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1. TENSORNORMS

1.1. A tensornorm (Y on the class NORM of al1 normed spaces assigns to each  pair
(E, F) of normed spaces a norm (w(  .;  E, F) on the algebraic tensor product  E @ F (short-
hand: E 8,  F and Eg3,F for the completion) such that the following two conditions are
satisfied: ( l)

(1) <y is reasonable: E 5 LY  < n
(2) (Y satisjes  the metric mapping property: If Ti  E C( Ei, Fi)  , then

IPi @T, :E, %x-h -+F, @,F,II  1. IlT~ll IP’zII
Clearly, the same  detinition holds for subclasses of normed spaces: for the class FIN of al1
finite-dimensional spaces, for the class BAN of al1 Banach spaces or for the class NORM x
BAN of pairs (E, F) where E is a normed and F a Banach space.

It can happen that al1 tensomorms are equivalent on E 8 F: Pisier [63] has constructed
an infinite-dimensionai Banach space P such that

P@,P=P@,P

holds isomorphically; this celebrated  example solved various other problems in Banach-
space-tbeory.

The following CRITERION (it will be formulated only for NORM) is easy  to check:

cy  is a tensornorm on NORM if and only if

(1) (Y(  .;  E, F) is a seminorm on E @ F for al1 pairs ( E, F) of normed spaces
(2)cu(l  @Ql;lK,lK) = 1
(3) a!  satisjìes  the metric mapping property.

Though it is simple, it saves much  work in many situations. Clearly

4% @ Y; E,F)  = Il41 MI.

lf G c F is a subspace, then, by the mapping property,

a(z;  E, F)  5 (Y(  z;  E, G) ZEEBG.

For (Y  = E there  is equality (W respects subspaces»)  but for 01=  7r the space E @,,  G is in gen-
eral not a topologica1 subspace  of E @,,  F since  there is no general Hahn-Banach-theorem foL

operators; if E = L, (cl),  then Em,,  G A E@,  F and this characterizes L, -spaces  by aresul

(l)  Schatten called a tensomorm  wniform  cross-nonn».
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of Grothendieck’s ([26];  the fact  that E QT  G is always a topologica1 subspace  of E @T  F
characterizes the  Lc,  -space&  see  8.14). If P : F -+ G is a projection, then

4~; E, F)  5 4~; E,G)  5 IIPIIa(z;  E,  FI ZEBG

and whence

if G is 1-complemented in F.

1.2. If (Y  is a tensornorm, then CY~

af(~.i~1yi;E,F)  :=*(EY~~z~:F,E)
i=l i=l

is a well-detined tensomorm, the transposed tensornorm of CL Obviously

E@,,F  = F@$E

X@Y YédX

is an isometry.

1.3. If CV is a tensornorm on the class FIN of al1 finite-dimensional normed spaces (same
definition as  in 1.1 by replacing NORA4 by FIN), men there are two natural  ways to extend
it to the class of al1 normed spaces. For this,  define  for normed spaces E

FIN(E) :={M  c El  M E FIN}

COFIN(E)  :={L c E( E/L  E FIN}

(the arrows come from me fact  that the first procedure is induttive, the sccond  projective).
Obviously, it is enough to take cofmally many M, N and K, L,  respectively, in the definitions.
It is easy  to see  that thefznite hull T?  and the cofinite  hull z are tensomorms such that
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and

if CZ  was  defined on NORM. Since  6 respects  subspaces: E = E’ and whence = ‘E. The
definition of the projective norm shows 71  = Y? but it will be shown in 3.5 that 7r# %. A
tensomorm CY on NORM is calledfinitely generated if (Y  = 2 and cojìnitely  generated if

CY = ‘Z. Though the usual tensomonns are al1 finitely generated we find that the cofinite hull
?F of a tensomorm is natural as  well and its consequent use is structuring well the theory,
helps understanding better various ideas and simplifies many proofs; we hope that the reader
is convinced  about this point after the study of this paper. This is why we adopted a more
general notion  of a tensomorm that Grothendieck did in his RésumC;  there,  al1 tensomorms
are finitely generated by definition (but see  3.4). Grothendieck had a reason not to worry too
much  about cofinitely generated tensomorms:

z+(.;E,F) = ZY(.;E,F)

if both spaces  E and F have  the metric approximation property (see  2.2 and below) and it was
only in 1972 that  Enflo discovered Banach spaces  without the metric approximation property.

It is obvious - but it is good to have  it always in mind - that two finitely generated (or two
cofinitely generated) tensomorms are equa1 for finite-dimensiona1 spaces.

1.4. If M and F are normed spaces,  M finite-dimensional, then

C(M,F)‘=(M’@,F)‘= M&F’

by the basic  duality relation between the injective tensomorm E and the projective tensomorm
n (see  [45],  p. 246),  whence

C( M, F)” = (M @,,  F’)’ = L( M, F”)

isometrically. Helly’s lemma ([60],  p. 383) on the density of G := L( M, F) in G” =
C( M, F”) with respect to the subspace

M@NcM&F’=G

gives the

Weak principle of loca1  reflexivity. Let M and F be normed spaces,  M jinite dimensiona/
and S E ,!Z(  M, F”). Then for every E > 0 and N E FIN( F’) there  is un R E 13(  M, F)

such that

IlRII I ( 1 + ~1  IlSII
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a n d

forall(x,y’)  E M  x  N .

This will be basic for many investigations on tensomorms. The stronger version  (R  can be
chosen such that Rx = SS whenever x E S-’ (F) ,see e.g. [60], p.  384) will not be needed.

1.5. Many of the interesting tensomorms can be obtained from the ones introduced  by
Lapresté 1491 generalizing those of Saphar [66], Chevet [6] and Cohen [8].  First some nota-
tions: letEbenormed,x,,...,xn  E  E,andpE  [l,ml,then

e,(x,;E) := e,(q) := 11(11~,11~>*=1, J1.q

wp(x,;  J3 := ‘ulpb,)  := &ug  II<(w,))  .Jlq
strong .t,-norm

weak t,-norm

It is easy to see  that in the definition of the weak !?,-norm  the unit ball B,, can be replaced by
any norming subset  of B,.

1 1 1.-_ -. - + - - l or, equivalently, l=‘+i+l
r P 4J T- P’ Q’

and for normed spaces  E and F

‘Y~,~(z;  E, F) := inf{~,(~,)wql(x,>w,(Y,>Iz  = 2 x,x, @ Y,>
a=l

Obviously (~r,~  = 7r.

Proposition.

0) aP,q is afrnitely  generated tensornorm on NORM.

C2) %z&  5 aPl AI if p,  i p2  and  q1  5  q2

(3)  $,,q  = aq,p
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Proof :
(1) Using criterion 1.1 only the triangle inequality  is not obvious: Take z1 , z2  E  E @I  F

and E > 0, choose  representations

-2xzI - s,=,,  @ Y‘, j =  1,2
t=l

such that

and whence

&tx,> I tap,qtzj)  + &)’

wqttxij)  I tap,qtZj)  + &)’
I

w$tY;j>  I tap,qtzj>  + &)  d

ap,*tzl  + z2) i a~ttx~j>~~>Wq~((xij)ij)w~t(Y~j)ij>  I

5 (cr,,,(Zl)  + cYp,q(Z2)  + 2,$+a-+%

(2) There  IS nothing to prove for k + k = 1, whence assume r1 < 03 and define

1 1 1 1 1 1-:=---- -:=----
P PI P2 ’ 4 91 cl2

which implies
1 1 1 1-= - + - + - .

Tl  7-z  P Q
Take z E  E @ F and, for E > 0, a representation

z=c ‘ixi  ~  Yi x; 2 0
i

with
e,l t xi> Wqi  t =i> wp; t Yi) 5 t ’ + ‘1 ap, ,qI (‘1’

Now
z=c ,yy Xr”Qi)  @ ( Xr”PYi)

i

and (by  Holder’s  inequality)

eJx:l”‘)  = [e,,(x,)p”

wq;tx’q=,) i [e,,(x‘)l’~‘qwq;(z,)

Wp;(X1’“Y,) 5 [e,,(X,)l’~“Wp,(y,)
whence

Q,p,,q2t4  i . . . I qu ‘~~T~+T~~q+T~‘PWq~(x,)Wp~(y,)  L:

5 (1 + 4ap,,q,(4
(3) is trivial.
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1.6. TO describe  the completion of E@,q F infinite sums will bc  involved. The definition
of the strong  and weak e,-nom of a sequence  (q)  is obvious.

Proposition.
(1) g(  X,) 6 4, (in cg ifr = CO), w,,(  zn)  < 00 and w~(  y,) < 00, then the series

converges  unconditionally in E&J,,~  F.

(2) For every z E  Ega,,  F there  is a series as in (1) with

Moreover:
ap,,(z; E,F) = inf  ‘,(‘i)w,~(Xi>w~(Yi)

where the infimum  is taken over al1 (@tè or inftnite)  such representations.

Proof :

(1) is easy since  the fact  that ( X,) E E, (or cO)  forces  the series to be a LY~  ,-Cauchy-series.

TO prove (2) take for z E EI%,,, F and E > 0 elements z, E E @  F with z = 9 zn and
TL=1

Co
c Qp,&)  5 ( 1 + 4~p,,wn-1

Choose (Ar),  (x:) and ( y:)  (finite) with

Zn=  c x:x; 0 Y:

a n d

Then

Q((x:>,>  5 b,,,(z,>(  1 + d)“’

w,m:),)  I b,,,(z,)U + dP’

wg((Y:>,>  I (~,,*(z,>U  + 4)l’p’

l,( (x2>i,,>W,~((xl)i,n)wp’((Yl)i,n)  I &p,q(‘)( ’ + E)2



Aspects of the metric  theory of tensor products and operator  ideals 1 9 5

z=~zn=~~X~xp23y:.

7L=l n=l i

In particular,  if p denotes  the seminorm defined  by the infimum in the statement of (2):

P(z) I ~p,q(z) for al1 z E Ei?&F

Conversely, if z = 2 X,x,  @ y,  and
n=l

N
ZN . -. -

c Lxn  @ Yn

this implies p(z)  2 CY~,~(Z).

1.7. Special cases  of Crp,g-tensornorms  are ( 1 5 p 5 00)

9, := aPJ

d, := aI p
.-

wP  .- ffP,p’

(g for «gauche»)

( d for «droite»)

( w for «weak»)

and therefore

g1 = d, = TT, w1 =L wm=g1> gp=cl&  wp=w;

and ‘wp  I gp, wp  5 d,.
It is very simple to  see  that

g,tz;E,F)  = inf{f,(x,>wJy,)Iz=  ~x,@Y,}
1=1

dp(Z;E,F)=inf{wp(Xi)ep(Yi)1Z=CXie9Yi}
i=l
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w,(z;E,F)  =inf~~p(“;)~~(y,)Ir=~s~~~~~.
i=l

Clearly, a result  in the spirit of 1.6 with representations

holds for g, and dP as well. The case wP  for 1 < p < CO reads as follows: If wP(  xi)  <
00, wyi(Yi)  < 00 mtI

~p<(=j)~rjJ + 0
N-XX

then the series C( 5,  @ y,) converges  unconditionally in EGwPF.

1.8. The following pitture  illustrates the situation:

Proposition. For p, q E 1, oo[ there  are constants  cp 4 2 1 such  that

In partidar,

forallp,q  E11,21.
w2 I ap,.g  I cp,qwz

The proof will make use of the Khintchine inequality: For this take

D,  := (-1,  l}n

Ei : D,  + {-l, l} i-th projection
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and pn the measure defined by pL,(  {t}) = 2-”  for all t E  D,  (which is the normalized Haar
measure). It follows easily that

J4
EiEjdp,,  = hij

The KHINTCHINE INEQUALITY says: For 1 5 T < cm  there  are constanfs  a, 2 1 and
b,  2 1 such that

for al1 n E N and EI,.  . . , &, E  lK. For an easy proof see  [43]  p. 45. For the constants one
can take

a,=  fi l<r<2
ar=  1 2<r (obvious)

b, = 1 l<r<2 (obvious)

b,=5& 2 <r.

The best constants were calculated by Haagerup [28]  in 1982; they are the same  for the rea1
and the complex field.

Proof of the proposition:
For z = Cyz1  zi @ yi  E  E @ F the biorthogonality of the ci  gives a new representation:

Now

Consequently,
I 2n’q’bqlw2((~i)i=l  . ..n).1 I

crp,,(z;  E,F)  5 ;(2”)1/“1~q’+1~P’bq,bp,w2(zi)w2(yi)

and therefore

ap,q  5 b,J+jwz. .

The tensornorms g,  and d,  cannot be estimated by w2  : this will follow easily from the identi-
fication  of (E 18~  F)’ with a space of operators (by 4.9 the inequality w,  5 g,  5 cw2  would
imply that Hilbert spaces  are C,-spaces, see  46).
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1.9. Takc  x1,. . , x, E  E thcn  far  1 5 p < Co

wp(x,)  = “P{ ICt,(‘ia “)I Ix’  E Bfil, CE,)  fZ B$} =
i=l

(ei  the unit-vcctors  in $).  Sincc zup,  (ei)  = 1 it follows the

Remark. Far  ever)  normcd spuce  i? and 1 5 p < 00

for x, f E. In partidar:  E = wP  on E @ eg.

1.10. One  of the most striking tools  in the thcory of tcnsor-norms and the  opcrator thc-
ory is,Grothcndieck’s «thcorèmc fondamcntal dc la théoric métriquc des produits tensoricls))
which, sincc the work of Lindcnstrauss and Pclczyfiski [51], is known in an cquivalcnt form
as GROTHENDIECK INEQUALITY: The-re  is a universa1 constant  K, such thut  far al1
n E N , ali  matrices  ( aiI)  E C( IK  n, K “) and al1  Ililbert  spaccs  11

For a simplc proof see  e.g. [ 121. K, can bc chosen 5  2. The bcst  constants  (the onc  for the
complcx case  is strictly smallcr than that far  the  rea1  case)  art  noI  yct known.

Onc of the  dircct consequcnccs of the  incquality is that evcry opcrator 2, (r) -f Il
is absolutely-l-summing  (sec  6.5). The  samc proof gives that evcry opcrator J?,  -t F is
absalutcly-1-summing  if F satisfics the  Grothcndicck-incquality as abovc  (with the  duality
bracket  instcad of the  scalar-product;  zi E  B, and yi  E  B,.,);  whencc the  natura1 quoticnt

map

factors through a Hilbcrt space and F is isomorphic to a Hllbcrt space:  Up to Isomorphy  only

the Hilbcrt spaces  satisfy Grothcndlcck’s inequality  (1511;  p. 289).
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1.11. For ‘p  E  (.!m  @J~  ek)’ = B(t&,  Ck)  (bilinear forms) with representing matrix

aij := (Po,  ei @ ei)

the norm is given by

llpll(p @ @ )! =  s”P{l~aijSitjl  I(si)S(tj)  E  BcI.m rm
ij=l

This implies for z,, yj  in the unit hall B, of a Hilbert space H and

by Grothendieck’s inequality, whence

Corollary. Let H be a Hilbert space. Then

TcfJZi,  Y,),e,  63  y;tk,fL)  I Qy IIZ,ll my IIYill
i,j=l

lorallx,  ,..., x,,y ,,..., y,E  H.

