E, F)=\mathcal{D}_{2}(E, F)=\mathcal{P}_{2}(E, F) \\
& P_{2}(T) \leq D_{2}(T) \leq K_{G} \lambda \mu\|T\|
\end{aligned}
$$

In 8.5 the result that every operator $\mathcal{L}_{\infty}^{g} \rightarrow \mathcal{L}_{1}^{g}$ is absolutely-2-summing will be improved to operators $\mathcal{L}_{\infty}^{g} \rightarrow \mathcal{L}_{p}^{g}$ for $1 \leq \mathrm{p} \leq 2$.

Dualizing

$$
\pi \leq K_{G} w_{2} \quad \text { on } \quad \ell_{\infty}^{n} \otimes \ell_{\infty}^{m}
$$

gives

$$
w_{2}^{*} \leq K_{G} \varepsilon \quad \text { on } \quad \ell_{1}^{n} \otimes \ell_{1}^{m}
$$

whence, by the local technique lemma,

$$
w_{2}^{*} \leq K_{G} \lambda \mu \varepsilon \quad \text { on } \quad E \otimes F
$$

if \mathbf{E} is an $\mathcal{L}_{1, \lambda}^{g}$-space and F and $\mathcal{L}_{1, \mu}^{g}$-space. For operators this means (again by the transfer argument 4.10): Every 2-factorable $\mathcal{L}_{1}^{g} \rightarrow \mathcal{L}_{\infty}^{g}$ is integral (see also 8.13).
6.5. Another application of this simple way of arguing comes from

$$
\pi \leq K_{G} d_{\infty} \quad \text { on } \quad \ell_{1}^{n} \otimes \ell_{2}^{m}
$$

(see 1.12), and whence

$$
\pi \leq K_{G} \lambda \mu d_{\infty} \quad \text { on } \quad \mathcal{L}_{1, \lambda}^{g} \otimes \mathcal{L}_{2, \mu}^{g}
$$

Since $\mathcal{L} \sim \varepsilon$ and $\mathcal{P}_{1} \sim g_{\infty}^{*}=d_{\infty}^{\prime}$ this implies the famous [51]
Proposition. If E is an $\mathcal{L}_{1, \lambda}^{g}$-space and F an $\mathcal{L}_{2, \mu}^{g}$-space, rhen $\mathcal{L}(E, F)=\mathcal{P}_{1}(E, F)$ and $P_{1}(T) \leq K_{G} \lambda \mu\|T\|$.

7. MINIMAL OPERATOR IDEALS

7.1. Now another crucial link between Banach operator ideals and tensor norms will be proved the representation theorem for minimal ideals.

If $[\mathrm{d}, A]$ is a quasi-Banach ideal, then its minimal kemel is defined by

$$
[\mathcal{A}, A]^{\min }:=[\overline{\mathcal{F}},\|.\|] \circ[\mathcal{A}, A] \circ[\overline{\mathcal{F}},\|\cdot\|]
$$

where $[\overline{\mathcal{F}},\|\cdot\|]$ denotes the ideal of all approximable operators (an operator $\mathrm{T} \in \mathcal{L}(E, F)$ is said to be approximable if it is in the operator-norm closure of all finite dimensional operators). [$\mathcal{A}, A]$ is called minimal if it coincides with its minimal kemel (see [60], 8.6).

Let $\alpha \sim[\mathrm{d}, A]$. Then for $M \in F I N\left(E^{\prime}\right)$ and $N \in \operatorname{FIN}(\mathrm{~F})$ the diagram

$$
\begin{array}{ccccc}
E^{\prime} \otimes_{\alpha} F & \stackrel{\psi}{\hookrightarrow} & \mathcal{A}^{\min }(E, F) & 3 & I_{N}^{F} T Q_{M^{0}}^{E} \\
\jmath & & \uparrow & \{ \\
M \otimes_{\alpha} N & \stackrel{1}{=} & \mathcal{A}\left(E / M^{0}, N\right) & \ni & T
\end{array}
$$

obviously commutes. Hence for $z \in E^{\prime} \otimes F$ and $u \in M \otimes N$ with $I_{M}^{E^{\prime}} \otimes I_{N}^{F}(u)=z$

$$
A^{\min }\left(L_{z}\right)=A^{\min }\left(I_{N}^{F} L_{u} Q_{M^{0}}^{E}\right) \leq A\left(L_{u}\right)=\alpha(u ; M, N)
$$

which implies

$$
\left\|\psi: E^{\prime} \otimes_{\alpha} F \hookrightarrow \mathcal{A}^{\min }(E, F)\right\| \leq 1
$$

Even more holds:
Theorem. If $\alpha \sim[\mathcal{A}, A]$ the canonical map

$$
\tilde{\Psi}: E^{\prime} \tilde{\otimes}_{\alpha} F \xrightarrow{1} \mathcal{A}^{\min }(E, F)
$$

is a metric surjection for all Banach spaces E and F.
Proof: (1) Let $S_{0} \in \mathrm{~d}(X, \mathrm{Y}), \mathrm{T} \in \mathcal{F}(E, X), R \in \mathcal{F}(\mathrm{Y}, F)$ and consider $\mathrm{w} \in E^{\prime} \otimes F$ corresponding to $R S_{0} T \in \mathcal{F}(E, F)$. Then

$$
\alpha\left(w ; E^{\prime}, F\right) \leq\|R\| A\left(S_{0}\right)\|T\| .
$$

Indeed, if

$$
\begin{array}{lll}
R=I_{M}^{F} R_{0} & \text { with } & M \in \operatorname{FIN}(F), R_{0} \in \mathcal{L}(Y, M) \\
T=T_{0} Q_{N}^{E} & \text { with } & N \in \operatorname{COFIN}(E), T_{0} \in \mathcal{L}(E / N, X)
\end{array}
$$

then $R S_{0} T=I_{M}^{F} R_{0} S_{0} T_{0} Q_{N}^{E}$, and hence

$$
\begin{aligned}
\alpha\left(w ; \mathrm{E}^{\prime}, \mathrm{F}\right) & =\alpha\left(\left(Q_{\mathrm{N}}^{E}\right)^{\prime} \otimes I_{M}^{F}\left(z_{R_{0} S_{0} T_{0}}\right) ; E^{\prime}, F\right) \\
& \leq \alpha\left(z_{R_{0} S_{0} T_{0}} ;(E / N)^{\prime}, M\right) \\
& =A\left(R_{0} S_{0} T_{0}\right) \leq\|R\| A\left(S_{0}\right)\|T\|
\end{aligned}
$$

(2) Let now $S \in \mathcal{A}^{\min }(E, F)$. Then by definition there are $S_{0} \in \mathrm{~d}(X, Y), \mathrm{T} \in$ $\overline{\mathcal{F}}(E, X), R \in \overline{\mathcal{F}}(Y, F)$ such that

$$
S=R S_{0} T \quad \text { and } \quad\|S\| A\left(S_{0}\right)\|T\| \leq(1+\varepsilon) A^{\min }(S)
$$

For sequences $\left(T_{n}\right)$ in $\mathcal{F}(E, \mathrm{X})$ and $(R$,$) in \mathcal{F}(\mathrm{Y}, F)$ with

$$
\left\|T-T_{n}\right\| \rightarrow 0 \quad \text { and } \quad\left\|R-R_{n}\right\| \rightarrow 0
$$

choose $w_{n m} \in E^{\prime} \otimes F$ corresponding to $R_{n} S_{0} T_{m} \in \mathcal{F}(E, F)$; then, by (1),

$$
\begin{aligned}
\alpha\left(w_{n n}-w_{m m} ; E^{\prime}, F\right) & \leq \\
& \leq \alpha\left(w_{n n}-{ }_{m m} ; \mathrm{E}^{\prime}, F\right)+\alpha\left(w_{m n}-w_{m m} ; E^{\prime}, F\right) \\
& \leq\left\|R_{n}-R_{m}\right\| A\left(S_{0}\right)\left\|T_{n}\right\|+\left\|R_{m}\right\| A\left(S_{0}\right)\left\|T_{n}-T_{m}\right\|
\end{aligned}
$$

which implies that $\mathrm{w}:=\mathrm{limw}, \in E^{\prime} \tilde{\otimes}_{\alpha} F$ exists. Obviously,

$$
\psi(w)=\lim \psi\left(w_{n n}\right)=R S_{0} T=S
$$

and, again by (1),

$$
\begin{aligned}
\alpha\left(w ; E^{\prime}, F\right) & =\lim \alpha\left(w_{n n} ; E^{\prime}, F\right) \\
& \leq \lim \left\|R_{n}\right\| A\left(S_{0}\right)\left\|T_{n}\right\| \\
& =\|R\| A\left(S_{0}\right)\|T\| \leq(1+\varepsilon) A^{\min }(T)
\end{aligned}
$$

It is a well-known fact (see 0.7) that the extension

$$
E^{\prime} \tilde{\otimes}_{\boldsymbol{\pi}} F \rightarrow \mathcal{N}(E, F)
$$

of the canonical embedding is a metric surjection. Hence in the special case $\alpha=\pi \sim \mathcal{I}$ the preceding result implies that $[\mathcal{I}, I]^{\min }=[\mathcal{N}, N]$. This is the reason why operators in $\mathcal{A}^{\min }$ sometimes are called α-nuclear.

The following statement follows directly from 5.6:
Corollary. Let $C Y \sim[\mathcal{A}, A]$ and let E, F be Banach spaces. If α is totally accessible or if E^{\prime} or F has the approximation property, then

$$
E^{\prime} \tilde{\otimes}_{\alpha} F=\mathcal{A}^{\min }(E, F)
$$

isometrically.
7.2. With the last theorem, the third of the three basic links between the metric theory of tensor products and the theory of Banach-operator ideals was obtained: If the maximal Banach operator ideal [A, A] and the finitely generated tensomorm α are associated, i.e.

$$
M^{\prime} \otimes_{\alpha} N=\mathcal{A}(M, N)
$$

isometrically for all $\mathbf{M}, \mathbf{N} \in \operatorname{FIN}$, then for all Banach spaces \mathbf{E} and \mathbf{F} the following theorems hold: $(4.3,4.4,7.1)$
(1) The representation theorem for maximal operator ideals:

$$
\mathcal{A}\left(E, F^{\prime}\right) \stackrel{1}{=}\left(E \otimes_{\alpha^{\prime}} \mathbf{F}\right)^{\prime}
$$

(2) The embedding theorem:

$$
E^{\prime} \tilde{\otimes}_{\overleftarrow{\alpha}^{\prime}} F \stackrel{1}{\hookrightarrow} \mathbf{A}(\mathbf{E}, \mathbf{F})
$$

(3) The representation theorem for minimal operator ideals:

$$
E^{\prime} \tilde{\otimes}_{\alpha} F \xrightarrow{1} \mathcal{A}^{\min }(E, F) .
$$

In order to illustrate the interplay of these three facts the following extension of a result of Schwarz [76] (see also [60], 10.3.5) is proved:

Proposition. Let [A, A] be a maximal Banach ideal. If the associated tensornorm α of A is totally accessible or if E or F^{\prime} has the approximation property, then

$$
\mathbf{A}^{*}\left(\mathbf{E}, F^{\prime \prime}\right)=\left(\mathcal{A}^{\mathrm{mn}}(\mathbf{F}, \mathbf{E})\right)^{\prime} .
$$

Proof : The representation theorem for maximal ideals shows

$$
\begin{aligned}
\mathcal{A}^{*}\left(E, F^{\prime \prime}\right) & \stackrel{1}{=}\left(E \otimes_{\alpha^{2}} F^{\prime}\right)^{\prime} \\
& \stackrel{1}{=}\left(F^{\prime} \tilde{\otimes}_{\alpha} E\right)^{\prime}
\end{aligned}
$$

(4.5 implies $\alpha^{*}=\left(\alpha^{t}\right)^{\prime} \sim \mathcal{A}^{*}$) and corollary 7.1 of the representation theorem for minima ideals gives

$$
F^{\prime} \tilde{\otimes}_{\alpha} \mathrm{E}=\mathrm{d}-\quad(\mathrm{F}, \mathrm{E}),
$$

hence

$$
\mathbf{d} *\left(E, F^{\prime \prime}\right)=\left(\mathcal{A}^{\mathrm{min}}(F, \mathbf{E})\right)^{4} .
$$

The duality bracket can be calculated with the trace: Use 5.2 to see (first on elementary tensors)thatfor $T \in \mathcal{A}^{*}\left(E, F^{\prime \prime}\right)$

and

where $S^{\pi}: F^{\prime \prime} \rightarrow E$ is the astriction of $S^{\prime \prime}$; it follows that

$$
\langle T, S\rangle= \begin{cases}\operatorname{tr}_{F^{\prime}}\left(S^{\prime} \circ \mathrm{T}^{\prime} \circ \kappa_{F^{\prime}}\right) & \text { if } F^{\prime} \text { has a.p. } \\ \operatorname{tr}_{E}\left(S^{\pi} \circ \mathrm{T}\right) & \text { if } E \text { has a.p. }\end{cases}
$$

In the case of α being totally accessible, the duality bracket cannot always be calculated with the trace on operators: for an example, take $\alpha=\varepsilon$ whence $\mathcal{A}^{*}=\mathcal{I}$ and $\mathcal{A}^{\min }=\overline{\mathcal{F}}$ and E a reflexive space without the approximation property; then

$$
\mathcal{I}(E, E)=\mathcal{N}(E, E)=\mathcal{I}\left(c_{0}, E\right) \circ \overline{\mathcal{F}}\left(E, c_{0}\right)=\overline{\mathcal{F}}\left(\ell_{1}, E\right) \circ \mathcal{I}\left(E, \ell_{1}\right)
$$

so neither S^{\prime} o T^{\prime} nor $T \circ S$ (for $T \in \mathbf{d}^{\star}$ and $S \in \mathcal{A}^{\min }$) have in general a trace (see also 0.8).
7.3. The following trivial consequence of the representation theorem for minimal ideals sometimes is useful:

Take E and F Banach spaces, $\alpha \sim \mathbf{d}$ and $\beta \sim \mathcal{B}$, then

$$
\alpha \leq c \beta \quad \text { on } \quad E^{\prime} \otimes F
$$

implies

$$
\mathcal{B}^{\min }(E, F) c \mathcal{A}^{\min }(E, F), \quad A^{\min }(T) \leq c B^{\min }(T)
$$

As an application a «nuclear» version of Grothendieck's theorem 6.5 is given: Since $g_{p} \sim$ \mathcal{I}_{p} for $1 \leq \mathrm{p} \leq \infty$, proposition 1.6 (and 1.7) and the representation theorem for minimal operator ideals imply that an operator $T \in \mathcal{L}(\mathbf{E}, \mathrm{~F})$ belongs to $\mathcal{I}_{p}^{\mathrm{mnn}}(\mathbf{E}, \mathbf{F})$ if and only if it has a nuclear representation of the form

$$
\mathrm{T}=\sum_{i=1}^{\infty} x_{i}^{\prime} \otimes y_{i}
$$

such that $\left(\left\|x_{i}^{\prime}\right\|\right) \in \ell_{p}$ (m c_{0} if $p=\infty$) and $w_{p}(y)<,\infty$. Moreover, in this case

$$
I_{p}^{\min }(T)=\inf \ell_{p}\left(x_{i}^{\prime}\right) w_{p}\left(y_{i}\right)
$$

where the infimum is taken over all possible representations. This proves that ($\mathcal{I}_{p}^{\mathrm{mmn}}, I_{p}^{\mathrm{mmn}}$) coincides isometrically with the Banach ideal $\left(\mathcal{N}_{p}, N_{p}\right)$ of all p-nuclear operators (see [60], 18.2.1).

