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SUMMARY:
We give an introduction to Grothendieck’s metric theory of tensor products with special em-
phasis on normed operator 1deals.
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0. INTRODUCTION

0.1. In the history of Functional Analysis there are few papers which were as influen-
tial as Grothendieck’s «Résumé de la théorie métrique des produits tensoriels topologiques»
submitted in 1954 and published in 1956 in the Bulletin of the Mathematical Society of Sao
Paulo. It was written without proofs (with the exception of the fundamental theorem) and it
seems that there were not many people who understood it — this was also due to the fact that
there was some reluctance 1n the functional analysis community to accept thinking in terms
of tensor products. It was the famous paper of Lindenstrauss and Pelczynski «Absolutely
summing operators in £_-spaces and applications» (Studia Mathematica 1968) which stated
Grothendieck’s deep «théoreme fondamental de la théorie métrique des produits tensoriels» as
an incquality about n x n matrices and Hilbert spaces; fascinating applications were given in
a «tensor-product-free» formulation about classes of operators, mainly absolutely-p-summing
opcrators; Banach-space-theory (which had been considered as nearly completed in the mid-
sixties by some people)was reactivated in an incredible way — and many of its important results
nowadays are still related with the «Résumé». It is astonishing to see that many (certainly not
all!) of the ideas of the Banach-space-theory of the last 20 years are even already contained
in Grothendieck’s paper though sometimes in a quite hidden way. The phrase «this result is
implicitly contained n the R€sumé» 1s fashionable, but nevertheless quite often true.

0.2. Itseems that tensor products appeared in Functional Analysis for the first time during
the late thirties in the work of Murray and John von Neumann on Hilbert-spaces. The first
systematic study of classes of norms on tensor products of Banach-spaces is due to Schatten in
1943 who continued his work 1n a serics of papers (partly together with von Neumann). Schat-
ten’s influential monograph «A Theory of Cross-Spaces» contains what was known in 1950;
the most beautiful applications of the theory were on operator ideals on Hilbert spaces [75],
the Hilbert-Schmidt operators, the trace-class or more generally the Schatten-von Neumann-
classes Sp. Many of the more elementary aspects of Grothendieck’s theory were known to
Schatten but he was not aware of the important role of the finite-dimensional behaviour of
tensornorms, €.g., 1n the study of the dual norms. On the other hand, the 1dea of operator 1de-
als in the study of tensor products was always present. In 1968 Pietsch and his school started
a systematic investigation of the notion of operator ideals on the class of Banach spaces and,
1ignoring tensor products, opened this way a method of thinking in a «categorical» manner
which 1s as powerful as thinking in terms of tensor products — but it is certainly much easier
to learn the basics of operator-ideal-theory than the basics of the theory of tensornorms. The
development culminated in the publication of Pietsch’s book «Operator Ideals» in 1978 which
contains in a nearly encyclopaedic way everything known at this time about operator ideals.
Though many of the ideas and results clearly came from the Résumé, tensor products were
not at all used in the book.
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0.3. Parallely with this development it was obvious that the use of the projective ten-
sornorm 7 and the injective ¢ 1S very useful — and there were even sporadically papers dealing
with general tensomorms. A highlight is Pisier’s solution of the most famous problem stated
in the Résumé: There is an infinite-dimensional Banach space P suchthat PQ_ P = PQ®_P
isomorphically.

Pisier’s 1986-book «Factorization of Linear Operators and Geometry of Banach Spaces»
centers around the question under which circumstances an operator between Banach spaces
factors through a Hilbert space which leads to a solution of all of the six problems stated at the
end of the Résumé with the exception that the exact constant of the Grothendieck-inequality
(as the «théoreme fondamental» is nowadays called) is not yet known (the approximation-
problem was solved in the negative by Enflo in 1972). Reading Pisier’s book, it becomes
apparent that 1t 18 useful to think 1n terms of operator 1deals and 1n terms of tensor products.
Another strong indication in this direction 1s a trick due to Pietsch from 1983 when he used
tensor products of operators in order to give a simple proof of the famous result conceming
the distribution of eigenvalues of absolutely-p-summing operators due to Johnson, Konig,
Maurey, and Retherford (see [40], [43], [61] and 11.5).

0.4. The beauty and power of «tensorial» thinking, unfortunately, only becomes clear
after really getting used to it. The Résumé is very hard to read and so there have been var-
1ous attempts to present the theory of tensornorms (Amemiya-Shiga [1], Lotz [55], Losert-
Michor [54], Michor [56], Gilbert-Leih [20] are known to us) but there seems to exist none
which is easily accessible and, at the same time, incorporates the wonderful theory of opera-
tor 1deals as 1t 1S nowadays. We hope that after having read this paper the reader knows that
the theory of tensornorms 1S much less difficult than it seems sometimes and that she or he 1s
convinced( and the historial development gives clear evidence for this) that both theories, the
theory of tensornorms and of (normed!) operator ideals (if we consider them for a moment
to be really different), are better understandable and richer 1f one works with both. It should
become obvious that certain phenomena have their natural framework in tensor products and
others in operators ideals.

0.5. We will give complete proofs - with the exception of Grothendieck’s inequality (there
are many proofs nowadays available, even in textbooks) and with the exception of character-
izations of certain types of operators (( p, ¢) -factorable and (p, g) -dominated ones). Though
there will be many results on minimal and maximal (always normed) operator ideals, we do
not need but a basic knowledge from the theory of operator ideals. Much information comes
directly from the simple, but basic one-to-one correspondance between maximal operator i1de-
als A and tensornorms « (which are finitely generated as we shall say) given by: A and o
are said to be associated if

A(M,N)=M"Q,_ N
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for finite-dimensional spaces. We think that the following two theorems (see 4.3 and 7.1) are

fundamental for the understanding of the interplay between operator ideals A and associated
tensornorms o

The representation theorem for maximal operator ideals
A(E,Fy=(E®_ F)’ isometrically
and the representation theorem for the minimal operator ideals
E'® F — A™(E, F)

(metric surjection), where £ and F' are arbitrary Banach spaces.

0.6. In view of the applications it is natural to study tensornorms « first on finite-dimen-
sional normed spaces and then extend them to arbitrary normed or Banach spaces. There are
two ways to do this — an inductive procedure

o(z; E,F) = inf{a(z; M,N)|z€ M ® N; M, N finite dim .}

and a projective procedure

‘@ (z; E,F) := sup{a(Qf ® Qx(2); E/L,F/K)|E/L, F/K finite dim.}.

Both coincide if (and somehow: only if, see 3.5) both spaces have the metric approximation
property. Grothendieck chose the first one and this 1s justified when looking at the examples.
But we found it very useful in our investigations to have also the «cofinite hull» ‘& at hand
and we hope that we can convince the reader that it structures very well the way of thinking

and 18 often very useful 1n finding and working out the proper statements and proofs. For
operator 1deals the cofinite hull gains importance by the fact that

E'®_F < A(E, F)

holds 1sometrically if o and A are associated (see 4.4).

0.7. We shall use the common notations of Banach-space-theory; in particular By de-
notes the closed unit ball of the normed space E (over the real or complex scalar field).
Concerning operator ideals we follow Pietsch’s book. If T" : E — F' is an operator, we
indicate that it is a metric injection (||T'z|| = ||z||) by writing

T:E;F
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and that it is a metric surjection ( F' has the quotient norm of E via T') by

T-E 2 F

: I , Co
If G C FE 1s a subspace Ig . G «— FE denotes the canonical metric injection and Qg :

E - E /G (if G 1s closed) the canonical metric surjection,
If F and F' are normed spaces, the projective tensornorm 7 on £ ® F' 1s defined by

(2 B, F) =il ) lzll lwlllz= ) z;® )
1=1 1=1

(this implies Bgo =1 By ® By for the open unit ball) and the injective tensornorm & by

e(z; E,F) :=sup{|{e®%,2)||¢ € Bp,¥ € Bp}.

We assume the reader to be familiar with the basics of the tensomorms £ and 7 as they are
presented e.g. in [37] or [45].
The universal property of the projective norm 7 says that

(E®, F)’

is, isometrically, the space if continuous bilinear forms on £ x F' and therefore again isomet-
rically, the space of continuous linear operators £ — F':

(E®, F)' = L(E,F') isometrically
O~y Ll_p

By &~~~ T.

Clearly
(Lyz,y) ={p,2®y) and  (Br,z®y)=(Tz,y).

0.8. The trace tr ; on a normed space E is the linearization of the duality bracket

E"){E — K
(p,z) ~ (p,x)

whence
irp . F®F — K

Eil "fﬂn@yn N Eil (tpniyn)*
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For finite-dimensional spaces F this is the usual trace of operators in B @ E = L(E, FE).
Clearly tr ; is continuous on E' ® K and ||tr p|| = 1. The extension of

E'®@ F=F(E,F) < L(E, F)

(F for the 1deal of finite-dimensional operators) to the completion gives a metric surjection
onto the nuclear operators N(E, F) :

E'® F 5 N(E,F).
It 1s well-known ([37], p. 406) that for a Banach space E
ﬁ-E . E"@“E —* ]}{

factors through N( E, E) (i.c.: the trace is defined for nuclear operators) if and only if E has
the approximation property — and this again 1s equivalent to the injectivity of

F'® E — N(F E)

for all Banach spaces F'.
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1. TENSORNORMS

11 A tensornorm « on the class NORM of all normed spaces assgns to each par
(E, F) of normed spaces a norm «( -, E, F) on the algebraic tensor product E ® F (short-

hand: E ®, F and EQ_F for the completion) such that the following two conditions are
sttisfied: ¢ D

(1) o isreasonable e < ¢ < 7
(2) & satisfies the metric mapping property. If T; € L( E;, F;), then
IT, ®T; : B ®, B, — F 8, Bl < |1 1T,

Clearly, the same detinition holds for subclasses of normed spaces: for the class FIN of all

finite-dimensional spaces, for the class BAN of all Banach spaces or for the class NORM x
BAN of pairs (E, F) where E is a normed and F a Banach space.

It can happen that all tensomorms are equivalent on E ® F: Piser [63] has constructed
an infinite-dimensional Banach space P such that

P, P=P®,P

holds isomorphicaly; this celebrated example solved various other problems in Banach-
space-theory.

The following CRITERION (it will be formulated only for NORM) is easy to check:

« is a tensornorm on NORM if and only if

(1) a( - E F) is a seminorm on E @ F for all pairs ( E, F) of normed spaces
Qa1 K, K)=1

(3) a satisfies the metric mapping property.

Though it is smple, it saves much work in many sStuations. Clearly
o(z @ y; B, F) = ||=]||lyll-
If GcC F is a subspace, then, by the mapping property,
a(z,E, F)< a(z E, G) 2€EE®G.

For a = ¢ there is equality («e respects subspaces») bt for o = = the space E @ G is in gen-
eral not a topological subspace of E ®, F since there iS no general Hahn-Banach-theorem fo:

. 1 . .
operators; if E =L, (u),then E®, G— E®, F and this characterizes L, -spaces hy aresul

(1) schatten called a tensornorm «uniform cross-normp.
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of Grothendieck’s ([26]; the fact that E ®, G is always a topological subspace of E @, F
characterizes the L, -spaces, see 8.14). If P : F — G is a projection, then

a(z; B, F) < az; E,G) < ||P|led 2; E, F) 2 € QG
and whence 1
E®,G—EQ®,F

if Gis 1-complemented in F.

1.2. If o is atensornorm, then 4!

(N5, ®@ i E,F) = )y, @z F B)

1=1 i=1
is awell-defined tensomorm, the transposed tensornorm of «. Obviously

E®,F = Fo,E
Y Yy

iS an isometry.

1.3.If ¢ isatensornorm on the class FIN of all finite-dimensional normed spaces(same
definition as in 1.1 by replacing NORM by FIN), men there are two natural ways to extend
it to the class of all normed spaces. For this, define for normed spacesE

FIN(E) :={M C E| M € FIN}
COFIN(E) :={L C E| E/L € FIN}
and _
M e FIN(E)
i zEM@®N
NeFrInNF)  ZEME }
K¢ GOMN(I*J‘)}
Le COFIN(F)

o(z, E,F) :=inf {a(z; M, N)

‘@(z; E,F) = sup {a(Q*;‘g' @ QY (2); E/K,F/L)

(the arrows come from me fact that the first procedure is inductive, the second projective).
Obvioudy, it is enough to take cofinally may M, N and K, [, respectivey, in the definitions.
It iseasy tosee that thefznite hull &’ and the cofinite hull ‘& are tensomorms such that

e o —
e<a <<, &|pry = Oppy = @
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and

@ <a<@

if o was defined on NORM. Since ¢ respects subspaces: ¢ = ¢ and whence = ¢ . The
definition of the projective norm shows = = 7 but it will be shown in 35 that ## 7. A
tensomorm ¢ on NORM is called finitely generated if ¢ = & and cofinitely generated if
o = ‘@. Though the usua tensomonns are all finitely generated we find that the cofinite hull
‘@ of a tensomorm is naturd as well and its consequent use is structuring well the theory,
helps understanding better various ideas and simplifies many proofs, we hope that the reader
is convinced about this point after the study of this paper. This is why we adopted a more
generd notion of a tensomorm that Grothendieck did in his Résumé; there, all tensomorms
are finitely generated by definition (but see 3.4). Grothendieck had a reason not to worry too
much about cofinitely generated tensomorms;

if both spaces E and F' have the metric approximation property (see 2.2 and below) and it was
only in 1972 that Enflo discovered Banach spaces without the metric approximation property.

Itisobvious but it is good to have it dways in mind  that two finitely generated (or two
cofinitely generated) tensomorms are equal for finite-dimensional spaces.

14.1f M and F are normed spaces, M finite-dimensiona, then
LM, FY =(M'®,F)'5 M, F

by the basic duaity relation between the injective tensomorm ¢ and the projective tensomorm
7 (see [45], p. 246), whence

LM =M@, F)=L(MF)

isometrically. Helly’s lemma ([60], p. 383) on the density of G := L({ M,F) in G" =
L( M, F") with respect to the subspace

M@NCMQ,F=G

gives the

Weak principle of local reflexivity. Let M and F be normed spaces, M jinite dimensiona/
and S € L( M, F”). Then for every ¢ >0and N € FIN(F’) there is anR € L( M, F)
such that

IR < (1+ ¢)]|S]|
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and

(S, y;)F”,F’ = (Rz, y;)F.F’
forall (z,y') EM x N.

This will be basic for many invedigations on tensomorms. The dronger version (R can be
chosen such that Rx = Ss whenever x € S~! (F) ,see e.g. [60], p. 384) will not be needed.

1.5. Many of the interesting tensomorms can be obtained from the ones introduced by
Lapresté [49] generalizing those of Saphar [66], Chevet [6] and Cohen [8]. First some nota-

tions: let £ be normed, z,,...,z, € E,andp € [1,00], then
Lz B) = L(x) = |zl )iz, nllg strong £, -norm
wy(z;; B) = wy(z,) = wselg; 1es 2 )izs | allen weak £, -norm

It is easy tosee that in the definition of the weak £,-norm the unit ball B, can be replaced by
any norming subset of B,.

1 1
Forp,g € [1,00] wiLh;+ E > 1 definer € [1, 00] by

! ro 1 _ 1
et = - or, equivalently, 1=-+
T P T

ql~-
Q | =

and for normed spaces E and F
o, (2 B, F) = inf (£,(0 ) wy(z) wy(9)]2 = ) N7 ® ;)
i=1

Obviously oy ;= .