Everything is preparcd  for the

Theorem (Grothendieck’s inequality  in tensorial form).  For every  n E N

Inparticular: al1  CY~,~  Cfor  1 5  p, q < 2) are equivalent on ek  @EL  (with constants  indepen-

dent from n).

Proof . Take H := e; and equip H” with the sup-norm, thM

H” = .E;C3,  H

(5 1,...,qJ  -
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isomctrically. ThcreTore,  the rcal bilincar map (considcr the  spaces  as rea1  vector  spaccs)

can be writtcn as

The corollary gives that  IITrjj  5  K,.  Now takc z = 9 ui @  vi  E  e&  ~3 E;, then
i=l

Tr(xui@e,,  Cei@‘i)=z
i=l i=l

and, by 1.9,

&@è,;  e;,II)  = WZ(fLi)
i=l

E(e ei  8 ui;  II,ek)  = WZ(Vi).

i=l

1t  follows

and taking  the  mfimum over al1 rcprcscntations  of z gives the result.

1.12. Anothcr direct conscquencc  of Grothcndicck’s incquality  is the

Proposition. For every  n E N

n I K,d, on e; @le;.

Proof . If x, E e; with x, = 5  a,]e,  , thcn
j=l

= SUP 1 C aijsitjI
11,111  I l%Kl  ;j
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n(CXi@Yi)  =~C~ej@EaijYi)  I

i=l j=l i=l

I CII~%)YJl.q  =
)=l 1=1

= zyfn I~‘ij([e~(Y~)l-‘Yi~zj)l  ‘a,(Y,>  5
I f2 ij

and, passing to the infimum over al1 representations,
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2. THE FOUR BASIC LEMMAS

2 . 1 . This paragraph contains four lemmas  which are basic  for the understanding and use
of tensornorms: the approximation, extension, embedding, and density lemma. The power
and importance of these  devices will become clear  while working with them.

2.2. Reca11 that a normed space E has the X-approximationproperfy  if there is a net
(T,)  of finite-dimensiona1 operators E --+  E with llT,ll 5 X and T,(z)  t z for al1
x E E. If X = 1, the space has the metric approximation property; if a space has the
X-approximation property for some X it is said to have  the bounded approximationproperty.

Approximation lemma. Let (Y and ,B be tensornorms (on NORM), E, F normed spaces,

c 2  1 and

a < CP on E@N

for cofmally  many N E FIN(F) . If F has the X-approximation property , then

a<jxcp o n E @  F.

Proof . It is easy to see  that

for the projective norm K and whence for al1 tensomorms. If 77 is such that

<Y(z--idE@T,(.z);  E,F)  SE

and N as in the hypothesis with r,,(F)  c N then, by the metric mapping property of ten-
somorms,

CY(Z; E,F) <a(z--idE@T,(.z);  E,F)+cr(idE~Tq(z);  E,F) 5

5 E+ a(idE@T,(z);  E,N)  5

< E+cB(idE@TV(z);  E,N)  5

I E + 4l~JB(~;  E, F)

which implies the statement. .
This lemma (and its transposed version)  gives for the finite and cofinite hull of a ten-

somorm the

Proposition. lf CY  is a tensornorm (on FIN), E and F have the bounded approximation

property with constants  X, and X, , respectively, then

72 < Ti? 2 X,X,fEu on EéDF

In particular:  z = T?  on E @ F I if both spaces have the metric approximation property.
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2.3. If 1p E  (E B,,  F)’ = L( E, F’) and L, is its associated operator

men
(cp,  x Cs  Y”) := (L,x,  Y”)pp

(for x E  F and y” E  F”) defines a linear form p* on E @ F” which is clearly continuous:

IlPII = IP,ll = IldYl

The associated bilinear fon-n  is the unique  a( E, E’) - a( F”, F’) separately continuous ex-
tension of ‘p  to Ex F”. $’ is called  the right  canonica1 extension of ‘p  to E@  F”. Similarly
the leff  canonica1 exfension  Ap on E” 8 F is defined  by (nF  : F c-,  F” the canonical  em-
bedding)

(^cp,  5” cjl  y) := (L;  0 KF(  y),  x”)C,E>‘.

It is not difficult to see  that

(“cp)” =’ (9”) on E” @ F”

if and only if L, is weakly compact.

Extension lemma. Le1  p (5 (E @,,  F)’ and cy be a finitely  generated lensornorm  on

NORM. Then:

cpE(E@,F)’ ifand only if ‘P*  E (E  @J=  F”)’

In this case:  IIPII~~~,~)~  = ll~*ll(E~,F~~)~.
Proof . The metric  mapping property

IIE@,F-E@,F”l&  1

implies

IMI... 5 llPAII...
Conversely, take M E FIN(E) and N E FIN( F”). Then the weak principle of loca1
reflexivity (1.4) gives for every E > 0 an R E C( N, F) with IlRII  2 1 + E such that for al1
y”ENandxEM

(Y”,  Q)p,p  = (RY”,  $,x).,,.
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This means

and

(cp”,  3: QD  Y”) = (cp,  (id  @ R)(x  8 ~“1)

(P^,z)  = b,id.  @ R(z))

for ah z E  M CQ  N and whence

which implies the result, since CV is finitely generated.

Sometimes the relation (*) is helpful.

Problem 1. Does the extension lemma hold for cojìnitely generated tensornorms?

Problem 2. There  are two «canonicaL  embeddings

Ij: E”@F’‘-(E&F)”

dejined by
(1, ( 5”  EJ y”),  p) := (Y p”)  ,x1’  8  Y")

(12(X”@Y”),Cp)  := ((*p)*,x"c3Y")

What are the norms induced on E” 8  F” ?

If the  induced norm were CY in reasonable situations, this would solve easily the probkm
of the bidual mappings which will be treated in 5.8.

2.4. Tensomorms do not respect subspaces (see 1.1) but the embedding to the bidual usu-
ally is respected:

Embedding lemma. If Q is afinitely  or cofrnitely  generated tensornorm (on NORM), then

is an isometry for al1  normed spaces  E and F.

Proof . The mapping property implies that

4~; E, F”) < CY( t; E, F)

holds always (the map id E @ nF will not bc written).
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(1) Let cx  be hnitely generated. Then, by the extension lemma

4% E,F) = suP{l(‘p!  z)I IV E (E@,  F)‘,  IMI a 1) =
= s~PwAJ)l  I’p E CE@, FI’,  IMI 5 11 5
5 SUP{I(G,Z)l  111,  E um,~“)‘,  IMI.. 2 11 =
= a(z;  E, F”)

which is the reverse  inequality.

(2) If CZ is colinitely generated, K E CCFIN(  E) and L E CCFIN(  8’) , then the canon-
ical diagram (L” formed in F”)

F z F”

4: 1 1  Q’

FIL 5  F”/L”’

commutes and the lower map is an isometry. Il follows that

4QK  ~3 Q:(z);  E/K,  F/L)  = d(Qg ~23 Qf’k)  o  (id, 8 nF)(z);  E/K, F”/L”‘)  5

< =( z; E, F”) = (Y(  z; E, F”).

Taking the supremum for ?F  gives the missing inequality. .

The calculation in (1) (or the extension lemma directly) and the bipolar theorem  give the

Corollary..  If <y  isjinitely generated, then the unit hall  B,,,,  is a( E @ F”,  (E 6~~  F)‘) -
dense in the unit hall  BEBOF,,  .

2.5. Since the completion F of F and F have  the samc biduals the embedding lemma
gives that

E@,FLtE@,F

is an isometric  (dense) subspace, whcncver (Y  is finitely or cofinitely generated.

Density lemma. Let  (Y be afinitely  or cofrnitely  generated tensornorm,  E and F normed
spaces,  E, and FO  dense subspaces  of E and F, respectively. If  G is a locally convex space
and T E 13(  E ~3~  F, G) such that

then
Tl/$@F,  E u Eo  @a  Fo  1 G)

T EL(E@,  F,G).
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Proof . Since E @J~  F is normed  and whence a Mackey space it is enough to take G = M
and ‘p  E  ( E @,,  F)’ . The space EO @a  FO  is a dense isometric  subspace  of E Bcr  F therefore

andcp=$onE,@F,,andwhencecp=$onE@,F.

A particularly interesting special case is given in the

Corollary. Let (Y  and p be tensornorms, cr  jnitely or cofinitely  generated. IfTi f L(  Ei, Fi)
and Gi  c Ei are dense subspaces such  that

Since
T,~T,:E,~,E,-~F,~,F,~F,~BF,=:G

is continuous, the proof is obvious.
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3. DUAL TENSORNORMS 3*
?/Q

g+ .*c $
3.1. Given two (separating) dual pairings (E,,  F,)  , then “11 p ),.+

CE, BE,)  x (4  xF,J + lK
(C,~~@~~,c,Y~@Y;> - c,,,  (4 YiJ(4  f YiJ

gives a dual  (separating) pairing. This simplc and natural pairing is sometimes called  truce
duality for the following rcason: for normcd spaces G the tracc trC is delined  on the fnite-
dimensional opcrators

G’@G = F( G,  G)
L

(see  0.8). Take now M and N fihite-dimzonal  :ormed spaces, u E  M @ N and v E
M’ @ N’  , thcn the associated  lincar operators satisfy

L, E QM’,N), L:=  L,r  cC(N’,M),

L, E UM,N’), LI  = L,, E ,C(N, M’)

and
(u, v) = trM(  L,, . L”) = ‘Tj.q(L,  . L,r) =

= tr&p(  L”,  L,) = trN’(Lv  . L”,)

(this need  only be checked on elementary  tcnsors). Note that trunsposing  u means  gomg to
the dual of L, .

3.2. The purpose of this paragraph is to study the embeddings
E@F - (E’@,F’)’  - (E’B~F’)’

E’@F’  - (E@,F)’  - (Eq  F ) ’

given by the natura1 pairing, i.e. the trace  duality. For this, dual  tcnsornorms will  be intro-
duced  - and lirst  constructed on finite-dimensiona1  tcnsor products M C$ N ; note that

M@N=(M’&N’) M,NEFIN.

Proposition. Lei  CY  be a tensornorm on FIN. Then cx dejìned  by

(~‘(2;  M,N) := sup{~(z,u)#~(u;  M’,N’) 5  l}

far z E M @  N is a tensornorm on FIN.

Proof .  TO apply the criterion in 1.1 (for FIN), observe fust  that cy’ is a norm, (2) follows
from E = <y  = rr  on IK c$  IK and (3) from

((T*  @T,)2.,u)  = (4~;  @r;>u>. m

In other words:
M mu,  N := (M’ @a N’)’ (isometrically)

The finite hull cr’  of cr’  on NORM will bc callcd the dual tensornorm cr’ (on NORM) c

thetcnsomorm  cy  (on FIN or NORM).
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3.3. The following properties are obvious:

(1) v (Y  5  cp, then  p’  5  ccx’  .
(2) a  = Cd’ on FIN and 72 = Cd’.
(3) a = cJ’ on NORM if and only if Q isfmitely generated.

The relation E < cr’ 2  r implies for (Y  = E by dualization

and whence

7r’ = & a n d E’ = n

This is part of the duality rclation between the projective and the injective tensornorms men-
tioned in 1.4.

3.4. Clearly, it is highly desirable to.know whether the following isometric relation for
finite-dimensional M and N

holds also for infinite-dimensional normed spaces. The answer is given by the duality theo-

rem.

Theorem. Let Q be a tensornorm (on FIN). Then for al1 normed spaces E and F the

following natura1  mappings are isometries:

(1) E’ @‘u  FI+  E @& F)’

(2) E’ @=  FA(  E @J~  F’)’

(1) E @&  FCt(  E’  @d F’)’

Proof . TO prove (3), observe first  that

FIN( E’) = {K’IK  E COFIN( E)}

and, for (K. L)  E  COFIN( E) x COFIN( F) ,



if .Z E  E @ F and u E  K” @ 1,” c  E’ @  E”. Now, by the vahd  duality  rclation far finitc-
dimensiona1  spaccs

%(  z; E, F) = sup  CI(  Q; @  Q;(z);  E/K,  F/L)
K.L

= supK L  a’( $yo)<,  l<Q: @ Q%L4I =

= SLIP’  ‘;(Z,u),
u’(u,  E’.F’)<I

and this is (3). The commutative diagram and the  cxtcnsion Icmma

E’@,F L, (E”@,,  F ’ ) ’  3 ‘p

c SI I
(E@,,F’)’  3 p

imply (2) - and (1) follows the  samc way. .

The proof shows that the rcsult is, more or ICS,  a rcformulation of the dchnition of the
cotinitc hull. The  thcorcm indicates  that the  use of ‘c;  is a hclpful device.  Since  % 5  <y  , it
follows that al1 mappings Bo,  + . . in the  theorcm (c& rcplaced by @,)  are continuous and

of norm 1. (Note that, by the  thcorcm, the  colinitc  hull  ?F is identica1 with Grothcndicck’s
norm 11  . lIO  ; sec  [27], p. 11).

3.5. Having this rcsult and 7~’  = E in mind the  usual  proofs  of the characterization of the
X-approximation propcrty by the  cmbcdding

E c$,,  F ut  (E’ @E  F’)’

show (sec  cg.  [37], p. 409 or [45], p.  315 far  X  = 1 ):

Corollary.  For every normcd space B and X 2  1 are equivalent.

(1) E has  the X-approximation properly.

(2) For every normed space F (or only F = E’)

4.; E,F)  5  Xx(.;  E,F)

In particular:  7~ = ?f  on E @  E’  iJand  Qnly  if E has the metric  approximation property.
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3.6. For every tensomorm (Y  on NORM the relation % 5  (Y  5  ‘Y holds. CY is called
right-accessible (shortly ( r) -accessible)  if

%(.; M,F) = Z+(.; M,F)

whenever (M, F) E FIN x NORM left-accessible  (=

accessible and accessible if it is right- and left- accessible.
if

B=ij+

(4?)  -accessible)  if LY~  is right-
Q  is called totally accessible,

i.e. if (Y is finitely and cofinitely generated. E is totally accessible (this was already mentioned
in 1.3) and 7~  is accessible: This follows from the isometries

and the duality theorem 3.4; but 7r is not totally accessible by 3.5. It will be shown in 99 that
al1 CX~  ~ are accessible and al1 CY; ~ are totally accessible.

Problem.  IS every  finitely  generated tensornorm accessible?

This problem seems to be hard, since, by the approximation lemma, the non-accessibility
of a tensomorm appears only on spaces  without the metric  approximation property. (In vicw
of this problem it is suange to define  right -accessible  tensomorms; we do this in order to makc
some results «smoother»  and since there  are parallel notions for Banach-operator ideals, see

§9).

Proposition. Let  LY  be a tensornorm on NORM

(1) CY  is right-accessible if and only  if cy’  is right-accessible.

(2) If CZ  is accessible, then  the transposed tensornorm CY~,  the dual tensornorm CY’  and the
adjoint (or contragradient) tensornorm cy*  := ( CY’)’  = ( CX’)  t are accessible.

If Q is totally accessible, (Y’ is accessible, but not necessarily totally accessible (Por  ex-
ample Q  = .s).

Proof . Clearly only (1) has to bc shown: Since, by theorem 3.4

M’@,F’=  M’c&F’=(M@,,F)’

for finite-dimensiona1 M. it follows that

holds isometrically; whence 2 = 2 on M @  F by 3.4.