Since $\pi \leq K_{G} g_{\infty}$ on $\ell_{2}^{n} \otimes \ell_{1}^{m}$ (see 1.12) the local technique lemma implies that for every $\mathcal{L}_{2, \lambda}^{g}$-space E^{\prime} and $\mathcal{L}_{1, \mu}^{g}$-space \mathbf{F}

$$
\pi \leq K_{G} \lambda \mu g_{\infty} \leq K_{G} \lambda \mu g_{p} \quad \text { on } \quad E^{\prime} \otimes F
$$

and whence, by the above observation:
Proposition. Let E be an $\mathcal{L}_{2, \lambda}^{g}$-space and \mathbf{F} an \mathcal{L}_{1}^{g},-space, then for all $1 \leq \mathrm{p} \leq \infty$

$$
\begin{aligned}
& \mathcal{N}(E, F)=\mathcal{N}_{p}(E, F) \\
& N(T) \leq K_{G} \lambda \mu N_{p}(T)
\end{aligned}
$$

See the results of $8.5,10.2$ and 10.3 in order to obtain other results of this type.

8. PROJECTIVE AND INJECTIVE TENSORNORMS

8.1. A tensomorm α on NORM (or on FIN) is called right-injective on NORM (or on FIN), shorthand: (r)-injective, if for all metric injections $I: F \stackrel{1}{\hookrightarrow} \mathrm{G}$

$$
\mathrm{id}_{E} \otimes I: E \otimes_{\alpha} F \hookrightarrow E \otimes_{\alpha} G
$$

is a metric injection ($E, F, G \in N O R M$ or $F I N$, respectively) and right-projective on NORM (or on FIN), shorthand: (r)-projective, if for all metric surjections $\mathrm{Q}: F \xrightarrow{\text { l }} G$

$$
\mathrm{id}_{E} \otimes Q: E \otimes_{\alpha} F \rightarrow E \otimes_{\alpha} G
$$

is a metric surjection ($E, F, G \in N O R M$ or $F I N$, respectively). If α^{t} is (r)-injective (resp. (r) -projective), then α is called left-injective (resp. left-projective); if α is left- and right-injective (resp. projective) it is called injective (resp. projective). Clearly, ε is injective and π projective on $N O R M$ (this follows directly from the definitions, see 0.7). The duality

$$
M \otimes_{\alpha^{\prime}} N=\left(M^{\prime} \otimes_{\alpha} N^{\prime}\right)^{\prime} \quad M, N \in F I N
$$

implies: α is (r) -injective on FIN ifand only if α^{\prime} is (r)-projective on FIN.
8.2. This result will be extended to tensomorms on NORM. Unfortunately, (r) -projective tensomorms are more difficult to treat for normed spaces than (r) -injective ones, so their study will be prepared by a precise investigation of their behaviour with respect to dense subspaces. For this, let β be a tensomorm on NORM x C , where C is either the class of all Banach - or of all normed spaces, and define for $(E, F) \in N O R M \times N O R M$ and $z \in E \otimes F$ «the right-finite hull» ${ }^{(1)}$

$$
\beta^{\rightarrow}(z ; E, F):=\inf \{\beta(z ; E, N) \mid N \in F I N(F), z \in E \otimes N\}
$$

Clearly, this is a tensomorm on NORM x NORM and $\beta \leq \beta \rightarrow$.
Lemma.
(1) If β is (r)-projective on NORM x C, then $\beta=\beta \rightarrow$ on NORM x C.
(2) If β is a tensorrwrm on NORM such that $\beta=\beta \rightarrow$ on NORM x BAN, then $\beta=\beta \rightarrow$ on NORM x NORM and

$$
E \otimes_{\beta} F \stackrel{1}{\hookrightarrow} E \otimes_{\beta} \tilde{F}
$$

[^1]for all $(E, F) \in N O R M \times N O R M$.
(3) If β is a tensornorm on NORM, (r)-projective on $N O R M \times B A N$. then it is (r)-projective on $N O R M \times N O R M$.

Proof :
(1) If $G \in C$, then there is a metric surjection

$$
Q: F \xrightarrow{\xrightarrow{l}} G
$$

such that F has the ($1+\varepsilon$)-approximation property for all $\varepsilon>0$ (if G is complete take $F:=\ell_{1}\left(B_{G}\right)$ and in the general case a dense subspace of $\left.\ell_{1}\left(B_{\tilde{G}}\right)\right)$; then, for every normed space E

$$
\beta(\cdot ; E, F)=\beta^{\rightarrow}(\because E, F)
$$

by the approximation lemma. It follows that for $z \in E \otimes \mathrm{G}$ there is an $\mathrm{N} \in F I N(F)$ and a $\hat{z} \in E \otimes N$ with $\operatorname{id}_{E} \otimes Q(\hat{z})=z$ and

$$
\beta(\hat{z} ; E, N) . \leq(1+\varepsilon) \beta(z ; E, G)
$$

and therefore

$$
\begin{aligned}
\beta(z ; E, G) & \leq \beta^{\rightarrow}(z ; E, G) \leq \beta(z ; E, Q N) \leq \beta(\hat{z} ; E, N) \leq \\
& \leq(1+\varepsilon) \beta(z ; E, G) .
\end{aligned}
$$

(2) Take $z \in E \otimes F$, then the metric mapping property gives

$$
\beta^{\rightarrow}(z ; E, \tilde{F}) \leq \beta^{\rightarrow}(z ; E, F)
$$

For $\mathrm{N} \in F I N(F)$ with $z \in E \otimes N$ and

$$
\beta(z ; E, N) \leq(1+\varepsilon) \beta^{\rightarrow}(z ; E, \tilde{F})
$$

choose an operator $R: \mathrm{N} \rightarrow F$ with $\|R\| \leq 1+\varepsilon$ and $R y=$ y whenever y $\in \mathrm{N} \cap F$ (the existence of R will be shown in a moment). Then

$$
z \in(E \otimes F) \cap(E \otimes N) \subset E \otimes R N \quad \text { and } \quad i d_{E} \otimes R(z)=z
$$

whence

$$
\begin{aligned}
\beta^{\rightarrow}(z ; E, F) & \leq \beta(z ; E, R N)=\beta\left(\mathrm{id}_{E} \otimes R(z) ; E, R N\right) \leq \\
& \leq\|R\| \beta(z ; E, N) \leq(1+\varepsilon)^{2} \beta^{\rightarrow}(z ; E, \tilde{F})
\end{aligned}
$$

Aspects of the metnc theory of tensor products and operator ideals
which proves (2). For the existence of R take a projection $\mathrm{Q}: \tilde{F} \rightarrow \mathrm{~N} \cap F$; since

$$
\mathcal{L}(N, F)=N^{\prime} \otimes_{\varepsilon} F \hookrightarrow N^{\prime} \otimes_{\varepsilon} \tilde{F}=\mathcal{L}(N, \tilde{F})
$$

Is dense there is an $R_{0} \in \mathcal{L}(N, F)$ with

$$
\left\|I_{N}^{\bar{F}}-R_{0}\right\| \leq \varepsilon(2\|Q\|)^{-1}
$$

Now $R:=R_{0}+\left.\left(I_{N}^{\bar{F}}-R_{0}\right) Q\right|_{N}$ has the desired properties.
(3) To see this look at the following result: Let U and V be normed spaces, $P \in \mathcal{L}(U, V)$ surjective, U_{0} c U dense and

$$
P_{0}:=\left.P\right|_{U_{0}}: U_{0} \rightarrow V_{0}:=P\left(U_{0}\right)
$$

Then P_{0} is a metric surjection if and only if ker $P=\overline{\operatorname{ker} P_{0}}$ and P is a metric surjection.
This is perhaps not very well-known (see [78]); a proof follows from
(a) If P_{0} is a metric surjection, then $P^{\prime}\left(V^{\prime}\right)=P_{0}^{\prime}\left(V_{0}^{\prime}\right)$ is $\sigma\left(U^{\prime}, U_{0}\right)$-closed, whence

$$
{\overline{\operatorname{ker} P_{0}}}^{\sigma\left(U, U^{\prime}\right)}=\left(\left(\operatorname{ker} P_{0}\right)^{0}\right)^{0}=\left(P^{\prime}\left(V^{\prime}\right)\right)^{0}=\operatorname{ker} P .
$$

(b) If $x \in U$, then

$$
\inf \left\{\|x+z\| \| z \in \operatorname{ker} P_{0}\right\}=\inf \left\{\|x+z\| \| z \in \overline{\operatorname{ker} P_{0}}\right\}
$$

Coming back to statement (3) take for normed spaces F and G a metric surjection $Q: F \xrightarrow{1} G$. Then $\tilde{Q}: \tilde{F} \rightarrow \tilde{G}$ is a metric surjection, $\operatorname{ker} \tilde{Q}=\operatorname{ker} Q$ and

$$
\mathrm{id}_{E} \otimes \tilde{Q}: E \otimes_{\beta} \tilde{F} \rightarrow E \otimes_{\beta} \tilde{G}
$$

is a metric surjection as well. Since, by (1) and (2)

$$
E \otimes_{\beta} F \stackrel{1}{\hookrightarrow} E \otimes_{\beta} \tilde{F} \quad \text { and } \quad E \otimes_{\beta} G \stackrel{1}{\hookrightarrow} E \otimes_{\beta} \tilde{G}
$$

are dense subspaces, the mapping

$$
\mathrm{id}_{E} \otimes Q: E \otimes_{\beta} F \rightarrow E \otimes_{\beta} G
$$

is a metric surjection (by the above result) if

$$
\operatorname{ker}\left(\mathrm{id}_{E} \otimes \tilde{Q}\right)=E \otimes \operatorname{ker} \tilde{Q} \stackrel{!}{\subset}{\overline{\operatorname{ker}\left(\mathrm{id}_{E} \otimes Q\right)}}_{E \otimes_{\beta} \tilde{F}}
$$

which is obvious by $\operatorname{ker} \tilde{Q}=\operatorname{ker} \mathrm{Q}$.
This lemma allows to restrict the attention to Banach spaces when investigating projective tensomorms.
8.3. Now the announced duality between (r) -injective and (r) -projective tensomorms can be proved. At the same time, and this is somehow natural, a first observation on accessibility of these tensomorms is made (a more careful investigation will be made in \$9).

Proposition. Let α be tensornorm on NORM.
(1) If α is (r)-injective on FIN, then $\overleftarrow{\alpha}$ and $\vec{\alpha}$ are (r)-injective on NORM.
(2) If α is (r) -projective on FIN, then $\vec{\alpha}$ is (T) -projective on NORM.
(3) If α is finitely or cofinitely generated, then: α is (T)-injective on NORM if and only if α^{\prime} is (r)-projective on NORM.
(4) If α is (т)-injective or (T) -projective on FIN, then α is((т)-accessible.

Proof

(1) and (4): If α is (r)-injective on $F I N$, then for $F \stackrel{1}{\hookrightarrow} G$ and $z \in E \otimes F$

$$
\begin{aligned}
\vec{\alpha}(z ; E, G) & \leq \vec{\alpha}(z ; E, F)= \\
& =\inf \{\alpha(z ; M, N \cap F) \mid M \in F I N(E), N \in F I N(G), z \in M \otimes N\}= \\
& =\inf \{\alpha(z ; M, N) \mid \ldots\}=\vec{\alpha}(z ; E, G)
\end{aligned}
$$

so $\vec{\alpha}$ is (T) -injective. To treat the cofinite hull, first (4) will be shown: For this take (N, F) \in $F I N \times N O R M$ and $\mathrm{z} \in \mathrm{N} \otimes F$ and assume α being (r)-injective on FIN. Then, by what was already shown and the approximation lemma, it follows

$$
\begin{aligned}
\vec{\alpha}(z ; N, F)= & \vec{\alpha}\left(z ; N, \ell_{\infty}\left(B_{F^{\prime}}\right)\right)={ }^{\star}\left(z ; N, \ell_{\infty}\left(B_{F^{\prime}}\right)\right) \leq \\
& \leq \overleftarrow{\alpha}(z ; N, F)
\end{aligned}
$$

whence α is (r)-accessible. Now remember that α is (r)-accessible, if α^{\prime} is (see 3.6): Whence, if α is (r)-projective on FIN, the dual α^{\prime} is (r)-injective on FIN, whence α^{\prime} is (T) -accessible and so is α.