Proposition.
M aq,, isa finitely generated tensornormon NORM.
(2) apz,(h S aP1 W4 if Py S Dy and 9 g 9

) a;,q =%y
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Proof :
(1) Using criterion 1.1 only the triangle inequality is not obvious: Teke z,, z, EE ® F
and ¢ > 0, choose representations

z’":,z;x‘fz"f@y" j= 1,2
such that )
£,0y) <(ape(2) +6)
wy(zy) <(ay,(2) +6)7
wy(y;) < (o (z;) +6)7
and whence

ap,q(zl + 22) < Ef((X,‘_,'){J')wqf((z,'_,'),'.}') wp(((y,;j),'d') <
< (p(2) + 0yg(2) +2) 7777

. 1 1
(2) There 1s nothing to prove for — + — = 1, whence assume r, < co and define

P1 4
1 1 1 1 1 1
- = — = — P
P Py P2 4 @ @
which  implies
1 1 1 1
i
n T P
Take ze E® Fand, for € > 0, a representation
z=)Y Nz, 0y, x>0
i
with
Z,) () wq; (z;) wPlx (y) <(1+ £) Qo (2).
Now

2= O @ (007
and (by Holder’s inequality) |
2, O™ =g, I/
wy (\1'2) < 12, 010wy ()

wy O77P4) <18, 01w, (1)
whence
a, . (2) < <L ()N h’”l!qﬂﬁpwqi(zi)wp’,(yf) <
<(1+ e)apl,ql(z)
(3)is trivial.
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1.6. To describe the completion of E®qﬂ F infinite sumswill be involved. The definition
of the strong and weak Zp-norm of asequence (z,) is obvious.

Proposition.
@D F(x)el, (ingyifr = co), w,(z,)< coandw,(y,) < co, then the series

Y (T, @ 1)

converges unconditiondly in E®, F.
(2) For every z € E®%q F there is a series as in (1) with

o0
z= Z}\nzn@}yn
n=1

Moreover:
a,,(z E, F) = inf ET()\I.)wq,(Ii) 'wﬁ(yi)

where the infimum is taken over all (finite or infinite) such representations.

Proof :
(1) is easy since the fact that (A,) € £, (or ¢, ) forces the seriesto be aa,, ,-Cauchy-series)

To prove (2) take for z € E®QMF ande >0Oelementsz € E @ F withz= Z z, and

n=1
Z o, (2,) < (1 +e)ay, (2)
n=1

Choose (A7), (z7') and ( ") (finite) with

Zo= Y NI @ U]

and
£,((s1)) < (o, (2,)( 1+
wy((27);) < (e, (2) (1 + g))!/7
wy ((47)) < (e (2)(1 + NP
Then

2,0 (AN, ) W (21, ) Wy ((U1);) < (2 (14 ©)°
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and, by (1) . .
z= Ezﬂ = EZA:’I:‘ @yl
n=1 n=1 i

In particular, if 8 denotes the seminorm defined by the infimum in the statement of (2):

B(z2) < v, (2) for all z € E®, F

Conversdly, if z = E A\, T, ® vy, and

n=1

N
P Ekﬂzn@ujn
n=1

then
6O w (s w,(v,) > 6,((z) X w (2 )X Y w,(v)1) >

N .
> a, (V) = a,,(2);

this implies 5(2) > o, (2).

17. Specid cases of a, -tensornorms are (1 <p < o)

9, = oy, (g for «gauche»)

dy = oy, (d for «droite»)

w, =0,y (w for «weak»)
and therefore

and w, <g, wy<d,
It is very smple to see that

n

QP(Z;E,F) = inf {fp(zi)wpe(y,')lz = Zzi® v}

i=1

dy(z B, F) = inf {w,(z)L,(v;)| 2= _ 7, ® v;}

i=1
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w,(z B, F) = inf {w(z)wy(y;)| z = );z‘- ®y}

Clearly, a result in the spirit of 1.6 with representations

o
2= 5.0
n=1

holds for 9 and dp as well. The case w, for 1 < p < co reads as follows: If 'wp( z;)<
00, wp,(y,-) < oo and
w((2)Tn)
OO

then the series 3°( z, ® Y,) converges unconditionally in E®WPF.

18. The following picture illustrates the situation:

q
dg
2 G
M
1
9
1 2 P

Proposition. For p, ¢ €)1, ool there are constants c, , > 1 such that

<c

PG'-'— PG

In particular,
w, < a0 <6,

forallp,q €11,2].
The proof will make use of the Khintchine inequality: For this take

D, := {-1,1}"
g D, - {-1,1} i-th projection



Aspects of the metric theory of tensor products and operator ideals 197

and p_ the measure defined by 4 ( {t}) = 27" for dl t € D, (which is the normalized Haar
measure). It follows easly that

/1.) ge;dp, = b;
The KHINTCHINE INEQUALITY says: For 1< < oo there are constants a_ > 1 and
b, > 1 such that

o7 (S le 7 <« fD I el () < b (3 g2
k=1 k=1

n k=1
for alln € Nand &;,.. ., ¢, € K. For an easy proof see [43] p. 45. For the constants one
can take
0, =V2 1<r<?2
a, =1 2<r (obvious)
b, = 1<r<2 (obvious)
b, =5r 2 <7

The best congtants were calculated by Haagerup [28] in 1982; they are the same for the real
and the complex field.

Proof of the proposition:
For z= %" ® y; € E ® F the biorthogondity of the ¢, gives a new representation:

i=1 T

2= Z[D g6 du, 7, @y, = ) %(Z;Ef“)”’i} ®(_§Ijsj(t)y}-).
iJ n i= j=

teD,
Now
wq’((zsi(ﬂzi)xeo,) = sup (Z |Z£,-(t) (z;,z')|"H)V <
i=1 |lz'lI<1 teD, i=l
=27 sup ( |E(I{,z’)si(t”‘?’p“(d;))l!q' <
l='lI<1 YD, "o
<2 bwy (7))
Consequently,
1 + g !
ap'q(z; E F)< 5:(2")1” 1/q ]fpbqup'wz(-'ri}ﬂ.’z(y{)
and therefore

a, < bq,bp,wz.
The tensornorms 9 and dp cannot be estimated by w, : this will follow easily from the identi-
fication of (E ®, F)' with a space of operators (by 4.9 the inequality w_ < g, < cwy would
imply that Hilbert spaces are L__-spaces, see §0).
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19. Take z;,. . ,z, € Ethenfor 1 < p < o0

w,(z;) = sup{ [E@(In )| tI, € By ({)€ Be:/} =

=e() 7,6 B, L)
i=]

(e, the unit-vectors in &). Sincc w,, (e,) = 1it follows the

Remark. For everynormed space Kand 1 < p < o0
e 1, ®e; B L) =w () 1,8€; B L) = wy(z; E)
i=1 i=1
for x, € E. In particular: € = w, on EQ® E;.

1.10. One of the most striking tools in the thcory of tcnsor-norms and the opcrator the-
ory is-Grothendieck’s «théoréme fondamental dc lathéoric métriquc des produitstensoricls»
which, sincc the work of Lindcnstrauss and Pelczyriski[51],is known in an cquivalcntform
as GROTHENDIECK INEQUALITY: There is a universal constant K, such that for all
n €N, all matrices ( aU) c L(K™ K ")and all Hilbert spaces I

n n
SUD{|EGU‘<I{:U;)HI |z,,y; € By} < KGSUI){JZ%""‘JJ |51, € Bk }
1,7=1 iJ=1

For asimplc proof sec e.g. [12]. K can bc chosen < 2. The best constants (the one for the
complex case is strictly smaller than that for the real case) are not yct known.

Onc of the dircct consequences of the incquality is that every opcrator ¢, (I") — 1/
is absolutely-1-summing (sec 6.5). The samc proof gives that evcry opcrator ¢, — [ is
absolutely-1-summing if F satisfics the Grothendieck-inequality as above (with the duality
bracket instcad of the scalar-productj z; € B, and y, € By.); whencc the natural quotient
map

EI(BF)_”').IL‘

factors through a Hilbcrt space and F' isisomorphic to a Hilbert space: Up toisomorphy only
the Hilbert spaces satisfy Grothendieck’s incquality ([51]; p. 289).
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111 For p € (€8 ®, £2)' = B(L~, £~ ) (bilinear forms) with representing matrix
a; = {p, ¢; @ ¢;)

the norm is given by

ol 6.y = up{] S Saysit; [ (59), (t)) € By }-

ij=1

This implies for z,, y; in the unit ball By of a Hilbert space H and

z:= Z(Ii:yj)!{ei ®e_r' € Q)@e:o
ij=1

that
(2 25, 20,) = sup{[{w, 2)| |p € (£, ®, &))", llvll. < 1} < K¢

by Grothendieck’s inequality, whence
Corollary. Let H be a Hilbert space. Then
(Y (i, it ® €585, £o) < K max [|z|| max [y,
ij=1
”forallml vers Ty Yooy Un €H.
Everything is prepared for the

Theorem (Grothendieck’s inequality in tensoriad form). For every n € N
T.UZ S'ﬂ_(_KGT.UZ on 2:0®£:O

Inparticular: all o, (for 1 <p, q< 2) are equivalent on £5, ® £, (with constants indepen-
dent from n).

Proof . Take H = £ and equip [™ with the sup-norm, then
i = reH

(zly"'vzn) ~ zei®zf
=1
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isomtrically. Therefore, the rcal bilincar map (considcr the spaces as real veclor spaces)

Tr: (£,® H)x(H®, ) — L8,
(LRz,yQ0) ~o (T, y)u@u

e be witten as
H" x H" R A 4
(Czy.ooz) (Y- 0,)) ~— E{J(mi,yj)'f;@ej-

The corollary gives that || Tr|| < K ;. Now take z = Y~ u; ® v; € £5, ® £, then

1=1

T]‘(zﬁ:u,.® €;, Xﬂ:el- ® ‘U‘-} =7z
i=l i=l

and, by 1.9,

e() u®e; Lo ) = wy(w)
i=l

e e @u; H L) = wy(v).
i=l

It follows
m(z; £, £n) < Kow,y (u)w, (v;)

and taking the mfimum over all representations of z gives the result.

1.12. Anothcr direct consequence of Grothendieck’s incquality is the

Proposition. For everyn € N

T < Kgdo, on 0.
Proof . If x, € £} with x, = ) a,;¢, , then

j=1

w) (z;;4}) = sup EI(Iia(f';))I =

|E|Sl 1=1

= sup | E aijsitjl

i<t Isil<1 5
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whence

D:Za.-,y,-nJ =
=1 =l

sup | ) 0, {[L, ()17 0, 2,)] - £ogyp) <
ziGBl; l,]
< ch] (::’.)Em(y‘.)

and, passing to the infimum over all representations,

n(ix,-@y,* = ’“(E%@E%vi) <
i=l j=1

IN

1]

< Kpd

onf} @43.
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2. THE FOUR BASIC LEMMAS

2.1. This paragraph contains four lemmas which are basic for the understanding and use
of tensornorms. the approximation, extension, embedding, and density lemma. The power
and importance of these devices will become clear while working with them.

2.2. Recall that a normed space E hasthe \-approximation property if there is a net
(T,) of finite-dimensional operators E — E with ||T;|| < A and T, (z) — = for all
x EE. If ) =1, the space has the metric approximation property; if a space has the
X-approximation property for some X it is sad to have the bounded approximationproperty.

Approximation lemma. Let o and A be tensornorms (on NORM), E, F normed spaces,
c>1and
a<cp on E®N

for cofinally many N € FIN(F) . If F has the X-approximation property , then
a<iBo n E®F
Proof . It is easy to see that
idE-SXJTq(z) — 2

for the projective norm = and whence for all tensomorms. If g is such that
a(z —idg®T,(2); E F)<e

and N as in the hypothesi's with 7, (F) ¢ N then, by the metric mapping property of ten-
somorms,

alz; BJF) <a(z- idE®Tw(z)1 E F)+ a(idE®Tn(z)1 E,F) <
<et+ta(idp®T (2)] E,N)<
< s+cﬁ(idE®Tﬂ(z)4 E,N)<
< e+ I,z B, )

JAN

which implies the statement. .
This lemma (and its transposed version) gives for the finite and cofinite hull of a ten-
somorm  the

Proposition. If « is a tensornorm (on FIN), E and F have the bounded approximation
property with constants Ag and X , respectively, then

A<A < php@ o EQF

In particular: ‘@ = & on EQ®F, if both spaces have the metric approximation property.
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23. 1f pe(E®, F) =L(E, F) and L, isits associated operator

(pt T@ y) = (LspI‘ y)F",F
then
(p, 2@ v ={L,z,¥" ) p pr

(for x € Fandy” € F") defines a linear form " on E @ F' which is clearly continuous:

llell = 1121 = 1™

The associated hilinear form is the unique o( E, E') — o( F', F') separately continuous ex-
tension of pto ExF". p"is called the right canonical extension of pto E@ F'. Similaly
the left canonical extension "¢ on E" @ F isdefined by (x5 : F < F” the canonical em-
bedding)

("e,2"®Y) = (L,0kp(9),2")p g

It is not difficult to see that
(‘cp)” =" (" on  E @F

if and only if L, is weekly compact.
Extension lemma. Let p € (E ®, F)’ and « be a finitely generated tensornorm on
NORM. Then:

p€E(E®,F) ifandonlyif " €(E ®, F

In this case: ||pll pg_py = 10 pe, rry -

Proof . The metric mapping property

lE®, F = E®, F'|| {1

implies
IMI... < Tl

Conversely, take M € FIN(E) and N € FIN( F”). Then the weak principie of local
reflexivity (1.4) gives for every ¢ > 0an R e L(N, F) with ||R|] <1+ ¢ such that for all
y"€ Nandz € M

(", L,2)p p = (Ry", Lq;z)F,F'-
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This meas
(" 28 Y") =(p,(ld® R)(z ®@y")

and
(¢ 2) = (p,id g ® R(2))

for all z € M ® N ad whae
(", 2)| < llell [|Rlla(z; B, N) < [loll(1+ €)a(z; E,N)
which imglies the result, since o is finitdy generated.
Sometimes the rddion (x) iS helpful.
Problem 1. Does the extension lemma hold for cojinitely generated tensornorms?
Problem 2. There are two «canonical» embeddings
I]- E'"®@F'—(E ®. F)"

dejined by
L (2" ®y"), )= ("e"), 2" ® ¥
AT ®Y),p) = ((Tp)h,z" By
(I( M’® H') ) <(f\ )A H® .'.')
What are the norms induced on E" @ F" ?

If the induced nom were ¢ in ressonddle Studions this would sdlve easily the problem
of the bidual maapings which will be tregted in 5.8.

24. Tensomomms do not repect subgpeoss (see 11) but the embadding to the bidud  usu-
ally is repedted

Embedding lemma. If « is afinitely or cofinitely generated tensornorm (on NORM), then
. 1
id,®@x,: E®, F-EQ®_ F"
is an isometry for all normed spaces E and F.
Proof . The mapping propaty implies thet
a(z; E, F”) <a( 2 E F) 2€EEQF

hdlds always (the mep id 5 ® & will not be writter).
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(1) Let o be finitely generated. Then, by the extension lemma

o(z; E, F) = sup{|(p, 2)| | € (B®, F)', llell <1} =
= sup{|{¢".2)| [p € (E®, F)', |loll < 1} <
< sup{[(¥,2)| [¥ € (E@, F")',IMI.. <1} =
= a(z; E, F)

whichisthereverse inequality.
(2) If o is colinitely generated, K € COFIN( E) and L € COFIN(F'), then the canon-
ical diagram (L°° formed in F")
F o5 F
Q| e
F/L 5 F"/L*
commutes and the lower map is an isometry. It follows that

AQF ® QL (2); E/K, F/L) = a((QF ® Qf«) 0 (id, ® rp)(2); E/K, F'/L*) <
<‘a(z;E, F)=oa(z; E, F).

Taking the supremum for ‘o gives the missing inequality.