3.7. Summarizing  the  dchnitions and rcsults  of this paragraph  (and using  the approxima-
tion  lemma) the  relations

E@,F=E@,F and E@,F  L (R’  cgd  F’)’

hold isomctrically in cach  of the  following thrcc  cases:
(1) E and F have  the  mctric approximation propcrty.
(2) CY is righi-accessiblc and E has the  mctric approximation propcrty.
(2’) cy  is left-accessible and F has the  mctric approximation propcrty.
(3) CY is totally  acccssiblc.

SO, «two  ingrcdicnts»  are nccessary LO have  the «good»  relation bctwecn  (Y  and (Y’ . For
the boundcd  approximation propcrty the  relations  would hold isomorphically.
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4. TENSORNORMS AND OPERATOR  IDEALS

4.1. If  [d, A] is Banach operator  idcal, thcn

M @n N := d( M’, N) (*)

defines a tensomorm on FIN;  in other words: if t E  M @  N and T, E C( M’, h’)  is the
associated operator, then

CY(  z;  M, N) := A(T,  : M’ - N)

The fact  that (Y  is a tensomorm on FIN can be checked easily: the idcal property of d
corresponds to the metric mapping property of cx

4.2. Vice-versa: if (Y  is a tensomorm on FIN, define  [d, A] for finite-dimensiona1
spaces M, N by

d( M, N) :=M’  ~3~  N

A(T) :=cr(+;  M’, N)
(*)

and extend this to al1 Banach spaces E and F by defining T E d( E, F) if and only if

A(T) := sup{A(Q; oroI$  /NEFIN(E),IGCOFIN(F))<W.

It is easily seen that  [d,  A] is a Banach operator  ideal which, by [60],  8.7.5, is even maxi-
mal. Since  maximal  Banach operator  ideals [d,  A] and finitely generated tensomorms CY are
uniquely determined by their «behaviour»  on finite-dimensional spaces the

Definition. A maximal  Banach operator  idea1 [d , A] and a jnitely generated tensornorm

CZ on NORM are called  associated, in symbols:

iffor al1  M, N E FIN

d(M,N)  = M’@, N isometrically

establishes (via (*)  and (ti) ) a one-io-one  correspondence behveen maximal  Banach oper-
ator ideals and jnitely generated tensornorm . This link between  the theory of operator  ideals
and the metric theory of tensor products is very fruitful for both theories.



4.3. Il a maximal  opcrator  idcal  [ -4,  A ] and a finitcly gcncratcd tcnsornorm are associ-
alcd,  thcn

A( M, ,V)  = Ar’ za  iv = ( hl @, N’)’ M,NEFIN

holds isomctrically.  The cxtcnsion  of this to  infinite-dimcnsional  spaccs,  the representation

thcorcm  fi7r  mcisim~ìl  opcrator idcols  is basic.

Thcorem.  Lei I A, A ] - a!.  7hcn.lor  (111  Banach  spaces  E und F

A( E, F’) = (E @,,  F)’ isometricallg

und

AW,F)  = (ECO,,  F’)‘n,C(E,F) isometrically

This shows E N L: (the idcal  of al1 opcrators) which, of course,  was already  clear  from the
dctinition,  and in - 1, the idea1  of integra1 opcrators (sec e.g.  the  dcfinitions [45],  p. 304 of
intcgral  opcrators); the latter example  explains why the opcrators in d are sometimes called
cu-integra1  operators.

The thcorcm is due to  Lotz [55].  His approach to tensomorms was different  from ours and
vcry influential to the devclopmcnt of the theory of operator  ideals: He took,  more or less,  the
rcpresentation theorem as a dcfìnition  for tcnsomorms and pointed this way at the one-to-one
corrcspondcnce between maximal  normcd operator  ideals and tcnsomorms.

Proof  . The second  formula will bc proved fìrst,  i.e. it is to show for T E ,!Z(E, F) that
T E d( E, F) if and only if

BKFoT E (E ~3~  F’)’

(with equa1 norms). But this is easy:  T E d( E, F) and A(T) 2 c iff

A(Q;oToI;)  <c

for al1 (M,L)  E FIN(E)  x COFIN(  F) , iff (by  d(M,F/L)  = (M CQ&  LO)‘)  far al1
ZEM@LO

I(B,+Al = I~B4p,~yr41  I ca’(z M,L’).

ThiS  implies  the reSdt,  since  (Y’ is finitcly  generate&  T O see  the first formula just look at the
diagram

PE(EQ~F)’ - (E@,F)‘=C(E,F’)

!l 5  l

p” E (Eci&?)’  - (E@J~F”)’
and the extcnsion lemma.
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4.4. This theorem has various direct consquences

Corollary 1. If [ A, A] - CY,  then

E’ @oor  F’ L,  A(  E, F’) isometrically

~63~  GA(E’,F) isometrically

E’@&  F AA(E,F) isometrically

This follows from the duality  theorem 3.4 abour tensomorms and wili  be referred to as the
embedding theorem . Looking at

A(E,F)  -(E@,  F’)‘=A(E,F”)

gives the following result (which is clearly  well-known from «pure» operator  theory).

Corollary 2. Maximal  Banach operator  kieals  [A, A] are regular, i.e. T E  A( E, F) ifand

only if nF o T E  A( E, F”) . In this case:

A(T) = A(K~ oT)

The diagram
T E L( E, F) - (Efa,, F’)’ 3 ‘p

1 8 1

T” E  C( E”, F”) = ( E” q,  F’) ’ 3 “‘p

(and the extension lemma) implies the (again  well-known)

Corollary 3. Let [A, A] be a maximal  Banach operator  ideal, then  T E A( E, F) if and
only if T”  E  A( E”,  F”) . In this case:

A(T) = A(T”).

4.5. The following diagram commutes

T E C( E, F) ~-1  (Em,  F’)’  3 p

1 1

T’cL(F’,E’)  = (F’@,E)+&
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Hcnce, if (Y  N [d,  Al and if [ 8, BI is the unique maximal-Banach  operator  idcal  associatcd
wilh  out, then,  by the representation  thcorem for maximal  operator  ideals.

EqE,  F)  = (E cqary .‘>’ n C( E,  F)

= {T E L( E,  F)  JB,,  E  (F’  c3Q  IS)‘}
= {T E C(E,  F) IT’  E d(  F’, E’)}

holds isomeuically,  i.e., T E I3(  E, F) iff T’ E d( F’, E’) and B(T) = A(T’)  . This
means  that  [ 13,  B] coincidcs with the dual  Banach idcal [Ad”“’ , Adua’]  of [d, A] dclìned  by
Pietsch [60],  8.2.1. Note that the proof included  that  ddual  is maximal.

If  [D, D]  is the maximal  Banach idea1  associated  with a* = ( CY’)’  , then for al1 M, N E
FIN the trace  duality gives the isometric  equalitics

D(M,N)  =M’ciq,.N=(N’@,M)‘=  d(N,M)’
W W

T - [S - UN(

Therefore, T E D( E, F) iff

D(T) = sup{D(Q,FTI;)  1 M E FIN(E),L  E CCFIN(F)}

= supIlu,,,(Q;TI;S)I 1 M . . . . N . . . . A(S:  F/L  -) M) 5  l},

which implics  that [D, B] and UIC  adjoint Banach idea1 [d*, A’] of [d,  A] in the scnsc  of
Pictsch  [60],  9.1 are identical.

Proposition. lf a - [d, A]  , fhen
(1)  Cu’ - [ ddua’  Adua’]  : in particular: T is cu’-infegral  if and only if T’  is wintcgral.
(2) (Y* ? Id’,A*]
(3) [d**,A”]  = [d,Al.

The last result  follows form (2) and CY** = (Y. Note that CY~’  = cy  gives (ddual)dua*  = d
and this is anothcr proof of corollary  3.

4.6.Letp,q~[l,~]with~+~>landde~ner~[l,m]by~:=~+~-l.It

was  proved in 1.6 that for ali M,!k E~F’IN  and T E C( M, N)

(Y,,,(.+;  M’, N) := inf e,(  Xi)Wq,(  Cpi)Wg(  Yi>

where the infìmum  is taken over al1 finite or infinite series representations  T = c Xi’pi  @  y,
i

(convcrgence in Is(  M, N) ). Hcnce by [60],  18.1.1 and 18.4.1
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dere  [JY,~,,  , Nr,P,4]  denotes  the ideai  of al1 (r, p, q) -nuclear  operators. By detinition
(see  [60], 19.4.1) the maximal  Banach ideal [f&, Lp,ql  of al1 ( p, q) -factorable  operators
coincides  with N,,,, I on finite-dimensiona1 Banach spaces  and whence is the unique maxi-
mal idea1 associated  with oP p,  i.e..

[Cp,,  3 L, J - fYPA
Special cases  are

Wp,Lpl  := L&J, L,pl - Q Pd-f = wp

[Zp,Ipl := [C ) L 1 N cYPA  P.1 P,l = 9,

the ideals of al1 pfuctoruble  and p-integra1  operators (see  1601,  19.2.1 and 19.3.2). Z,  =
z N T  = g,  are the usual  integral  operators.

The following important  factorization theorems are proved by ultra product  techniques
(see  [60], 19.2.6, 19.3.7, 19.3.9 and 19.4.6):

lf b + i > 1 , then T E IC,,~(  E, F) tfand  only  if there  are a probability space (Q , u)

and operators R E C( E, Lq,(  u)) and S E C( Lp( u)  , F”) such that

E 2 F ” F”

RI TS

L,J(d c= L,(P) (Ip,q  the canonica1

embedding)

In  this case Lpa(T) = inf IlRII  IlSll.

Note that this  gives in particular  the factorization theorem  for the p-integral operators

(Zp  = cp,1 if 1 5  p < 00).  For the p-factorable operators the following factorization holds:

T E Cp(  E, F) = Cpj( E, F) ( 1 2 p 2 CO) iff there  is a (strictly localizable) meusure-
space (ti, u)  and appropriate operators R and 5’ with

Es F 2 F,!

R\ 7s
Lp( PL)

Again:  L,(T) = inf [IRI1  IlSII.

It is easy to sec that for p = 2 in these  statements the operator  S can be chosen L,  + F
thus  avoiding the bidual. SO C,  is the idea1  of operators factoring through a Hilbert space:

c, - w2.
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4.7. Porp,qE[I,w]with-‘+i<  1define7E[l,oolbyr-:=‘+‘.Inpanicular,
P q- r P 9

1 1
- + - > 1 and
P’ d-

f+  i+ i= l.ThenforeveryTEC(E,F)

B KIT E (E@~dd  .‘)’

iff

and in this case the latter supremum equals  11 BfiFOTI  j,,, . Hence,  by the representation theorem
for maximal  operator  ideals (and Holder’s inequality),  an operator  T E f(  E, F) belongs to
the maximal  Banach idea1

U’p,q,  D,  J - CU’,Q  -p’
= (yf

Pr>P’

ifandonlyifthereisaconstantc20  suchthatforaIls,,...,z,EEandrp,,...,cp,EF’

e,<(~i,T~i))  I cWp(zi)wq(‘Pi)  9

and moreover  Dp,q(T) = inf c. Operators satisfying such inequalities are defined in [60],
17.4.1 and called  ( p, q) -dominated.  Important special cases  are

the p-dominated operators, and

[Pp,  PpI  := [IJpw,  Dp,,l  - $1 = SP,  = d;

that absolutely-p-summing operators (note P, = C).
By Proposition 4.5 it is obvious that

Proposition. If l+  I > 1 , then
P q-

isometrically

isometrically ,

4.8. There  is an integra1 characterization of ( p, q) -dominated  operators due to Kwapien
which is an extension of the Grothendieck-Pietsch-domination theorem ([60],  17.3.2)

T E P,<E, FI IIT41P  L: c IBo I(b)Ip~(dx’)
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and basic  for the applications of the theory. For bilinear forms it reads  as follows:

Let ‘p  E (Em  F)‘.  Then

(i.e.  L, E  D,,ti(E, F’))

if and only if there  are c 2  0 and Bore1 probability measures ~1  on B,  and u on B,, such

thatfor al1  z E E and y E F

I(cpY  5 @  Y)l  5 4 / lb’, 4l%(d~‘))  h / I(Y’,  y)lp’4dy’>>  s+
Bk? BFJ

In this case lllpll,,,  = inf c.

For q’ = oo (or p’ = oo) the integrals have  to be replaced by ])x)]  (or ]IyII);  this is just
the case of L, (or its dual) being absolutely-p’-summing (or absolutely-q’-summing). The
proof of this result is the same  as in [60],  17.4.2.

A relatively simple consequences of this is (see  [60],  17.4.3).

Kwapien’s factorization theorem. For L + i < 1
P 9-

isometrically

4.9. It is good to have  a list about the tensomorm and their associated  operator  ideals. Let

p,qE [l,oo]  with ‘+  i > l,then
P 9-

(1) E-C

7r-z=q  =Lcll  =c*

t2) aP,4J - LPA

cY* -v
Pd p’.n’  = Gs

(3) wp  N Lp = Lp,

w;“vpl=vDp.p=c;

(4) 9, - TP  = cp,,
g;  N Pg = V$+, = z;

al1 operators

integra1 operators

( p, q) -factorable operators

( p’, q’) -dominated  operators

p-factorable operators

p’-dominated operators

p-integra1 operators

absolutely-p-summing operators
(with P, := 13)
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4.10. It is an essential goal of the theory to  compare different tensornorms/maximal  op-
erator  ideals. The very definition of [d, A] - <y  (by  finite-dimensiona1 spaces) implies the

Remarkl. Let  [d,A] -a,  [B,B]  -p and c> O.Then:

Q!  I CP if and only if A(.)  2 CB(.).

inthiscase: Bcd.

For example, CY~,~ < c~,~w~  if p, q El 1,001  (see  1.8) imphes

and aPq = CY&, for al1 p, q E  [ 1,001 gives, togehter with 4.5,

L Pm”’ = L,,p  = L,, and D;:’  = D, p

The factorization theorems for ZP  and ‘PP imply

ZP = %
p2  c L2

and

and

whence
!?; I 9, for 1 2 p < 00

w2 5 9; 5 4

where the latter inequality follows from cz2  ,1  2 CX~  2 which in turn implies

V,  CP,  and PZ(.)  I &(.).

Very interesting phenomena occur from estimates on special Banach spaces. The representa-
tion theorem for maximal  operator  ideals and its corollary  1

imply the
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Remark 2. Let [A,  A]  - <y  und [ 23,  B] - ,f3  be associated,  c 2 0 and E and F Banach
spaces.  Consider thefollowing  conditions:

(a) p’ < CQ’ on E @ F

(b) 23(  E, F’) c d( E, F’) und A( .) < cB(  .) on 13(  E, F’)

(c) ‘cy < ce on E’ 8 F’

Then

(1) (aI  fi (b)  fi Cc>
(2) If E’ and F’ have  the mctric approximation propcrty, or: (Y  and p are accessible  and

E’ or F’ has the mctric approximation propcrty thcn:  (a) & (b) & (c).
(2) is a conscqucnce of

E@,, F’+(E’@7F’)‘=(E’@ti~‘)’ 7=c~ or p

which holds  under the given conditions by the duality  results  of 93. Clcarly,  if x3( E, F’) c

d( E, F’) the closcd graph thcorcm gives a constant  c 2 0 satisfying (b).
Thesc two rcmarks are essential for the intcrplay  bctween  the theorics of tensornonns  and

operator  ideals;  thcy will bc refcrred  to as the «transfer  argumcnt».  Note  that (2) includcs
conditions under which the full dualization holds:

cu<cg  on E’ @ F’ iff /3’  < CCY’ on E@F
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5. FURTHER TENSOR PRODUCT CHARACTERIZATIONS OF MAXIMAL
OPERATOR  IDEALS

5.1. There are very useful characterizations of a-integrai operators 2’ E  C( E, F) in

terms  of tensor product  mappings

with  appropriate tensomorms. There  are three simple formulas (check on elementary tensors)
which connect T E  C( E, F) and T 8 id G (remember the notation  B,  and L, from 0.7).