Now it is possible to show that $\overleftarrow{\alpha}$ is (r)-injective on NORM if α is 0 n PI IN: For $F \stackrel{1}{\hookrightarrow} G$ and $\mathrm{z} \in E \otimes F$ the following holds by the two results which were already shown:

$$
\begin{aligned}
\overleftarrow{\alpha}(z ; E, F) & =\sup \left\{\overleftarrow{\alpha}\left(Q_{K}^{E} \otimes \mathrm{id}_{F}(z) ; E / K, F\right) \mid K \in \operatorname{COFIN}(E)\right\} \mid= \\
& =\sup \left\{\vec{\alpha}\left(Q_{K}^{E} \otimes \mathrm{id}_{F}(z) ; E / K, F\right) \mid K \in \operatorname{COFIN}(E)\right\} \mid= \\
& =\sup \left\{\vec{\alpha}\left(Q_{K}^{E} \otimes \operatorname{id}_{G}(z) ; E / K, G\right) \mid K \in \operatorname{COFIN}(E)\right\}= \\
& =\sup \left\{\overleftarrow{\alpha}\left(Q_{K}^{E} \otimes \operatorname{id}_{G}(z) ; E / K, G\right) \mid K \in \operatorname{COFIN}(E)\right\}= \\
& =\overleftarrow{\alpha}(z ; E, G)
\end{aligned}
$$

(2) Using lemma 8.2 (3) it is enough to consider a metric surjection $\mathrm{Q}: \mathrm{F} \rightarrow \mathrm{G}$ between Banach spaces. By (4) the tensomorm α^{\prime} is (r)-accessible, whence for every $\mathrm{N} \in$ FIN the result (1) implies

$$
\left(N \otimes_{\vec{\alpha}} G\right)^{\prime}=N^{\prime} \otimes_{\alpha} G^{\prime} \stackrel{1}{\hookrightarrow} N^{\prime} \otimes_{\alpha^{\prime}} F^{\prime}=\left(N \otimes_{\vec{\alpha}} F\right)^{\prime}
$$

and therefore

$$
N \otimes_{\vec{\alpha}} F \rightarrow N \otimes_{\vec{\alpha}} G
$$

is a metric surjection. Now take E an arbitrary normed space:

$$
\begin{aligned}
\vec{\alpha}(z ; E, G) & =\inf \{\vec{\alpha}(z ; N, G) \mid N \in F I N(E), z \in N \otimes G\}= \\
& =\inf \left\{\vec{\alpha}(w ; N, F) \mid N \in F I N(E), \mathrm{id}_{N} \otimes Q(w)=z\right\}= \\
& =\inf \left\{\vec{\alpha}(w ; E, F) \mid \operatorname{id}_{E} \otimes Q(w)=z\right\} .
\end{aligned}
$$

The last statement (3) follows from (1) and (2).
It is not true that the cofinite hull $\overleftarrow{\alpha}$ is right-projective on $B A N$ if α is right-projective on $F I N$; to see an example take $\alpha=\pi$ and $\ell_{1}\left(B_{F}\right) \xrightarrow{1} F$ fora Banach-space F without the metric approximation property, then

$$
F^{\prime} \otimes_{\pi} \ell_{1}\left(B_{F}\right)=F^{\prime} \otimes_{\pi} \ell_{1}\left(B_{F}\right) \xrightarrow{1} F^{\prime} \otimes_{\pi} F \neq F^{\prime} \otimes_{\pi} F
$$

Since there is no Hahn-Banach-theorem for operators, π is neither (r) - nor (ℓ)-projective; see also 8.15.
8.4. For the $\alpha_{p q}$-tensornorms the following result holds:

Proposition. Let $1 \leq \mathrm{p} \leq \infty$. Then
(1) d_{p} is (r)-projective und, consequently, g_{p} is (ℓ)-projective and $g_{p}^{*}=d_{p}^{\prime}(r)$-injective.
(2) $\alpha_{2, p}$ is (r)-injective, $\alpha_{p, 2}(\ell)$-injective and $\alpha_{2, p}^{\prime}(r)$-projective. In particular: w_{2} is injective and $w_{2}^{*}=w_{2}^{\prime}$ projective.

Proof. Since

$$
d_{p}(z ; E, F)=\operatorname{int}\left\{w_{p^{\prime}}\left(x_{i}\right) \ell_{p}\left(y_{i}\right) \mid z=\sum x_{i} \otimes y_{i}\right\}
$$

the result (1) follows directly from the following observation: If $\mathrm{Q}: F \rightarrow G$ is a metric surjection, $\varepsilon>0$ and $y_{1}, \ldots, y_{n} \in G$, then there are $\hat{y}_{i} \in F$ with $Q\left(\hat{y}_{i}\right)=y_{i}$ and

$$
\ell_{p}\left(y_{i}\right) \leq \ell_{p}\left(\hat{y}_{i}\right) \leq(1+\varepsilon) \ell_{p}\left(y_{i}\right)
$$

To see that $\alpha_{2, p}$ is (r) -injective, take an isometric injection $F \mathrm{c}-1 \mathrm{G}$, an element $\mathrm{z} \in E \otimes F$ and $\varepsilon>0$: Choose a representation in $E \otimes G$ of z with

$$
\ell_{r}\left(\lambda_{i}\right) w_{p^{\prime}}\left(x_{i}\right) w_{2}\left(y_{i}\right) \leq(1+\varepsilon) \alpha_{2, p}(z ; E, G)
$$

then the associated operator $T_{z}: E^{\prime} \rightarrow F$ has an obvious factorization

(D_{λ} the diagonal operator associated with (X,)). Then

$$
\|R\|=w_{p^{\prime}}\left(x_{i}\right) \quad \text { and } \quad \quad\|S\|=w_{2}\left(y_{i}\right)
$$

If P is the orthogonal projection $\ell_{2}^{n} \rightarrow H:=\mathrm{S}-{ }^{‘}(\mathrm{~F})$ and $S_{0}: H \rightarrow F$ the astriction of SI,, then $D_{\lambda} R\left(E^{\prime}\right) \subset H$ implies $T_{z}=S_{0} P D_{\lambda} R$. This means

$$
z=\sum \lambda_{i} x_{i} \otimes S_{0} P e_{i} \in E \otimes F
$$

and therefore

$$
\begin{aligned}
\alpha_{2, p}(z ; E, F) & \leq \ell_{\tau}\left(\lambda_{i}\right) w_{p^{\prime}}\left(x_{i}\right) w_{2}\left(S_{0} P e_{i}\right) \leq \\
& \leq \ell_{\tau}\left(\lambda_{i}\right) w_{p^{\prime}}\left(x_{i}\right)\left\|S_{0}\right\|\|P\| w_{2}\left(e_{i}\right) \leq \\
& \leq(1+\varepsilon) \alpha_{2, p}(z ; E, G)
\end{aligned}
$$

The other statements in (2) follow easily by transposition and dualization.
8.5. There is a nice application of the fact that d_{2} is (r)-projective. Grothendieck's inequality 1.11 implies (see 6.4) that

$$
d_{2} \leq \pi \leq K_{G} w_{2} \leq K_{G} d_{2} \quad \text { on } \quad \ell_{\infty}^{m} \otimes F^{\prime}
$$

whenever $F=L_{1}(\nu)$. An old result of Kadec (see [59], p. 272 and [60], 21.1.3) says that for every $1 \leq \mathrm{p} \leq 2$ and $n \in \mathrm{~N}$ there is an isometric embedding

$$
\ell_{p}^{n} \stackrel{1}{\hookrightarrow} L_{1}(\nu)
$$

for some finite measure ν; dualizing this, the fact that π and d_{2} are (r) -projective implies that

$$
d_{2} \leq \pi \leq K_{G} d_{2} \quad \text { on } \quad \ell_{\infty}^{m} \otimes \ell_{p^{\prime}}^{n}
$$

and whence, by the local technique lemma 6.2 for \mathcal{L}_{p}^{g}-spaces,

$$
d_{2} \leq \pi \leq \lambda \mu K_{G} d_{2} \quad \text { on } \quad E \otimes F^{\prime}
$$

whenever E is an $\mathcal{L}_{\infty-\lambda}^{g}$-space and F an $\mathcal{L}_{p, \mu}^{g}$-space (with $1 \leq \mathrm{p} \leq 2$). Since $\mathcal{P}_{2} \sim g_{2}^{*}=d_{2}^{\prime}$ and $\mathcal{L} \sim \varepsilon$ the transfer argument 4.10 gives Grothendieck's well-known [51]

If \mathbf{E} is an $\mathcal{L}_{\infty, \lambda}^{g}$-space and \mathbf{F} an $\mathcal{L}_{p \mu}^{g}$-space (for $1 \leq \mathbf{p} \leq 2$), then

$$
\mathcal{L}(E, F)=\mathcal{P}_{2}(E, F) \text { a } \mathbf{n} \quad \mathbf{d} \quad P_{2}(T) \leq K_{G} \lambda \mu\|T\|
$$

Clearly this result can also easily be deduced from the case $\mathrm{p}=1$ using Kadec's result and local techniques for operators.
8.6. Every tensomorm α is less than or equal to π and π is projective. Whence it is reasonable to search fora closest tensomorm $\beta \geq \alpha$ which is projective.

Theorem. Let α be a tensornorm on NORM. Then there is a unique (r)-projective tensornorm $\alpha / \geq \alpha$ on NORM with the following property: If $\beta \geq \alpha$ is (r) -projective, then $\beta \geq \alpha /$.

The right-projective associate $\alpha /$ of α can be calculated using the following property:
If \mathbf{E} is normed and \mathbf{F} a Banach space, then

$$
E \otimes_{\alpha} \ell_{1}\left(B_{F}\right) \xrightarrow{1} E \otimes_{\alpha /} \mathbf{F}
$$

is a metric surjection. If \mathbf{E} and F are arbitrary normed spaces and $\mathbf{z} \in \mathbf{E} \otimes F$, then

$$
\begin{equation*}
\alpha /(z ; \mathbf{E}, \mathbf{F})=\inf \{\alpha /(z ; E, N) \mid N \in F I N(F), z \in E \otimes N\} \tag{*}
\end{equation*}
$$

The symbol $\alpha /$ comes from the fact that $\alpha /$ respects quotient mappings $\mathbf{F} \xrightarrow{1} F \underline{\underline{I}} G$.
Proof . Uniqueness is clear if it exists. $\alpha /$ will be constructed first on NORM x $B A N$ and then extended, using the introductory lemma 8.2.
(a) If $(\mathbf{E}, \mathbf{F}) \in \mathbf{N O R M} \times \mathbf{B A N}$, define $\alpha /$ to be the quotient seminorm on $E \otimes \mathbf{F}$ given by the mapping

$$
E \otimes_{\alpha} \ell_{1}\left(B_{F}\right) \rightarrow E \otimes F
$$

Using the lifting property of the space $\ell_{1}(\Gamma)$:

$$
\begin{array}{ccc}
\ell_{1}\left(B_{F_{1}}\right) & -\stackrel{\hat{T}}{\rightarrow} \ell_{1}\left(B_{F_{2}}\right) & \|\hat{T}\| \leq(1+\varepsilon)\|T\| \\
& \% & \\
& \ddots & \downarrow \\
F_{1} & \xrightarrow{T} & F_{2}
\end{array}
$$

and the test 1.1 it is easy to see that $\alpha /$ is a tensornorm on $\mathbf{N O R M} \mathbf{~ X ~ B A N . ~}$
(b) If $\mathrm{Q}: F \rightarrow \mathrm{G}$ is a metric surjection between Banach spaces, the same lifting property gives

$$
\begin{array}{rcc}
\ell_{1}\left(B_{F}\right) & \leftarrow-\frac{\hat{Q}}{-}-\ell_{1}\left(B_{G}\right) & \|\hat{Q}\| \leq 1+\varepsilon \\
1 & \% & 1 \\
& \% & \\
F & \xrightarrow[Q]{\vec{Q}} & \text { G }
\end{array}
$$

and this implies easily that

$$
\mathrm{id}_{E} \otimes Q: E \otimes_{\alpha /} F \rightarrow E \otimes_{\alpha /} G
$$

is a metric surjection for all normed spaces E. Lemma 8.2 now implies

$$
\alpha /=\alpha / \rightarrow \mathrm{o} \quad \mathrm{n} \quad N O R M \times B A N .
$$

(c) This means that

$$
\alpha /:=\alpha / \rightarrow \quad \text { on } \quad N O R M \times N O R M
$$

is an extension of the tensomorm $\alpha /$ to NORM x NORM. Lemma 8.2 shows that $\alpha /$ is (r)-projective and $\alpha \leq \alpha /$ since, by definition, $\alpha \leq \alpha /$ on NORM \times FIN.
(d) If $\alpha \leq \beta$, then, again by the very definitions, $\alpha / \leq \beta /$. If β is (r)-projective, then $\beta=\beta^{\rightarrow}$ by lemma 8.2 and therefore $\beta=\beta /$. These two observations show that $\alpha /$ has the universal property stated in the theorem.

A lifting argument as in (b) shows the
Corollary 1. If E is a normed space, then

$$
\alpha\left(\cdot ; E, \ell_{1}(\Gamma)\right)=\alpha /\left(\cdot ; E, \ell_{1}(\Gamma)\right)
$$

for all sets Γ.
Remember that by a result of Grothendieck's [26] all spaces with the lifting property (as it was used) are isometric to some $\ell_{1}(\Gamma)$. Köthe [44] showed that spaces with the lifting property (without norm-restriction) are isomorphic to some $\ell_{1}(\Gamma)$. Clearly,

$$
\backslash \alpha:=\left(\left(\alpha^{t}\right) /\right)^{t}
$$

is called the left-projective associare of α.

Corollary 2. Let α be a tensornorm. Then

$$
\backslash(\alpha /)=(\backslash \alpha) /=: \backslash \alpha \mid
$$

is called the projective associate of α; it is the unique smallest projective tensornorm $\geq \alpha$, is jinitely generated and

$$
\ell_{1}\left(B_{E}\right) \otimes_{\alpha} \ell_{1}\left(B_{F}\right) \xrightarrow{1} E \otimes_{\langle\alpha /} F
$$

is a metric surjection if E and F are Banach spaces.
The proof follows easily from the «transitivity of metric surjections» and the theorem.
8.7. Fortunately, the injective case is simpler.