The calculation in (1) (or the extension lemma directly) and the bipolar theorem give the

Corollary.. If « isjinitely generated, then the unit ball BE® Fs0(E®F' E®,F) -
dense in the unit ball Bgg g .

2.5. Since the completion F of F and F have the samc biduals the embedding lemma
givesthat
E®, F-E®, F
is anisometric (dense) subspace, whcnever « isfinitely or cofinitely generated.

Density lemma. Let o be a finitely or cofinitely generated tensornorm, E and F normed
spaces, E, and F; dense subspaces of E and F, respectively. If G is a locally convex space
and T € L( E ®, F, G) such that

Tlper € L( By ® Fy, &)
then TEL(E®, F,G).
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Proof . Snce E ®, F is normed and whence a Mackey space it is enough to take G = K
and p €( E®, F) . The space E, ®, F, is a dense isometric subspace of E ®, F therefore

V= Plom € (BE®, F) < (E®, F)'
and p =1y on E; ® F,,and whence p = on E@_ F.

A particularly interesting specid case is given in the
Corollary. Let o and 3 be tensornorms, « finitely or cofinitely generated. If T, € L( E;, F;)

and G; ¢ E; are dense subspaces such that

Ty ®Ts|gec, € L(G) ®, Gy, F) @ F)
then T\®T, €L(BE, ®, B, F; @ F,).

Since
T] ®T2 :El ®'E1 —?.F‘] ®I’F2 _'Fl ®3F2 =:G

is continuous, the proof is obvious.
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3 Q‘gs ‘=
3. DUAL TENSORNORMS % ¢ S
2
3.1. Given two (separdting) dud pairings (E;, F;) , then ‘p"“\w‘\

(E, ® Ey) x (F}; xF,) — K
{En I}; ® Ii:zm yin ® yrzn) Ay E'n.,‘m (I}z' y:n><$3t ] y12n)
gives a dual (separating) pairing. This simplc and naturd pairing is sometimes called truce
duality for the following rcason: for normed spaces G the tracc tr; is defined on the finite-

dimensiona  opcrators
GG = F(G,G)

z e ] _Lz

(see 0.8). Take now M and N finite-dimensional normed Spaces, u e M@ N and v ¢
M ® N', then the associated lincar operators satisfy

L,€L(M' N), L,=L,€L(N' M),

L, € L(M,N'), L,=Ly€L(N, M)

and
(‘U., V) = HM( Luc . L") = UN(Lu . Lul) =

= HM’( Lug Lu) = ‘rN'(Lu . Lu()
(this need only be checked on elementary tensors). Note that transposing w means gomg to
the dual of L.

3.2. The purpose of this paragraph is to study the embeddings
EQF < (E'®. F) < (E®F)
EQF - (E® F) - (E®F ) ~
given by the natural pairing, i.e. the trace duaity. For this, dual tcnsornorms will be intro-
duced - and first constructed on finite-dimensional tcnsor products M @ N ; note that

M@N=(M®,N) MNEecFIN|
Proposition. Let ¢ be a tensornorm on FIN. Then ¢ defined by
o (z; M,N) = sup{|(z, u)||e(u; M"N’) < 1}
for z€ M @ N is a tensornorm on FIN.

Proof . To apply the criterion in 1.1 (for FIN), observe first that o is a norm, (2) follows
frome= a=s0n K ® IK and (3) from

(T, ® Ty)z,u) = (=,(T} @ T3)u), .

In other words;
M®yN:=M @, NY (isometrically)

The finite hull o’ of o’ on NORM will bc callcd the dual tensornorm ¢/ (on NORM) ¢
the tensormorm @ (on FIN or NORM).
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3.3. The following properties are obvious:

@ If a<cB,then B < cd .
@ a=a"onFINad @ = o'.
(3 o= o" on NORM jf and only if « is finitely generated.

The relation ¢ < cr' < mimpliesfor ¢ = ¢ by dualization
e<n<e =¢

and whence

T =€ and g =

Thisis part of the duality rclation between the projective and the injective tensornormsmen-
tionedin 1.4.

3.4. Clearly, it is highly desirable to.know whether the following isometric relation for
finite-dimensional M and N

M@ N < (Mg, N)

holds also for infinite-dimensional normed spaces. The answer is given by the duality theo-
rem.

Theorem. Let o be a tensornorm (on FIN). Then for all normed spaces E and F the
following natural mappings are isometries:

() E' @, F'>(E ®y F
QFE @, FH(E®yFY
() E @y Fo(E ®y F)

Proof . To prove (3), observe first that
FIN(E') = {K°|K € COFIN(E)}
and, for (K, L) € COFIN(E) x COFIN( F) ,

(z,u) = (QF ® Q1 (2),u)
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if ze E@Fand ue K°® L C E' @ F'. Now, by the valid duality rclation for finite-
dimensional spaces

@(zEF)=supa(QE ®Ql(2); E/K, F/L)
K.L
=sup  sup  [(QF @Ql(2),u)| =
K L o(u; KO,LOY<1
= sup o {zu)l
o (u; B F) <]
and thisis (3). The commutative diagram andthe cxtcnsion lemma
EI®QEF (_1_’ (EH®QIF1)1 9/\<p
S ?
(E ®u/ ﬁ‘l/)/ 9 (p

imply (2) and (1) follows the same way.

The proof shows that the rcsult is, more or Icss, a rcformulation of the dchnition of the
cotinitc hull. The thcorcm indicates that the use of ‘g isa helpful device. Since ‘& < « , it
follows that all mappings @, — . . in the theorcm (®. replaced by ®,) are continuous and
of norm 1. (Note that, by the thcorem, the cofinite hull @ is identical with Grothendicck’s
norm |||, ; see [27], p. 11).

3.5. Having this rcsult and 7' = ¢ in mind the usual proofs of the characterization of the
X-approximation propcrty by the cmbcdding

E®,Fo(E ® FY)

show (sec ¢.g.[37], p. 409 or [45], p.315for A=1):

Corollary. For every normecd space E and X >1are equivalent.
(1) E has the X-approximation property.
(2) For every normed space F' (or only F = E’)
(s E\F) < A7 (., E,F)

In particular: = ‘m on E ® E' if and gnly if E has the metric approximation property.
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3.6. For every tensomorm « on NORM the relation ‘¢ < o < @ holds. g is caled
right-accessible (shortly ( r)-accessible) if

(E(’ MiF): —(—;('; MIF)

whenever (M, F) € FIN x NORM left-accessible (= (£) -accessible) if ot is right-
accessible and accessible if it is right- and left- accessible. ¢ is called totally accessible,
if

i.e if o isfinitely and cofinitely generated. ¢ is totally accessible (this was already mentioned
in 1.3) and 7 is accessible: This follows from the isometries
1
M®,E—(M®,E) = (LM E)) 2 (M@,E)
and the duality theorem 3.4; but 7 is not totally accessible by 3.5. It will be shown ing§9 that
all o, are accessible and all a; ,ae totally accessible.
Problem. Is every finitely generated tensornorm accessible?

This problem seems to be hard, since, by the approximation lemma, the non-accessibility
of atensornorm appears only onspaces without the metric approximation property. (In view
of this problem it is suange to define right -accessible tensomorms, we do this in order to make
some results «smoother» and since there are parallel notions for Banach-operator ideals, see

§9).

Proposition. Let ¢ be a tensornorm on NORM
() « is right-accessible if and only if o' is right-accessible.
() If o is accessible, then the transposed tensornorm of, the dual tensornorm o' and the
adjoint (or contragradient) tensornorm o* := (o!)’ = (/) are accessible.

If «istotally accessible, o is accessible, but not necessarily totally accessible (for ex-
ample o = €).

Proof . Clearly only (1) hasto bc shown: Since, by theorem 3.4
M@yF4Me F=(Mg,F)
for finite-dimensional M. it follows that
M@, F=M@,F S (M@y F)'=(M 4 F)'

; ; . - _
holds isometrically; whence o = @ on M @ F by 3.4.
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3.7. Summarizing the dchnitions and results of this paragraph (and using the approxima-
tion lemma) the relations

E®,F=E@.F ad E®F & (E ®, F)

hold isomctrically in each of the following three cases:
(1) E and F have thec mctric approximation propcrty.
(2) o isright-accessible and E has the mctric approximation propcrty.
(2') « isleft-accessiblel and F has the mctric approximation propcrty.
(3) « is totally accessiblc.

So, «two ingredicnts» are nccessary to have the «good» relation between o and o' . For
the bounded approximation propcrty the rclations would hold isomorphically.
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4. TENSORNORMS AND OPERATOR IDEALS

4.1. If [d, A]lis Banach operator idcal, thcn
M®,N:=d( M, N) (%)

defines a tensomorm on FIN :in other words: if z€ M® N and T,e L(M’, N)isthe
associated  operator, then

a( 2 M, N) == A(T, : M” = N)

The fact that « is a tensomorm on FIN can be checked easily: the idcal property of d
corresponds to the metric mapping property of o

4.2. Viceversa: if « is a tensomorm on FIN, define [d, A] for finite-dimensional
gaces M, N by
A(M, N):=M"®, N

) . (%)
A(T) :=a(zp; M, N)

and extend this to all Banach spaces E and F by defining T e d( E, F) if and only if
A(T) := sup{A(Qf oT o If) | N € FIN(E),K € COFIN(F)} < 0.

It is easily seen that [A, A] is a Banach operator ided which, by [60], 8.7.5, is even maxi-
mal. Since maximal Banach operator ideds [A, A] and finitely generated tensomorms o are
uniquely determined by their «behaviour» on finite-dimensional spaces the

Definition. A maximal Banach operator ideal [A , A] and a jnitely generated tensornorm
a on NORM are called associated, in symbols:

(A, A] ~ o

iffor all M, N € FIN
A(M,N)= M'®,N isometrically
establishes (via (x) and (#x) ) @ one-to-one correspondence behveen maximal Banach oper-

ator ideals and jnitely generated tensornorm . This link between the theory of operator ideds
and the metric theory of tensor products is very fruitful for both theories.
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4.3. Il a maximal operator ideat| A, A} and a finitcly gencrated tcnsornorm are associ-
ated, then
AIMN)=ME,N=(Mae,NY) M,N € FIN
holds isometrically. The extension of this to infinite-dimensional spaces, the representation
theorem for maximal opcrator jdeals is basic.

Theorem. Let | A, A}~ «. Then, for all Banach spaces E und F

A(E, F)=(E @, F) isometricallg
und

A(E, F)=(EQ®, F)' NL(E,F) isometrically

This shows ¢ ~ L (the idcal of all opcrators) which, of course, wes already clear from the
definition, and m ~ T, the ideal of integral opcrators (sec e.g. the dcfinitions [45], p. 304 of
integral opcrators); the latter example explains why the opcrators in d  are sometimes called
a-integral operators.

The thcorem is due to Lotz [55]. His approach to tensomorms was different from ours and
very influential to the devclopment of the theory of operator ideds He took, more or less, the
rcpresentation theorem gas @ definition for tcnsomorms and pointed this way a the one-to-one
corrcspondence  between maximal normed operator idedls and tensomorms.

Proof . The second formula will bc proved first, i.e. it is to show for T ¢ L( E, F) that
T ed( E, F)if and only if
Brpor € (E ®y F')’

(with equal norms). But thisis easy: T€ d( E, F) and A(T) < c iff
AQFoToIE) <c

for all (M,L) € FIN(E) x COFIN(F) , iff (by A(M,F/L)=(M ®, L°)') for all
zeEM®LC

|<BKF°T’ Z)I = |(BQfoTqu,‘ Z)l S Cal(Z; M: Lo)
This implies the result, since o' is finitcly generated. To see the first formula just look at the

diagram
pe(EQy F)' — (E®,F) =L(EF)

[
S0/\ € (E®d Fu)/ . (E@,F”),
and the extcnsion lemma.
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4.4. This theorem has various direct consquences

Corollary 1. If [A Al ~ «, then

Eo_F < ACE F) isometrically
E®_F 4 ACE,F) isometrically
E®_F 4 A(E,F) isometrically

This follows from the duality theorem 3.4 abour tensomorms and will be referred to as the
embedding theorem . Looking at

A(E,F) = (E®, F)' = A(E.F")

gives the following result (which is clearly well-known from «pure» operator theory).

Corollary 2. Maximal Banach operator ideals [A, Al are regular, ie T € A( E, F) ifand
only if k0T € ACE, F") . In this case:

A(T) = A(spoT)

The diagram
TeEL(E,F) - (EQ®,F) 3¢

! /. !
T eL(E,F) = (E@F) 3%
(and the extension lemma) implies the (again well-known)

Coroallary 3. Let [A, A] be a maximal Banach operator ideal, then T € A( E, F) if and
only if 7" € A( E”, F') . In this case:

A(T) = A(T).
45. The following diagram commutes
TeLl(E F) — (E® F) 3y

l 1
T €L(F,E) = (F'@®,E) 3¢
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Henee, if @ ~ [ A, Aland if [ B, B] isthe unique maximal-Banach operator idcal associated
with &, then, by the representation thcorem for maximal operator ideals.
B(E, F)=(E @y F)' NL(E,F)
={T €L(E, F)|Bp€(F @, E)'}
={T€L(E,F)|T'e A(F,E)}
holds isometrically] ie., T € B( E, F) iff T" e d( F, E) and B(T) = A(T") . This
means that [ B, B] coincidcs with the dual Banach idcal [A% , A%y of [d, A] defined by
Pietsch [60], 8.2.1. Note that the proof included that A%? is maximal.
If [D, D] isthe maximal Banach ideal associated with o* = ( o*)’, then for allM, N €
FIN the trace duality gives the isometric equalitics
D(M,N) =M'®,.N=(N'®,M)' = A(N,M)
w W

T s [S§ ~~~ 1y (TS))
Therefore, T € D(E, F) iff

D(T) = sup{D(QfTIf) | M € FIN(E),L € COFIN(F)}
=sup{|trp, (QITIES)| M....N.... A(S:F/L—-M)<1},

which implics that [D, D] and the adjoint Banach ideal [ A*, A*]of [ A, A]inthe sensc of
Pictsch [60], 9.1 are identical.
Proposition. If o ~ [d, A], then

(1) of ~[.4% A% in particular: T is o'-integral if and only if T" is a-integral.

(2) o" ~ [A*, A%]

B [A™, A*] = [A,A]

The last result follows form (2) and o** = a. Note that ot = o gives (A% )l = 4
and this is anothcr proof of corollary 3.

1 1 1 1 1
46. Letp, g€ [1,00] with =+ = > 1 and define 7 € [1, c0] by m = ;+ E -1.It
was proved in 1.6 thet for ai M, N€ FINand T € L( M, N)
o, (zpi M) N) = inf £,( ) w, () wy(y,)
where the infimum is taken over all finite or infinite series representations T= Y X0, ® Y,
i

(convergence in £ M, N) ). Henee by [60], 18.1.1 and 18.4.1

M'®, N=N, (N M)

nPA
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where [N, N, ] denotes the ideal of all (7, p, q) -nuclear operators. By detinition
(see [60], 19.4.1) the maximal Banach ideal (L, Lypgl o all (1p, q) factorable operators
coincides with N,’qu on finite-dimensional Banach spaces and whence is the unique maxi-

mal ideal associated with o, Le.,

[LM’L ~a

P q] P4

Specia cases are
(L L) =Ly, Lyl ~ Gy = Wy
[Ip’lp] = [Ep,l’ I'p.l] ~ %l =9
the ideals of all p-factorable and p-integral operators (see [60], 19.2.1 and 19.3.2). T, =
T ~ 1 = g, are the usual integral operators.
The following important factorization theorems are proved by ultra product technigques
(see [60], 19.2.6, 19.3.7, 19.39 and 19.4.6):

1 1
If —+ -=>1,thenT ¢ L, (E F) if and only if there are a probability space (2, u)
p g '
and operators R € L(E, L, ( p))and SeL( L( u), F") such that

ELr & p
R Ts
Lq,(u) ‘13-'5 L,(u) (I,, the canonical
embedding)

In this case L, (T) =inf [|R||||S]|.