(l)Forcp~(F~,G)‘and2~E~G

P+T, 4 = (cp,  T CO  id  &z))

(2) For z E E 8  F’

P@’ z) = (trF,T@idF,(.z))  = (uE,idE@T’(z))

(3) For ‘p  E (G & E’)’ and z E G @  F’

5.2. The first of the announced characterizations is the

Theorem. Let [d, A] - cy and T E C( E, F) . Then the following statements are equiva-

leni :

(1)  T E d(E, FI
(2) For al1  Banach spaces G (or only G = F’ or G = L with  L’ = F isometrically)

T ~8  id C:E@,G-+F@,G

is continuous.

(3) For al1  Banach spaces G (or only G = E)

T’  8  id G:F’~,.G+E’@,G

is continuous.

In this case:

A(T) = IlT  @  id.,  : @D,,  --+  @,,Ij  2 IlT @ id, : G3’cul  -f 6Gnll

A(T) = IIT’@id.:  Bo.  -+@,,ll  2 IIT’@idG: &.  -‘@J~II
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Proof  :
(1) 0 (2): If T E  d( E, F) , then, by formula (1) and the representation theorem for

maximal  operator  ideals,

I(co,T@idGtz))I  I At$, oT)a’tz;  E,G)  I Il~llAtTb’tz;  E,G)

for all (o  E  (F @,,  G)’ which shows:

n(T  @idG(z);  F,G) < A(T)a’(z; E,G).

(2) 0 (1): Assume (2) is satisfied for G = F’. Since  d is regular (4.4) one has to
prove

nF  o T E d( E, F”) = (E @(II  F’)‘.

For z E  Er& F’ formula (2) gives

l(B,+o~r z)I  = I(tfF,T  8 idF4z))l I Il@FII~(T@  id,dz);  F,  F’) I
5 /IT@id,,  : ~3,~ + @p,IIa’(z;  E, F’).

The proof for the predual L  (if it exists) is the same.
(1) fi  (3) follows from (1) 6% (2) by observing that T is cr-integra1 (i.e. T E  d)

if and only if T’ is <r’-integral  (see  4.5). .

Note that these  are statements about the composition of operators, e.g. (3)

3(F,G) =F'@G 'yc E’@G=  T(E,G)
W

s - SoT.

5.3. In order to obtain characterizations with E being involved (this is a sort of dualiza-
tion as will be seen) the following natural statement is needed. Reca11 that  the Johnson spaces
CP  (for 1 5 p < 00, see  [393)  are separable Banach spaces (reflexive for 1 < p < 00)
with the metric  approximation property such that for every M E FIN and E > 0 mere
is a 1-complemented subspace  N c CP  and an isomorphism S E .C(  M, N) such that

IPII IP-‘Il I 1 + E.
Lemma. L,et  p and -y be tensornorms, p jinitely generated, c 2 0 and T E C( E, F) .

(a) Iffor a normed space G

IlT ~9  id M:E@pM-+F@7MIII~



Aspccts  of the mctric rheory of tensor products  and operator  Ideals 227

far coflnally  many M E FIN(G) , then

IlT ~3 id G:E~pG-,F@,GIIIc

(b)  !fCfor  some 1 2  p 5  CO)

IlT@idc, : Ea3pCp+F@7Cp(I~c

rhen

IlT  @id G: Ec3,G-tFC~,Gllic

for al1  normed spaces G.

The proof is vcry casy  using the mctric mapping propcrty of tensomorms.

Corollary.  Let LY  be an accessible,  jìnitely  generated tensorrwrm,  [d, A] the associated
maximal  operator  idea1 and T E C(  E, F) . Then thefollowing  are equivalent:

(1)  T E d(E, FI
(2) For al1  Banach spaces G (or only G = C,, far some p)

T IXI  id c:E@,G+F@,rG

is continuous.

(3) For al1  Banach spaces G (or only G = CP  for some p)

T’ @ id G: F’@,G-tE’@,G.

In this case the operators in (2) and (3) have norms < A(T) and

A(T)  = 117  8 idcp  : Q -, ~~11  = IlT’ @‘dc,  : ~3~  -, Q,II.

Proof  . TO prove (1) fi (2) it is enough, by the theorcm and the lemma, to show that for
al1  M E FIN

IlT’ép  id,, : F’ &I~. M’ --+  E’ 8,  M’II  2  c

if and only if
IIT  8 id ~:E~J,M-~F~Q,,M[~<c.

But this follows from

(E BE  M)’ L E’ @, M’ and F@,t  M L, (FI@,.  M’)’

and the fact  that
IlF’  ma. M’ + (F  @,r  M>‘ll  I 1

As bcforc, the cquivalcncc (1) fi (3) is a consequcnce of (1) fi  (2) by obscrving thar
T is tu-intcgral  if and only if T’ is a’-intcgral. D
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If LY  is not necessarily accessible the proof showed  that  (1) 61 (2) holds if E‘ has the
metric approximation property and (1) fi (3) if E’ has the metric approximation prop-
erty.

For special operator  ideals it is possible to find «better»  fixed spaces G (than CP); for
example: If d = ‘PP it is enough to take G = 47,;  this is the tensor product  formulation of
the simple, but useful characterization  of absolutely-p-summing operators  due to Kwapicn:
TEC(E,F)  isinPpiffTSE’PPforaIISEL(.$,,,E).

5.4. TO see  some particular  cases  of these  results  take

9, - IP and d; = g; - Pp.

Since  g,  and d; are accessible (see  later 9.4) it follows

Proposition. Take  1 5 p 5 CO.
(1) Far  T E C( E, F) are equivalent:

(a) T is p-integral,
(b) for al1 Banach spaces G (or only G = F’)

T @ id c:‘E~,;G4’@,G

is continuous,
(c) for al1 Banach spaces G

T @J  id .:E@,G+F@  G4

is continuous.
(2) T E C( E, F) is integra1 ifand  only iffor al1 Banach spaces (or only G = F’ )

T@id C:E@,G-+F@,G

is continuous.
(3) For T E C( E, F) are equivalent:

(a) T is absolutely-p-summing I
(b) for al1 Banach spaces G (or only G = F’ )

T@id G:  E@+G+F@,G

is continuous,
(c) for al1 Banach spaces

T @ id G:E~,G-+F@ 9;  G

is continuous.
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Clearly, there  are norm estimates as in 5.2, for example,

5 . 5 . Another interesting and very important consequence of the theorem (and its corollary)
is the

Proposition. Let Id, A] be a maximal  operator  idea1 such  that the associated  tensornorm

CY  is accessible. Then

d'odcz and I(ToS) 1.  A*(T)A(S).

In 9.2 accessibility  of CZ  will be explained in terms of the operator  idea1 d . If CY is not
necessarily accessible (remember that there is no example known!) it follows

d*(F,G) od(E,F)  cZ(E,G)

with norm inequality, if F has the metric  approximation property as the proof will show as
well.

Proof. If d - a, then d* - a*. This implies that for S E  d( E, F) and T E  d*( F, G)

the map
(ToS)@id.,:E@D,6G’+F@,G’-+G@,G’

has norm 5 A*( T)A( S) by 5.3 and 5.2, whence T o S E  Z with the norm estimate by 5.4.~

TO see  a concrete example (see  also [22])

and I(T 0 3 I ~p,q4T)~p,qts)

and even
D pld  O  LP+l  = Ju and N(ToS)  2  +qdT)$,qW

if(P,4)~{(1,1),(1,~),( 03,l)).  In the excluded cases  the product  is nof contained  in

the idea1 of nuclear  operators.

Proof . It will be shown in 9.4 that cyPq is accessible, whence the first statement is clear.
Coming to the second  statement take S E C, q(  E, F) and T E Dg q,(  F, G) and observe
tirst  that for 1 < q < 00

a p’,q’ c  Py c  w (weakly  compact operators)
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whence the astriction T” : F” -+ G of T” is (by the results of 4.4) also (p’, q’)-dominated
Since S is (p, q)  -factorable 4.6 implies the factorization

E + E” 2 8”’  5 G

1 lv
L,,  i, L,

whence R := T”VJ  is an integra1 operator  on a reflexive space with the approximation
property and therefore nuclear with I(R) = N(  R) (see  [13],  p. 248).

Ifq=landl<p<oo

(again  by Radon-Nikodym arguments, see  e.g.  [60]  24.6.2). For (p, q) = ( 1,l)

v cu,m O LI.1 =LozfN.

For the remaining two cases  (p, q)  = ( 1,co)  or (00,l)  take an operator  T : C[O, 11 -f  c,,
which is absolutely-l-summing and no1  nuclear ([ 131, p. 175). Then T’ is no1  nuclear as  well
([13],  p. 243) and

TEQ,~C,=V~,,~C,,~

T’eQld”“’  OC,  = D,,,  oL,,~

and this completes  the proof.

A special case is Grothendieck’s

N(T.5’)  I: P,tT)P,(S)

_ 5.6. The rest of this paragraph will contain  some more applications of this type of char-
acterizations  of cu-integra1  operators/maximal  operator  ideals. First,  when is the natura1 map

I : EéD,F  -f E&F L, C(  E’, F)

injective? If CY  is totally accessible  the duality theorem  3.4 for tensomorms implies

E@,F  =  E&$  L, (E’&,,F’)’  - C(E’,  F ” )

< ‘lf
Ei?@

whence 1 is injective.
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Proposition. If CY  is afrnitely  generated tensornorm, E and F Banach spaces,  one  of which
has the approximation property, then the naturai  map

I : E&F  -t E&F

is injective.

Proof  . Assume that F has the approximation property, z E  E@,F  and I(z)  = 0 . It is

to show that (rp,  z) = 0 for al1

y3  E (E6&F)’  - C(E,F’).

By theorem 5.2 (and, clearly, the correspondence between  maximal  operator  ideals  and ten-
somorms)

L,c3idF : E&,F  --t  F’&,F

is continuous. The lower map in the diagram

is injective by the approximation property, whence

L,éO,,Jd  F(  z) = 0 E F’6&F

and formula (2) in 5.1 implies

(~2)  = (~F,L$3p,,,idF(Z))  = 0.

Since
E’c~,F+A(E,F)=(E@,F’)‘~C(E,F)

is continuous and
E’&F L, C( E, F)

it follows: lf [ di A] and (Y are associated,  then the natura1  map

E’éO,F  + d( E, F)

is injective if E’ or F has the approximation property (or if CZ  is totally  accessible).
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5.7. For the bounded approximation property of Banach spaces  one obtains the

Proposition. Let CL>’  be totally accessible and CU N [d,  A] . Every Banach space E with
id E  E d has the bounded approximation property with constant  5 A( id & .

Proof .  TO apply the criterion 3.5 (about ?T 5 Xx ) for the bounded approximation property,
takezEE@E’andapplytheorem5.2toidE~d~

n(z;  E,E’)  5 A(idE)&(z;  E,E’) = A(idE)z(z;  E,E’)  5

2 A(id.)?(z;  E,E’). .

i d , f d means: E E space(d) in the terminology of Pietsch [60]; by 5.2. this is
equivalent to

E@,,G=  E@,G fora11 G (or G= E’)

(isomorphically) - or, by 5.3 (if <y  is accessible),

forall G (or G = Cp>

(isomorphically). The proposition has also a negative favour: If there is a Banach space
E E  space(d) without the bounded approximation property, men  Q’  is not totally accessible.
Anticipating theresults of $8  take wp\ N Ly and reca11  that al1 $,  (for p # 2 ) have  subspaces
without the approximation property; then the proposition says that ( w,\)’ = wP/  is not totally
accessible (pf  2 )  .

5.8. For tensomorms Q and j3, and operators S f L( X,Y)  and T E C( E, F) it is not
exactly known, under which circumstances the continuity of

implies the continuity of
S @ T” : X @cr E” -+  Y @B  F”

(see  also problem 2 in 2.3). If (Y  = % and j3 = 71

S := id,, T := id,

the continuity of id, 18  id, : 8% -+ 8,  is, by 3.5, the bounded approximation property of
E which does not imply the one of E’ , i.e. the continuity of id E, @ id E,,  : 18% -+ @,,  .  SO,
the answer to the above  problem is negative for arbitrary  CY and /3  !
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TO obtain at least some positive answers, fix S E  C(X,  Y) with IlSll  = 1 and consider
for Banach spaces V, W

d(V,Ly):={RE~(V,FY)IS~R:X~~V+Y69~W  continuous}

A(R)  := IIS  63  R : cz+ + c+l

It is easily seen that [d, A] is a maximal  Banach operator  idea1 (for the maximality use the
property stated in 4.2). The fact  that R E  d if and only if R” E  d (by corollary  3 in 4.4) is
the key for the

Proposition. Let CZ  and B be tensornorms, a frnitely  generated, X, Y,  E and F Banach

spaces, S E C(X,  Y) and T E C( E, F) such that

S@T:X@,E-+Y@+F

is continuous. Then in each  of the following five  cases

is continuous:
(1) p is totally accessible,

(2) f3 is accessible and: Y or F” has the bounded approximation property,

(3) Y and F”  have the bounded approximation property,
(4) T is weakly compact,

(5) whenever G, c G,  then Y @e  G, is an isomorphic subspace  of Y @e  Gz .

Proof . To apply the construction above,  observe that a! = ?? and p = e in the cases (1) - (3)
by the definition and the approximation lemma. Case (4) follows by using that T”( E”) c F :
it is not too difficult (using the extension lemma) to check that for the astricition T” : E” --+  F

even
S@T”:X@,E”+Y@BF

is continuous. The last case follows from a refinement of the construction of d: Define  first
a tensomorm 7 by

7(2; V,W)  := sup{P(id,@Qy(z);  V,W/t)lL E COFIN(W)};

7 coincides  with p on NORM x FIN whence, by the approximation lemma, on al1 spaces
Y @ L?,(  I ) . Now use the maximal  Banach operator  idea1

{R  E C( V, W) IS 8 R : X @LI  V --+  Y g7 w continuous},
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the continuous maps

and the isomorphic embcdding

Unfortunately, this result does not cover the general case of p = 7~  - which seems to be
unknown. It is clear  (by  4.4) that in case (1) 11s 8 T : . . .jI = IIS  @ T” : . . . II - and this
is aIso  true in (2) and (3) if the spaces  have  the metric instead of the bounded approximation
property. For cx  = 8, p = K and Y having the metric approximation property the result was
proven in [38],  p. 355.
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6. Cp-SPACES

6.1. A Banach space E is called an Ci1, -space (for 1 <p 2 oo and 1 < X < oo)if
for each  E > 0 and iV E FIN(E) mere  exist a natura1 number n and a factorization

such that IlTll IlSII  < X + E. A space is called CP  if it is an ,$,-space for some X.
Obviously, every 13,,x -space in t he sense of Lindenstrauss and PeiczyMi ([51],  for ev-
ery N E FIN(E) there is an M E FIN(E) with N c M and Banach-Mazur-distante
d(M,ep”)  5  X)isan  Ci,x -space and it will be seen soon (6.3) that the differente between
these  two classes  of spaces is not very large; the great advantage of the class  of ,!IF  ,-spaces
is that the constant  X does not vary under dualization - a fact  which is false for Cr,,-spaces
and seemingly unknown if an additional E is allowed.