Theorem. Let α be a tensornorm on NORM. Then there is a unique (r) -injective tensornorm $\alpha \backslash \leq \alpha$ on NORM such that $\beta \leq \alpha \backslash$ for all (P) -injective tensornorms $\beta \leq \alpha$. For all normed spaces E, F

$$
E \otimes_{\alpha \backslash} F \stackrel{1}{\hookrightarrow} E \otimes_{\alpha} \ell_{\infty}\left(B_{F^{\prime}}\right)
$$

is a metric injection.
$\alpha \backslash$ is called the right-injective associate of α.
Proof . Define $\alpha \backslash$ on $E \otimes F$ to be the subspace norm of

$$
E \otimes F \hookrightarrow E \otimes_{\alpha} \ell_{\infty}\left(B_{F^{\prime}}\right)
$$

Since all $\ell_{\infty}(\Gamma)$ have the 1 -extension-property

$$
\begin{array}{llll}
\mathrm{G} & & & \|\hat{T}\| \leq\|T\| \\
J & \grave{\hat{T}} \\
F & \xrightarrow{T} & \ell_{\infty}(\Gamma) &
\end{array}
$$

test 1.1 gives easily that $\alpha \backslash$ is a tensornorm on NORM - as well as that $\alpha \backslash$ is (τ)-injective. The definition implies immediately that $\beta \leq \alpha \backslash$ if $\beta \leq \alpha$ is (r) -injective.

As in the projective case:

$$
/ \alpha:=\left(\left(\alpha^{t}\right) \backslash\right)^{t}
$$

is the leftinjective associate of α and

$$
\mid \alpha \backslash:=(/ \alpha) \backslash=/(\alpha \backslash)
$$

is the injective associate which is the unique largest injective tensomorms smaller than α. I follows:

$$
E \otimes_{/ \alpha \backslash} F \stackrel{1}{\hookrightarrow} \ell_{\infty}\left(B_{E^{\prime}}\right) \otimes_{\alpha} \ell_{\infty}\left(B_{F^{\prime}}\right) .
$$

Note that injective tensomorms are clearly finitely generated.

Corollary. If the Banach space \mathbf{F} has the X-extension-property, then

$$
\alpha \backslash \leq \alpha \leq \lambda \alpha \backslash \quad \text { on } \quad E \otimes F
$$

for all normed spaces \mathbf{E}.
8.8. The following is clear by what has been already shown:

Proposition. For every tensornorm α, normed space E and $\mathbf{n} \in \mathbf{N}$

$$
\begin{array}{lr}
\mathbf{E} \otimes_{\alpha} \ell_{1}^{n}=E \otimes_{\alpha /} \ell_{1}^{n} & \text { isometrically } \\
E \otimes_{\alpha} \ell_{\infty}^{n}=E \otimes_{\alpha \backslash} \ell_{\infty}^{n} & \text { isometrically }
\end{array}
$$

Now the local technique lemma 6.2 for \mathcal{L}_{p}^{g}-spaces will be applied to give the Corollary. Let α be a tensornorm and \mathbf{E} a normed space.
(1) If \mathbf{F} is an $\mathcal{L}_{1, \lambda}^{g}$-space, then

$$
\alpha \leq \alpha / \leq \lambda \alpha^{\rightarrow} \quad \text { on } \quad E \otimes F
$$

Note that $\alpha^{\rightarrow} \leq \mu \alpha$ on $\mathbf{E} \otimes \mathbf{F}$ if \mathbf{F} has the μ-approximation property (by the approximation lemma) and $\alpha=\alpha \rightarrow$ if α is finitely generated.
(2) F is an $\mathcal{L}_{\infty \lambda}^{g}$-space, then

$$
\alpha \backslash \leq \alpha \leq \lambda \alpha \backslash \quad \text { on } \quad \mathbf{E} \otimes \mathbf{F}
$$

Proof. The proof of the local technique lemma actually gave $\alpha^{\rightarrow} \leq c \beta \rightarrow$ instead of $\vec{\alpha} \leq c \vec{\beta}$ as it was stated. Now (1) is immediate and (2) follows from $\alpha \backslash=\alpha \backslash \rightarrow$.
8.9. This result helps to state a simple test for recognizing whether a tensomorm β is the projective/injective associate of α :

Proposition. Let α and β be tensornorms.
(1) If β is (r) -projective, then the following are equivalent:
(a) $\beta=\alpha /$
(b) For all $\mathbf{E} \in \mathbf{N O R M}$ and $\mathbf{n} \in \mathbf{N}$

$$
E \otimes_{\beta} \ell_{1}^{n}=E \otimes_{\alpha} \ell_{1}^{n} \quad \text { isometrically }
$$

(2) If β is (r)-injective, then the following are equivalent:
(a) $\beta=\alpha \backslash$
(b) For all $\mathbf{E} \in \mathbf{N O R M}$ and $\mathbf{n} \in \mathbf{N}$

$$
E \otimes_{\beta} \ell_{\infty}^{\pi}=E \otimes_{\alpha} \ell_{\infty}^{n} \quad \text { isometrically }
$$

(3) If α and β are finitely generated, then it is enough in both cases to test only for finitedimensional E .

Proof . Assume (1) (b), then (again by the proof of the local technique lemma) $\beta^{\rightarrow}=\alpha \rightarrow$ on all $E \otimes \ell_{1}(\Gamma)$ and whence $\beta=\alpha$ on all $E \otimes \ell_{1}(\Gamma)$ by the approximation lemma: the properties (\star) in theorem 8.6 give (a); the reverse implication follows from the last proposition. (2) can be shown the same way and (3) is obvious.

Clearly, it would be enough in (3) that α and β are finitely generated on the left side. Note that the result (together with 8.3) implies in particular that $\alpha /$ and $\alpha \backslash$ are finitely generated if CY is finitely generated.

The same arguments give:
Let α and β be finitely generated tensornorms.
(4) If β isprojective, then $\beta=\backslash \alpha /$ ifand only if for all $\mathbf{n} \in \mathbf{N}$

$$
\ell_{1}^{n} \otimes_{\beta} \ell_{1}^{n}=\ell_{1}^{n} \otimes_{\beta} \ell_{1}^{n} \quad \text { isometrically }
$$

(5) If β is injective, then $\beta=/ \alpha\rangle$ ifand only iffor all $\mathrm{n} \in \mathbb{N}$

$$
\ell_{\infty}^{n} \otimes_{\beta} \ell_{\infty}^{n}=\ell_{\infty}^{n} \otimes_{\alpha} \ell_{\infty}^{n} \quad \text { isometrically }
$$

8.10. The following formulas contain many of the phenoma conceming projective/injective associates and finite/cofinitel hulls; they create a type of «calculus» which will be helpfull when dealing with accessibility:

Proposition. Let α be a tensomormorm on NORM.
(1) $(\vec{\alpha}) \backslash=\vec{\alpha}$ and $(\vec{\alpha}) /=\overrightarrow{\alpha /}$.
(2) $(\overleftarrow{\alpha}) \backslash=\overleftarrow{\alpha}$ but in general $(\overleftarrow{\alpha}) / \neq \overleftarrow{\alpha /} /$.
(3) $(\alpha /)^{\prime}=\left(\alpha^{\prime}\right) \backslash$ and $(\alpha \backslash)^{\prime}=\left(\alpha^{\prime}\right) /$.
(4) $(\alpha /)^{\star}=/ \alpha^{\star}$ and $(\alpha \backslash)^{*}=\backslash \alpha^{*}$.

Proof :
(1) By 8.8 it follows that

$$
\vec{\alpha}=\alpha=\alpha \backslash=\vec{\alpha} \backslash \circ \quad \mathrm{n} \quad N \otimes \ell_{\infty}^{n}
$$

Since $\beta:=\overrightarrow{\alpha \backslash}$ is (r) -injective by proposition 8.3 the test gives

$$
\overrightarrow{\alpha \backslash}=\vec{\alpha} \backslash
$$

The same for the (r) -projective associate.
(3) and (4) follow again from the test, since α^{\prime} and $(\alpha /)^{\prime}$ are finitely generated and clearly

$$
N \otimes_{\alpha} \ell_{\infty}^{n}=\left(N^{\prime} \otimes_{\alpha} \ell_{1}^{n}\right)^{\prime}=\left(N^{\prime} \otimes_{\alpha /} \ell_{1}^{n}\right)^{\prime}=N \otimes_{(\alpha /)^{\prime}} \ell_{\infty}^{n}
$$

whence $\left(\alpha^{\prime}\right) \backslash=(\alpha \backslash)^{\prime}$ which implies all formulas in (3) and (4).
(2) Note first that $\overleftarrow{\alpha \backslash}$ is (r)-injective by proposition 8.3. Since, by (3) and 8.8.

$$
E^{\prime} \otimes_{\alpha^{\prime}} \ell_{1}\left(B_{F^{\prime}}\right)=E^{\prime} \otimes_{(\alpha \backslash)^{\prime}} \ell_{1}\left(B_{F^{\prime}}\right)
$$

and, by the duality theorem 3.4,

$$
\begin{aligned}
& E \otimes_{(\overleftarrow{\alpha}) \backslash} F \stackrel{1}{\hookrightarrow} E \otimes_{\overleftarrow{\alpha}} l_{\infty}\left(B_{F^{\prime}}\right) \stackrel{1}{\hookrightarrow}\left(E^{\prime} \otimes_{\alpha^{\prime}} l_{1}\left(B_{F^{\prime}}\right)\right)^{\prime} \\
& E \underset{\alpha \backslash}{\otimes_{\alpha}} F \stackrel{1}{\hookrightarrow} E \underset{\alpha \backslash}{\otimes_{\dot{\infty}}}\left(B_{F^{\prime}}\right) \stackrel{1}{\hookrightarrow}\left(E^{\prime} \otimes_{(\alpha \backslash)^{\prime}} l_{1}\left(B_{F^{\prime}}\right)\right)^{\prime}
\end{aligned}
$$

one obtains $(\overleftarrow{\alpha})=\overleftarrow{\alpha}$. The related formula for the (r) -projective associate is not true, since - as it was already seen in 8.3 -

$$
(\overleftarrow{\pi}) /=\pi \neq \overleftarrow{\pi}=\overleftarrow{\pi /}
$$

8.11. Let α bea finitely generated tensomorm and (\mathcal{A}, A) the associated maximal Banach operator ideal. Take $(\mathcal{B}, B) \sim \alpha \backslash$ and $\mathrm{T} \in \mathcal{L}(E, F)$. Since $\left(\ell_{\infty}\left(B_{F^{\prime}}\right)\right)^{\prime}$ is an $\mathcal{L}_{1,1}^{g}$-space corollary 8.8 implies

$$
E \otimes_{\alpha^{\prime}}\left(\ell_{\infty}\left(B_{F^{\prime}}\right)\right)^{\prime}=E \otimes_{\alpha^{\prime} /}\left(\ell_{\infty}\left(B_{F^{\prime}}\right)\right)^{\prime}
$$

and whence, by the representation theorem for maximal operator ideals

whence $\mathrm{T} \in \mathcal{B}$ iff I o $\mathrm{T} \in \mathbf{d}$ (with equal norms). This shows that $(\mathcal{B}, B)=\left(\mathcal{A}^{\mathrm{mj}}, A^{\mathrm{mj} \mathrm{j}}\right)$ is the injective hull of \mathbf{d} in the sense of Pietsch (note that it was shown that $\mathcal{A}^{\text {nn) }}$ is maximal, if d is). This was the first part of the

Proposition. Let $\alpha \sim(\mathbf{d}, \mathrm{A})$ be associated.
(1) $\alpha \backslash \sim\left(\mathcal{A}^{\text {inj }}, A^{\text {inj }}\right)$. In particular: the tensornorm α is (r)-injective if und only if the operutor ideal (\mathbf{d}, A) is injective.
(2) $/ \alpha \sim\left(\mathcal{A}^{\text {surj }}, A^{\text {surj }}\right)$. In particular: the tensornorm α is ($\left.\ell\right)$-injective if und only if the operutor ideal (d, A) is surjective

Proof of (2). This is along the same lines as the (r) -injective case: Take $\mathcal{B} \sim / \alpha$, then

which shows that the operator ideal \mathcal{B} coincides isometrically with the ideal ($\mathcal{A}^{\text {surj }}, A^{\text {surj }}$) in the sense of Pietsch.

To see just one consequence of these relationships:
Corollary. If (\mathcal{A}, A) is a maximal normed operutor ideal, then

$$
\left(\mathcal{A}^{\text {dual }}\right)^{\text {inj }}=\left(\mathcal{A}^{\text {surj }}\right)^{\text {dual }}
$$

(with equal natural norms).
Proof. This is just $\left(\alpha^{t}\right) \backslash=(/ \alpha)^{t}$.
8.12. The projective associates of α give factorization theorems for the operator ideals. Using Kakutani's representation theorem for abstract L - and M-spaces and, clearly as before the representation theorem of maximal operator ideals, it follows

Proposition. Let $\alpha \sim(\mathbf{d}, \mathrm{A})$ be associated und denote by $(\mathcal{A} /, A /)$ und $(\backslash \mathcal{A}, \backslash \mathrm{A})$ the operutor ideals associated with $\alpha /$ und $\backslash \alpha$, respectively.
(1) $\mathbf{T} \in \mathcal{A} /(\mathbf{E}, \mathbf{F})$ if and only if there exists a strictly localizable measure μ,operators $R \in \mathcal{A}$ and $S \in \mathcal{L}$ such that

In this case

$$
\mathbf{A} /(\mathbf{T})=\min A(R)\|S\|
$$

and the minimum is attained with a metric surjection

$$
S: L_{1}(\mu) \xrightarrow{1} F^{\prime \prime}
$$

(2) $T \in \backslash \mathbf{d}(E, F)$ if and only if there is a compact space K, operators $R \in \mathcal{L}$ and $S \in \mathbf{d}$ such that

$$
\begin{array}{ccccc}
E & \xrightarrow{T} & F & \hookrightarrow & F^{\prime \prime} \\
& R \searrow & \% & \nearrow s
\end{array}
$$

In this case:

$$
\backslash A(T)=\min \|R\| A(S)
$$

and the minimum is attained with a metric injection R.
The details of the easy proof (which is of the same type as the one of proposition 8.11) are left to the reader.
8.13. Since w_{2} is injective by 8.4 the fundamental theorem 1.11 of the metric theory:

$$
w_{2} \leq \pi \leq K_{G} w_{2} \quad \text { on } \quad \ell_{\infty}^{n} \otimes \ell_{\infty}^{n}
$$

is, by the finite-dimensionai test 8.9 (5), just the

Theorem:

$$
\begin{gathered}
w_{2} \leq / \pi \backslash \leq K_{G} w_{2} \\
\backslash \varepsilon / \leq w_{2}^{\prime}=w_{2}^{*} \leq K_{G} \backslash \varepsilon /
\end{gathered}
$$

Since $\pi \sim \mathcal{I}$ the integral operators, $w_{2} \sim \mathcal{L}_{2}$ the operators that factor through a Hilbert space (see 4.6)

$(/ \pi) \backslash=/(\pi \backslash)=/ \pi \backslash$ and $\mathcal{I}^{\text {mJ }}=\mathcal{P}_{1}$ (by the factorization theorems), the results of 8.11 give the

Corollary (Grothendieck's inequality in operator form):

$$
\begin{aligned}
\left(\mathcal{P}_{1}\right)^{\text {sur }} & =\left(\mathcal{I}^{\text {surj }}\right)^{\text {inj }}=\mathcal{L}_{2} \\
\mathbf{L}, \mathbf{(T)} \leq P_{1}^{\text {sufj }}(T) & =\left(I^{\text {surj }}\right)^{\text {inj }}(T) \leq K_{G} L_{2}(T)
\end{aligned}
$$

Clearly, this implies

$$
\mathcal{P}_{1}\left(\ell_{1}, F\right)=\mathcal{L}_{2}\left(\ell_{1}, F\right)
$$

for all Banach spaces, and the well-known (see 6.5)

$$
\mathcal{P}_{1}\left(\ell_{1}, \ell_{2}\right)=\mathcal{L}\left(\ell_{1}, \ell_{2}\right)
$$

This latter formula (nowadays called: Grothendieck's theorem) implies (by simple factorization arguments) the corollary, which is nothing else than the theorem, i.e. the fundamental theorem of the metric theory/Grothendieck's inequality.
8.14. The following result about associates of $\alpha_{p q}$ will be very useful.