Note that this gives in particular the factorization theorem for the p-integral operators
(I,=L,, if 1 < p < oo). For the p-factorable operators the following factorization holds:

Te¢ [,p( E, F)= [,p,p,( E,F) (1< p <co)iff there is a (strictly localizable) measure-
space (€2, p) and appropriate operators R and S with

L F & p
R\, /s

L(w)
Again: L,(T) =inf ||R|| ||S].
Itiseasy to sec that for p = 2 inthese statements the operator S can be chosen/,, — F

thus avoiding the bidual. So £, is the ideal of operators factoring through a Hilbert space:
Lz ~ 'UJ2 .
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1 1 1 1 1
4.7. Forp,q € [1, 00] with ;+; < 1 definer € [1,00] by o= ;+E.Inpanicular,
1 1 1

4 7>1and—+—+—_l Then forevery T € L(E, F)
P g ™ p ¢

KFOT E (E®ﬂqlp/ F)

iff

sup{| Y M(Tz 0 [ £,00) < 1w,(z) < 1,w,(p) < 1} < oo,
and in this case the latter supremum equals || B.,orl |..- Hence, by the representation theorem
for maximal operator ideals (and Holder’ s inequality), an operator T € £( E, F) belongs to

the maximal Banach ideal
[D D ] a;.vlp' = a;,r_q;

P.q’

if and only if there is a constant ¢ > O such thatforall z,,...,z, € E and p,,...,p, € F"
E,((‘P;‘: TI;‘)) < pr( I{)wq(ﬁoil )

and moreover D, (T)= inf c. Operators satisfying such inequalities are defined in [60],
174.1 and called (p, q) -dominated. |mportant special cases are

[D D] L[Dpp,, ]ma;.p=w;=w;

the p-dominated operators, and
* o x _ g
[’pp’ Pp] = [Dp,oo’ Dp,oo] n ap',l - gp' - dlf

that absolutely-p-summing operators (note P, = L).
By Proposition 4.5 it is obvious that

i, 1 1
Propostion. If —+ — >_1 , then
P g
L,=Dyy isometrically
1, =Py isometrically

4.8. There is an integral characterization of ( p, g) -dominated operators due to Kwapien
which is an extension of the Grothendieck-Pietsch-domination theorem ([60], 17.3.2)

TEP(EF)  |TalP <c f &', z)Pu(dz’)
By
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and basic for the applications of the theory. For hilinear forms it reads as follows:

Let p € (E® F)*.Then
pE(ER®, F) (ie. L, €Dy (E,F)

if and only if there are ¢ >0 and Borel probability measures p on By, and v on B, such
thatforallz € Eandy € F

|<so,z®y>|sf:(/ l<z’,z>|"’u(dz’>>5’(f ', 9P v(dy)) 7
Bp Bp
In this case ||¢|]_ = inf c.

For g’ = oo (or p’ = oo) the integrals have to be replaced by ||z|| (or ||y]|); thisis just
the case of L, (or its dud) being absolutely-p’-summing (or absolutely-g'-summing). The
proof of this result is the same asin [60], 17.4.2.

A reldtively smple consequences of this is (see [60], 17.4.3).

1 1
Kwapien's factorization theorem. For —P+ —q <1

_ pydual
DM = 'Pq oP

"y isometrically

4.9. Itis good to have a list about the tensomorm and their associated operator idedls. Let

11
p,q € [1,00] with |—3—+ (}—_> [,then

(@D)] e~L all operators
n~T=1T =L,=L* integral operators
2) T (p, q) -factorable operators
o, ~Dyy . L, (p, q) -dominated operators
(3) w,~ L, =L, p-factorable  operators
w; ~D g = D = [jH p'-dominated  operators
(4) gyvI, =L, p-integral operators
9~ Py=Dyo =T absol utely-p-summing operators

(with P_, = L)
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4.10. It is an essentiad goa of the theory to compare different tensornorms/maximal op-
erator ideals. The very definition of [d, A] ~ « (by finitedimensional spaces) implies the

Remarkl. Let [A,A] ~«a, [B,Bl ~g and ¢> 0. Then:
a<cB if and only if  A()) < eB(-).
inthiscases B C A.

For example, o, <, w, if p, q €]1, 00l (sec 1.8) implies

L, C ‘Cp.q and D,,CD,

and a,, = afw for allp, q € [ 1,00] gives, togehter with 4.5,

dual — — dual —
Lo =Lep=L,, and Doe =D,

The factorization theorems for Z, and P, imply

I,cP, and P, <I()
P,C L, and Ly(1) < P()

whence

9y <9, for 1 <p<oo

w, <g; <w;

where the latter inequality follows from «, , > a, , which in tun implies
D2 sz and Pz(') SDz()

Very interesting phenomena occur from estimates on specia Banach spaces. The representa-
tion theorem for maximal operator ideds and its corollary 1

E' ®. F' < A(E,F) = (E®, F)’

imply the
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Remark 2. Let [A, A]~ a Und [ B, B] ~ 3 be associated, ¢ > 0 and E and F Banach
spaces. Condder the following conditions:

(@ f/<cQq onEQF

(b) BCE,F') c A( E,F’)und A(-)<cB()on B(E, F")

(@< cBONE @ F

Then

1) @ ¥y ® N ©

(2 If E and F' have the mctric approximation propcrty, or: « and 3 are accessible and
E’ or F has the mctric approximation property then: (a) ¢ v (b) ¥\ (C).
(2) is a conscquence of

E®, F—(E®,F) =(E @, F) y=a o B

which holds under the given conditions by the duality results of 93. Clearly, if B( E, F') C
d( E F) the closcd graph thcorem gives a constant ¢ > 0 sdtisfying (b).

Thesc two rcmarks are essentia for the interplay between the theorics of (ensornorms and
operator ideals; thcy will be referred to as the «transfer argument». Note that (2) includcs
conditions under which the full dudization holds:

a<ch on E®F iff B <cad on E®F
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5 FURTHER TENSOR PRODUCT CHARACTERIZATIONS OF MAXIMAL
OPERATOR IDEALS

51 There are very useful characterizations of a-integrai operators T € L( E, F) in
terms of tensor product mappings

TQid,: E®G—F®G

with appropriate tensomorms. There are three simple formulas (check on elementary tensors)
which connect T € L(E F) and T ® id ; (remember the notation Bg and L,, from 0.7).

() Forp€e(F®,G) andz€ EQG
(By,or» 2)={p, T ®1id g(2))
(2) Forz€EQF
(Bypor 2) = (U, T®id p(2)) = (Irp,id s ® T'(2))
() Forpe (G ®,E)andzeG @ F
(Bpuoy,,2) = {p,idg ® T'(2)).

5.2. The first of the announced characterizations is the

Theorem. Let [d, A] ~aand T € L( E, F) . Then the following statements are equiva-
leni:

() Te A(E, F)

(2) For all Banach spaces G (or only G =F’ or G = L withL’ = F isometrically)

Ted;:EQyG—-F®,G

is continuous.
(3) For all Banach spaces G (or only G = E)

T'®idg: FF®.G-E®,G

is continuous.
In this case:

AM=|IT®idp: ® = &I 2T Qid,: ®y — &,ll
AM = IT'Qidp: @ = &l > IIT"@idg: @, — &,l|
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Proof :
(1) ™ (2): HTedE F), then, by formula (1) and the representation theorem for
maximal operator ideds,

e, T®idg(2))| < A(L, 0TV (25 E, G < lpllA(T)d/(z; E, G)
fordl ¢ € (F ®, G)' which shows:
(T ®idy(2); F,G) < A(D)d(z;, E,G).

(2) My (1): Assume (2) is satisfied for G = F'. Since d isregular (4.4) one has to
prove
kp0TEd(E F)=(E ®, F).

For z € EQ, F formula (2) gives

(B 2| = Kt p, T @ 1d i (2))| < |l pl|7(T ® id pu(2); F, F) <
<IT®idp: ®, = ®,||d(2; E, F).

The proof for the predua L (if it exists) is the same.
(1) ¥\ (3) follows from (1) ¥ ¥ (2) by observing that T is c-integral (i.e. T € d)
if and only if T' is of-integral (see 4.5).

Note that these are statements about the composition of operators, e.g. (3)

FFG) =FeG "%° FeG= FEG)
w

S oy SOT

5.3. In order to obtain characterizations with ¢ being involved (this is a sort of dualiza-
tion as will be seen) the following natural statement is needed. Recall that the Johnson spaces
C, (for 1 <p < oo, see [39]) are separable Banach spaces (reflexive for 1 < p < oo)
with the metric approximation property such that for every M € FIN and ¢ > O there
is a 1-complemented subspace N ¢ C, and an isomorphism S € £( M, N) such that
SIS <1+ €.

Lemma. Let B and ~ be tensornorms, A jinitely generated, ¢ > 0 and T € L( E, F) .
(@ Iffor a normed space G

IT®idy: E®yM —F& M| <c
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for cofinally many M € FIN(G) , then
IT®idg: E®;G — F®, G| <c
(b) If (for some 1 <p < o0)
rhen
IIT ®id ; : E®;G—F®,Gl|<c
for all normed spaces G.

The proof is very easy using the metric mapping property of tensomorms.

Corollary. Let a be an accessible, finitely generated tensornorm, [d, A) the associated
maximal operator ideal and T € L( E, F) . Then the following are equivalent:
()T € A(E, F)
(2) For all Banach spaces G (or only G = C, for some p)
TRId,:EQ.G—-F@,G
is continuous.
(3) For all Banach spaces G (or only G = Op for some p)
T ®idGZ F®e.G-E,G.
In this case the operators in (2) and (3) have norms < A(T) and
A =T ®idg : € — Bull = IT"®@id¢ : ® — @l

Proof . To prove (1) ¢\ (2) it is enough, by the theorcm and the lemma, to show that for
alM € FIN
IT'® id,, : FF ®,. M —=E ®, M||<c
if and only if
IT®idy,:E® M —-FQ®,. M|l <c.
But this follows from

ESM tE® M ad F&_M < (F&, M)
and the fact that
IF' @ M' = (F @4 M)'|| <1

As before, the cquivalence (1) ¥ N (3) is a consequence of (1) ¥ N (2) by obscrving thai
T is a-integral if and only if T’ isa!-intcgral. .
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If « is not necessarily accessible the proof showed that (1) ¥ ¥ (2) holdsif F has the
metric  approximation property and (1) ¥ N (3) if E’ has the metric approximation prop-
erty.

For specia operator ideals it is possible to find «better» fixed spaces G (than C,); for
example If d = P, it is enough to take G = Ep; this is the tensor product formulation of
the smple, but useful characterization of absolutely-p-summing operators due to Kwapicn:
T € L(E,F) isin P, iff TS € P, forall S € L(£,,E) .

5.4. To see some particular cases of these results take
gp~IL, and  dy=gy~P,
Since g, and d;, ae accesshle (see later 9.4) it follows

Proposition. Take 1 < p < co.
(1) For T € L( E, F) are equivalent:
(@ T is p-integral,
(b) for all Banach spaces G (or only G = F')

Teid,:Ee,G—F®,G

is  continuous,
(© for all Banach spaces G

T@idg: E®,G—F®, G

is continuous.
(9 T e L(E F)is integral if and only iffor all Banach spaces (or only G = F )

T®id,: E®,C—-F@,G

is  continuous.
(3 For T € L({ E, F) are equivalent.
(@ T is absolutely-p-summing |
(b) for all Banach spaces G (or only G = F )

Tidg: E@dﬁc—’ F®,G

is  continuous,
(© for all Banach spaces

TRid,: E®,G-Foy, G

is continuous.
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Clearly, there are norm estimates as in 5.2, for example,
KT) =|IT®idp : ®, — &,l|

5.5. Ancther interesting and very important consequence of the theorem (and its corollary)
is the

Proposition. Let[.A, A] be amaximal operator ideal such that the associated tensornorm
a is accessible. Then

A*oAcCTI and  I(ToS) < AYT)A(S).

In 9.2 accessibility of a will be explained in terms of the operator ideal d . If cv is not
necessarily accessble (remember that there is no example known!) it follows

A*(F,G) o A(E,F)CI(E,G)
with norm inequality, if F has the metric approximation property as the proof will show as
well.

Proof. If d ~ a, then d* ~ o*. Thisimpliesthat for Sed( E P andT e d*( F G)
the map
(ToS)@idG,:E®®‘G'HF®03G’—>G®,,G'

has norm < A% T)A( S) by 53 and 5.2, whence T 0 S € T with the norm estimate by 5.4.a
To see a concrete example (see dso [22])
DygyoL,,CL and (T 08) < Dy (T)L,(S)
and even

D, 0L, CN —and  N(ToS) <D, (T)L,[(S)

if (p,q) & {(1,1),(1,00),(00,1)}.In the excluded cases the product is nof contained in
the ideal of nuclear operators.

Proof . It will be shown in 9.4 that L is accessible, whence the first statement is clear.
Coming to the second statement take S € L, (EF) and TeD, ,(F,G) and observe
first that for 1 < q <oo

Dyg© P e w (weakly compact operators)

q
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whence the astriction 77 : F" — G of T" is (by the results of 4.4) dso (p', q')-dominated
Since S is (p, ¢) -factorable 4.6 implies the factorization

E < E f’; F = ¢
| v
J
Lqr —_ LP

whence R :=T7V J is an integral operator on a reflexive space with the approximation
property and therefore nuclear with I(R) = N( R) (see [13], p. 248).
Ifg=land1l <p<oo

DyoLl,1 =PyoLl,=WoP, 0P, CWoICN
(again by Radon-Nikodym arguments, see e.g. [60] 24.6.2). For (p, @) = (1,1)
Doo,oo O‘C’l,l = £ OI#N .

For the remaining two cases (p, g) = (1, o0) or (oo, 1) take an operator T : C[0, 11 — ¢,
which is absolutely-I-summing and not nuclear ([ 13}, p. 175). Then T is not nuclear as well

([13), p. 243) and
T €P, oLy =D oo0Lle,

T €P{™ oL, = Dy10L o
and this completes the proof.

A specid case is Grothendieck's
PyoPy=P,0L, =P, 0P; CN

N(T8) < P)(T)P,(5)

. 5.6. The rest of this paragraph will contain some more applications of this type of char-
acterizations of a-integral operators/maximal operator ideds. First, when is the natural map

I:B§ F - B®.F < L(E’, F)
injective? If o is totaly accessible the dudity theorem 3.4 for tensomorms implies

E®,F = E®;F < (E®,F) — LE, F")

whence T is injective.
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Proposition. If « is a finitely generated tensornorm, E and F Banach spaces, one of which
has the approximation property, then the natural map

I: EQF — E®F
Is injective.

Proof . Assume that F has the approximation property, z € EQ, F and I(2) =0. It is
to show that (p, z) = 0 for all

v €(E®,F)' — L(E,F').

By theorem 5.2 (and, clearly, the correspondence between maximal operator ideals and ten-
somorms)
Lw ®idp: ER,F - F'®,F
is continuous. The lower map in the diagram
E®,F & E®,F
L@, idF | / 1l L®idF
F'® F — F'®F
is injective by the approximation property, whence

L,®4id £(2) =0 € F'®,F

and formula (2) in 5.1 implies

(9,2) = (rp, LB, ,id p(2)) = 0.

Since
E ®, F — A(E,F) =(EQ, FY'NL(E,F)

is continuous and 1
E'®.F— L(E, F)

it follows: If [ A, Al and « are associated, then the natural map
E® F-d( ER

is injective if E' or F has the approximation property (or if « is totally accessible).
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5.7. For the bounded approximation property of Banach spaces one obtains the

Proposition. Let o be totally accessible and e~ [A, A] . Every Banach space E with
id € d has the bounded approximation property with constant < A( id ) .