Since  Lp( p) -spaces  are Cp,l+E -spaces for al1 E > 0 they are .Ci  r -spaces  and it follows
the same  way that the spaces C(K) are ,!Zm,r  -spaces  .

Following  Pietsch, a Banach spaces E is in space (d) (for an operator  ideai  d ) if id E E
d . Recali  that (C,,  LJ  is the maximal  normed operator  idea1  of the p-factorable operators
which is associated  with the tensomorm wp  . Anticipating the fact  that  wp  is accessible  (9.4)
the equivalences (2) - (5) of the following proposition are immediate from the characteriza-
tions 5.2 and 5.3:

Theorem. Let  1 < p 5  00  and 1 2  X =C  00.  Thenfor every Banach space E thefollowing
statements are equivalent:

(1) E isan f$,-space

(2) E is in space(13,)  and Lp( id E) 5 X
(3) For al1  Banach spaces G (or only G = E’ or G some predual  of E)

wL<a<Awk  o n E@G

(4) For al1  Banach spaces G

E<W&k  o n G@E

(5) E’ is in space(  &,)  and Lti(  id E,)  5 X
(6) For every E > 0 there  is a factorization of id &,,  through some Lp(  p)

Id #r
E” -i E”

s\ % /T
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with  1 ISI  1 1 ITI 1 5  X + E  . (Inparticular: E”  is isomorphic to a complemented subspace

of some L,(p)  1.

It is clear  form (6) that the Cg  -spaces  are exactly those isomorphic to  Hilbert spaces. (4)
implies that Pi-spaces (i.e. spaces with the X-extension property) are LL,,-spaces.

Proof :

(2) 0 (6): id E is in L, iff id E,, is in LI,  by corollary  3 in 4.4; now the factorization
theorem  4.6 for p-factorable operators shows the equivalente.

(4) 0, (1): Take N E FIN(E) and

then mere  is a reprcsentation of 1; by z = ~~=1  P,,,  @ y, with

wp(z;  N’,E) 2  wp(pm)~p~(~m)  i ~(2;  N’,E)(X+  6)  = J,+ 6

and whence
N,E S(s)  := ((P,,4)

T(t,> := -&,Ym
m=l

is the desired factorization since

IlSII = qPo,) 9 lITII = y,hn)

(1) /L  (4): Observe first that for al1 Banach spaces G

E = W
P

on

by 1.9; now the implication is immediate from the followlng  lemma which is of its own
interest. n

Corollary.  E is un J!ZP  x -space ifand only if E’ is an .C;,A-space.

6.2. The «loca1 techniques»  for  the Ci-spaces  are somehow concentrated in the

Loca1 technique lemma. Let  a>  and ,B be tensornorms, c > 0 and G a normed space such

t h a t

ff 5  CP on GC$
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for al1  n E N , thcn

C:<cXJ  o n GczE
for every L:-,-space G.

Proof . Take a factorization

N L*IUL~E

S\ % j-T
IlU IlSII 5 x + E

e;
then, for every z f G @ N,

4.x  G,M) = a((idG@ToS)(z);G,M)  < IITll~(idc~S(z);G,e~)  5

I Il~llcLW.~~W~  G$>  I 11~11  llSllcP(z  GN) I
5 (X + e)cP(z;  G,N).

This implies the statement. .

(Note that the finite hull  only was taken on the right side  of the tcnsor product;  this will be
used in 8.8 and 8.9). It is obvious by the definition, that more or less the same  loca1 fechniques

for operafors apply for Li-spaces  as they do for Cr-spaces.

6.3. TO obtain the precise  conncction betwecn  the Cr-spaces  and the CP-spaces,  observe
first that for every 1 < p < 00 the Hilbert space C, (by using Rademacher functions) is a
complemented subspace  of LP[  0, l] , whence an Cg-space; it follows now easily from the
definition that every Hilbert  space is un Li-space for al1  1 < p < CO  (but J?, is not an
Cr-space for pf  2 ). Results of Lindenstrauss-Rosenthal([52],  2.1 and 3.2) even imply (with
the aid of 6.1 (6))

l<p<co: A Banach space is an L;-space if and only if it is an L,-space or

isomorphic io a Hilbert-space.

p=  1 oroo: The class of Li-spaces  coincides  with the class of CC,-spaces.

Note that Li,,-spaces  are exactly those  which were used in the assumption of [52],  theorem
4.3. Again using 6.1 (6) it follows that

A Banach space is an Li-space if and only if it is isomorphic to a complemente

subspace  of an Cp-space.

This implies that tensomorm inequalities hold for Cs-spaces  if and only if they hold fc
CP-spaces  - but the constants  may vary.
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6.4. Grothendieck’s inequality in tensorial form 1.11 stated that

whence, by the loca1 technique lemma for Ci-spaces

whenever E is an CL A-space  and F and f&,-space.  Since

CN& 6’ = 7r

v, - w; w;! = w2

Q2  - gì gì’  = d,

and, by 1.5,

w2 = “2,2 I al  ,2 = d2

the «transfer  argument»  4.10 implies the

Proposition. If E is un CL A-space  and F un Cy,P-space,  then

C(E,F)  =D2(E,F)  =Q2(E,F)

PZ(T)  I&G?  5 &bII~II.

In 8.5 the result  that every operator  CL t Cy  is absolutely-2-summing  will be improved
to operators C&,  -t CP  for 1 5 p 2 2 .

Dualizing
T T < KGw2 on eg,cQe:

gives

w; 5 KG& on 4; wy

whence, by the locai  technique lemma,

w; 5 K&LE on E@F

if E is an CT  ,,-space  and F and Ci,P -space. For operators this means (again  by the transfer
argument 4.10): Every 2-factorable Ly -t LCD,  is integral (see  also 8.13).
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6.5. Another application of lhis simple  way of arguing  comes  from

239

(see  1.12),  and whence

Since  C - E and P,  - 90, = dm this implies the famous [Si]

Proposition. lf E is un Ly,x-space  and F un Li .~ -space, rhen L(  E, F) = P,  (E, F) and

p,(T)  I ~&II~II~
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7. MINIMAL  OPERATOR  IDEALS

7.1. Now another crucial  link bctwccn  Banach operator  ideals and tensor  norms will be
proved - the representation theorem for minima1 ideals.

If [d, A] is a quasi-Banach id&,  then its minimal  kemel is defined by

[d,AJ””  := 13,  II . I I l 0 [d,Al  0 [T, I l . Ill

where [ F,I].  1 I]  denotes  the ideal of al1 approximable operators (an operator  T E  C( E, F) is
said to be approximable if it is in the operator-norm closure of al1 finite dimensiona1 operators).
[d,  A] is called  minima1 if it coincides  with its minima1 kemel (see  [60],  8.6).

Let (Y N [d, A] . Then for M E FIN( E’) and N E FIN(F) the diagram

E’@,F  & d”“(E,F) 3 I;R&

J

M@,N L d(E/M’,N)  3 T

obviously commutes. Hence  for z E  E’ 18  F and u E  M @ N with  15 8 IC(u) = .z

Am%&)  = A”“(I;L,Q;o)  < A(L,)  = (~(11; M, N),

which implies
Ilrl):E’~,Frdmi”(E,F)III  1.

Even more holds:

Theorem. If a! N [d,  A]  the canonica1 map

\k : E’&F&d”U”(E,F)

is  a metric  surjection for al1 Banach spaces  E and F.

Proof : (1) Let SO E d( X, Y) , T E T(  E, X) , R E F(  Y, F) and consider  w E E’ 8 F

corresponding to RS,  T E  F(  E,  F) . Then

4~; E’,  FI 2 llRllA@,>ll~ll.

Indeed, if

R= I;R, with M E FIN(F), R,,  E  L(Y,  M)
T = TOQ; with N E COFIN( E),  TO E C( E/N, X)
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then RS,T = IL R, S,T,Q~  , and hence

CY(W- E’ F) = a((QE)‘@IF(v I N M qz&&  E’,  FI

5 +&&T,:  ww,  MI

= A(&G,T,)  I IIRIIA(S,>llTII  .
(2) Let now S E dmti(  E, 8’).  Then by definition there  are Sc,  E  d( X,Y),  T E

F( E, X) , R E F(Y,  F) such that

S = RS,T and IlSllA(S,,>  lITI  I Cl+ 4A”%3.
For sequences (TJ  in F(  E, X) and (R,) in F( Y, F) with

IIT - Tnll --f  0 and IIR - RII -3  0
choose  w,  E E’ @ F corresponding to R,S,T,  E F(  E, F) ; then, by (l),

4 w,  - w,,;  E’,  FI 5

I a(w,,,,-,,,,,,;  E’, F) + a(w,,  - w,,;  E’,  F)

I II&, - KnIIA(WIIT,II + II%II4Wll~n - Tmll  ,
which implies that w := limw, E E’&,F  exists. Obviously,

q(w) = lim$(w,)  = RS,T = S

and, again by (l),

cu(w;  E’, F) = lim cr(w,;  E’, F)

I 1in-1  IlK,ll~C%~ll~nll
= Il~ll4&,)ll~ll  I Cl+ dA”“U’).

It is a well-known fact  (see  0.7) that the extension

E’éO,F  -++  N( E, F)

of the canoni&  embedding is a metric  surjection. Hence  in the special case CY = 7r N  Z  the
preceding result implies that [Z, 11  mi” = [N,  N]  . This is the reason  why operators in Ati
sometimes are called  wnuclear  .

The following statement follows directly from 5.6:

Corollary. Let  CY N  [d,  A] and let  E, F be B anach spaces.  If CY  is totally accessible  or if
E’ or F has the approximation property, then

E’&,F  = d”“(  E, F)

isometrically.
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7.2. With the last theorem, the third of the three basic  links between the metric theory
of tensor products and the the~ry  of Banach-operator ideals was obtained: If the maximal
Banach operator  ideai  [ A, A] and the finitely generated tensomorm ~1  are associated, i.e.

M’@,N=A(M,N)

isometrically for all M, N E FIN, then for all Banach spaces  E and F the following
theorems hold: (4.3,4.4,7.1)

(1) The representation theorem for maximat  operator  ideals:

A(E,F’)  L (E@,  F)’

(2) The embedding theorem:

E&F  c, A( E, F)

(3) The representation theorem for minima1 operator  ideals:

E’&FAAm”(E,F).

In order to illustrate the interplay of these  three facts  the following extension of a result
of Schwarz  1761 (see  also [60],  10.3.5)  is proved:

Proposition. Let [ A , A] be a maximal  Banach ideal. If  the associated tensornorm CZ  of A

is totally accessible  or if E or F’ has the approximation property, then

A*( E, FI’)  = (A”“(  F, E))‘.

Proof : The representation theorem for maximal  ideals shows

(4.5 implies (Y* = ( CY~) ’
ideals gives

hence

d*(E,F") L (E@,,  F’)’

L ( F’g3,E)’

d' ) and corollary  7.1 of the representation theorem for minima

F’&  E = d- ( F, E) ,

d*( E, F”) = (d""( F, E))‘.
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The duality bracket can be calculated with the trace: Use 5.2 to see  (first on elementary ten-
sors)thatfor T E d*(E,F")

dmin(  F,  E) = F’$@  id”T  F’$Q”’ + N(  F’, F’)

W

I

W

s - UFJ - S’ o T’ o nF,

- (T,S)EIK

and

db(  F, E)  = F’gD,E  ut  .“$j,  T’%E E’&E  --+ N(E,E)

W W

s - UE - POT

where S”  : F” --+  E is the astriction of S” ; it follows that

tr,,(  S’  o T’ o nF,)
lTtS)  = { u,(S”  o T)

if F’ has a.p.
if E has a.p.

In the case of cx  being totally accessible,  the duality bracket cannot always be calculated with
the trace  on operurors:  for an example, take Q = E whence d’ = Z and d””  = F and E a
reflexive space without the approximation property; then

Z(E,  E) = N(E,  E) = z(c,,,E) oT(E,c,)  =T(l,,E)  oZ(E,f,)

SO neither S’ oT’ nor ToS  (for T E  d* and S E  d"" ) have  in general a trace  (see  also 0.8).

7.3. The following trivial  consequence of the representation theorem for minima1 ideals
sometimes is useful:

Takz  E and F Banach spaces,  LY  - d and jl - 13, then

implies

B”“(E,F)  c Ati( A&(T)  5 cB~(T)
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As art  application a «nuclear»  version  of Grothendieck’s theorem 6.5 is given: Since g,  N
ZIP for 1 5 p 5 03,  proposition 1.6 (and 1.7) and the representation theorem for minima1
operator  ideals imply that an operator  T E L( E, F) belongs to Zr-(  E, F) if and only if it
has a nuclear  representation of the form

T = 2 x:  @  yi
i=l

such that (11x:11)  E  $,  (’m c,,  if p = 00)  and w,,(  y,) < ce. Moreover, in this case

T”(T)  = inf e,(z~)~~(y~)

where the infimum is taken  over al1 possible  representations. This proves that (Zr”,  C”)
coincides  isometrically  with the Banach idea1 (NP,  NP)  of al1 p-nuclear operators (see  [60],
18.2.1).

Since m  < K,g,  on .C;  Wy (see  1.12) the local technique lemma implies that for every
L;,,-space  E’ and LT,P-space  F

and whence, by the above  observation:

Proposition. Let E be an La,,-space  and F un Ly  ,-space, then for al1  1 5 p 2 00

JWE,  F)  = N,W, FI
N(T) I &W$,(T).

See  the results  of 8.5, 10.2 and 10.3 in order to obtain other results  of this type.
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8. PROJECTIVE AND INJECTIVE TENSORNORMS
8.1. A tensomorm <y  on NORM (or on FIN) is called right-injective on NORM (or

on FIN), shorthand: (r)  -injective,  if for al1 metric injections 1 : F & G

is a metric injection (E, F, G E NORM or FIN, respectively) and right-projective on

NORM (or on FIN), shorthand: (r)-projcctive, if for al1 metric surjections Q : F --k  G

id.@Q:E@,F+E@,G

is a metric surjection (E:  F,G E NORM or FIN, respectively). If ,$  is (r)-injective
(resp. (r) -projective), then Q is called left-injective (resp. lefi-projective);  if LY  is left- and
right-injective (resp. projective) it is called injective (resp. projective). Clearly, E is injective
and x projective on NORM (this follows directly from the definitions, see  0.7). The duality

M @d N = (M’ BLI N’)’ M,NEFIN

implies: CY  is  (r) -injective on FIN ifand only if cy’ is (r)-projective  on FIN.