Proposition. Let $1 \leq p \leq \infty$, then
(1) $g_{p} \backslash=g_{p^{\prime}}^{*}=d_{p^{\prime}}^{\prime}$
(2) $\backslash g_{p}^{*}=g_{p^{\prime}}$ and $d_{p}^{*} /=d_{p^{\prime}}$
(3) $\backslash\left(g_{p} \backslash\right)=g_{p}$ and $\left(/ d_{p}\right) /=d_{p}$
(4) $\pi \backslash=g_{\infty}^{*}=w_{\infty}^{*}=w_{1}^{\prime}=d_{\infty}^{\prime}$ and $\varepsilon /=d_{\infty}=w_{1}$
(5) $g_{2}^{*}=g_{2} \quad$ a nd $d_{2}^{*}=d_{2}$.

Proof . (2) - (4) follow from (1) just by calculating with proposition 8.10. The fact that $g_{2}=\alpha_{2,1}$ is (r) -injective (see 8.4) shows that (1) also implies (5).

To see (1) take first $\mathrm{p}=\infty$, then, by 1.9 ,

$$
g_{\infty}=w_{\infty}=\varepsilon \quad \text { on } \quad N \otimes \ell_{\infty}^{n}
$$

therefore the test 8.9 implies $g_{\infty} \backslash=\varepsilon=\pi^{*}=g_{1}^{*}$.
The cases $1 \leq \mathrm{p}<\infty$ follow from the fact that by the factorization theorems 4.6 and 4.8 for the p-integral ($\sim \mathrm{gr}$,) and absolutely-p-summing ($\sim g_{p p}^{*}$) operators

$$
\mathcal{I}_{P}^{\text {inj }}=\mathcal{P}_{P} \quad \text { isometrically }
$$

and whence $g_{p} \backslash=g_{p}^{*}$, since $\mathcal{I}_{p}^{\mathrm{mj}} \sim g_{p} \backslash$ by 8. 11 .

These formulas contain information about the structure of Banach-spaces. Take, for example, $\pi \backslash=w_{1}^{\prime}$: The characterization of the \mathcal{L}_{1}^{g}-spaces (these are the \mathcal{L}_{1}-spaces, 6.3) in 6.1 and the description (\star) of $\pi \backslash$ in 8.7 give the

Corollary 1. A Banach space E is an \mathcal{L}_{1}-space if and only if $\mathrm{E} \otimes_{\pi}$. respects subspaces isomorphically.

This is a result of Stegall-Retherford [77] (see also [15]; the corresponding isometric result was mentioned in 1 .1). The Hahn-Banach-theorem applied to

$$
\mathcal{L}\left(\cdot ; E^{\prime}\right)=\left(\cdot \otimes_{\pi} E\right)^{\prime}
$$

shows, that dual \mathcal{L}_{∞}-spaces ($=$ dual \mathcal{L}_{∞}^{g}-spaces) have the extension property.
The formula $\varepsilon /=w_{1}$ implies in rathcr the same way

Corollary 2. A Banach space \mathbf{E} is an \mathcal{L}_{∞}-space if and only if $\mathbf{E} \otimes_{\varepsilon}$ respects quotients isomorphically.

This contains Kaballo's characterization [41] of ((LL)-spaces, i.e. those Banach spaces \mathbf{E} such that $E \tilde{\otimes}_{\varepsilon} \cdot$ respects quotients isomorphically: To see this, note first that $\mathbf{E} \otimes_{\boldsymbol{E}}$. respecting quotients implies that $E \tilde{\otimes}_{\varepsilon}$. does; if, corfversely, \mathbf{E} is an (EL) -space, a simple argument by contradiction shows, that there is a $\lambda \geq 1$ such that for all $Q: M \xrightarrow{1} \mathrm{~N}$ between finitedimensional spaces and for every $z \in \mathbf{E} \otimes_{\varepsilon} N$ there is an $u \in \mathbf{E} \otimes_{\varepsilon} M$ with

$$
\operatorname{id}_{E} \otimes Q(u)=z \quad \text { and } \quad \varepsilon(u ; \mathbf{E}, \mathbf{M}) \leq \lambda \varepsilon(z ; \mathbf{E}, \mathbf{N})
$$

and whence, by $\left(\mathbf{E} \otimes_{\boldsymbol{\varepsilon}} \mathrm{N}^{\prime}\right)^{\prime}=\mathbf{E}^{\prime} \otimes_{\boldsymbol{\pi}} \mathrm{N}$, that $\mathbf{E}^{\prime} \otimes_{\boldsymbol{\pi}}$. respects finite-dimensional injections with a universal constant: Corollary 1 implies that \mathbf{E}^{\prime} is an \mathcal{L}_{1}-space.
8.15. Is there a tensomorm α which is projective und injective? Existence would imply, by the reformulation 8.13 of Grothendieck's inequality, that (\sim for equivalent norms)

$$
g_{2}^{*} \leq w_{2}^{*} \sim \backslash \varepsilon / \leq \alpha \leq / \pi \backslash \sim w_{2},
$$

whence (by $\mathcal{L}_{2} \sim w_{2}, \mathcal{D}_{2} \sim w_{2}^{*}, \mathcal{P}_{2} \sim g_{2}^{*}$)

$$
\mathcal{L}_{2} \subset \mathcal{D}_{2} \subset \mathcal{P}_{2}
$$

but the identity map of ℓ_{2} is not in \mathcal{P}_{2}. More general (and much deeper)
Proposition. There is no tensornorm which is (r) -injective and (T$)$-projective.
Proof. This would imply, as before (using 8.14)

$$
w_{1}=\varepsilon / \leq \pi \backslash=w_{1}^{\prime}=g_{\infty}^{*}
$$

and whence $\mathcal{P}_{1} \subset \mathcal{L}_{1}$. But this is not true as Gordon and Lewis showed in [21] solving an old problem of Grothendieck's ([27] p. 72, question 2).

9. ACCESSIBLE TENSORNORMS AND OPERATOR IDEALS

9.1. As defined in 3.6 a tensornorm α is said to be right-accessible if

$$
\overleftarrow{\alpha}(\cdot ; M, F)=\vec{\alpha}(\because ; M, F)
$$

for all $(M, F) \in \operatorname{FIN} \times N O R M$, left-accessible if its transposed tensomorm α^{t} is rightaccessible and accessible if it is both: right- and left-accessible. Moreover, α is totally accessible if α is finitely and cofinitely genemted, i.e. $\overleftarrow{\alpha}=\vec{\alpha}$. The preceding sections show that these notions are very useful for the full understanding of the duality theory of tensornorms.

Proposition. Let α be a tensornorm.
(1) $\alpha \backslash$ and $\alpha /$ are right-accessible.
(2) If α is left-accessible, then $\alpha \backslash$ is totally accessible.
(3) $(\backslash \alpha) \backslash$ and $/ \alpha \backslash$ are totally accessible. In particular: Every injective tensornorm is totally accessible.

Proof:

(1) follows directly from 8.3 (4). For the proof of (2) let $E, F \in B A N$. Since α is left-accessible

$$
\overleftarrow{\alpha}\left(\cdot ; E, \ell_{\infty}\left(B_{F^{\prime}}\right)\right)=\vec{\alpha}\left(\cdot ; E, \ell_{\infty}\left(B_{f^{\prime}}\right)\right)
$$

by the approxrmation-lemma (see also 3.7); now the formulas 8.10 give for $z \in E \otimes F$

$$
\begin{aligned}
\overleftarrow{\alpha \backslash}(z ; E, F) & =\overleftarrow{\alpha} \backslash(z ; E, F) \\
& =\overleftarrow{\alpha}\left(z ; E, \ell_{\infty}\left(B_{F^{*}}\right)\right) \\
& =\vec{\alpha}\left(z ; E, \ell_{\infty}\left(B_{F^{\prime}}\right)\right) \\
& =\vec{\alpha} \backslash(z ; E, F)=\overrightarrow{\alpha \backslash}(z ; E, F)
\end{aligned}
$$

(3) is a simple consequence of (1) and (2).

To see an example: Since gr, is (ℓ) -projective, formula 8.14 (1) implies that

$$
g_{p}^{*}=g_{p^{\prime}} \backslash=\left(\backslash g_{p^{\prime}}\right) \backslash
$$

is totally accessible. But note the following: By 9.4 the tensomorm w_{p}^{\prime} is totally accessible but $w_{p}^{\prime} /$ is not totally accessible for $p \neq 2$ by 5.7.
9.2. It tums out that it is sometimes easier to check the accessibility of a given finitely generated tensomorm through its associated maximal Banach operator ideal.

A quasi-Banach ideal $[d, A]$ is called right-accessible if for all $(\mathrm{M}, \mathrm{F}) \in \mathrm{FIN} \times B A N$, $T \in \mathcal{L}(M, F)$ and $\varepsilon>0$ there are $N \in F I N(F)$ and $S \in \mathcal{L}(M, N)$ suchthat

commutes and $A(S) \leq(1+\varepsilon) A(\mathrm{~T})$. It is said to be left-accessible if for all $(E, \mathrm{~N}) \in$ $B A N \times F I N, T \in \mathcal{L}(E, N)$ and $\varepsilon>0$ there are $L \in C O F I N(E)$ and $S \in \mathcal{L}(E / L, N)$ such that

and $A(S) \leq(1+\varepsilon) A(\mathrm{~T})$. A left- and right-accessible idea1 is briefly called accessible . Moreover, [d, A] is totally accessible if for every finite rank operator $\mathrm{T} \in \mathcal{F}(E, F)$ between Banach spaces and $\varepsilon>0$ there are $L \in \operatorname{COFIN}(E), N \in F I N(F)$ and $S \in \mathcal{L}(E / L, N)$ such that

$$
T=I_{N}^{T} S Q_{L}^{E} \quad \text { and } \quad A(S) \leq(1+\varepsilon) A(T)
$$

Obviously,every injective quasi-Banach ideal is right-accessible and every surjective ideal is left-accessible. The canonical factorization

gives that a surjective and injective quasi Banach ideal is even totally accessible.
The key for the following result is the embedding theorem 4.4, namely

$$
E^{\prime} \otimes_{-\alpha} F \stackrel{1}{\hookrightarrow} \mathcal{A}(E, F)
$$

if α and (\mathcal{A}, A) are associated.

Proposition. A jinitely generated tensornorm α is right-accessible (resp. left-accessible, accessible, totally accessible) if and only if its associated maximal Banach idem1 is.