Proof . To apply the criterion 35 (about = < \r ) for the bounded approximation property,
take z € E @ E' and apply theorem 5.2to id 5 € A*

n(z B,E) < A(id p) /(2] EE) = A(id ) o (z; B, E) <
< A(id ) 7T (2f EE).

id, €dmeans. E € space(d) in the terminology of Pietsch [60]; by 5.2. this is
equivaent to
E®,G=EQ,G forall G (or G= E)

(isomorphically) - or, by 5.3 (if o is accesshble),
E® G=EQ,G forall G (or G = C,)

(isomorphicaly). The proposition has also a negative favour: If there is a Banach space
E € space(d) without the bounded approximation property, then o is not totaly accessble.
Anticipating theresults of §8 take w,\ ~ L3V and recall that all £, (for p # 2 ) have subspaces
without the approximation property; then the proposition says that ( wp\)' = wj,/ is not totally

accessble (p# 2) .

5.8. For tensomorms o and 3, and operators S € L( X, Y)and T € L( E, F) itisnot
exactly known, under which circumstances the continuity of

S@T:X®,E—-Y@,F

implies the continuity of
S ®T”:X ®D‘E"—>Y ®ﬂF”

(see aso problem 2in 23). If o= T ad f= =
S = id, T = id,

the continuity of id, ® id, : ®. — ®, is, by 35, the bounded approximation property of
E which does not imply the one of E', i.e. the continuity of id 5 ®id g : @z = ®, . D,
the answer to the above problem is negative for arbitrary cy and 3!
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To obtain a least some positive answers, fix S € L£(X, Y) with ||S|| = 1 and consider
for Banach spaces V, W

AV, W) ={ReL(V,W)IS®R: X @,V =Y ® W continuous}

AR):=||IS®R : ®% - ®ll

It is easily seen that [d, A] isa maximal Banach operator ideal (for the maximality use the
property stated in 4.2). The factthat R e d if and only if R” € d (by corollary 3 in 4.4) is
the key for the

Proposition. Let a and 8 be tensornorms, a finitely generated, X, Y, E and F Banach
spaces, S € L(X,Y)and T € L(E, F) such that

S®T:X®GE~+Y®‘3F
is continuous. Then in each of the following five cases
S@T": X Q@ E' -»Y @z F'

is continuous:
(1) B is totally accessible,
) B is accessible and: Y or F" has the bounded approximation property,
(3) Y and F” have the bounded approximation property,
@ T is weakly compact,
(5) whenever G, ¢ G, then Y ®¢ G| is an isomorphic subspace of Y ®4 G, .

Proof . To apply the construction above, observe that a = &’ and 8 = F in the cases (1) - (3)
by the definition and the approximation lemma Case (4) follows by using that T"( E”) C F :
it is not too difficult (using the extension lemma) to check that for the astricition 77 : E” — F
even

SRT": XQ,E' Y QyF
is continuous. The last case follows from a refinement of the construction of d: Define first
a tensomorm 7 by

(2 V,W) = sup{B(id, ® Q¥ (2); V,W/L)|L € COFIN(W)};

7 coincides with 8 on NORM x FIN whence, by the approximation lemma, on all spaces
Y ® £,(T ). Now use the maximal Banach operator ideal

{RELLVW)ISRR: X®, V=Y ®,W  continuous},
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the continuous maps
Y@ F-Y® F, Y@ F -Y® £ (Bp),
and the isomorphic embcdding
Y@z F' »Y ®3L(Bp) =Y ®, (Bp). .

Unfortunately, this result does not cover the general case of g8 = & - which seems to be
unknown. It is clear (by 4.4) that incase (1) [SQ T:...||=||IS® T" :...]||- and this
is also true in (2) and (3) if the spaces have the metric instead of the bounded approximation
property. For ¢ = ¢, 8 =« and Y having the metric approximation property the result was
proven in [38], p. 355.
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6. £,-SPACES

6.1. A Banach space Eiscaled an L7, -space (for 1 < p <ocoand 1 < X < o0) if
for each e > 0 and N € FIN(E) there exist a natural number n and a factorization

Iy
N <= E
5\%/1"
&

such that [[T]| [IS|| < X + &. A space is called £¢ if it is an ,$,-space for some ).
Obviously, every L, ,-space in t he sense of Lindenstrauss and Pefczyfiski ([51], for ev-
ery N € FIN(E) there is an M € FIN(E) with N ¢ M and Banach-Mazur-distante
d(M, £5mM) < X)isan L2, -space and it will be seen soon (6.3) that the difference between
these two classes of spaces is not very large; the great advantage of the class of [l;’7 y-spaces
is that the constant X does not vary under dudization - a fact which is fdse for L, ,-spaces
and seemingly unknown if an additional ¢ is dlowed.

Since L, ( u)-spaces are L, ;. -spaces for all ¢ > O they are [:Z 1 -spaces and it follows
the same way that the spaces C(K) are LY, -spaces .

Following Pietsch, a Banach spaces E isin space (d)  (for an operator ideal d ) ifid ; €
d . Recall that ([IP, Lp) is the maximal normed operator ideal of the p-factorable operators
which is associated with the tensomorm w, . Anticipating the fact that w, is accessible (9.4)
the equivalences (2) - (5) of the following proposition are immediate from the characteriza-
tions 5.2 and 5.3

Theorem. Let 1 <p <ooand 1 £ ) < oo. Thenfor every Banach space E thefollowing
statements are equivalent:

(1) Eisan E.Z. \-space

(2) Eisin space(L,) and L (id g) < A

(3) For all Banach spaces G (or only G = E' or G some predual of E)

w,<n<iyo n E®G
(4) For all Banach spaces G
e<w,<Ae o n GQE

(5) E"is in space( Ly)and Ly(id g) < A
(6) For every > 0 there is a factorization of id z» through some Lp( )

E" id_E," E!
s\, % S

Ly,(p)
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with | |S||||T]| < M+ €. (Inparticular: E” is isomorphic to a complemented subspace
of some L () ).

It is clear form (6) that the L5 -spaces are exactly those isomorphic to Hilbert spaces. (4)
implies that Py -spaces (i.e. spaces with the X-extension property) are L ,-spaces.
Proof :

(2 ¥\ (6):id g isin [,p iff id g isin L, by corollary 3 in 4.4; now the factorization
theorem 4.6 for p-factorable operators shows the equivalence.

4 " (1): Take N € FIN(E) and

Ife F(NE)N'® E=N'®, E,
then there is a reprcsentation of IE by z =3 1, ® ¥, With

wp(z; N E) < wp{gpm)wp,(ym) <e(z; NSEY(A+0)= A+ 6

and  whence £
N &g 8(2) 1= ({9, 5))
AN . ST n
T(&n) = Efmym
g; m=1

is the desired factorization since
”S”= wp(‘pm)' “T“:wp’(ym)
(1) v (4): Observe first that for all Banach spaces G
E=w, on G®Z;‘

by 1.9; now the implication is immediate from the following lemma which is of its own
interest. '

Corollary. E is un L} , -space ifand only if E' is an L}, , -space.

6.2. The «local techniques» for the Eg-spaccs are somehow concentrated in the

Local technique lemma. Let o and f3 be tensornorms, ¢ >0 and G a normed space such

that
a<cf on Gl
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foralln € N, then
@<cAfo n  GQE
for every L7 ,-space G.
Proof . Take a factorization
N -« M <— FE
s\ S ST
Eﬂ

P

TSI A + &

then, for every z ¢ G® N,

o(z; G, M) = a((idg®T 0 8)(2);G, M) <||IT|la(id; ® S(2); G, £) <
< ITlIcBlid ¢ ® S(=2)1 G, € < |IT]| |1S||eB(z; G, N) <
< (AN+e)ch(z; G, N).
This implies the statement.
(Note that the finite hull only was taken on the right side of the tcnsor product; this will be

used in 8.8 and 8.9). It is obvious by the definition, that more or less the same local techniques
for operafors apply for Lg-spaces as they do for L -spaces.

6.3. To obtain the precise conncction between the L£,-spaces and the L£$-spaces, observe
first that for every 1 < p < oo the Hilbert space £, (by using Rademacher functions) is a
complemented subspace of L[ 0, 1] , whence an Cg-space; it follows now easlly from the
definition that every Hilbert space is an Li-space for all 1 < p < oo (but £, is not an
Cr-space for p# 2 ). Results of Lindenstrauss-Rosenthal ([52], 2.1 and 3.2) even imply (with
the ad of 6.1 (6))

1 <p<oo: A Banach space is an L3-space if and only if it is an L,-space or

isomorphic io a Hilbert-space)

p=1loreco:  The class of ng-spaces coincides with the class of L, -spaces.

Note that Lg'k-spaces are exactly those which were used in the assumption of [52], theorem
4.3. Again using 6.1 (6) it follows that

A Banach space is an Li-space if and only if it is isomorphic to a complemente

subspace of an L -space.

This implies that tensomorm inequalities hold for £g-spaces if and only if they hold fc
L,-spaces - but the constants may vary.
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6.4. Grothendieck’s inequaity in tensorid form 111 stated that
< Kow, on f:o ® E:‘o
whence, by the local technique lemma for L£g-spaces
7 < Kgphpw, on E@F

whenever E isan L?_, -space and F and L, ,-space. Since

L~c¢ 6=
D, ~ uj wy' = v,
* *®
Py~ g 9 =dy

and, by 15,

'UJ2 = 02.2S al ’2 = dz
the «transfer argument» 4.10 implies the
Proposition. If E is an LY, ,-space and F an E{M-space, then

L(E,F) =D,(E,F) =P,(E,F)
Py(T) < Dy(T) < KehulIT].

Andreas Defant, Klaus Floret

In 8.5 the result that every operator £, — LJis absolutely-2-summing will be improved

to operators L5, — L forl<p<2.
Dudizing
T < Kow, on L L

gives
w, < Kge on 4L

whence, by the local technique lemma,

w; < Kphue on EQF

if Eisan £{ ,-space and F and L{  -space. For operaors this means (again by the transfer
argument 4.10): Every 2-factorable £{ — L9, is integra (see aso 8.13).
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6.5. Another application of this simple way of arguing comes from
n< Kgd,, on L@
(see 1.12), and whence
m < Keolpd,, on L, L5,

Since £ ~ g and Py ~ g2, = d,_ this implies the famous [51]

Proposition. If Eis an E‘{A-space and F an L3 , -space, rhen L(E, F) = P, (E, F) and
P(T) < KulIT]|-
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7. MINIMAL OPERATOR IDEALS

7.1. Now another crucial link between Banach operator ideds and tensor norms will be
proved  the representation theorem for minimal ideals.

If [d, A] is a quad-Banach ideal, then its minimal keme is defined by
[A,A)™ = [F, . INo[A Al [F,| . ]I

where [ F, |- | |1 denotes the ideal of all approximable operators (an operator T € L£( E, F) is
said to be approximable if it is in the operator-norm closure of all finite dimensional operators).
[A, Al iscalled minimal if it coincides with its minimal kemel (see [60], 8.6).

Let an~[d, A] . Thenfor M € FIN(E’) and N € FIN(F) the diagram

E®,F & A™(EF) 3 IETQE,

] 1 §

M®,N A(E/IM°NY > T

-

obviously commutes. Hence for € E' ® F and u € M ® N with I ® 15/ (u) = z
ALY = AR (IRL,Q%0) < A(LY) = a(u; M, N),

which  implies
l¢: E'®, F— A™"(E,F)|| < 1.

Even more holds;

Theorem. If a~ [ A, A] the canonical map
¥: E® F -5 A™(E,F)
is a metric Surjection for all Banach spaces E and F.

Proof : (1) Let S,ed( X,Y), Te F(E, X), Re F(Y,F)andconsiderw € E' @ F
corresponding to RS, T € F( E, F) . Then

o(w; E, F) <|IRIASHITI
Indeed, if

R= IfR, with M €FINKF), B, € L(Y, M)
T=7,Qf with  NeCOFIN(E),T,€L(E/N,X)
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then RS,T = IT, Ry SoTo Q% , and hence
o(w; E,F) = a((QR)' ® Lit(zg,5,1,): E, F)
< o(zp g 13 (E/N)', M)
= A(Ry 8y To) < IIRIACSH)IITI] .

(2) Let now S € A™( E, F). Then by definition there are S, € d( X,Y), T €
F(E, X), R € F(Y, F) such that

S=RST and  [ISIIA(S,) |ITI < (1+€)A™(S).
For sequences (T;,) in F( E, X) and (R,) in (Y, F) with
T -T,]-0 and ||[R=R,||—0
choose w,,, € E' ® F corresponding to R, 5,7, € F(E, F) ; then, by (1),
o w,, = w,,; E, F)<
< oWy — s E', F) + 2w, —w
<|IBa = BollACSO) Tl + [ ER|ACSOIT, = Tl
which implies that w := limw, € E'®,F exists. Obvioudly,

Y(w) = limp(w,,) = RSyT = S

B F)

mm’

and, again by (1),
a(w; E', F) =lim a(w,,; E, F)
<im|[RJAGSOIT
= IRIASHIITI £ (1+ &) A™(T).
It is a well-known fact (see 0.7) that the extension
E'® F-»N( g F)

of the canonical embedding is a metric surjection. Hence in the specid case o= w ~ T the
preceding result implies that [Z, I] ™" = [N/, N]. This is the reason why operators in A™"
sometimes are called a-nuclear .

The following statement follows directly from 5.6:

Corollary. Let cy ~ [ A, Aland let E, F be Banach spaces. If « is totally accessible or if
E' or F has the approximation property, then

E®F= A"(EF)

isometrically.
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7.2. With the last theorem, the third of the three basic links between the metric theory
of tensor products and the theory of Banach-operator ideals was obtained: If the maximal
Banach operator ideal { A, A] and the finitely generated tensomorm o are associated, i.e.

M'®, N = A(M,N)

isometricaly for al M, N € FIN, then for all Banach spaces E and F the following
theorems hold: (4.3,4.4,7.1)

(1) The representation theorem for maximal operator ideals:
A(E,F') 2 (E®y FY
() The embedding theorem:
E®.F < ACEF)
(3) The representation theorem for minimal operator ideals:
E'®,F —» A™(E,F).

In order to illustrate the interplay of these three facts the following extension of a result
of Schwarz [76] (see dso [60], 10.3.5) is proved:
Proposition. Let [ A, A] be a maximal Banach ideal. If the associated tensornorm o« of A
is totally accessible or if Eor F' has the approximation property, then

A*(E, F"y= (A™(F, E))".

Proof : The representation theorem for maximal ideds shows

AYE,F") 2 (E®yF)
__l_(FléuE)!
(45 impliesa*= (') ' ~ A* ) and corollary 7.1 of the representation theorem for minima

ideds gives
F'¢,E=d- ( FE),

hence

d*( EF)=(A™( F, B).
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The duality bracket can be caculated with the trace: Use 5.2 to see (first on elementary ten-
sors)thatfor T € A*(E, F")

AT B B) = FE 5 PR F o N(F,F)
w w
s~ w o~ S0T 0kp

and
A"a( F, E) = F&E < F'"®E Teids E® E - N(E,E)
W W
S (e %V up N S'OT

~~ (T,8) €K

where §7: " — E is the adriction of S’ ; it follows that

_[wp(SoT 0kp) if F hasap.
(T.8) = { rg(S"oT) if E has ap.

In the case of o being totaly accessible, the duality bracket cannot aways be calculated with
the trace on operators: for an example, take o« = ¢ whence A* =T and A™ = F and E a
reflexive space without the approximation property; then

I(E,E) = N(E, E)= L(cy, E) o F(E,c,) = F(£,,E) o I(E,£,)
2 neither S’ o' nor To S (for T € d* adS € A™ ) have in generd a trace (see aso 0.8).

