NASH HARDY FIELDS IN SEVERAL VARIABLES

LEONARDO PASINI and CARLA MARCHIÒ

1. PRELIMINARIES

We recall some notions about signed places and valuations over ordered fileds.

Let K and L be ordered fields. We define the algebraic operations over $L \cup \{\pm \infty\}$ in the obvious manner. We have then the following definition:

Definition 1.1. [1] An application $p: K \to L \cup \{\pm \infty\}$ is said to be a signed place if:

- 1) p(1) = 1
- 2) p(x + y) = p(x) + p(y)
- 3) $p(x \cdot y) = p(x) \cdot p(y)$

for any x, $y \in K$ if all the terms are defined.

The set $A_p = \{x \in K : p(x) \in L\}$ turns out to be a valuation ring over K with maximal ideal $M_p = \{x \in K : p(x) = 0\}$.

We denote by $U(A_p)$ the set $A_p - M_p$.

Let ν be the valuation over K generated by A_{p} .

 ν is a function from $K^* = K - \{0\}$ in the ordered group $\Gamma = K^*/U(A_p)$ with the following properties:

- 1) $\nu(x \cdot y) = \nu(x) + \nu(y) \quad \forall x, y \in K$
- 2) $\nu(x+y) \ge g.l.b.\{\nu(x), \nu(y)\}$ with the equality if $\nu(x) \ne \nu(y)$. ν can be defined also for x=0 by extending Γ to $\overline{\Gamma} = \Gamma \cup \{\infty\}$ and defining $\nu(0) = \infty$.

Particularly, we obtain the following equivalences between the signed place p and the valuation ν :

- a) $x \in A_p$ iff $p(x) \neq \pm \infty$ iff $\nu(x) \geq 0$
- b) $x \in M_p$ iff p(x) = 0 iff $\nu(x) > 0$
- c) $x \in U(A_p)$ iff $p(x) \neq 0$ and $p(x) \neq \pm \infty$ iff $\nu(x) = 0$
- d) $x \in K A_p$ iff $p(x) = \pm \infty$ iff $\nu(x) < 0$.

Let I be a set of indeces bijectively corresponding to the set of principal convex subgroups H of $\Gamma(H \neq \{0\})$.

If we denote by H_{σ} the convex sub-group corresponding to the index $\sigma \in I$, we can define a total ordering over I by: $\sigma \leq \tau$ in I iff $H_{\sigma} \supseteq H_{\tau}$.

Definition 1.2. [5] The order type of I is said to be the rank of the valuation ν .

Remark. If I is finite the order type of I coincides with the number of its elements.

2. RANK OF HARDY FIELDS IN SEVERAL VARIABLES

We denote by C any smoothness category of real valued functions of n real variables [2]. Let $\overline{0} \in \mathbb{R}^n$. \mathbb{R}^n is the one-point compactification of the euclidean n-space \mathbb{R}^n to a point $\alpha \notin \mathbb{R}^n$. Let $\mathcal{F}_{\overline{0}}$ be any filter of subsets of $\overline{\mathbb{R}}^n$ with connected basis converging to $\overline{0}$, constitued by open subsets of \mathbb{R}^n .

 $\mathcal{C}(\mathcal{F}_{\overline{0}})$ is the ring of germs in $\overline{0}$ following $\mathcal{F}_{\overline{0}}$ of the \mathcal{C} -functions with the pointwise defined operations.

If there is not ambiguity we use the same symbol f for the germ [f] and the function $f \in [f]$. Moreover we denote by \underline{x} the vector $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$.

Definition 2.1. [4] A sub-ring K of $C(\mathcal{F}_{\overline{0}})$ is said to be a C-Hardy field in several variables in $\overline{0}$ for $\mathcal{F}_{\overline{0}}$ if:

a) K is a sub-field of $C(\mathcal{F}_{\overline{0}})$

b)
$$f \in K \to \frac{\partial f}{\partial x_i} = f_i \in K$$
, $i = 1, 2, ..., n$.

From now forward K will denote any C-Hardy field in several variables ordered in the usual manner.