8.2. This result will be extended to tensomorms on NORM . Unfortunately, (r) -projec-
tive tensomorms are more difficult to treat for normed spaces  man (r) -injective ones, SO

their study will  be prepared by a precise investigation of their behaviour with respect to dense
subspaces. For this, let p be a tensomorm on NORM x C , where C is either the class  of
aIl  Banach - or of al1 normed space&  and define  for (E, F) f NORM x NORM and
z E E @ F «the right-finite hull» (l)

P-)(-c  E,  8’)  := inf{Ptz;  E, N)IN  E FIN(F), z E  E 63  N}.

Clearly, this is a tensomorm on NORM x NORM and ,0  2 p’.

Lemma.
(1) If/l  is (r) -projective on NORM x C, then p = /T’  on NORM x C.

(2) Ifp  is a tensorrwrm on NORM such that p = /3’ on NORM x BAN, then /3 = p’

on NORM x NORM and

(l) A similar «tight-cofinite-hulb  was used in 5.8.
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for al1 (E, F) E NORM x NORM.
(3) lf ,f3  is a tensornorm on NORM, (r)-projective  on NORM x BAN. then il is

(r>-projective  on NORM x NORM.

Proof :
(1) If G E C, then there  is a metric  surjection

Q:F’ttG

such that F has the ( 1 + E)-approximation  property for al1 E > 0 (if G is complctc take
F := e, (BG) and in the general case a dense subspace  of .4?,  (Be)) ; then, for every normed
space E

Pt.;  E, F)  = P-C.; E, F)

by the approximation lemma. It follows that for z E E @  G there  is an N E FIN(F) and a
.?EE@Nwithid.@Q(z)=.zand

PC%  E, NI.  I (1 + E)/~(z;  E, G)

and therefore

B(z; E, G)  5 P’(z;  E,G)  I P(z; E,QN)  5 P(t;  E, N)  5

< Cl+ E)P(z; E,G).

(2) Take z E E @  F, then the metric mapping property gives

p’(z;  E,@  SP-(z;  E,F).

For N E FIN(F) with z E E @ N and

P(z; E,N)  5 Cl+ E)~+(z;  E,p)

choose  an operator  R : N + F with IlRII  5  1 + 6 and Ry = y whenever y E  N n  F (the
existence of R will be  shown in a moment). Then

.zE(E@F)~(E@N)cE@RN a n d id.@  R(z) = z

w h e n c e
P’(z;  E, FI  5 P(z; E, RN) = P(id.@  R(z); E, RN) 5

S IIRIIP(z  E, NI  < (1 + d2P’(z;  E, F>
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which proves (2). For the existence of R take a projection Q : p + N n F; since

L(N,F)=N’@,F-N’@,p=C(N,F)

IS dense there is an Re  E  13( N, F) with

Il$ - Roll I 4211QII)-1.

Now R := Ro + ( 1; - RO)QjN  has the desired properties.
(3) TO see  this look at the following result: Let U  and V lx normed space&  P E  C( U, V)

surjective, U, c U dense and

Po  := PI”o  : u, + vo := P( Vo) I

Then P,,  is a metric surjection if and only if ker P = ker Pau and P is a metric surjection.
This is perhaps not very well-known (see  [78]);  a proof follows from

(a) If Po  is a metric surjection, then P’(  V’) = PA ( Vo)  is a( U’, Vo) -closed,  whence

l‘a Po  oc “*u’) = ((ker Po)‘)’  = (P’(V’))’  = ker P.

(b)  Ifz  E  U,then

inf {[Iz  + zll Iz E  ker Po} = inf {IIz  + .zII  Iz E  ker Po}

Coming back  to statement (3) take for normed spaces F and G a metric surjection Q : F d+ G.
Then Q : F -+ G is a metric surjection, ker Q  = ker Q and

is a metric surjection as well. Since,  by (1) and (2)

are dense subspaces, the mapping

is a metric surjection (by  the above  result) if

ker(idE@Q)  = E@kerQtker(idE@Q)‘@

which is obvious by ker Q = ker Q. .

This lemma allows to restrict the attention to Banach spaces when investigating projective
tensomorms.
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8.3. Now the announced duality between (T) -injective and (r) -projective tensomorms
can be proved. At the same time, and this is somehow natural, a first observation on accessi-
bility of mese  tensomorms is made (a more careful  investigation will be made in $9).

Proposition. Let CY  be tensornorm on NORM.

(1) If cy  is (r)  -injective on FIN, then z and Z’  are (r) -injective on NORM.

(2) If cy  is ( r) -projective on FIN, then T? is (T) -projective  on NORM.

(3) If CL>  is  finitely or cofrnitely  generated, then:  LY  is (T) -injective on NORM if and

Only  if Q’  iS (7)  -prOjeCtiVe On NORM.

(4) If (Y  is ( T) -injective or (T) -projective on FIN, then (Y  iS  ( T) -accessible.

Proof  :

(1) and (4): If (Y  is (r)-injective on FIN, then for F & G and z E E @  F

T?(z;  E,G)  2  Z’(t;  E,F)  =

=inf{cr(z;  M,N~~F)IMEFIN(E),NEFIN(G),~EM@N}=

= inf{a(z;  M,N)I...).=  T?(z;  E,G);

SO ?$ is (T) -injective. TO treat the cofinite hull, first (4) will be shown: For this take (N, F) E

FIN x NORM and z E N 8 F and assume CY being (r)-injective on FIN. Then, by what
was already shown and the approximation lemma, it follows

Z(z; N,F) = Z’(z; N,l,(B,))  = fzy(z;  N,l,(B,,))  <

2  %(z;  N,F)

whence cy  is (r)-accessible.  Now remembcr that CZ is (r)-accessible,  if CZ’  is (see  3.6):
Whence, if Q  is (T)-prOje4dVe  on FIN, the duaf  cy’  is (T)-injxhe  on FIN, whence <y’
is (T) -accessible and SO is LY.

Now it is possible  to show that z is (r)-injcctive  on NORM if cy  is ou  FIN:  For F & G

and z E E @  F the following holds by the two results  which were already shown:

fiy(z;  E, F) = sup{C(QE  @id.(z);  E/K,  F) 1 K E COFIN(E)}  =

= s~p{Z’(Qf@id~(z);  E/K,  F) JK E  COFIN(E)}  =

= sup{(Y(Qi  @id.(z);  E/K,  G) IK E COFIN(E)}  =

= sup{‘Z(Q~  c%  id.(z); E/K,  G) 1 K E COFIN(  E)} =

= %(z; E,G).
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(2) Using lemma 8.2 (3) it is enough to consider  a metric surjection Q : F --+  G between
Banach spaces.  By (4) the tensomorm CV’  is (7)  -accessible,  whence for every N E FIN the
result (1) implies

and therefore

is a metric surjection. Now take E an arbitrary normed space:

??(z; E,G) = inf {Z’(z; N,G)IN  E FIN(E),.z  E N @G} =

=inf{Z’(zu;  N,F)INE  FIN(E),id,@Q(w) =z}=

= inf{Z’(w;  E,F)Iid.@Q(w)  = .z}.

The last statement (3) follows from (1) and (2). .

It is not true  that the cofinite  hull  s is right-projective on BAN if Q  is right-projective

on FIN; to see  an example take CY  = 7r and 1, ( BF) A F fora Banach-space F without the
metric approximation property, then

F’@,l,(B,)  = FkQ,(B,)  -, F’@,F#F’@,  F.

Since mere is no Hahn-Banach-theorem for operators,  ‘IT  is neither (r) - nor (e) -projective;
see  also 8.15.

8.4. For the CY~  Q -tensomorms  the following result holds:

Proposition. Let 1 2  p < 00. Then
(1) dp is ( r)  -projective  und, consequently,  g,  is (f!)  -projective  and g;  = db ( r)  -injecfive.

(2) Q2,p is (r) -injective,  apV2  (f!)  -injective  and CV~,~ ( r) -projective.  In particular:  w2
is injective and w; = wb  projective.

Proof .  Since

d,(  z; E, FI  = lnt  {w,( Q,( Y,) Iz = c 5,~ Y,)

the result (1) follows directly from the following observation: If Q : F--++G  is a metric
surjection, E > 0 and y,  , . . . , y, E G, then there  are 5, E F with Q( jl,) = y,  and

ep(Yi)  I ‘p(Ci> 5  ( l + &lep( Yi)
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TO see  that ‘Y~ ,p is ( T)  -injective, take an isometric injection F c-1 G, an element z E  E 8 F
and B > 0: Choose a representation in E ~3  G of z with

&(‘i)W~(~i)W2(Yi) < Cl+  &)a2,p(z;  E,G)

then the associated operator  r, : E’ + F has an obvious factorization

P5 ~~1 %F=+/s”i”’

((9,  q)) E q 0: en 3 (LI
(D, the diagonal operator  associated with (X,)). Then

IlRII = y,(q) and IlsII = w2(Yi)’

If P is the orthogonal projection  e; + H := S-‘(F) and Sa  : H --+ F the astriction of SI,,
then D,R(  E’) c H implies T, = S, PD,R.  This means

and therefore

z= c Xizi@SoPei  E E@ F

LY~,~(z;  E,F)  5 e,(xi)w~(5i)W2(SOPei)  5

I e~(Xi)Wfl(Zi)llSl)lI  IIPIIW2(ei)  i
< Cl+ E)~~,Jz;  E,G).

The other statements in (2) follow easily by transposition and dualization. .

8.5. There  is a nice  application of the fact  that 4 is (r)  -projective.  Grothendieck’s in-
equality 1.11 implies (see  6.4) that

dLI~IKGw21&dz  on c @ F’

whenever F = L,(V).  An old result of Kadec (see  [59],  p. 272 and [60],  21.1.3) says that for
every 1 < p < 2 and n E  N there is an isometric  embedding

“; CL  L,(v)

for some finite measure V; dualizing this, the fact  that rr  and 4 are (r) -projective implies that

d,IvIK,d, on eg@Je,

and whence, by the loca1 technique lemma 6.2 for Ci-space&

d2I~SWGy%  on E @ F’

whenever E is an CL x-space  and F an Ci,,-space  (with 1 5 p 5 2). Since  P, N gz = di
and C N  E the transfer  argument 4.10 gives Grothendieck’s well-known [511
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If E is un C9,,x-space  and F un C; ,,-space  Cfor  1 < p < 2), then

,C(E,F) =?,(E,F)  a n d p,cn  I &hll~ll.

Clearly this result can also easily be deduced  from the case p = 1 using Kadec’s result and
loca1 techniques for operators.

8.6. Every tensomorm Q!  is less  than or equa1  to 7~  and 7~  is projective. Whence it is
reasonable to search fora closest  tensomorm /? 2 CZ  which is projective.

Theorem. Let  cy be a tensornorm on NORM. Then there  is a unique (r)-projective ten-
sornorm  cy/  2  (Y on NORM with the following property: If p 2  cx is (r) -projective.  then

P24.

The right-projective associate Q/  of (Y  can be calculated using the following property:

If E is normed and F a Banach space, then

E@,4(B,)  -&  E&,,  F

is a metric surjection. lf E and F are arbitrary  normed spaces  and z E E 8  F, then

cr/(z; E,F) = inf{cw/(z;  E,N)IN E FIN(F),zE E@N}. (*)

The symbol CY/  comes  from the fact  that cy/  respects quotient mappings F --!H  FLG.

Proof  . Uniqueness is clear  if it exists. CY/  will be constructed first on NORM x @AN and
then extended, using the introductory lemma 8.2.

(a) If (E, F) E NORM x BAN, define  Q/  to be the quotient seminorm on E@  F given
by the mapping

E@,L',(B,) --+E@F.

Using the lifting property of the space e, ( r ) :

4(&,)  -5,  4(BF2) llf-l i (1 + E)IlU

and the test 1.1 it is easy  to see  that cy/  is a tensomonn  on NORM x BAN.
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(b) If Q : F -+ G is a metric  surjection between Banach spaces, the same  lifting property
givi3

F A G
Q

and this implies easily that

id.@Q:E@,,F+E@,,G

is a metric surjection for al1 normed spaces E. Lemma 8.2 now implies

CY/=(Y/+  o n NORM x BAN.

(c) This means that

a/  := CY’ on NORM x NORM

is an extension of the tensomorm CY/  to NORM x NORM. Lemma 8.2 shows that CY/  is
(r)-projective and <y  < CY/  since,  by definition, CZ  5 CY/  on NORM x FIN.

(d) If <Y  5 p, then, again by the very definitions, Q/  5 ,O/.  If p is (r)  -projective,  then
p = p’ by lemma 8.2 and therefore p = p/.  These  two observations show that cr/  has the
universal property stated in the theorem. .

A lifting argument as in (b)  shows the

Corollary  1. If E is a normed space, then

4.;  E,&(r)>  = CY/(.;  E,t,(r>>

for al1  sets r.

Remember that by a result of Grothendieck’s [26]  al1 spaces with the lifting property (as
it was used) are isometric  to some e,(r).  Kothe  [44]  showed  that spaces with the lifting
property (without norm-restriction) are isomorphic to some ei (r).  Clearly,

\a := ((a’)/)*

is called  the left-projective  associare of LY.
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Corollary 2. Let (Y be a tensornorm. Then

\<d>  = <\4/  =: \a/
is called the projective associate of cr;  it is the unique smallest projective tensornorm 2 CU,  is
jìnitely generated and

i, @ob<B,)  -,-W\,,F

is a metric surjection if E and F are Banach spaces.

The proof follows easily from the «transitivity of metric surjections»  and the theorem.

8.7. Fortunately, the injective case is simpler.

Theorem. Let (Y  be a tensornorm on NORM. Then there  is a unique (r) -injective ten-
sornorm CY\  5 (Y on NORM such that /3  5 Ly\  for al1 (P) -injective tensornorms /3  2 CY.  For
al1 normed spaces E, F

E &\ F A E ~3~  l,(  B,) (*)

is a metric injection.

CY\  is called the right-injective associate of (Y.

Proof . Define  CY\ on E @  F to be the subspace  norm of

E@F-  E@,E,(B,).

Since  al1 .&,( r ) have  the 1-extension-property

G II~II  I Il~ll

s L‘\ T
F 5 f,(r)

test 1.1 gives easily that <r\  IS a tensornorm on NORM - as  well as  that CY\ is (r)-injective.
The definition implies immediately that p 5  cy\  if ,f3  5  CZ is (r) -injective. .

As in the projective case:
/ci  := ((a’)\)’

is the left-injective associate of cy  and

/a\  := </4\ = /(a\)

is the injective associate which is the unique largest injective tensomorms smaller than CY.  1
follows:

E@/,\  F L &(B,)  @aL,(B.w).

Note that injective tensomorms are clearly finitely generated.
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Corollary. lf the Banach space F has the X-extension-property, then

CY\  < Q  5  Xa\ on E@F

for al1  normed spaces  E.

8.8. The following is clear  by what has been already shown:

Proposition. For every tensornorm CY, normed space E and n E N

E @, e; = E é~,/  !; isometrically

E@,e;  = E@& isometrically

Now the locaI technique lemma 6.2 for C;-spaces  will be applied  to give the

Corollary. Let CY  be a tensornorm and E a normed space.

(1) If F is un Cy,x-space.  then

Note that  CY+  2 ~CX  on E ~3  F if F has the p-approximation  property (by the approximation
lemma) and CZ  = CY+  if CY is finitely generated.

(2) F is an CL A-space,  then

C-Y\ 5 a 5 XCY\ on E @  F.