7.3. The following trivial consequence of the representation theorem for minimal ideals
sometimes is  useful:

Take E and F Banach spaces,a ~d and 8 ~ B, then
alcfB on EQF

implies

BB, Fyc A™(E,F), A™N(T) < cB™(T)
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As an gpplication a «nuclear» version of Grothendieck's theorem 6.5 is given: Since g, ~v
I, for 1 <p < oo, proposition 1.6 (and 1.7) and the representation theorem for minimal
operator ideals imply that an operator T € L(E, F) belongs to Z7*( E, F) if and only if it
has a nuclear representation of the form

oo
T=Y ey
i=1

such that (||z}|]) € £, (M ¢, if p= oo)ad w,(y,) < oo. Moreover, in this case

(T = inf £ (z)w,(y,)
where the infimum is taken over all possible representations. This proves that (I;™, )
coincides isometrically with the Banach ideal (N, N,) of all p-nuclear operators (see [60],
18.2.1).

Snce m < K., 0N 25 QL7 (see 1.12) the local technique lemma implies that for every
L3 ,-space E'and L{ -space F

7< Kehugo, < Kghug, on  E'QF

and whence, by the above observation:

Proposition. Let E be an £f ,-space and F an L] ,-space, then for all 1 < p < oo

N(E, F) = N(E, F)
N(T) < KMuNy(T)]

See the results of 8.5, 10.2 and 10.3 in order to obtain other results of this type.
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8. PROJECTIVE AND INJECTIVE TENSORNORMS
8.1. A tensomorm ¢ on NORM (or on FIN) is called right-injective on NORM (or
on FIN), shorthand: ( r) -injective, if for all metric injections ] : F RN c

id,®:E®,F—EQ®,G

is a metric injection (E, F, G € NORM or FIN, respectively) and right-projective on
NORM (or on FIN), shorthand: (r)-projective, if for al] metric surjectionsQ : F -4, G

d,@Q:EQ,F—EQ,G

is a metric surjection (E, F,G € NORM or FIN, respectively). If ot is (r)-injective
(resp. (r) -projective), then « is cdled left-injective (resp. left-projective)] if o is left- and
right-injective (resp. projective) it is caled injective (resp. projective). Clearly, e is injective
and 7 projective on NORM (this follows directly from the definitions, see 0.7). The duality

M®,N=M g, N) M /N e FIN
implies « is (r) -injective on FIN ifand only if o' is (r)-projective on FIN.

8.2. This result will be extended to tensomorms on NORM . Unfortunately, (r) -projec-
tive tensomorms are more difficult to treat for normed spaces than (r) -injective ones, S
their study will be prepared by a precise investigation of their behaviour with respect to dense
subspaces. For this, let 8 be a tensomorm on NORM x C , where C is dther the class of
all Banach - or of all normed spaces, and define for (E, F) € NORM x NORM and
z € E ® F «the right-finite hyll» ("

B~ (z; E, F):= inf{B(z; E, N)|N € FIN(F), 2€ E ® N}.

Clearly, this is atensomorm on NORM x NORM and 8 < 8.

Lemma.
() I B is (r) -projective on NORM x C, then g = g~ on NORM x C.
(2) IfB is a tensorrwrm on NORM such that 4 = #~ on NORM x BAN, then g8 = g~
on NORM x NORM and

1 -

() A similar «right-cofinite-hull» was used in 5.8.
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for all (E, F) € NORM x NORM.
(3) If B is a tensornorm on NORM, (r)-projective on NORM x BAN. then it is
(r)-projective on NORM x NORM.

Proof
(1) If G € C, then there is a metric surjection

Q:F—-»G
such that F hasthe ( 1 + ¢)-approximation property for all ¢ > 0 (if G is completc take
F :=¢,(B,) andinthe general case a dense subspace of £, (B)); then, for every normed

space E
B( E,F)=B7(+ E, F)

by the approximation lemma. It follows that for z € E ® G there isan N € FIN(F) and a
2€ E@ N withid ; ® Q(2) = zand

B(z; E,N). < (1 + &)B(2; E, G)

and therefore

B(z; E,G) < f7(z, E,G) < B(z; E,QN) < B(3;E, N) <
<(1+¢)pB(z E,G).

(2) Take z € E ® F, then the metric mapping property gives
B~ (2 E,F) <B~(z EF).
For N € FIN(F) withz€¢ E ® N and
B(z; E,N) < (1+ €)B7(2 E| F)

choose an operator R : N — F with |[|R|| <1+ g and Ry =y whenever y ¢ N N F (the
existence of R will be shown in a moment). Then

2E(EQ@F)N(E®N)CE®RN and id,® R(z) =z
whence

B~(z E, F) < B(z; E, RN) = B(id ;, ® R(z); E, RN) <
<||IRIBCz; E, N) < (1+ €)2B™ (2 E, F)
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which proves (2). For the existence of R take a projection Q : F' — N N F; since
L(N,F)=N'®_F < N'®, F=CL(N,F)
IS dense there isan Ry, € L(N, F) with
I - Roll < eC2lIQID ™"

Now R = R, + ( If = Ry)Q|y hes the desired properties.
(3) To see this look at the following result: Let U and V be normed spaces, P € L( U, V)
surjective, U, ¢ U dense and

P()::PIUinO_’VO::P(UO)'

Then P, is a metric surjection if and only if ker P = ker PoL and P is a metric surjection.

This is perhaps not very well-known (see [781); a proof follows from
(@ If P, is a meftric surjection, then P'( V') = P ( Vy) is o( U, U,) -closed, whence

ker Py U0 = ((ker P,)%)° = (P!(V"))° = ker P.
() If z € U, then
inf {||z + z|||z € ker Py} = inf {||z + z|||z € ker Py}

Coming back to statement (3) take for normed spaces F and G a metric surjection Q : F Ny}
Then ) : F — (3 is a metric surjection, ker () = ker Q and

idp®Q:EQzF - E®; G
is a metric surjection as well. Since, by (1) and (2)
E@;FE®,F and E®;G E®,G
ae dense subspaces, the mapping
dp@Q:EQyF = E®G
is a metric surjection (by the above result) if

ker(id ,®Q) = E@kerQ C kcr(idE®Q)E®’F

which is obvious by ker @ = ker Q.

This lemma alows to restrict the attention to Banach spaces when investigating projective
tensomorms.
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8.3. Now the announced duality between () -injective and (r) -projective tensomorms
can be proved. At the same time, and this is somehow natural, afirst observation onaccessi-
bility of these tensomorms is made (a more careful investigation will be made in $9).

Propogtion. Let o be tensornorm on NORM.
(D) If ais(r)-injective on FIN, then ‘o and & are (r) -injective on NORM.
(2) If ais () -projective on FIN, then & is (T) -projective on NORM.
(3) If o is finitely or cofinitely generated, then: o is (T) -injective on NORM if and
only if o is (r) -projectiveon NORM.
(4) If ais (» -injective or (T) -projective on FIN, then o is ( v -accessible.

Proof
(1) and (4): If « is (r)-injective on FIN, then for F <, Gandze E®F

d(z; E,G) < d(z; E,F) =
= inf{a(z; M,NNF)IM € FIN(E), Ne FIN(G),ze M@ N} =
= inf{a(2z; M,N)|...}= &(z; E,G);

so & is(T) -injective. To treat the cofinite hull, first (4) will be shown: For thistake (N, F) ¢
FIN x NORM andz € N ® F and assume « being (r)-injective on FIN. Then, by what
was already shown and the approximation lemma, it follows

o@(z;NF) = (2 N, L (Bp))= ‘@z N (Bp)) <
< @(z, N,F)

whence ¢ is (7)-accessible. Now remembcr that ¢ is (7)-accessible] if o is (see 3.6):
Whence, if « is (r)-projective on FIN, the dual & is (7)-injectivg on FIN, whence o’
is(T) -accessible and soisa.

Now it ispossible to show that ‘& is(r)-injective on NORM if « ison I N: For F SN
and z € E ® F the following holds by the two results which were already shown:

@(zE F) = sup{@(Qf ®idp(2); E/K,F) | K € COFIN(E)} =
sup{ @ (Q% ®id p(2); E/K,F) |K € COFIN(E)} =
sup{ @ (Q% ®id (2); E/K, G) | K € COFIN(E)} =
sup{‘a (Q% ® id4(2); E/K,G) | K € COFIN(E)} =
‘@ (z; E,G).
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(2) Using lemma 8.2 (3) it is enough to consider a metric surjection Q : F — G between
Banach spaces. By (4) the tensomorm o' is (r) -accessible, whence for every N € FIN the
result (1) implies

1 , ,
(N®3 Q) = N’@d G — N' Qy F' = (N ®z F)
and therefore

isametric surjection. Now take E an arbitrary normed space:

@(z E,G)=inf {@(z; N,G)|N € FIN(E),z €N ®G} =
=inf {&(w] N, F)|N € FIN(E),idy ® Q(w) = 2} =
= inf {&(w; B, F)|id ; ® Q(w) = z}.

The last statement (3) follows from (1) and (2).

It is not frue that the cofinite hull ‘@ is right-projective on BAN if « is right-projective
on FIN; tosee an exampletake o =7 and £, ( By) 2 F fora Banach-space F without the
metric approximation property, then

F' @ 4,(Bp) = F' ®,4,(Bp) = F' @, F#F @] F.

Since there is no Hahn-Banach-theorem for operators, = is neither () - nor (£) -projective;
see also 8.15.

8.4. For the a, -tensornorms the following result holds:

Proposition. Let 1< p < oo. Then
® d, is (7) -projective und, consequently| g, is (£) -projective and g7 = d,, ( ) -injective.
(2) @y, is (1) -injective, ) () -injective and O"Z.p (r) -projective. In particular: w,
is injective and w; = w) projective.

Proof . Since
d( 2 E, F)= int {w,( £)4,(y) 12= ) 1,® ;)

the result (1) follows directly from the following observation: If Q : F—(G is a metric
surjection, e>0andy,, ..., y, € G, then there are §; € F with Q( §;) = y, and

£,(y) < L(3) <(1+ e)4(v)
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Tosee that o, , is ( 7) -injective, take an isometric injection F ¢-1 G, anelementz e EQ F
and ¢ > 0: Choose a representation in E ® G of z with

EY(X{)wpr(I,')wz(yi) <(1+ é:)O‘Z,p(z; E,G)
then the associated operator T, : E' — F has an obvious factorization

o / ?
(e, o) € § — £ 5 (&)
(D, the diagonal operator associated with (X,)). Then
IRl =wy(z;) and  [|S]| = wy(y,).

If P isthe orthogonal projection £ — H := S-*(F) and S, : H — F the astriction of SI,,
then D, R( E’) C H impliesT, = S, PD, R. This means

z= E}\‘-z‘-@S(JPEJEE@ F

and therefore
o (2, E,F) < Er(,\i)wp,(zi)wz(SoPe‘-) <

< fr(ki}wﬁ(iﬂ;)”sn” ”P”wZ(ei) <
<(1+ 8oy (25 E,G).
The other statements in (2) follow easily by transposition and dualization.

8.5. There is anice application of the fact that d, is () -projective. Grothendieck’s in-
equaity 111 implies (see 6.4) that
d <n<Kewy <Kedj on LLOF

whenever F = [, (v). An old result of Kadec (see [59], p. 272 and [60], 21.1.3) says that for
every 1< p< 2andn e N there is an isometric embedding

oL
for some finite measure v; dudizing this, the fact that w and d, are (r) -projective implies that
d, <n< Kpdy, on LERL
and whence, by the local technique lemma 6.2 for Eg-spaces,
4, <m<iuKegd, o0 E®F

whenever E is an CiLA—space and F an L$ -space (with1< p< 2). Since P,~v g5 = d)
and £ ~ gthe transfer argument 4.10 gives Grothendieck's well-known [51]
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If Eiis an L, \-space and F an L9 ,-space (for 1 < p< 2), then
LE,F)=P,(E,F)a n d Py (T) < K ul|T]|.

Clearly this result can dso easily be deduced from the case p = 1 using Kadec's result and
local techniques for operators.

8.6. Every tensomorm « isless than or equal to = and = is projective. Whence it is
reasonable to search fora closest tensomorm B > o which is projective.

Theorem. Let o be a tensornorm on NORM. Then there is a unique (r)-projective ten-
sornorm «/ > « on NORM with the following property: If 8 >« is (r) -projective, then
B>af.

The right-projective associate o/ of o can be caculated using the following property:

If E is normed and F a Banach space, then

E®,4(Bs) 2 Eg, F
is a metric surjection. If E and F are arbitrary normed spaces and z € E® F, then
a/(z; EF) = inf{a/(z; E,N)|N € FIN(F),z€ EQ N}. ()

The symbol ¢/ comes from the fact that «/ respects quotient mappings F 2 FLG.

Proof . Uniqueness is clear if it exists. «/ will be congtructed fird on NORM x BAN and
then extended, using the introductory lemma 8.2.
(a) If (E,F) e NORM x BAN, define o/ to be the quotient seminorm on E ® F given
by the mapping
E®,%(Bp) - EQ®F.

Using the lifting property of the space £, ( T ) :

&(By) —=~ 4(B) 7] < (1+ &)|IT]|
L2
F I, F

and the test 1.1 it is casy to see that a/ is a tensornorm on NORM x BAN.
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(b) If Q: F — G is a metric surjection between Banach spaces, the same lifting property
gives i
2,(Bp) « 2~ £,(Bg) QU< 1+e

1[ / 1
s 1
F —
Q
and this implies easly that
dz@Q:E®, F—-EQ®,G
iS @ metric surjection for all normed spaces E. Lemma 82 now implies
a/=a/7 0 N NORM x BAN.
(c) This means that
o/ =a/” on  NORM x NORM
is an extension of the tensomorm a/ to NORM x NORM. Lemma 8.2 shows that «/ is
(r)-projective and ¢ < «/ since, by definition, ¢ < o/ on NORM x FIN.
(d) If a < g, then, again by the very definitions, o/ < 8/. If is(r) -projective, then

g = B~ by lemma 82 and therefore 3 = 8/. These two observations show that o/ has the
universal property stated in the theorem.

A lifting argument as in (b) shows the

Corollary 1. If E is a normed space, then
a( E,2(I)) = af/(+; E,£,(T))

for all sets T".

Remember that by a result of Grothendieck's [26] all spaces with the lifting property (as
it was used) are isometric to some £, (I"). Kothe [44] showed that spaces with the lifting
property (without norm-restriction) are isomorphic to some 4; (I"). Clearly,

\a = ((a) )"

is called the left-projective associare of .
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Corollary 2. Let @ be a tensornorm. Then

\(e/) = (\a)/ =2 \ef

is called the projective associate of «, it is the unique smallest projective tensornorm > «, is
jinitely  generated and

£,(Bg) ®, £, (Bp) e E@\y F
is a metric surjection f E and F are Banach spaces.

The proof follows easily from the «transitivity of metric surjections» and the theorem.

8.7. Fortunately, the injective case is simpler.

Theorem. Let o be a tensornorm on NORM. Then there is a unique (r) -injective fen-
sornorm o\ < @ on NORM such that 8 < o\ for all (P) -injective tensornorms B < a. For
all normed spaces E, F

E @u F 5 E®, Lu(Bp) )
is a metric injection.

e\ is cdled the right-injective associate of .
Proof . Define ¢\ on E ® F to be the subspace norm of
EQF— E®_ £ (Bp).

Since all £__( ") have the 1-extension-property

G 7|l < |IT]|
J N
F 5 o ()

test 1.1 gives easily that o\ 15 a tensornorm on NORM - as well as that o\ is (r)-injective,
The definition implies immediately that 8 < o\ if 8 <ais(r) -injective.