Proof. It will be shown that α is totally accessible iff $[\mathcal{A}, \mathbf{A}]$ has this property; all other proofs are similar. Assume that α is totally accessible and let $\mathrm{T} \in \mathcal{F}(\mathrm{E}, F)$. Then

$$
\vec{\alpha}\left(z_{T} ; \mathrm{E}^{\prime}, \mathrm{F}\right)=\overleftarrow{\alpha}\left(z_{T} ; E^{\prime}, F\right)=\mathbf{A}(\mathrm{T})
$$

which implies that there are $(\mathrm{M}, \mathrm{N}) \in F I N\left(\mathrm{E}^{\prime}\right) \mathrm{x} \operatorname{FIN}(\mathrm{F})$ and $u \in M \otimes \mathrm{~N}$ with

$$
\alpha(u ; \mathrm{M}, \mathrm{~N}) \leq(1+\varepsilon) A(T) \quad \text { and } \quad I_{M}^{E^{v}} \otimes I_{N}^{F} u=z_{T}
$$

Hence $T_{u} \in \mathcal{L}\left(E / M^{0}, \mathbf{N}\right)$ satisfies

$$
A\left(T_{u}\right) \leq(1+\varepsilon) A(T) \quad \text { and } \quad I_{N}^{F} T_{u} Q_{M^{0}}^{E}=\mathbf{T}
$$

Conversely, let [d, A] be totally accessible. By the embedding lemma 2.4 it suffices to check that

$$
\alpha\left(\cdot ; \mathrm{E}^{\prime}, \mathrm{F}\right)=\overleftarrow{\alpha}\left(\cdot ; E^{\prime}, F\right)
$$

for all $\mathbf{E}, \mathbf{F} \in \mathbf{B A N}$. Let $z \in \mathbf{E}^{\prime} \otimes \mathbf{F}$. Then there are $L \in \operatorname{COFIN}(E), \mathbf{N} \in \mathbf{F I N}(\mathbf{F})$ and $S \in \mathcal{L}(E / L, \mathrm{~N})$ such that

$$
\mathbf{A}(\mathbf{S}) \leq(1+\varepsilon) A\left(T_{z}\right) \text { and } \quad I_{N}^{F} S Q_{L}^{E}=T_{z}
$$

It follows, by what was said before, for $z_{s} \in L^{0} \otimes \mathrm{~N}$

$$
\alpha\left(z_{S} ; L^{0}, N\right) \leq(1+\varepsilon) \overleftarrow{\alpha}\left(z ; \mathbf{E}^{\prime}, \mathbf{F}\right) \quad \text { and } \quad I_{L^{0}}^{E^{\prime}} \otimes I_{N}^{F}\left(z_{s}\right)=z
$$

which completes the proof.
Since $\mathcal{A}^{\text {dual }} \sim \alpha^{t}$ and $d^{\boldsymbol{*}} \sim \alpha^{*}$ (by proposition 4.5) it follows from 3.6 the
Corollary. Let $[\mathrm{d}, A]$ be a maximal operator ideal.
(1) $\left[\mathcal{A}^{\text {dual }}, A^{\text {dual }}\right]$ is right-accessible (resp. left-accessible, totally accessible) if and only if $[\mathcal{A}, A]$ is left-accessible (resp. right-accessible, totally accessible).
(2) $\left[\mathrm{d}^{*}, A^{*}\right]$ is right-accessible (resp. left-accessible) ifand only if $[\mathrm{d}, \mathrm{A}]$ is left-accessible (resp. right-accessible).
9.3. The following result will be quite useful:

Proposition. Let [d, A] and $[\mathcal{B}, B]$ be quasi-Banach ideals, [d, A] injective and leftaccessible, $[\mathcal{B}, B]$ totally accessible. Then $[\mathcal{B} \circ \mathbf{d}, B \circ A]$ is totally accessible.

It is easy to see that injective and left-accessible ideals are totally accessible.
Proof. Take $\mathrm{T} \in \mathcal{F}(E, F)$ and $\varepsilon>0$. Then there are $R \in \mathrm{~d}(E, \mathrm{G})$ and $\mathrm{S} \in \mathcal{B}(\mathrm{G}, F)$ such that

$$
\begin{array}{cc}
E \xrightarrow{T} \underset{\mathrm{G}}{ } \stackrel{F}{ } \quad B(S) A(R) \leq(1+\varepsilon)(B \circ A)(T) \\
R\rangle^{\prime} /
\end{array}
$$

Since d is injective one can choose this factorization with $\overline{R(E)}=G$ whence $\mathrm{S}(\mathrm{G})$ c $\mathrm{T}(\mathrm{E})$ and S is finite-dimensional. Since \mathcal{B} is totally accessible and \mathbf{d} is left-accessible, the following factorization holds:

Consequently,

$$
B\left(S_{0}\right) A\left(R_{0}\right) \leq(1+\varepsilon) A(R)(1+\varepsilon) B(S) \leq(1+\varepsilon)^{3} B \circ A(T)
$$

which proves the result.
Similarly, it can be shown that if $[\mathcal{A}, A]$ and $[\mathcal{B}, \mathrm{B}]$ are both right-accessible or leftaccessible, then their product $[\mathcal{B} \circ \mathrm{d}, B \circ A]$ again has this property.
9.4. Now everything is prepared to give an easy proof of the following fundamental Theorem. Let $p, q \in[1, \infty]$ such that $\frac{1}{p}+\frac{1}{q} \geq 1$.
(1) $\alpha_{p, q}$ and $\left[\mathcal{L}_{p, q}, L_{p, q}\right]$ are accessible.
(2) $\alpha_{p, q}^{*}$ and $\left[\mathcal{D}_{p^{\prime}, q^{\prime}}, D_{p^{\prime}, q^{\prime}}\right]$ are totally accessible.

Proof . Since the tensomorms and operator ideals in question are associated (4.9) and α is accessible if α^{*} is (3.6) it sufficcs, by 9.2 , to show that $\mathcal{D}_{p^{\prime}, q^{\prime}}$ is totally accessiblc. Kwapien's Factorization Theorem 4.8 states that

$$
\mathcal{D}_{p^{\prime}, q^{\prime}}=\mathcal{P}_{q^{\prime}}^{\text {dual }} \circ \mathcal{P}_{p^{\prime}}
$$

Aspects of the metric theory of tensor products and operator ideals

Now, applying the preceding proposition, $\mathcal{P}_{p^{\prime}}$ is injective and

$$
\mathcal{P}_{p^{\prime}} \sim g_{p}^{*}, \quad \quad \mathcal{P}_{q^{\prime}}^{\text {dual }} \sim g_{q}^{* t}
$$

are, by 9.1 , both totally accessible.
For another proof of this result see [20].
Corollary. If \mathbf{p} or $\mathbf{g = 2}$, then $\alpha_{p, q}$ is totally accessible.
Proof . This follows with 9.1 (2) from the facts that $\alpha_{2, p}$ is right-injective (8.4) and left accessible.
9.5. The tensomorm $g_{2}=g_{2}^{*}$ is totally accessible. But Reinow [65], cor. 1.2, showed the existence of a reflexive Banach space Z such that for all $p \in[1, \infty[$ with $p \neq 2$ the natural map

$$
Z^{\prime} \tilde{\otimes}_{g_{p}} Z \rightarrow \mathcal{L}(Z, Z)
$$

is not injective (i.e. Z does not have the p -approximation properfy). Since

$$
Z^{\prime} \tilde{\otimes}_{\Im_{p}} Z \stackrel{1}{\hookrightarrow}\left(Z \otimes_{g_{p}^{\prime}} Z^{\prime}\right)^{\prime} \hookrightarrow \mathcal{L}(Z, Z)
$$

is injective, Reinow's result implies that:

$$
\text { For } 1 \leq \mathbf{p}<\infty \text { and } p \neq \mathbf{2} \text { the tensornorm } g_{p} \text { is not totally accessible. }
$$

10. MORE ABOUT $\alpha_{p q}$

10.1. The present paragraph gives some examples for the interplay between maximal operator ideals and their associated (finitely generated) tensomorms. The transfer argument 4.10, remark 2 will be crucial: the reader should have it always in mind! Many of the results will be about the spaces ℓ_{p} : By 1-complementation, they always imply results on ℓ_{p}^{n} (with constants independent from n) and therefore, by the local technique-lemma for \mathcal{L}_{p}^{g}-spaces (6.2 for tensomorms and, the same way for operator ideals), also results for general \mathcal{L}_{p}^{g}-spaces (with additional constants) instead of ℓ_{p} are valid. The obvious consequences for minimal operator ideals (via the representation theorem 7.1) will not be stated.
10.2. The first result contains as a particular case that all tensomorms $\boldsymbol{\alpha}_{p, q}$ (for $\mathrm{p}, \mathrm{g} \in$] $1, \infty\left[\right.$) are equivalent on Hilbert spaces; remember $\alpha_{p, q} \leq c_{p, q} w_{2}$ from 1.8.

Proposition. Let $\mathrm{p}, \mathrm{g} \in] 1, \infty\left[\right.$ with $\frac{1}{p}+\frac{1}{q} \geq 1$ and $r, s \in[1,2]$.
Then

$$
\varepsilon \leq \alpha_{p, q} \leq K_{G} c_{p, q} \varepsilon \quad \text { on } \quad \ell_{r} \otimes \ell_{s}
$$

and

$$
\alpha_{p, q}^{\prime} \leq \pi \leq K_{G} c_{p, q} \alpha_{p, q}^{\prime} \quad \text { on } \quad \ell_{r^{\prime}} \otimes \ell_{s^{\prime}}
$$

Proof . By 4.10 and Grothendieck's inequality 1.11

$$
w_{2} \leq w_{2}^{*} \leq K_{G} \varepsilon \quad \text { on } \quad \ell_{1}^{n} \otimes \ell_{1}^{m}
$$

Since w_{2} and ε are injective and

$$
\ell_{\tau}^{n} \stackrel{1}{\hookrightarrow} L_{1}(\mu)
$$

(see 8.5) the local technique lemma for \mathcal{L}_{p}^{g}-spaces implies

$$
w_{2} \leq K_{G} \varepsilon \quad \text { on } \quad \ell_{\tau} \otimes \ell_{s}
$$

which gives the announced result on $\ell_{\tau} \otimes \ell_{s}$. The second one follows by dualization (remember this aspect of the transfer argument).

In terms of operators (this is a result of Lindenstrauss-Pelczyński [51] which was generalized by Kwapien [48]).

Corollary. If $\mathrm{p}, \mathbf{g} \in] 1, \infty[$ und $r, s \in[1,2]$, then

$$
\begin{aligned}
& \mathcal{L}_{p, q}\left(\ell_{r^{\prime}}, \ell_{s}\right)=\mathcal{L}_{p}\left(\ell_{r^{\prime}}, \ell_{s}\right)=\mathcal{L}\left(\ell_{r^{\prime}}, \ell_{s}\right) \\
& \mathcal{D}_{p, q}\left(\ell_{r}, \ell_{s^{\prime}}\right)=\mathcal{D}_{p}\left(\ell_{r}, \ell_{s^{\prime}}\right)=\mathcal{I}\left(\ell_{r}, \ell_{s^{\prime}}\right)
\end{aligned}
$$

10.3. To investigate the tensomorms $g_{p}=\alpha_{p, 1}$ it is reasonable to study first the associated operator ideals of summing opcrators.

Proposition. Take $s, p \in[1,2]$ and $q \in[2, \infty[$, then for every Banach space F

$$
\begin{align*}
\mathcal{P}_{p}\left(\ell_{s}, F\right) & =\mathcal{P}_{1}\left(\ell_{s}, F\right) \tag{1}\\
P_{1}(T) & \leq K_{G} P_{p}(T) \quad \text { for } \quad T \in \mathcal{P}_{p}\left(\ell_{s}, F\right)
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{P}_{q}\left(F, \ell_{s}\right) & =\mathcal{P}_{2}\left(F, \ell_{s}\right) \tag{2}\\
P_{2}(T) & \leq a_{s} b_{q} P_{p}(T) \quad \text { for } \quad T \in \mathcal{P}_{q}\left(F, \ell_{s}\right)
\end{align*}
$$

(The constants a_{s} and b_{q} from Khintchine's incquality). This result is due to Kwapien as well [46]. Clearly, a special case is Pelczynski's theorem, that all \mathcal{P}_{p} coincide on Hilbert spaces. We present a proof since it fits nicely into our setting.

Proof: (1) It is enough to take $p=2$; for $T \in \mathcal{P}_{2}\left(\ell_{s}, F\right)$ fix $x_{1}, \ldots, x_{n} \in \ell_{s}$ anddctine

$$
S: \ell_{\infty}^{n} \rightarrow \ell_{s} \quad S e_{i}:=\mathrm{x}
$$

whence $\|S\|=w_{1}\left(x_{i} ; \ell_{s}\right)$. Since $\mathcal{P}_{2} \sim g_{2} \sim \mathcal{P}_{2}^{*}$ (by 8.14) the relations

$$
\mathcal{P}_{2} \circ \mathcal{P}_{2}=\mathcal{P}_{2} \circ \mathcal{P}_{2}^{*} \subset \mathcal{I} \subset \mathcal{P}_{1}
$$

(5.5) give

$$
P_{1}(T S) \leq P_{2}(T) P_{2}(S) \leq P_{2}(T) K_{G}\|S\|
$$

when using $\mathcal{L}\left(\ell_{\infty}^{n}, \ell_{s}\right)=\mathcal{P}_{2}\left(\ell_{\infty}^{n}, \ell_{s}\right)$ (see 8.5). Therefore

$$
\begin{aligned}
\sum_{i}\left\|T x_{i}\right\| & =\sum_{i}\left\|T S e_{i}\right\| \leq P_{2}(T) K_{G}\|S\| w_{1}\left(e_{1} ; \ell_{\infty}^{n}\right) \\
& =P_{2}(T) K_{G} w_{1}\left(x_{i} ; \ell_{s}\right)
\end{aligned}
$$

which is $P_{1}(T) \leq K_{G} P_{2}(T)$.
(2) For $\mathrm{T} \in \mathcal{L}\left(F, \ell_{s}\right)$ take $x_{1}, \ldots, x_{n} \in F$ and use Khintchine's inequality 1.8 in order

Aspects of the metric theory of tensor products and operator ideals
to obtain:

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|^{2}\right)^{1 / 2} & =\left(\sum_{i=1}^{n}\left(\sum_{k=1}^{\infty}\left|T x_{i}(k)\right|^{s}\right)^{2 / s}\right)^{1 / 2} \leq \\
& \leq\left(\sum_{k=1}^{\infty}\left(\sum_{i+1}^{n}\left|T x_{i}(k)\right|^{2}\right)^{s / 2}\right)^{1 / s} \leq \\
& \leq a_{s}\left(\sum_{k=1}^{\infty} \int_{D_{n}}\left|\sum_{i=1}^{n} \varepsilon_{i}(t) T x_{i}(k)\right|^{s} \mu_{n}(d t)\right)^{1 / s}= \\
& =a_{s}\left(\int_{D_{n}}\left\|T\left(\sum_{i=1}^{n} \varepsilon_{i}(t) x_{i}\right)\right\|_{\ell_{s}}^{s} \mu_{n}(d t)\right)^{1 / s} \leq \\
& \leq a_{s}\left(\int_{D_{n}}\left\|T\left(\sum_{i=1}^{n} \varepsilon_{i}(t) x_{i}\right)\right\|_{\ell_{s}}^{q} \mu_{n}(d t)\right)^{1 / q}
\end{aligned}
$$