Proof . The proof of the locai  technique lemma actually gave CY* < cp’  instead of ?? 5 CP
as it was stated. Now (1) is immediate and (2) follows from CZ\  = CK\‘. .

8.9. This result helps to state a simple test for recognizing whether a tensomorm ,B is the
projective/injective  associate of (Y:

Proposition. Let CY  and p be tensornorms.

(1) Ifp is ( r) -projective,  then the following are equivalent:

GO P = 4
(b) For al1  E E NORM and n E N

isometrically
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(2) if/3 is (r) -injecrive,  then the following are equivalent:

(aI  P  = a\
(b)  For al1  E E NORM and n E N

isometrically

(3) lf CY  and p arefinitely  kenerated,  then it is enough in both cases  to test onlyforfinite-

dimensiona1 E.

Proof . Assume (1) (b),  then (again  by the proof of the loca1 technique lemma) /Y  = cy*  on
al1 EI?& ( r ) and whence p = cy  on al1 EI@,  ( r ) by the approximation lemma: the properties
(*)  in theorem 8.6 give (a); the reverse  implication follows from the last proposition. (2) can
be shown the same  way and (3) is obvious. n

Clearly, it would be enough in (3) that cy  and p are finitely generated on the left side.  Note
that  the result (together with 8.3) implies in particular  that CI/  and (Y\  are finitely generated if
CY is finitely generated.

The same  arguments give:

Let cy and p befinitely  generated tensornorms.
(4) lf/3 isprojective, then p = \CY/  ifand only iffor al1  n E N

isometrically

(5) Ifp is injective, then /3 = /CZ\  ifand only iffor al1  n E N

isometrically

8.10. The following formulas contain  many of the phenoma conceming projective/injecti-
ve associates  and finite/cofinite  hulls;  they create a type of «~al~~lu~»  which will be helpfull
when dealing with accessibility:

Proposition. Let cy be a tensornormorm on NORM.

(l)(Z)\=o;t\and(d)/=EY/.

(2)(%T)\=,C\butingeneral(?C)/#~.

(3) ((Y/)’  = ((Y’)\  and(tu\)’ = (CI’)/.

(4) (cY/)* = /CY*  and (cy\)*  = \cY*.

Proof :
(1) By 8.8 it follows that

<Y=cY=~\=?~?\  o n NéOe:
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Since p := z\ is (r) -injective  by proposition 8.3 the test gives

;Y\=  Ly\

The same  for the (r) -projective associate.
(3) and (4) follow again from the test, since CZ’  and (cy/)’  are finitely generated and clearly

whence ( CY’)  \ = ( CY\)’  which implies al1 formulas in (3) and (4).

(2) Note first that r\ is (r)-injective by proposition 8.3. Since, by (3) and 8.8.

and, by the duality theorem 3.4,

+
one obtains ( ?F)  = CI\.  The related formula for the (r) -projective associate is not true, since
- as it was already seen in 8.3 -

(%)/  = 7r# 5-r = z/. .

8.11. Let CY  bea finitely generated tensomorm and (d,  A) the associated maximal  Banach
operator  ideal. Take (J3,  B) N Q\ and T E C( E, 8’). Since (&,( BF,))’  is an ,!Z],,-space
corollary  8.8 implies

E @(I, tL,tB,J)’  = E @u’,  (L,tB,d)’

and whence, by the representation theorem for maximal  operator  ideals

tE@,,\,J  F’)’  = LW,,  F’>’  (Id$I,j, tE@,  t&tB,O)‘)’

Jl % Jl

23(E,F) 3T - - IoT ~d(E,l,(B,t))

whence T E 23 iff 1 o T E d (with equal  norms). This shows that (L3, B) = (d”J , A”J) is
the injective hull  of d in the sense of Pietsch (note that it was shown that d’“J  is maximal,  if
d is). This was the first par-t  of the
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Proposition. Let  ci - (d, A) be associated.
(1) cy\  N (d" , A”) . In particulur:  the tensornorm CZ  is ( r) -injective if und only if

the operutor idea1  ( d , A) is injective.

(2) /a  - (dm”,  A”i). In purticulur:  the tensornorm a is (4)  -injective if und only if

the operutor idea1  ( d , A) is surjective.

Proof of (2). This is along  the same  lines as the (r) -injective case: Take B - /CZ, then

(E@w  F’)’ = (E @J\(d)  .‘)’  &&),  (e’(B,)  Bei .‘)’

B(E, F) 3 T T 0 Q E -44 (BE),  F)

which shows that the operator  idea1 B coincides  isometrically with the ideal  ( d"d,  A”i) in
the sense of Pietsch. .

TO see  just one  consequence  of mese  relationships:

Corollary.  If (d,  A) is u maximal  normed  operutor ideul,  then

(ddual)inj  = (dmj)dual

(with  equa1  natura1 norms).

Proof. This is just (c&\  = (/o)*. .

8.12. The projective associates  of Q give factorization theorems for the operator  ideals.
Using Kakutani’s representation theorem  for abstract  L- and M-spaces  and, cleariy as before
the representation theorem of maximal  operator  ideals, it follows

Proposition. Let cy - (d, A) be associaied  und denote  by (dl, Al) und ( \d,  \A) the

operutor ideuls  ussociuted  with CY/  und \a,  respectively.

(1) T E d/( E, F) ifund only if there  exists u strictly  loculizuble  meusure  p, operutors

R~dundS~Csuchthut

E 5 F r-1 F”

R1 ;/: /*s

L,(P)

In this case:

A/(T) = min A(R)IlSll
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and the minimum is attained with a metric surjection

s : L,(p)  -L F”.

(2) T E \d( E, F) if and oniy  ìf there  is a compact space K, operators R E L and

S E  d such  that

In this case:

E 5 F ut F”

R\ % /*S

CC  K)

\A(T)  = min IIRIIA(S>

and the minimum is attained with a metric injection R.

The details of the easy proof (which is of the same type as  the one  of proposition 8.11) are
left to the reader.

8.13. Since w2 is injective by 8.4 the fundamental  theorem 1.11 of the metric theory:

is, by the finite-dimensionai test 8.9 (5). just the

Theorem:

Since 7r N Z the integral  operators, w2 - C,  the operators that factor  through a Hilbert space
(see  4.6)

E -;  F

\f
H >

(/T) \ = /(T\)  = /T\  and Z”J  = PI (by the factorization theorems), the results  of 8.11 give

the

Corollary  (Grothendieck’s inequality in operator  form):

cp,> SUrl  = (z”““)“’  = C,

L , (T )  5 P?(T) =  (Is”q>“J(T>  5 K,L,(T).
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Clearly, this implies

q(f,,F)  = &<-$,F)

for al1 Banach spaces,  and the well-known (see  6.5)

This latter formula (nowadays called:  Grothendieck’s  theorem) implies (by  simple factoriza-
tion arguments) the corollary,  which is nothing else than the theorem, i.e. the fundamental
theorem of the metric theory/Grothendieck’s  inequality.

8.14. The following result about associates  of or,  ~ will be very useful.

Proposition. Let 1 5 p < oo, then

(1) g,\ = g; = d;

(2) \g;  = gg and d;/ = d,

(3) \<g,\>  = gP and (id,) / = dp

(4) T\  = g;  = w; = w; = do, and E/  = d, = w,

(5) 9;  = Q2 a n d  d;=&.

Proof . (2) - (4) follow from (1) just by calculating with proposition 8.10. The fact  that
g2 = cy2  ,r is ( r)  -injective (see  8.4) shows that (1) also  implies (5).

TO see  (1) take fìrst  p = oo,  men, by 1.9,

9co =w,=E on NC3CL

therefore the test 8.9 implies g,\  = E = rr*  = gi.
The cases  1 5 p < 03  follow from the fact  that by the factorization theorems 4.6 and 4.8

for the p-integra1  (- gr,) and absolutely-p-summing ( - g,)  operators

x”j = p
P P isometrically

and whence g,\  = g1;, since  ZF - g,\  by 8. Il.
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These  formulas contain  information about the strutture  of Banach-spaces. Take, for ex-
ample, 7r\  = wi  : The characterization of the Ly -spaces  (these  are the L, -space&  6.3) in 6.1
and the description (*)  of n\  in 8.7 give the

Corollary 1. A Banach space E is un L, -space if and only if E @n . respects subspaces
isomorphically.

This is a result of S  tegall-Retherford [77] (see  also [ 151;  the corresponding isometric  result
was mentioned in 1 .l). The Hahn-Banach-theorem applied to

L( .; E’) = (. @?I E)’

shows, that dual L,-spaces  (= dual C$,-spaces)  have the extension property.
The formula .s/  = w,  implies in rathcr the same  way

Corollary 2. A Banach space E is un 13, -space if and only if E ~3~  respects quotients

isomorphically.

This contains Kaballo’s characterization [4 11 o f  (EL) -space&  i.e. those Banach spaces E

such that Eh,. respects quotients isomorphicahy:  T O see  this, note first that E @E  . respecting
quotients implies that EG3,.  does; if, corfversely, E is an (EL) -space, a simple argument by
contradiction shows, that there is a X 2 1 such that for al1 &  : M -&  N between finite-
dimensionaI  spaces and for every z E  E C$  N there is an u E E ~3~  M with

id.@Q(u)  = z and E( IL;  E, M) 2  Xe(  z;  E, N)

and whence, by (E & N’)’ = E’ @,,  N, that E’ @& . respects finite-dimensiona1 injections
with a universal constant:  Corollary 1 implies that E’ is an C, -space.

8.15. 1s there a tensomorm CV which is projective und injective? Existence would imply,
by the reformulation 8.13 of Grothendieck’s inequality, that (-  for equivalent norms)

g;o++/i~I/+--w2,

whence(byC,  - w2,  V, N w;,  ‘PZ  w g;)

c2  CD2  cp,,

but the identity map of 1,  is not m  P, . More general (and much  deeper)

Proposition. There  is no tensornorm which is ( r) -injective  and (T) -projective.

Proof . This would imply, as before (using 8.14)

and whence P, c C,.  But this is not true as Gordon and Lewis showed  in [21] solving an
old problem  of Grothendieck’s ([27]  p. 72, question  2). .
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9. ACCESSIBLE TENSORNORMS AND OPERATOR IDEALS

9.1. As defined in 3.6 a tensornorm CZ  is said to be right-accessible if

Z(.;  M,F)  = -iT(.;  M,F)

for al1 ( M, F) E  FIN x NORM , left-accessible if its transposed tensomorm CJ! is right-
accessible and accessible if it is botb:  right- and left-accessible. Moreover, LY  is totally acces-
sible if CZ  is finitely and cofinitely genemted, i.e. z = E’ . The preceding sections  show that
these  notions are very useful  for the full understanding of the duality theory of tensornorms.

Proposition. Let (Y  be a tensornorm.

(1) CZ\ and CZ/  are right-accessible.

(2) If  Q is  left-accessible, then CY\  is totally accessible.

(3) <\4\ and  / \CY are totally accessible. In particular:  Every injective tensornorm is

totally accessible.

Proof  :

(1) follows  directly from 8.3 (4). For the proof of (2) let E, F E BAN. Since Q is
left-accessible

SC.;  E,f,(B,,))  = -Z+(G  E,&&J),

by the approxrmation-lemma (see  also 3.7); now the formulas 8.10 give for z E  E 6~  F

:\(z;  E,F)  = %\(z;  E,F)

= %(z; E,!,(B,,))

= -;y(z; E,l,(B,))

= z\(z;  E, F) = ;Y\(  z;  E, F).

(3) is a simple consequence of (1) and (2).

TO see  an example: Since gr, is (.Q  -projective,  formula 8.14 (1) implies that

9; = qf\ = <\g,)\

is totally accessible. But note the following: By 9.4 the tensomorm wp  is totally accessible
but wp/  is not totally accessible for pf  2 by 5.7.
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9.2. It tums out that  it is sometimes easier to check the accessibility  of a given finitely
generated tensomorm through its associated maximal  Banach operator  ideal.

A quasi-Banach ideal [d, Al is called right-accessible if for al1 (M, F) E  FIN x BAN ,
TEC(M,F)  and&>0  thereareNEFIN(F)  andSEC(M,N)  suchthat

commutes and A(S) 5 ( 1 + E)A( T) . It is said to be left-accessible  if for al1 (E, N) E
BANxFIN,TeC(E,N)  ands>O  thereareLECCFIN(E)  andSEC(E/L,N)
such that

ETN

Qf  %
1

S

EIL.
//

and A(S) 5 ( 1 + E)A( T) . A left- and right-accessible idea1 is briefly called  accessi-
ble . Moreover, [d , A] is tofully  accessible if for every finite rank operator  T E  F(  E, F)
between Banach spaces  and .E  > 0 there are L  E  COFIN(  E), N E FIN(F) and
S E C( E/L,  N) such that

T = I;SQL” and A(S) 2 (l+.c)A(T).

Obviously,every injective quasi-Banach ideal is right-accessible and every surjective idea1 is
left-accessible. The canonica1 factorization

E 2;F

4 s T E F(E,F)

E/ kcr  T --+  irnT

gives that a surjective and injective quasi Banach idea1 is even totally accessible.
The key for the following result is the embedding theorem 4.4, namely

E’@=  FL,d(E,F)

if (Y  and (d,  A) are associated.
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Proposition. A jìnitely generated tensornorm CY  is right-accessible (resp. left-accessible,

accessible, totally accessible) if and only if its associated  maximal  Banach idea1 is.

Proof . It will be shown that CZ  is totily  accessible iff [d,  A] has this property; al1 other
proofs are similar. Assume that (Y is totally accessible and let T E  T(  E, F) . Then

d(z,; E’,F) = %(zT;  E’,F)  = A(T)

which implies that there are (M, N) E FIN(  E’) x FIN(F) and u E  M 8 N with

a(u;  M, N) < (1+ E)A(T) and I~@zq$=+

Hence  TU  E  C( EIMo,  N) satisfies

A(T,) 5  (1+ E)A(T) and I;T,Q&,  = T.

Conversely, let [d, A] be totally accessible. By the embedding lemma 2.4 it suffices  to check
that

a(.; E’,F) = +Z(.;  E’,F)

for al1 E, F E BAN. Let z E  E’ @ F. Then there are L  E  COFIN(E)  , N E FIN(F)

and S E C( E/L, N) such that

A ( S )  <(l+&)A(T,)  a n d I;SQf =‘T,.

It follows, by what was said before, for zs E  Lo @ N

a(+;  L’,N)  < (l+~)‘Z(z;  E’,F) and IL”0  63  I;(%,>  = %,

which completes  the proof.

Since  ddual N a* and d* - cx* (by proposition 4.5) it follows from 3.6 the

Corollary.  Let [d, A] be a maximal  operator  ideal.

(1)  i-4 dua1,  AdualI  is right-accessible (resp. left-accessible, totally accessible) if and only

if [d,  A] is left-accessible (resp. right-accessible, totally accessible).
(2) [d* , A*]  is right-accessible (resp. left-accessible) ifand only if [d, A] is lefi-accessi-

ble (resp. right-accessible).
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9.3. The following result will be quite  useful:

Proposition. Let [d, A] and [ 23,  B] be quasi-Banach ideals, [d, A] injective and left-
accessible, [ l3,  BI totally accessible. Then [x3  o d, B o A] is totally accessible.

It is easy to see  that injective and left-accessible ideals are totally accessible.