As in the projective case
o= ((a)\)
is the left-injective associate of o and
Ja\ = (/a)\ = [(a))

is the injective associate which is the unique largest injective tensomorms smdler than . 1
follows:

E®a F S £4(Bp) ® L0o(Bp).

Note that injective tensomorms are clearly finitely generated.
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Cordllary. If the Banach space F has the X-extension-property, then

o\ <a < Ao on EQF

for all normed spaces E.

8.8. The following is clear by what has been dready shown:
Proposition. For every tensornorm o, normed space Eandnhe N
EQ, 4 =FE®, / o2 isometrically
E®,L5, = E®, L, isometrically
Now the local technique lemma 6.2 for L3 -spaces will be applied to give the
Corollary. Let o be a tensornorm and E a normed space.
(1) If Fisan L] ,-space, then

ala/< a” on EQ®F

Note that o < paron E ® F if F hasthe y-approximation property (by the approximation
lemma) and o = o™ if « is finitely generated.

(2 Fisan LY ,-space, then
a\<a<lae\ on EQ®F

Proof . The proof of the local technique lemma actualy gave o™ < ¢B~ instead of &' < c?
as it was dtated. Now (1) is immediate and (2) follows from o\ = a\~.

8.9. This result helps to state a smple test for recognizing whether a tensomorm g is the
projective/injective associate of a:

Proposition. Let o and § be tensornorms.
() If B is ( ) -projective, then the following are equivalent:
@ B=qf
(b) ForallE € NORM andn €N

E®y€l =EQ®, isometrically



Aspects Of the metric theory of tensor products and operator idedls 257

@ If Bis (r) -injective, then the following are equivalent:
(a) ﬂ = oz\
(b) For allE ¢ NORM and n € N

E®sl, = EQ, 1l isometrically

() If o and B are finitely generated, then it is enough in both cases to test only for finite-
dimensional E.

Proof . Assume (1) (b), then (again by the proof of the local technique lemma) B~ = o™ on
all E®¢, (') and whence 8=« on all EQZ, (") by the approximation lemma: the properties
(%) in theorem 8.6 give (a); the reverse implication follows from the last proposition. (2) can
be shown the same way and (3) is obvious. .

Clearly, it would be enough in (3) that o« and B are finitely generated on the left side. Note
that the result (together with 8.3) implies in particular that «/ and o\ are finitely generated if
v is finitely generated.

The same arguments give:

Let « and f be finitely generated tensornorms.
(4) If B isprojective, then g = \¢/ ifand only if for allne N

R0 =4 ®z 4] isometrically
(5) If B is injective, then 8 = /¢ ifand only ifforallneN
0, ®s 0, = £, ®, L, isometrically

8.10. The following formulas contain many of the phenoma conceming projective/injecti
ve associates ad finite/cofinitel hulls; they create a type of «calculus» which will be helpfull
when dedling with accessibility:

Proposition.  Let a be a tensornormorm on NORM.

(o \»a\and(ar/ a/

2 (a)\ = a\ but in general (‘@) | # a/l
@) (a/)' = (a)\ and (a\)' = (a)/.
@) (a/)*= Jo*and (a\)* = \o*.

Proof :
(1) By 88 it follows that

d=a=a\=a@\0 N NQL
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Since 8= «\ is (r) -injective by propostion 8.3 the test gives

The same for the (r) -projective associate.
(3) and (4) follow again from the test, since o/ and («/)’ are finitely generated and clearly

N @y l,=(N'@, ) =(N'®, &) =Ny, L,
whence ( /) \ = (@)’ which implies all formulas in (3) and (4).
—
(2) Note first that «\ is (r)-injective by propostion 8.3. Since, by (3) and 8.8.
E{ ®CH EI(BF‘J) = f:f ®(ﬂ\)’ EI{BI“")
and, by the duality theorem 3.4,
E®a) F - E®g £o(Bp) < (B By 4i(Bp))’

1 1 ,
E@v— F‘—?E@ﬂ—\ﬁo'o(BFj)r_}(E ®(a\)r€1(8}"f});
o

a\

‘__
one obtains ( ‘@) = «\. The related formula for the (r) -projective associate is not true, since
— & it was dready seen in 83 -

(‘m)/ =w# T =7/

8.11. Let o bea finitely generated tensomorm and (A, A) the associated maximal Banach
operator idedl. Take (B, B) ~ o\ and T € L(E, F). Since (£,,( By,))' isan L] ;-space
corollary 8.8 implies

E @y (£5(Bp))' = B @y (£( Bp))'
and whence, by the representation theorem for maximal operator ideals

AN "N 1 !
(E®uy F)' = (E®y, F) Gooary (E®y (£ (Bp)))'

Ji /- Ji
B(E,F)>T -t IoT € A(E, 2, (Bg))

whence T ¢ Biff ToTed (with equal norms). This shows that (B, B) = (A™, A™)is
the injective hull of d in the sense of Pietsch (note that it was shown that A*% is maximal, if
d is). This was the first part of the
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Proposition. Let a ~ (d, A) be associated.
(1) o\ ~ (AM , AM) . In particular: the tensornorm a is ( r) -injective if und only if
the operutor ideal ( d , A) is injective.
@ Ja ~ (A™3, A%9).1n particular: the tensornorm a is (£) -injective if und only if
the operutor ideal (d , A) is surjective.

Proof of (2). Thisis along the same lines as the (r) -injective case: Teke B ~ /a, then

1
(E®jay F)' = (E &y F) ey & (Bp) @y FY

id )/
I /e i
B(E,F)3 T A ToQ€ A(L (Bp), F)

which shows that the operator ideal B coincides isometrically with the ideal ( A®9, A™3) in
the sense of Pietsch.

To see just one consequence Of these relationships.

Corollary. If (A, A) is a maximal normed operutor ideal, then
(Adual)inj = (Asurj)dual
(with equal natural norms).
Proof. Thisisjust (af)\ = (/a)".
8.12. The projective associates of « give factorization theorems for the operator ideds

Using Kakutani's representation theorem for abstract L- and M-spaces and, clearly as before
the representation theorem of maximal operator ideds, it follows

Proposition. Let a ~ (d, A)be associated und denote by (A/, A/)und ( \A, \A) the
operutor ideals associated with o/ und \c, respectively.
(1) TEA/( E, F)ifand only if there exists a strictly localizable measure ., operators

Re AandS € L such that
E L F r1 p
B /. /s
Ly(p)
In this case:

A/T) = min A(R)||S||
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and the minimum is attained with a metric surjection
S Ly(p) 5 F"

(2) T €e\d( E, F) if and only if there is a compact space K, operators R € £ and
Sed suchthat r
L F o P
RN\, / /s
C(K)

In this case
\A(T) = min ||R||A(S)

and the minimum is attained with a metric injection R

The deals of the easy proof (which is of the same type as the one of propostion 811) ae
left to the reader.

8.13. Since w, isinjective by 8.4 the fundamental theorem 1.11 of the metric theory:
w, << Kpw, on £, ®L,
is, by the finite-dimensionai test 8.9 (5), just the
Theorem:

w, < /71\ < Kgw,
\e/ <wy =w) < Kg\e/

Since m ~ T the integral operators, w, ~ L, the operators that factor through a Hilbert space
(see 4.6)

(/m)\=/(w\)=/m\ and T* = P, (by the factorization theorems), the results of 8.11 give
the

Corollary (Grothendieck’s inequality in operator form):

(rpl)surj = (Isurj)mj = £2
L,(T) <P™(T) = (I™)™(T) < KLy (T).
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Clearly, this implies
'Pl(EI,F) = E2(£1,F)

for all Banach spaces, and the well-known (see 6.5)
P, (L,,L) = L(L,L,).
This latter formula (nowadays called: Grothendieck’s theorem) implies (by Smple factoriza-

tion arguments) the corollary, which is nothing else than the theorem, i.e. the fundamental
theorem of the metric theory/Grothendieck’s inequality.

8.14. The following result about associates of a, will be very useful.
Proposition. Let 1 < p < oo, then

Mg \=9y=4dy

@ \g;=9, and ds/=d,

@) \(g,\)=9, and (/d) /= d,

@) m\ =gl = w,=w =4

o and e/=d_=w,

(5) gi‘: g, and dj=4d,.

Proof . (2) - (4) follow from (1) just by calculating with proposition 8.10. The fact that
g9y = oy IS ( 1) -injective (see 8.4) shows that (1) also implies (5).
To see (1) take first p= oo, then, by 1.9,
Joo = Weo = € on N®Z,
therefore the test 8.9 implies g\ = e = 7* = g}.
The cases 1 < p < oo follow from the fact that by the factorization theorems 4.6 and 4.8
for the p-integral (~ gr) and absolutely-p-summing ( ~ g;) operators

=P, isometrically

and whence g\ = g, since I;“J ~g,\ by 8 11.
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These formulas contain information about the structure of Banach-spaces. Take, for ex-
ample, 7w\ = w} : The characterization of the L -spaces (these are the L, -spaces, 6.3) in 6.1
and the description (x) of «\ in 8.7 give the

Corollary 1. A Banach space E is an L, -space if and only if E ®,, . respects subspaces
isomorphically.

This is a result of § tegall-Retherford [77] (see dso [ 15]; the corresponding isometric result
was mentioned in 1 .1). The Hahn-Banach-theorem applied to

LO5E) = (- ®, )

shows, that dual L _-spaces (= dual LI -spaces) have the extension property.
The formula e/ = w, implies in rathcr the same way

Corollary 2. A Banach space E is an L -space if and only if E @, respects quotients
isomorphically.

This contains Kaballo's characterization [4 1] of EL) -spaces, i.e. those Banach spaces E
such that E®, - respects quotients isomorphically: To see this, note first that E ®, . respecting
quotients implies that E®, - does; if, corfversely, E is an (EL) -space, a smple argument by
contradiction shows, that there isa » > 1 such that for all Q : M 5 N between finite-
dimensional spaces and for every z € E®, N there is anu € E®, M with

idgp® Q(u) = 2 and e(u; E, M) < Xe(z; E, N)

and whence, by (E®,N')’ = E’®, N, that E'®, . respects finite-dimensional injections
with a universal constant: Corollary 1 implies that E’ isan L, -space.

8.15. Is there a tensomorm a which is projective und injective? Existence would imply,
by the reformulation 8.13 of Grothendieck’s inequality, that (~ for equivaent norms)

g3 Lwy ~\ef Lal /m\ ~w,,
whence (by L4 ~ wy, Dy v w}, Py ~ g3)
L, CD, CP,
but the identity map of £, is not i P, . More generd (and much deeper)
Proposition. There is no tensornorm which is ( ) -injective and (T) -projective.
Proof . This would imply, as before (using 8.14)
wy =g/ <\ =w; =g,

and whence P, C L£,. But this is not true as Gordon and Lewis showed in [21] solving an
old problem of Grothendieck's ([27] p. 72, question 2).
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9. ACCESSIBLE TENSORNORMS AND OPERATOR IDEALS

9.1. As defined in 3.6 a tensornorm o is said to be right-accessible if
(-&('; MyF) = ‘a)(v M)F)

for all ( M, F) € FIN x NORM , left-accessible if its transposed tensomorm g is right-
accesshle and accessible if it is both: right- and left-accessible. Moreover, o is totally acces-
shle if « is finitely and cofinitely genemted, ie. @ = & . The preceding sections show that
these notions are very useful for the full understanding of the dudity theory of tensornorms.

Proposition. Let ¢ be a tensornorm.
(1) o\ and «/ are right-accessible.
() If « is left-accessble, then o\ is totally accessible.
(3) (\@)\ and jo\ are totally accessble. In particular: Every injective tensornorm is
totally accessble.

Proof :
(1) follows directly from 8.3 (4). For the proof of (2) let E, F € BAN. Since « is
|eft-accessible

by the approxrmation-lemma (see also 3.7); now the formulas 8.10 give for » ¢ E® F
—
o\(z; E,F) = ‘@\(z; E,F)

- @(z E,0_(By))
= (2 E,4,(Bp))

= @\(2; E, F) = o\( 2 E, F).

(3) is a smple consequence of (1) and (2).

To see an example Since g, is (£) -projective, formula 8.14 (1) implies that
g; = gpl\ = (\9d)\

is totally accessible. But note the following: By 94 the tensomorm wj, is totally accessible
but w;/ is not totally accessible for p# 2 by 5.7.
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9.2. It tums out that it is sometimes easier to check the accessibility of a given finitely
generated tensomorm through its associated maximal Banach operator ided.

A ques-Banach ided [d, A] is caled right-accessible if for all (M, F) ¢ FIN x BAN ,
TeL(M,F)ande>0 thereare N € FIN(F) and S € L(M,N) suchthat

T

F
sz;y;
N

commutes and A(S) < (1 +¢)A(T) . Itissaid to be left-accessible if for all (E, N) €
BANxFIN,T € L(E,N) and e > 0 thereare L € COFIN(E) and S € L(E/L,N)
such that

E = N

a| / s
E/L.

and A(S) < (1+g)A(T) . A left- and right-accessible ideal is briefly called accessi-
ble . Moreover, [d , A] is totally accessible if for every finite rank operator T € F( E, F)
between Banach spaces and ¢ > O there are L ¢ COFIN( E), N € FIN(F) and
S € L(E/L,N) such that

M

T=I3SQf and  A(S) < (1+)A(T).

Obvioudy,every injective quasi-Banach ided is right-accessble and every surjective ideal is
left-accessible.  The canonical factorization

E - F
| ] T € F(E,F)

E/ ker T — imT

gives that a surjective and injective quas Banach ideal is even totally accessble
The key for the following result is the embedding theorem 4.4, namely

E'®y F A(E, F)

if @ and (A, A ae asociated.
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Proposition. A jinitely generated tensornorm o s right-accessible  (resp.  left-accessible,
accessible, totally accessible) if and only if its associated maximal Banach ideal is.

Proof . It will be shown that « istotally accessible iff [ A, A] has this property; all other
proofs are similar. Assume that « is totaly accessble and let T € F(E, F) . Then

o (zp; E'F) = 9(zp; E,F) = A(T)
which implies that there are (M, N) € FIN( E’) x FIN(F) and v € M ® N with
a(u; M, N) < (1+ g)A(T) and  IE@Ifu=2.
Hence T, € £L( E/M?, N) satisfies
AT) < (I+ 9AT) and IFT,QE. =T
Conversdly, let [d, A] be totally accesshle. By the embedding lemma 2.4 it suffices to check

that
a(; E'\F) = a(; EF)

for all E,F € BAN. Let 2 € E’ ® F. Then there are L € COFIN(E), N € FIN(F)
and S € L( E/L,N) such that

A(S) <(1+¢A(T, and 158QE =T,
It follows, by what was said before, for zg € L° ® N
a(zg; LON) < (1+8)@(z EF)  and  Ifi @ If(z) = 2,

which completes the proof.
Since A% ~ ot and d* ~ o* (by proposition 4.5) it follows from 3.6 the

Corollary. Let [d, A] be a maximal operator ideal.
(1) [A% A%l] s right-accessible (resp. left-accessible, totally accessible) if and only
if [A, A] is left-accessible (resp. right-accessible, totally accessible).
() [d* , A*] is right-accessible (resp. left-accessible) ifand only if [d, A] is left-accessi-
ble  (resp.  right-accessible).
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9.3. The following result will be quite useful:

Proposition. Let [d, A]and [ B, B] be quasi-Banach ideals, [d, A] injective and left-
accessible, [ B, B] totally accessible. Then [B o d, B o A] is totally accessible.

It is easy to see that injective and |eft-accessible ideals are totaly accessible.