Now, if T is even absolutely-q-summing , the Grothendieck-Pietsch-domination theorem gives

$$
\begin{aligned}
& \leq a_{s} P_{q}(T)\left(\int_{D_{n}} \int_{B_{F^{\prime}}}\left|\left\langle x^{\prime}, \sum_{i=1}^{n} \varepsilon_{i}(t) x_{i}\right\rangle\right|^{q} \nu\left(d x^{\prime}\right) \mu_{n}(d t)\right)^{1 / q} \leq \\
& \leq a_{s} P_{q}(T) \sup _{x^{\prime} \in B_{F^{\prime}}}\left(\int_{D_{n}}\left|\sum_{i=1}^{n} \varepsilon_{i}(t)\left\langle x^{\prime}, x_{i}\right\rangle\right|^{q} \mu_{n}(d t)\right)^{1 / q} \leq \\
& \leq a_{s} P_{q}(T) b_{q} w_{2}\left(x_{i}\right)
\end{aligned}
$$

and this is $P_{2}(\mathrm{~T}) \leq a_{s} b_{q} P_{q}(T)$.
In terms of tensomorms (by the transfer argument and the embedding lemma)
Corollary 1. For every Banach space F the following holds:
(1) If $r, q \in[2, \infty]$, then

$$
g_{q}^{*} \leq g_{\infty}^{*} \leq K_{G} g_{q}^{*} \quad \text { on } \quad \ell_{\tau} \otimes F
$$

and if $s \in[1,2], q \in[2, \infty]$, then

$$
d_{\infty} \leq d_{q} \leq K_{G} d_{\infty} \quad \text { on } \quad \ell_{s} \otimes F
$$

(2) If $s \in[1,2]$ und $p \in] 1,2]$, then

$$
g_{p}^{*} \leq g_{2}^{*} \leq a_{s} b_{p^{\prime}} g_{p}^{*} \quad \text { on } \quad F \otimes \ell_{s}
$$

and if $r \in[2, \infty]$ and $p \in] 1,2]$, then

$$
d_{2} \leq d_{p} \leq a_{r^{\prime}} b_{p^{\prime}} d_{2} \quad \text { on } \quad F \otimes l_{r}
$$

By the transfer argument it is possible to go back to operator ideals in order to obtain the dual results for operator ideals (note that all these tensornorms are accessible and ℓ_{p} has the metric approximation property). The transposed of the second statement in (1) and (2) give therefore immediately

Corollary. Let F be a Banach space, then

$$
\mathcal{I}_{q}\left(F, \ell_{s}\right)=\mathcal{L}_{\infty}\left(F, \ell_{s}\right)=\mathcal{I}_{2}\left(F, \ell_{s}\right)
$$

for $q \in[2, \infty], s \in[1,2]$ and

$$
\mathcal{I}_{2}\left(\ell_{s}, F\right)=\mathcal{I}_{p}\left(\ell_{s}, F\right)
$$

for $p \in] 1,2]$ and $s \in[1,2]$.
10.4. To see what this means for Hilbert spaces H and K, observe first, that $\mathcal{P}_{2}(\mathbf{H}, \mathbf{K})=$ $\mathcal{H S}(H, \mathrm{~K})$ (Hilbert-Schmidt operators) holds isometrically, whence

$$
H \otimes_{g_{2}^{*}} \mathbf{K} \stackrel{1}{\hookrightarrow} \mathcal{P}_{2}(H, K)=\mathcal{H} S(H, K)
$$

and therefore - for finite orthonormal systems -

$$
g_{2}^{*}\left(\sum_{i, j} \alpha_{i j} e_{i} \otimes f_{j}\right)=\left(\sum_{i, j}\left|\alpha_{i j}\right|^{2}\right)^{1 / 2}
$$

which implies $g_{2}^{*}=d_{2}^{*}$. Whecce $g_{2}=g_{2}^{*}=d_{2}^{*}=d_{2}$ is the Hilbert-Schmidt norm on $\mathbf{H} \otimes \mathbf{K}$. Now the preceding results imply the

Proposition. On the tensor product $\mathrm{H} \otimes \mathrm{K}$ of two Hilbert spaces the following holds:

$$
\begin{array}{ll}
\varepsilon \leq \alpha_{p, q} \leq K_{G} c_{p, q} \varepsilon & p, q \in] 1, \infty[\\
\alpha_{p, q}^{\prime} \leq \pi \leq K_{G} c_{p, q} \alpha_{p, q}^{\prime} & p, q \in] 1, \infty[\\
g_{2} \leq g_{q}^{*} \leq K_{G} g_{2} & q \in[2, \infty] \\
g_{p}^{*} \leq g_{2} \leq b_{p^{\prime}} g_{p}^{*} & p \in] 1,2] \\
g_{q} \leq g_{2} \leq K_{G} g_{q} & q \in[2, \infty] \\
g_{2} \leq g_{p} \leq b_{p^{\prime}} g_{2} & p \in] 1,2]
\end{array}
$$

So there are, up to equivalence, only three tensomorms under the $\alpha_{p q}$ and $\alpha_{p q}^{\prime}$ on Hilbert spaces: ε, π and the Hilbert-Schmidt norm g_{2}. In terms of operators:

$$
\begin{array}{lll}
p, q \in] 1, \infty[: & \mathcal{L}_{p, q}=\mathcal{L}_{p}=\mathrm{c} & \text { all operators } \\
p, q \in] 1, \infty[: & \mathcal{D}_{p, q}=\mathcal{D}_{p}=\mathcal{I}=\mathrm{N} & \text { nuclear operators } \\
p \in[1, \infty[: & \mathcal{P}_{\cdot p}=\mathcal{P}_{p}^{\text {dual }}=\mathcal{L}_{1}=\mathcal{L}_{\infty}= & \text { Hilbert-Schmidt } \\
q \in] 1, \infty] & =\mathcal{I}_{q}=\mathcal{I}_{q}^{\text {dual }}=\mathcal{H S} & \text { operators }
\end{array}
$$

10.5. Some of the preceding results have remarkable extensions to Banach spaces with type and cotype. For $q \in[2, \infty[$ an operator $T \in \mathcal{L}(E, F)$ is called of cotype q if there is a $\rho \geq 0$ such that for all $x_{1}, \ldots, x_{n} \in E$

$$
\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|^{q}\right)^{1 / q} \leq \rho\left(\int_{D_{n}}\left\|\sum_{i=1}^{n} \varepsilon_{i}(t) x_{i}\right\|^{2} \mu_{n}(d t)\right)^{1 / 2}
$$

(see 1.8 for the notation); $C_{q}(T):=\inf p$. The Kahane inequality (see e.g. [53], p. 74) implies that using on the right side of the definition the L_{p}-norm $(1 \leq \mathrm{p}<\infty)$ instead of the L_{2}-norm gives an equivalent norm. It is straightforward to see that the operator ideal $\left(C_{q}, C_{q}\right)$ of all cotype-q-operators is a maximal, injective Banach operator ideal, whence associated with a certain finitely generated tensomorm.

A Banach-space has cotype q if id ${ }_{E} \in \mathcal{C}_{q}$. Following the arguments in the first part of the proof of 10.3 (2) with Khintchine's inequality it is clear that ℓ_{p} for $1 \leq p<\infty$ has cotype $q:=\max \{p, 2)$ and this implies, by the usual local techniques, that all \mathcal{L}_{p}^{g}-spaces (for $1 \leq p<\infty$) have cotype $q=\max \{p, 2\}$. A direct application of corollary 3 in 4.4 gives that E has cotype q if and only if E " has cotype q.

By the way, since there are cotype-q-spaces without the approximation property (subspaces of ℓ_{1}) it follows from proposition 5.7 that the dual tensomorm γ_{q}^{\prime} of the tensornorm γ_{q} associated with the cotype-q-operators is not totally accessible.
10.6. Pisier's factorization theorem ([64], chap. 4) states that if E ' and \boldsymbol{F} have cotype 2, then each operator $\mathrm{T}: E \rightarrow \boldsymbol{F}$ which can be approximated by finite-rank operators uniformly on compact sets factors through a Hilbert space; in particular

$$
E^{\prime} \tilde{\otimes}_{\varepsilon} F=: \overline{\mathcal{F}}(E, F) \text { с } \mathcal{L}_{2}(E, F)
$$

Since $w_{2} \sim \mathcal{L}_{2}$ and ε and w_{2} are totally acccssible this implies

$$
E^{\prime} \otimes_{\varepsilon} \boldsymbol{F}=E^{\prime} \otimes_{w_{2}} \boldsymbol{F} \quad \text { isomorphically }
$$

whence, by the embedding lemma and 1.8 :

If E and F have cotype 2 and $p, q \in] 1, \infty\left[\right.$ with $\frac{1}{P}+\frac{1}{q} \geq 1$, then

$$
E \otimes_{\varepsilon} F=E \otimes_{\alpha_{p, q}} F \quad \text { isomorphically }
$$

However, the dual result fails to be true: If E^{\prime} and F^{\prime} have cotype 2, then π and w_{2}^{\prime} are in general not equivalent on $E \otimes F$. Pisier constructed a Banach space P not isomorphic to a Hilbert space, but such that P and P^{\prime} have cotype 2 ([64], chap. 10). If $P \otimes_{\pi} P^{\prime}$ and $P \otimes_{w_{2}^{\prime}} P^{\prime}$ were isomorphic, the representation theorem for maximal ideals would imply that every operator $P \rightarrow P$ factors through a Hilbert space which is a contradiction.

The transfer argument (4.10 remark 2(1)) is not applicable to (\star) by the following reason: if E^{\prime} and F have cotype 2 it follows only

$$
\overline{\mathcal{F}}(E, F)_{c} \mathcal{L}_{2}(E, F)
$$

but in general not

$$
\mathcal{L}(E, F)=\mathcal{L}_{2}(E, F)
$$

by Pisier's example. On the other hand if E (or F) in addition has the approximation property, then Pisier's factorization theorem implies $\mathcal{L}(E, F)=\mathcal{L}_{2}(E, F)$.

Now the transfer argument applied to $\mathcal{L}\left(E, F^{\prime}\right)$ and the symmetry of w_{2}^{\prime} and π give
If E^{\prime} and F^{\prime} have cotype 2 and: E or F has the approximation property, then

$$
E \otimes_{\pi} F=E \otimes_{w_{2}^{\prime}} F \quad \quad \text { isomorphically }
$$

and whence also for all $\alpha_{p, q}^{\prime}($ for $p, q \neq 1)$.
10.7. Analyzing the proof of IO .3 (2) it is clear that the result extends to cotype 2 spaces instead of ℓ_{s} : The second of the following two statements holds.
(1) $\mathcal{P}_{p}(E, F)=\mathcal{P}_{1}(E, F)$ if $p \in[1,2]$ and E hascotype2.
(2) $\mathcal{P}_{q}(E, F)=\mathcal{P}_{2}(E, F)$ if $q \in\left[2, \infty\left[\begin{array}{lll}a & \\ \\ & F & \text { has cotype } 2 .\end{array}\right.\right.$

Both results are due to Maurey; for a proof of (1) see [64], chap. 5.
Using the transfer argument, the fact that all g_{p}^{*} are totally accessible and the embedding lemma, (1) and (2) imply the following generalizations of corollary 1 in 10.3.

Let $p \in] 1,2], q \in[2$, co] and $E, F \cdot$ Banach spaces. Then
$g_{\infty}^{*} \sim g_{q}^{*}$ on $E \otimes F$ if E^{\prime} has cotype 2
$d_{\infty} \sim d_{q}$ on $E \otimes F$ if E has cotype 2
$g_{2}^{*} \sim g_{p}^{*}$ on $E \otimes F$ if F has cotype 2
$d_{2} \sim d_{p}$ on $E \otimes F$ if F^{\prime} hascotype 2.
Since $g_{\infty}^{*}=\pi \backslash$ and $g_{2}^{*}=g_{2}$ (by 8.14) the first norm equivalence gives

$$
g_{2}^{*} \sim g_{\infty}^{*}=\pi \backslash=\pi \text { on } \quad E \otimes \ell_{\infty}
$$

and whence

$$
g_{2}^{* \prime}=g_{2}^{\prime}=g_{2}^{* t} \sim \pi \quad \text { on } \quad \ell_{\infty} \otimes E
$$

if E^{\prime} has cotype 2 . This clearly implies another result of Maurey's
(3) $\mathcal{L}\left(\ell_{\infty}, F\right)=\mathcal{P}_{2}\left(\ell_{\infty}, F\right)$ if F has corype 2
which generalizes Grothendieck's result for \mathcal{L}_{p}^{g}-spaces F (with $1 \leq \mathrm{p} \leq 2$, see 8.5).