Proof . Take T E F(  E, F) and E > 0 . Then there  are R E d( E, G) and S E B( G, F)
such that

E 2 F

R\  /1S B(S)A(R)  <(l+&)(BoA)(T).
G

Since d is injective one can choose  this factorization with R(E) = G whence S(G) c
T(E) and S is finite-dimensional. Since 13 is totally accessible and d is left-accessible, the
following factorization holds:

E TF

R\  /*S  \ 4%) I Cl+ EIA(R)
1 G N

\ b”
EIK 2 GIL

Consequently,

B(S,)  I (l+ e)B(S).

B(S,)A(&)  <(l+&)A(R)(I+e)B(S)  <(l+&)3BoA(T)

which proves the result. .

Similarly, it can be shown that if [d,  A] and [ 23,  B] are both right-accessible or left-
accessible, then tbeir product  [B o d, B o A] again has this property.

9.4. Now everything is prepared to give an easy proof of the following fundamental

Theorem. Let p, q E [ 1, cm]  such that i + L > 1.
Q--

(1)  ap,q and  [ &,,  , L,,,]  are accessibpe.

(2) c& and  [ Dti ,qI , Dg,<r,]  are totally accessible.

Proof . Since the tensomorms and operator  ideals in question  are associated  (4.9) and a! is
accessible if cr*  is (3.6) it sufficcs, by 9.2, to show that Dr,,p , is totally acccssiblc. Kwapien’s
Factorization Theorem 4.8 States that



Aspects of the metric  Lheory  of tensor products  and operator  ideals

Now, applying the preceding proposition, Pg is injective and

are, by 9.1, both totally accessible.

For another proof of this iesult see  [20].

Corollary.  If  p or g = 2 , then  CY~,~  is totally accessible.

Proof . This follows with 9.1 (2) from the facts  that (Y~,~ is right-injective (8.4) and left
accessible. .

9.5. The tensomorm g1 = g;  is totally accessible. But Reinow [65],  cor. 1.2, showed  the
existence of a reflexive  Banach space 2 such that for al1 p E  [ 1 , 001  with pf  2 the natura1

map
z’é3,pz -3 C( Z,Z)

is not injective (i.e. 2  dces  not have  the p-approximation properfy). Since

is injective, Reinow’s result implies that:

For 1 5  p < 00  and pf 2 the tensornorm g,  is not totally accessible.
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10. MORE ABOUT cyp  ~

10.1. The present paragraph gives some examples for the interplay between maximal  op-
erator  ideals and their associated  (finitely generated) tensomorms. The transfer argument4.10,
remark  2 will be crucial:  the reader  should have  it always in mind! Many of the results will
be about the spaces -$ : By 1-complementation, they always imply results on $ (with con-
stants independent from n)  and therefore, by the locai  technique-lemma for Cp-spaces  (6.2
for tensomorms and, the same  way for operator  ideals), also  results for general CP-spaces
(with additional constants)  instead of ep  are valid. The obvious consequences for minima1
operator  ideals (via the representation theorem 7.1) will not be stated.

10.2. The first result contains  as a particular  case that al1 tensomorms LY~,~ (for p, g E
] 1, oo[ ) are equivalent on Hilbert spaces; remember CY~,~ < c~,~w~  from 1.8.

Proposition. Lef  p, g El 1, oo[ with t + + 2 1 and r,  s E  [ 1,21.

Then

E 1.  ap.g  2  &c~,~E on 1,  @  G

and

c+,,~ I: r 5  KGC~,~;,~ on e,, c3 e,,

Proof . By 4.10 and Grothendieck’s  inequality 1.11

Since  w2  and E are injective and

(see  8.5) the locai  technique lemma for 13;-spaces  implies

which gives the announced result on L, @.$.  The second  one  follows by dualization (remem-
ber this aspect of the transfer  argument). .

In terms of operators (this is a result of Lindenstrauss-Pelczyttski  [51] which was gener-
alized by Kwapien [48]).

Corollary. Zf p, g EI 1, oo] und T,  s E  [ 1,21,  then
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10.3. TO investigate the tensomorms g,,  = ap,i it is reasonable to study first the associated
operator  ideals of summing opcrators.

Proposition. Take  S,  p E [ 1,21 and q E [ 2, cm[  , thenfor  every  Banach  space  F

and

(2) P,tF,&>  = T’,(F,&>

P2(T) < a,b,P,(T) far T E Pp(FJ,>.

(The constants  a, and b,  from Khintchine’s incquality). This result 1s due to Kwapien
as well [46].  Clearly, a special case is Pelczynski’s theorem, that al1 ‘Pp coincide on Hilbert
spaces.  We present a proof since  it hts nicely  into our setting.

Proof:(1)Itisenoughtotakep=2;forTEPz($,F)  fix~~,...,x,~&  anddctine

s : em  -+ e, Sei  := x,

whence IlSll  = ~i(rri;~,)  . Since  PZ - g2 N PZ*  (by 8.14) the relations

(5.5) give

P,(TS)  I P~tT>P,(S> 5 P,G’V&IISII

when using C( 12, C,)  = PZ  (&,  e,)  (see  8.5). Therefore

c IlTqII  = c IITSe,Il  i Pz(T)KGllSIIWl(el;em>
t i

= Pz(T)K,w,tx,;&)

which is PI(T)  5 KGP2  (T) .

(2) For T E  C( F,  .!,)  take x1  , . . . , 5,  E  F and use Khintchine’s inequality 1.8 in order
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to obtain:

Now, if T is even absolutely-q-summing , the Grothendieck-Pietsch-domination theorem
gives

i +‘,U’>  sup (1  ~~&i(l)(z’,xi,I*Bn(dl))“q  2
z’EBr  D, i=l

I a.yPq(T)bq~2(Xi)

and this is PZ<  T) < a,bqPq(T)  .

In terms of tensomorms (by the transfer argument and the embedding lemma)

Corollary 1. For every Banach space F the following holds:

(l)Ifr,q  E [2,c~l,then

andij-s  E  [1,21,  q E  [2,ml,fhen

d,  5  d,  5  K,d, o n

(2) g s E  [ 1,2l und p EI 1,21,  then
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By the transfer argument it is possible to go back to operator ideals in order to obtain the
dual results for operator ideals (note that al1 these tensomonns are accessible and LZP  has the
metric approximation property). The transposed of the second statement in (1) and (2) give
therefore immediately

Corollary.  Let F be a Banach space, then

ZJW,) = &,(F,$> = z,(F,&>

for qE  [2,ml,sE [1,21  and

forpe11,21  andsE[1,21.

10.4. TO see what this means for Hilbert spaces H and K , observe first, that P, ( H, K) =
7-LS(  H, K) (Hilbert-Schmidt operators) holds isometrically, whence

H QD,;  K +(H,K) = HS(H,K)

and therefore - for finite orthonormal systems -

which implies g; = q . Whecce g2 = g; = 4 = d, is the Hilbert-Schmidt norm on H @  K .

Now the preceding results imply the

Proposition. On the tensor  product  H 63  K of two Hilbert spaces the following holds:

P,q EIl,

P,q Ell,d
qE [2,cQl

pEl1,21

qE 12,001

PEl1,21
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SO there  are, up to equivalente, only three tensomorms under the cyp  ~ and c$  Q  on Hilbert
spaces: E, m  and the Hilbert-Schmidt non-n  gz  . In terms of operators:

p,q  Ell,d: cp,q = c, = c
p,q  Ell,d: V,,  = V, = Z = N

pE[l,co[  : 7$=ppdual=C1=&=

q EIl,ool = z* = zqdul  = xs

al1 operators

nuclear  operators

Hilbert-Schmidt
operators

10.5. Some of the preceding results have  remarkable extensions to Banach spaces with
type and cotype. For q E [ 2, eo[ an operator  T E C( E, F) is called  of cozype  q if there  is
ap>O  suchthatforalls,,...,s,EE

(see  1.8 for the notation); C,(T) := inf p.  The Kahane inequality (see  e.g. [53],  p. 74)
implies that using on the right side  of the definition  the L,-norm  ( 1 2 p < 00) instead of
the LZ-norm  gives an equivalent norm. It is straightforward to see  that the operator  idea1
(C,,  C,) of al1 cotype-q-operators is a maximal,  injective Banach operator  ideal, whence
associated with a certain  finitely generated tensomorm.

A Banach-space has cotype q if id E  E  C,  . Following the arguments in the first part of
the proof of 10.3 (2) with Khintchine’s inequality it is clear  that .$ for 1 < p < oo has
cotype q := max {p, 2) and this implies, by the usual  loca1  techniques, that al1 Cg-spaces
(for 1 5 p < 00)  have  cotype q = max {p, 2 } . A direct application of corollary  3 in 4.4
gives that E has cotype q if and only if E” has cotype q.

By the way, since  there are cotype-q-spaces without the approximation property (sub-
spaces of e, ) it follows from proposition 5.7 that the dual tensomorm 7; of the tensornorm
7, associated with the cotype-q-operators is not totally accessible.

10.6. Pisier’s factorization theorem ([64],  chap.  4) States that if E’ and F have  cotype 2,
then each  operator  T : E -+ F which can be approximated by finite-rank operators uniformly
on compact sets factors through  a Hilbert space; in particular

E'&F =:%E,F) c L,(E,F).

Since  w2 - CZ  and E and wz  are totally acccssible this implies

El@, F = E'q F isomorphically

whence, by the embedding lemma and 1 .X:
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IfEandFhavecotype2andp,qE]l,co[wilh1+~>1,1hen
P q-

E@,F= Ec!&F isomorphically

However, the dual  resultfails  to be true: If E’ and F’ have  cotype 2, men z and zu;  are
in general not equivalent on E 8 F. Pisier constructed a Banach space P not isomorphic
to a Hilbert space, but such that P and P’ have  cotype 2 ([64],  chap.  10). If P G& P’ and
P I$J~  P’ were isomorphic, the represemation  theorem for maximal  ideals would imply that
every operator  P t P factors through a Hilbert space which is a contradiction.

The transfer argument (4.10 remark  2( 1)) is not applicable to (*)  by the following reason:
if E’ and F have  cotype 2 it follows only

%E,  FI c C,(E,  F)

but in general not

C(E,F)  = C,(E,F)

by Pisier’s example. On the other band  if E (or F) in addition  has the approximation property,
then Pisier’s factorization theorem implies C( E, F) = C2  (E, F) .

Now the transfer argument applied to C( E, F’) and the symmetry of w;  and 7r give

If  E’ and F’ have  cotype 2 and: E or F has the approximation property, then

E@,  F= E@,; F isomorphically

and whence also for al1 c$,~  (for p, q # 1).

10.7. Analyzing the proof of IO.3 (2) it is clear  that the result extends to cotype 2 spaces
instead of 1,  : The second  of the following two statements holds.

( 1 )  pp(E,F)=?,(E,F)  if pE[1,21  a n d  E  h a s c o t y p e 2 .

( 2 )  P,(E,F)=?,(E,F)  ìf qE[2,co[  a n d  F  hascofype2.

Both results are due to Maurey; for a proof of (1) see  [64],  chap.  5.
Using the transfer argument, the fact  that al1 g;  are totally accessible  and the embedding

lemma, (1) and (2) imply the following generahzations  of corollary  1 in 10.3.



Aspccts  of the metric  theoty  of tensor products and operator  ideals

jet  P E] i,2], q E [ 2, CO] and E, F -Banach  spaces.  Then

9: - 9; on E 18  F if E’ has cotype 2

40 - dq on E ~3  F ìf E has cotype 2

9; - gp on E @ F ìf F has cotype 2

4? - dp o n  E@F  g F’ h a s c o t y p e 2 .

Since  99, = T\ and g;  = gZ  (by 8.14) the t’irst norm equivalente gives

9; - 9; = 7r\  = 7r on E@Q.&

and whence
9;’  = 91 = 9;’ - 7r on l,@E

if E’ has cotype 2. This clearly implies another result of Maurey’s

(3) C(L,,F)  = P2(&,, F) if F has corype 2
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which generalizes Grothendieck’s result for Ci-spaces  F (with 1 5 p 5 2 , see  8.5).
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11. FINAL  REMARKS

11.1. There  are various aspects of the metric  theory of tensor products which we did not
treat: We want to mention  at least  some of them which are closely connected with what we
presented.

11.2. Probably the most important  is the treatment of the «semi» tensomorms Ar

for which

holds. In general there  is no tensomorm which induces  4; this causes  from the fact  that  for
T E C( L,,,  LJ the operator

T @ id E : L,(P)  QDq E + L,b) 63% 23

is in general not continuous: take, for example, for T the Fourier-transform  on L, (IR)  .
There  are two directions of research: First, look for spaces  or, more generally, for operators
S f C(E,  F) such that T 8 S .is Ar,-continuous  for al1 T E C( L,, Lp)  (bere  are some
crucial  results due to  Kwapien [48],  see  also [23],  and 11.3) or, secondly, fix T E  C( L,, LJ
and look for al1 S E  C( E, F) such that T QD  S is Ar-continuous; for example, take T the
Fourier transform on L,(R)  (see  Kwapien [47])  or T the Hilbert transform on Lp( R ) (sye

Burkholder [3];  Bourgain [2],  M. Defant [ll])  or T the projection of L,(  (-1, l}N)  onto
the space of the Rademacher functions (see  Pisier [62]).

11.3. In [9]  products p := CY  BG p for tensomorms were defined via the trace  mapping

which mimics  the composition of operators. Among other things, this was used to prove that
S E C( E, F) has the property that

TcG:L,c3,  E+L,iq,  FP P

is continuous for al1 T E C( L,,  Lp) if and only if

ie. factors through a subspace  of a quotient of some L, which is the operator  version  of a
result of Kwapien.
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11.4 . As a generalization of theRadon-Nikodym  properry Lewis [50]  studied  the question
of when

E’&F’  = (E &,  F)’

which for the associated maximal  operator  ideal means

dmn(  E, F’) = d( E, F’)

by the representation theorems for minimal  and maximal  operator  ideals. Clearly, this study
allows in particular  to investigate under which circumstances the space d( E, F) is rellexive
(see [501,  Wl).

11.5. A crucial  tool in the theory of the distribution of eigenvalues of operators is the
tensor stability of operator  ideals d: If T, S E d , then T 18~ S E d . For example, ‘Pr
is c-stable  [36] and this is the key for Pietsch’s trick to prove the Johnson-Konig-Maurey-
Retherford theorem: If T E Pp the sequence  of eigenvalues of T is in ep (for 2 5 p < 00,
see  [43],  [61]).  Tensor stability has various other promissing applications (see  [42],  [4],  [5]).

11.6. The metric  theory of tensomorms has an extension to locally convex spaces,  due to
Harksen [29],  [30]:  If E and F are separated  locally convex spaces  with detining  systems
PE  and PF of seminorms, the cu-tensomorm  topology on E @ F is defined by

E@,F  := Pr@
PEPE  I qEPF

EphvFq

where Ep  is the canonica1 normed space associated with the seminorms p. Projectivity and
injcctivity properties of cy  for normed spaces  hold also for the a-tensomorm topology. There
are many applications to the theory of vector-valued continuous, differentiableor holomorphic
functions, to lifting and extension properties, and to the study of the topologica1 andgeomet-
rical  strutture  of spaces  of such functions; for rcferences see  [9],  [lo], [16],  Kaballo 1411 and
Hollstein [31]-[35].
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