Proof . Take T ¢ F(E,F)ande> 0. Thenthereare R ¢ d( E, G) and S¢ B( G, F)
such that
E L F
BN, /S B(8)A(R) <(1+¢&)(Bo A)(T)/
G

Since d is injective one can choose this factorization with R(E) = G whence S(G) ¢
T(E) and S is finitedimensond. Since B is totaly accessble and d s left-accessible, the
following factorization holds:

e L F
BN 75N A(Ry) < (1+ g) A(R)
! G N
NS B(Sy) < (1+ €)B(S).
E/K % G/L

Consequently,
B(Sp)A(Ry) < (1+€)A(R)(1+€)B(S) < (1+¢)*B o A(T)

which proves the result.

Similarly, it can be shown that if [.A, A] and [ B, B] are both right-accessible or Ieft-
accessible, then their product [B o d, B 0 A] again has this property.

9.4. Now everything is prepared to give an easy proof of the following fundamental

1 1
Theorem. Let p, g €[ 1, oo] such thatp;— +->1.
q

D aygand [L,,, L, ]are accessible.

? a;q and[Dp,‘q,,D#'q,] are totally accessible.

Proof . Since the tensomorms and operator ideds in question are associated (4.9) and « is
accesshle if o* is (3.6) it suffices, by 9.2, to show that Dy, is totaly acccssblc. Kwapien's
Factorization Theorem 4.8 states that

_ qydual
DP’.G' - pq’ o‘PP.‘
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Now, applying the preceding proposition, P, is injective and
* dual »
Pyr~gy PP gy

are, by 9.1, both totaly accessible.
For another proof of this result see [20].
Corollary. If porg =2, thena, is totally accessible.
Proof . This follows with 9.1 (2) from the facts that o, ,, is right-injective (84) and left

accessible.

9.5. The tensomorm g, = g; is totaly accessble. But Reinow [65], cor. 1.2, showed the
existence of a reflexive Banach space Z such that for allp €[ 1, oo[ with p# 2 the natural
map

ZI@ng - L(Z,2)

is not injective (i.e. Z does not have the p-approximation properfy). Since
2%, 2 (28, 2 < L(2,2)

is injective, Reinow's result implies that:

For 1< p <00 and p# 2 the tensornorm 9, is not totally accessible.



Note di Matematica VVol. V]I - n. 2, 269-275(1988)

10. MORE ABOUT a, |

10.1.  The present paragraph gives some examples for the interplay between maximal op-
erator ideds and their associated (finitely generated) tensomorms. The transfer argument4.10),
remark 2 will be cracial: the reader should have it adways in mind! Many of the results will
be about the spaces £, : By 1-complementation, they aways imply results on Z’p‘ (with con-
stants independent from n) and therefore, by the local technique-lemma for L£9-spaces (6.2
for tensomorms and, the same way for operator ideds), also results for general L?-spaces
(with additiond constants) instead of EP ae vaid. The obvious consequences for minimal
operator ideals (via the representation theorem 7.1) will not be stated.

10.2. The first result contains as a particular case that all tensomorms «,, (for p, g €
11, ool ) are equivalent on Hilbert spaces, remember «,, < ¢, w, from 18.

1 1
Proposition. Let p, g €]1, ool with; + ;2 landr,s€[1,2].
Then
e<a,, <Kgcput on £.®1,

and

/ /
Cpg <n<K G%,e%q on Zr’ ® Ea’

Proof . By 4.10 and Grothendieck’s inequality 1.11
wy, <wy < Kge on g
Since w, and g are injective and
1
£ — Ly (p)

(see 8.5) the local technique lemma for Lg-spaces implies

which gives the announced result on 2, ®£,. The second one follows by dudization (remem-
ber this aspect of the transfer argument).

In terms of operators (this is a result of Lindenstrauss-Pelczyriski [51] which wes gener-
dized by Kwapien [48]).

Corollary. If p, g€]1,00[ und r, s € [1,2], then

L,,(£,,8) = L,(£,,8,) = L(L,,L,)

rits

D, ,(£,,8,) = Dy(£,.L,) =T(£,,L,)
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10.3. To investigate the tensomorms g = o, it is reasonable to study first the associated
operator idedls of summing opcrators.

Proposition. Take s,p €[1,2]and q €[ 2, oo , then for every Banach space F

) P&, F)=P(£,F)
P(T) < KgP(T)  for T e€P,(L,F)

and

@  PUFL)="P,(FL)

Py(T) < ab,P(T)  for T EP(FL).

(The constants o, and b, from Khintchine's incquality). This result 15 due to Kwapien
a wel [46]. Clearly, a specid case is Pelczynski's theorem, that all P, coincide on Hilbert
spaces. We present a proof since it fits nicely into our setting.

Proof : (1) Itis enough to take p= 2 ; for " € P, (£, F) fix z,,...,z, € £, anddctine
Sl =2, Se; = X,

whence ||S|| = w, (z;; £,) - Since P, ~ g, ~ P; (by 8.14) the relations
ProPy =P, 0P, CICP

(55) give
P(TS) < P,(T)P,(8) < P (T)K|IS||

when usng £( 2% £,) = P, (£, £.) (see 85). Therefore

E : Izl = E : 1T Se,ll < P (T) K| Sl|w, (e &)
1 i
= B(T) Ko w (z;;L,)

which is P (T) < KGP2 (m.
@ ForTe L(F 2)takex;,..., 2, € F and use Khintchine's inequality 1.8 in order
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. 2/s 1/2
( (Zl (k)l’) ) <
k=1
s/2 1/s
( |Tz,-<k)|2> ) <
i+1

to obtain:

M-

(z“:lli‘"z.-llz')“r2

i=1

]

<2
k=1
o0 " ] 1/s
<a (Efp > eOTz,(k) p,,(dt)) -
k=1 n =1
/s
- (f Zs(t}:c) ,u.“(dt)) <
D

INA

1/q
nn(dt))

n q
a, T (Z g;(t) x,—)
D, i=1 I

Now, if T is even absolutely-g-summing , the Grothendieck-Pietsch-domination

gives
n q
<m’, E (1) :c‘->
o i=1

q 1/q
< a,P(T) sup ( £ ,u.ﬂ(dt)) <
7'€Bp '

< a,P(T)b,wy(z;)
and thisis P,( T) < a,b, P (T) .

s7q9° q

/g
< a,P(T) ( u( dm')u,.(dt)> <
Dﬂ

‘l)

=l

In terms of tensomorms (by the transfer argument and the embedding lemma)

Corollary 1. For every Banach space F the following holds:
(DIfr,ge[2,00],then

9;<9,<Kgg; on  LQF
andif s € [1,2], g €1[2,00], then
dy < d, < Kgdy, on 4, ® F.
(2) If sel1,2lund p €] 1,2], then

9,<9; <abyg, on  F@L

8

theorem
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andif r € [2,00] and p €]1,2], then
d) <d, < apbyd, on Fel.

By the trander argumert it is possble to go back to operator ideds in order to obtan the
ol resits for operator ideals (note thet all these tensornorms are accessible and £, hes the
metric goproximetion property). The trangoosad of the second datemeat in (1) ad (2) give
therefore  immediady

Corollary. Let F be a Banach space, then
I(FL) =L (F¢L)=T,(F¢)
for g €[2,00], s € [1,2] and
I, F) = Ip(f,,f")
forp€]l,2] and s €[1,2].

104. To see what this means for Hilbat speces H ad K, obsarve firgt, thet P, ( H, K) =
HS( H, K) (HilbetSchmidt opgdoy hdds isomericdly, whence

H ®, K < Py(H,K) = HS(H,K)

ad thedfore - for finite orthonormd sysdems -

12
9 (E or‘.je,-®fj> = (E !a,-j|2)
ij i

which implies g; = d5 . Whecce g, = g5 = d; = d, is the Hilbert-Schmidt norm on H® K.
Now the preoding results imply the

Proposition. On the tensor product H ® K of two Hilbert spaces the following holds:

e< ap, < KGCME p,q €11,00[
apg <7< Koy o, p,g €]1,00(
g5 SQ;SKGQZ g€ [2,00]
nggngpag; p€ll,2]

9, <9, < Kgg, g€ [2,00]

9 <9, < bygy p€ll,2]
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9 there are, up to equivalence, only three tensomorms under the o, , and o , On Hilbert
spaces. ¢, m and the Hilbert-Schmidt norm g, . In terms of operators.

p,g €ll,00l: L, =L, =C all operators

p,q €1l,00[: D, , =D, =T= N nuclear operators
pellool @ P =P =L =L,= Hilbert-Schmict

g €11,00] =T, =T =HS Operators

105. Some of the preceding results have remarkable extensions to Banach spaces with
type and cotype. For g € [ 2, oo[ an operator T € L( E, F) iscalled of corype q if there is

ap>0 suchthatforall z,,...,z, € E
. 2 1/2
Y etz un(dt))
i=1

n 1/q
(Enmw) <o ([

i=1 D,
(see 1.8 for the notation); C (T) := inf p. The Kahane inequality (see e.g. [53], p. 74)
implies that using on the right side of the definition the L,-norm (1< p<oo)instead of
the L,-norm gives an equivalent norm. It is straightforward to see that the operator ideal
(C,, C,) of all cotype-g-operators is a maximal, injective Banach operator ideal, whence
associated with a certain finitely generated tensomorm.

A Banach-space has cotype ¢ if id ;€ C, . Following the arguments in the first part of
the proof of 10.3 (2) with Khintchine's inequality it is clear that £, for 1 < p < oo has
cotype ¢ := max {p, 2) and thisimplies, by the usual local techniques, that all Lg-spaces
(for 1 < p < oo)have cotype g = max {p, 2} . A direct application of corollary 3 in 4.4
gives that E has cotype ¢ if and only if E" has cotype gq.

By the way, since there are cotype-g-spaces without the approximation property (sub-
spaces of £, ) it follows from proposition 5.7 that the dual tensomorm ~; of the tensornorm
T associated with the cotype-g-operators is not totally accessible.

10.6. Pisier's factorization theorem ([64], chap. 4) states that if E' and F have cotype 2,
then each operator T : E — F which can be approximated by finite-rank operators uniformly
on compact sets factors through a Hilbert space; in particular

E'®,F =: F(E,F) ¢ L,(E,F).
Since w, ~ £, and e and w, are totally acccssible thisimplies
Eg F=E9g,F isomorphicaly

whence, by the embedding lemma and 1 .8:
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> 1,then

Q| =

+

1
If E and F' have cotype 2 and p,q €]1, oo with o

E® F=E B, , I isomorphically

However, the dual result fails to be true: If E' and F' have cotype 2, then « and w) are
in general not equivalent on E ® F. Piser condtructed a Banach space P not isomorphic
to a Hilbert space, but such that P and P’ have cotype 2 ([64], chap. 10). If P @ P" and
P ®u P’ were isomorphic, the representation theorem for maximal ideals would imply that
every operator P — P factors through a Hilbert space which is a contradiction.

The transfer argument (4.10 remark 2( 1)) is not applicable to () by the following reason:
if E' and F have cotype 2 it follows only

F(E, F)c L,(E, F)

but in generd not
E(E)'F) = EZ(ErF)

by Pisier's example. On the other hand if E (or F) in addition has the approximation property,
then Pisier's factorization theorem implies £( E, F) = £, (E F) .
Now the transfer argument applied to £( E, F') and the symmetry of w) and & give

If E'and F' have cotype 2 and: E or F has the approximation property, then
E®, F= E®, F isomorphically

and whence aso for all o, (for p, ¢ # 1).

10.7. Analyzing the proof of 10.3 (2) it is clear that the result extends to cotype 2 spaces
instead of £, : The second of the following two statements holds.

(1) P,(E,F)=P(EF)if pell,2] and E hascotype2.
(2) P(EF)=Py(EF)if gel2,00l and F has cotype?2.

Both results are due to Maurey; for a proof of (1) see [64], chap. 5.
Using the transfer argument, the fact that all gy are totally accessible and the embedding
lemma, (1) and (2) imply the following generalizations of corollary 1 in 10.3.
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Let p€e]1,2],q €[ 2, co] and E, F -Banach spaces. Then

g ~g; on E @ F if E has cotype 2
do~d, ONn E®F i E has cotype 2
I Ng; on E ® F if F has cotype 2
d~d, on EQF i F' hascotype2.

Since g3, = m\ and g3 = g, (by 8.14) the first norm equivalence gives
95 ~ oy = T\ = 70N E®l,

and whence
g;/:gézgatmﬂ' on 20°®E

if E' has cotype 2. This clearly implies another result of Maurey's
(3) L(£,,F)= P,(L,, F)if F has corype 2

which generalizes Grothendieck’s result for £9-spaces F (with 1 <p < 2, see 85).



Note di Matematica Vol. VIII -n, 2,277-278(1988)

11. FINAL REMARKS

11.1. There are various aspects of the metric theory of tensor products which we did not
treat: We want to mention at least some of them which are closdy connected with what we
presented.

11.2. Probably the most important is the treatment of the «semi» tensomorms A,

1
Ly(p) ®y E < L,(1s; E)
for which .
dp g Ap S gp'
AOO = E, Al =T
holds. In generd  there is o tensomorm which induces A,; this causes from the fact that for
T € L(L,, L,) the operator

TQidg:L(u)® B — L,(4)® E

isin general not continuous: take, for example, for T the Fourier-transform on L, (R) .
There are two directions of research: First, look for spaces or, more generaly, for operators
SeL(E,F)suchthat T® S.is A,-continuous for all T € L(L,, Lp) (here are some
crucial results due to Kwapien [48], see dso [23], and 11.3) or, secondly, fix T € L( L, L,)
and look for all S € L( E, F) such that T ® S is Ar-continuous; for example, take T the

Fourier transform on L, (R) (see Kwapien [47]) or T the Hilbert transform on L( R) (see

Burkholder [3]; Bourgain [2], M. Defant [11]) or T the projection of L, ( (-1, 1}N) onto

the space of the Rademacher functions (see Pisier [62]).

11.3. In [9] products p := a @, P for tensomorms were defined via the trace mapping

1
(E®,G) ®,(G®y F) »EQ,F

which mimics the composition of operators. Among other things, this was used to prove that
S € L(E, F) has the property that

T®S: LP®A7 E_’LP®A, F
is continuous for all T € L( Ly, L) if and only if
T € (L39)™,

i.e. factors through a subspace of a quotient of some L, which is the operator version of a
reult of Kwapien.
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11.4. As a generdization of the Radon-Nikodym properry Lewis [50] studied the question
of when
E® F = (E ®, F)

which for the associated maximal operator ideal means
A™(E,F)=d(E,F)

by the representation theorems for minimal and maximal operator ideds Clealy, this study
dlows in particular to investigate under which circumstances the space d(  E, F) is rellexive
(see [501, [22]).

11.5. A crucial tool in the theory of the distribution of eigenvalues of operators is the
tensor stability of operator idedsd: If T,Sed,then T ®, S € d . For example, Py
is e-stable [36] and this is the key for Pietsch’'s trick to prove the Johnson-Konig-Maurey
Retherford theorem: If T € P, the sequence of eigenvalues of T isin £, (for 2 {p < oo,
see [43), [61]). Tensor stability has various other promissing applications (see [42], [4], [5)).

11.6. The metric theory of tensomorms has an extension to locally convex spaces, due to
Harksen [29], [30]: If E and F are separated locally convex spaces with defining systems
Pp and Pp of seminorms, the a-tensornorm topology on E ® F is defined by

E® F = pepgrogepi E®,F,
where E; is the canonical normed space associated with the seminorms p. Projectivity and
injcctivity properties of o for normed spaces hold also for the a-tensomorm topology. There
are many applications to the theory of vector-valued continuous, differentiableor holomorphic
functions, to lifting and extension properties, and to the study of the topological and geomet-
rical structure of spaces of such functions; for rcferences see [9], [10], [16], Kabdlo [41] and
Hollstein [31]-[35].
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