11. FINAL REMARKS

11.1. There are various aspects of the metric theory of tensor products which we did not treat: We want to mention at least some of them which are closely connected with what we presented.
11.2. Probably the most important is the treatment of the «semi» tensomorms Δ_{p}

$$
L_{p}(\mu) \otimes_{\Lambda_{p}} E \stackrel{1}{\hookrightarrow} L_{p}(\mu ; E)
$$

for which

$$
\begin{aligned}
& d_{p} \leq \Delta_{p} \leq g_{p^{\prime}}^{*} \\
& \Delta_{\infty}=\varepsilon, \Delta_{1}=\pi
\end{aligned}
$$

holds. In general there is no tensomorm which induces Δ_{p}; this causes from the fact that for $\mathrm{T} \in \mathcal{C}\left(L_{p}, L_{p}\right)$ the operator

$$
T \otimes \operatorname{id}_{E}: L_{p}(\mu) \otimes_{\Delta_{p}} E \rightarrow L_{p}(\mu) \otimes_{\Delta_{p}} E
$$

is in general not continuous: take, for example, for T the Fourier-transform on $L_{2}(\mathbb{R})$. There are two directions of research: First, look for spaces or, more generally, for operators $S \in \mathcal{L}(E, F)$ such that $T \otimes S$ is Δ_{p}-continuous for all $T \in \mathcal{L}\left(L,, L_{p}\right)$ (here are some crucial results due to Kwapien [48], see also [23], and 11.3) or, secondly, fix $\mathrm{T} \in \mathcal{L}\left(L, L_{p}\right)$ and look for all $S \in \mathcal{L}(E, F)$ such that $\mathrm{T} \otimes \mathrm{S}$ is Ar-continuous; for example, take T the Fourier transform on $L_{2}(\mathbb{R})$ (see Kwapien [47]) or T the Hilbert transform on $L_{p}(R)$ (see Burkholder [3]; Bourgain [2], M. Defant [11]) or T the projection of $L_{2}\left((-1,1\}^{\mathbf{N}}\right)$ onto the space of the Rademacher functions (see Pisier [62]).
11.3. In [9] products $\rho:=\alpha \otimes_{G} \beta$ for tensomorms were defined via the trace mapping

$$
\left(E \otimes_{\alpha} G^{\prime}\right) \otimes_{\pi}\left(G \otimes_{\beta} F\right) \xrightarrow{1} E \otimes_{\rho} F
$$

which mimics the composition of operators. Among other things, this was used to prove that $S \in \mathcal{L}(E, F)$ has the property that

$$
T \otimes S: L_{p} \otimes_{\Delta_{p}} E \rightarrow L_{p} \otimes_{\Delta_{p}} F
$$

is continuous for all $T \in \mathcal{L}\left(L_{p}, L_{p}\right)$ if and only if

$$
T \in\left(\mathcal{L}_{p}^{\text {surj }}\right)^{\text {inj }}
$$

i.e. factors through a subspace of a quotient of some L_{p} which is the operator version of a result of Kwapien.
11.4. As a generalization of the Radon-Nikodym properry Lewis [50] studied the question of when

$$
E^{\prime} \tilde{\otimes}_{\alpha} F^{\prime}=\left(E \otimes_{\alpha^{\prime}} F\right)^{\prime}
$$

which for the associated maximal operator ideal means

$$
\mathcal{A}^{\mathrm{mun}}\left(E, F^{\prime}\right)=\mathrm{d}\left(E, F^{\prime}\right)
$$

by the representation theorems for minimal and maximal operator ideals. Clearly, this study allows in particular to investigate under which circumstances the space $\mathbf{d}(E, F)$ is rellexive (see [50], [22]).
11.5. A crucial tool in the theory of the distribution of eigenvalues of operators is the tensor stability of operator ideals $\mathbf{d}:$ If $\mathrm{T}, \mathrm{S} \in \mathrm{d}$, then $\mathrm{T} \otimes_{\alpha} S \in \mathrm{~d}$. For example, \mathcal{P}_{p} is ε-stable [36] and this is the key for Pietsch's trick to prove the Johnson-König-MaureyRetherford theorem: If $T \in \mathcal{P}_{p}$ the sequence of eigenvalues of T is in ℓ_{p} (for $2 \leq p<\infty$, see [43], [61]). Tensor stability has various other promissing applications (see [42], [4], [5]).
11.6. The metric theory of tensomorms has an extension to locally convex spaces, due to Harksen [29], [30]: If E and F are separated locally convex spaces with defining systems P_{E} and P_{F} of seminorms, the α-tensornorm topology on $E \otimes F$ is defined by

$$
E \tilde{\otimes}_{\alpha} F:=\operatorname{proj}_{p \in P_{E}} E_{q \in P_{F}} \tilde{\otimes}_{\alpha} F_{q}
$$

where E_{p} is the canonical normed space associated with the seminorms p. Projectivity and injectivity properties of α for normed spaces hold also for the a-tensomorm topology. There are many applications to the theory of vector-valued continuous, differentiableor holomorphic functions, to lifting and extension properties, and to the study of the topological and geometrical structure of spaces of such functions; for rcferences see [9], [10], [16], Kaballo [41] and Hollstein [31]-[35].

REFERENCES

[1] I. AmemiYa, K. Shiga, On tensor products of Banach spaces. Kodai Math. Sem. Rep. 9 (1957) 161-178.
[2] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 22 (1983) 163-168.
[3] D.L. Burkholder, A geometricol condition that implies the existence of certain singular integrals of banach space valued functions; Proc. Conf. Hammonic Analysis in Honour of Antony Zygmund, Chicago (1981) 270-286.
[4] B. Carl, A. Defant, M.S. Ramanujan, On tensor stable operator ideals; Michigan Math. I. 36 (1989) 63-75.
[5] B. Carl, A. Defant, Tensor products and Grofhendieck type inequalities of operotors in L_{p}-spaces; to appear in Trans. Amer. Math. Soc.
[6] S. Chevet, Sur certains produits tensoriels topologiques d'espaces de Banach; Z. Wahrscheinlichkeitsteorie verw. Gebiete 11(1969) 120-138.
[7] J.S. Cohen, A characterization of inner product spaces using absolutely 2-summing operators; Studia Math. 38 (1970) 271-276.
[8] J.S. COHEN, Absolutely p-summing, p-nuclear operotors and their conjugates; Math. Ann. 201 (1973) 177200.
[9] A. Defant, Produkte von Tensornormen; Habilitationsschrift, Oldenburg 1986.
[10] A. Defant, W. Govaerts, Tensor producfs and spaces of vector-valued continuous functions; Manuscripta Math. 55 (1986) 433-449.
[11] M. Defant, On the vecfor valued Hilbert transform; Math. Nachr. 141 (1989) 25 1-265.
[12] J. Destel, Sequences andseries in Banach spaces; Springer 1984.
[13] J. Destel, J.J. Uhl. Vector measures; AMS-Math. Surveys 15 (1977).
[14] N. Dunford, R. Schatten, On the associate and conjugate space for the direct product; Trans. Amer. Math. Soc. 59 (1946) 430-436.
[15] K. Floret, \mathcal{L}_{1}-Räume und Liftings von Operatoren nach Quotienten lokalkonvexer Räume; Math. Z. 134 (1973) 107-117.
[16] K. Floret, Some aspects of fhe theory of locally convex inductive limits; Functional Analysis: Surveys and Recent Results II, North-Holland Math. Studies 38 (1980) 205-237.
[17] K. Floret, Maß-und Integrationstheorie; Teubner 1981.
[18] K. FLoret, Normas tensoriais eo propriedade de aproximação limitada; Seminar-Reports UFF Niteroi 1987.
[19] J. Fourie, J. Swart, Tensor product and Banach ideals of p-compact operafors; Manuscripta Math. 35 (1981) 343-3.51.
[20] J.E. Gllbert, T. Leich, Factorization, tensor products and bilinear forms in Banach space theory; Notes in Banach spaces, Univ. Texas Press (1980) 182-305.
[21] Y. Gordon, D.R. Lewis, Absolutely summing operators and local unconditional structure; Acta Math. 133 (1974) 27-48.
[22] Y. Gordon, D.R. Lewis, J.R. Retherford, Banach ideals of operofors wifh applications; J. Funct. Anal. 14 (1973) 85-129.
[23] Y. Gordon, P. SAPHAR, Ideo1 norms on E $\otimes L_{p}$; Illinois J. Math. 21 (1977) 266-285.
[24] A. Grothendieck, Quelques points de la fhéorie des produits tensoriels topologiques; 2" Sympos. Probl. mat. Latino América, Montevideo (1954) 173-177.
[25] A. Grothendieck, Résultats nouveaux dans la théorie des operations linéoires I, II; C.R. Acad. Sci. Paris Sér. 1. Math. 239 (1954) 577-579 and 607-609.
[26] A. Grothendeck, Une charactérisation vectorielle métrique des espaces L_{1}; Canad. J. Math. 7 (1955) 552 . 561.
[27] A. Grotifendeck, Résumé de la théorie métrique des produils tensoriels topologiques; Bol. Soc. Mat. São Paulo 8 (1956) 1-79.
[28] U. HaAGerup, The best constants in the Khintchine inequality; Studia Math. 70 (1982) 23 1-283.
[29] J. Harksex, Tensornormtopologien;|Dissertation, Kicl 1979.
[30] J. Harkses, Charakterisierung lokalkonvexer Räume mit Milfe von Tensorproduktopologien, Math. Nachr. 106 (1982) 347-374.
[31] R. Hollsten, A sequence characterization of subspaces of $L_{1}(\mu)$ and quotient spaces of $\mathbf{C}(K)$; Bull. Soc. Sci. Liège 51 (1982) 403-416.
[32] R. Hollsten, Extension and lifting of continuous linear mappings in locally convex spaces; Math. Nachr. 108 (1982) 273-297.
[33] R. Hol.Lstens, Locally convex α-tensor products and α-spaces, Math. Nachr. 120 (198.5) 73-90.
[34] R. Holstens, A Hahn-Banach theorem of holomorphic mappings on locally convex spaces; Math. Z. 188 (1985) 349-357.
[35] R. Hollsten, Tensor sequences and inductive limils with local partition of unity; Manuscripta Math. 52 (1985) 227-249.
[36] J.R. Holub, Tensor product mappings; Math. Ann. 188 (1970) 1-12.
[37] H. Jarciow, Locally convex spaces; Tcubner 1981.
[38] K. John, Tensor product of several spaces and nuclearity; Math. Ann. 269 (1984) 333-356
[39] W.b. Joinson, Factoring compact operators; Isracl J. Math. 9 (1971 j 337-345
[40] W.B. Joinson, Her. Konig, B. Malrey, J. R. Retierford, Eigen-values of p-summing and ℓ_{p}-typeoperators in Banach spaces; J. Funct. Anal. 32 (1979) 353-380.
[41] W. Kaballo, Liftingsätze für Vektorfunktionen und (cL)-Räume; J. Rcinc Angcw. Math. 309 (1979) 55-85.
[42] Her. Konig, On the lensor stability of s-numbers ideals; Math. Ann. 269 (1984) 77-93.
[43] Her. Konig, Eigenvalue distribution of compact operators; Birkhäuser 1956
[44] G. Komir, Hebbare lokalkonvexe Räume; Math. Ann. 165 (1960) 181-195.
[45] G. Kömif, Topological vector space II; Springcr 1979.
[46] S. Kwapien, A remark on p-absolutely summing operators in ℓ_{r}-spaces; Studia Math. 34 (1970) 109-111.
[47] S. Kwapiex, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued \therefore foefficients; Sudia Math. 44 (1972) 583-595.

* [48] S. KNapici, On operators factoring through L_{p}-space; Bull. Soc. Math. France Mémoire 31-32 (1972) , 215-225.
 \therefore [56] D.R. Lewis, Duals of tensor products; Lecturc Notes in Math. 604 (1977) 57-66.

51 J. Judevstracss, A. Placzy̌iski, Absolutely summing operators in \mathcal{L}_{p}-spaces and applications, Studia Math. 29 (1968) 275-326.
[52] J. Lindenstrauss, h.P. Rosentinl., The \mathcal{L}_{p}-spaces; Isracl J. hlath. 7 (1969) 325-349.
[53] J. Lindenstrauss, L. Tizarriri, Classical Banach-spaces; Vol. II, Springer 1979
[54] V. Losert, P. Michok, Ausarbeitung der «Résumé de la ıhéorie métrique des produits lensoriels topologiques». unpublished.
[55] H.P. Lotz,Grothendieckideals of operators in Banach spaces; unpublished lecture notes, Univ. Illinois, Urbana 1973.
[56] P. Michor, Functors and categories in Banach-spaces; Lecture Notes in Math. 651 (197X).
[57] F.J. Murray, J. Von Necmarx, On rings of operators; Ann. of Math. 37 (1936) 116-229.
[SS] J.W. Pelletier, Tensornorms and operators in the cate gory of Banach-spaces; Integral Equations and Operator Theory 5 (1982) 85-I 13.
[59] A. Pelczyśski, C. Blssagn, Some aspects of the present theory of Banach-spaces; in: S. Banach Oevres, Vol. II; Pol. Scient. Publ., Warsaw (1979) 221.302.
[60] A. Pietsch, Operator ideals; North-Holland 1980.
[61] A. Pietsch, Eigenvalues and s-numbers; Cambridge Stud. Adv. Math. 13 (1987)
[62] G. Pismer, Holomorphic semi-groups and the geometry of Banach spaces; Ann. of Math. 115 (1982) 379.392.
[63] G. Pisis: Counterexamples to a conjecture of Grothendieck; Acta Math. 151 (1983) 181-208.
[64] G. Pisier, Factorization of linear operators and geometry of Banach spaces; CBMS Regional Conference Scries n. 60 AMS, 1986.
[65] 0. Reinow, Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints; Math. Nachr. 109 (1982) 125-134.
[66] P. Saplink, Produits tensoriels d'espace de Banach ci classes d'applications linéaires, Studia Math. 3X (1970) 71-100.
[67] P. Sapinar, Applications p-décomposantes et p-abrolument sommantes, Isracl J. Math. 11 (1972) 164-179.
[68] P. Sapilar, Hypothèse d'approximation à l'ordrepdans lesespaces de Banach etapproximationd'applications p-absolument sommantes; Isracl J. Math. 13 (1972) 379.399.
[69] 11.11. Scunffer, Banach latlices and positive operators; Springcr 1974.
[70] R. Sclatten, On the direct product of Banach spaces, Trans. Amer. Math. Soc. 53 (1943) 195-217.
[71] R. Sclatrex; On reflexive norms for the direct produci; Trans. Amcr. Malh. Soc. 5-1 (1943) 49X-506.
[72] R. Scilatien, The cross-space of linear transformations, ${ }^{\text {, }}$ Ann. of Math. 47 f(1946) 73-84.
[73] R. Scliattri,, J. Vos Nifumanw, The cross-space of linear tran.sformations II, III, Ann. of Math. 47 f(1946) 608-630 and 49 (1948) 557-582.
[74] R. Schatten; A theory of cross-spaces; Ann. of Math. Slud. 26 (1950).
[75] R. Sciarmex, Norm ideals of completely continunus operators; Ergcbn. Math. Grenıgcb., Springer, 1960.
[76] H.U. Schwartz, Dualitäl und Approximation von Normidealen, Math. Nachr. 66 (1975) 305-317.
[77] C.P. Stegall, J.R. Rimifrlord, Fully nuclear and completely nuclear operators wilh applications to \mathcal{L}_{1} - and \mathcal{L}_{2}-spaces; Trans. Amer. Math. Soc. 163 (1972) 457-492.
[78] Y.S. Vladimirski, Compact perturbations of ϕ-operators in locally convex spaces; Sihcrian Math. J. 14 (1973) 511-524.

Received July 11, 1988.
Andreas Defant
Klaus Floret
Fachbercich Mathematik
der Universität
D-2900 Oldenburg
Fed. Rep. Germany

Red. Nuovi Jnventatari D.P.…". $371 / 82$ buona
 foglio n........ $334 \ldots$

[^0]: ${ }^{(1)}$ Schatten called a tensomorm «uniform cross-norm».

[^1]: (1) A similar «right-cofinite-hull» was used in 5.8.