Proposition 2.1. For every $f \in K$ there exists $\lim_{\substack{\underline{x} \to \overline{0} \\ \mathcal{F}_{\overline{0}}}} f(\underline{x}) = l$ where $l \in \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.

Moreover the function $p: K \to \overline{\mathbb{R}}$ defined by p(f) = l turns out to be a signed place.

Proof . Let be $Q_f = \{q \in \mathbb{Q} : f \geq q \text{ in } K\}$ then:

or
$$Q_f = \mathbb{Q}$$
 that is $\lim_{\substack{\underline{x} \to \overline{0} \\ \mathcal{F}_{\overline{0}}}} f(\underline{x}) = +\infty$

or
$$Q_f = \emptyset$$
 that is $\lim_{\substack{\underline{x} \to \overline{0} \\ \mathcal{F}_{\overline{0}}}} f(\underline{x}) = -\infty$

or $Q_f \neq \mathbb{Q}$ and $Q_f \neq \emptyset$. In the last case Q_f is upper bounded in \mathbb{R} and $\lim_{\substack{\underline{x} \to \overline{0} \\ \mathcal{F}_{\overline{0}}}} f(\underline{x}) = l$

where $l = l.u.b.Q_f$.

The last claim of the proposition follows obviously from the definition 1.1. and the operations over K.

We define now the rank and the rational rank of a C-Hardy field, see for example [6].

Definition 2.2. The rank of a C-Hardy field K in several variables is the rank of the valuation ν over K generated by the signed place ν defined in the proposition 2.1.

Remark. If $f \in K$, by the equivalences between a signed place p and the corresponding valuation ν , we obtain in this case:

a)
$$\lim_{\substack{\underline{x} \to \overline{0} \\ \mathcal{F}_{\overline{0}}}} f(\underline{x}) \neq \pm \infty \text{ iff } \nu(f) \geq 0$$

b)
$$\lim_{\substack{\underline{x}\to\overline{0}\\\mathcal{F}_{\overline{0}}}} f(\underline{x}) = 0 \text{ iff } \nu(f) > 0$$

c)
$$\lim_{\substack{\underline{x} \to \overline{0} \\ \mathcal{F}_{\overline{0}}}} f(\underline{x}) = \pm \infty \text{ iff } \nu(f) < 0$$

d)
$$\lim_{\substack{\underline{x}\to\overline{0}\\\mathcal{F}_{\overline{0}}}} f(\underline{x}) \neq 0$$
 and $\lim_{\substack{\underline{x}\to\overline{0}\\\mathcal{F}_{\overline{0}}}} f(\underline{x}) \neq \pm \infty$ iff $\nu(f) = 0$.

If K, K' are C-Hardy fields, $K \subset K'$, and p, p' the corresponding signed places, we have obviously: $p = p'|_K$. Moreover the valuation ν over K is the restriction to K of the valuation ν' over K'. Particularly, if K' denotes the real closure of K (K' is a C-Hardy field [4]), $\nu(K^*)$ turns out to be a sub-group of the ordered vector space, over \mathbb{Q} , $\nu(K')$. So, we can give the following definition:

Definition 2.3. The rational rank of a C-Hardy field K in several variables is the dimension of the vector sub-space over \mathbb{Q} generated by $\nu(K^*)$ in $\nu(K'^*)$ where K' is the real closure of K.

Proposition 2.2. Let K, K' be C-Hardy fields in several variables such that $K \subset K'$ and deg.tr.K'/K = r is finite, than, the rank of K' is obtained from the rank of K adding, at most, r distinct indeces.

Proof. Suppose the contrary. Then there exist n convex principal sub-groups $H_{i_1} \subset H_{i_2} \subset \ldots \subset H_{i_n}$ of $\nu(K')$, $n \geq r+1$, such that $i_j \notin \varphi(I)$, $j=1,2,\ldots,n$ where φ is the order preserving canonical injection of I in I'. Let a_j be the generator of H_{ij} and $f_j \in K'$ be such that $\nu(f_j) = a_j$, $j=1,2,\ldots,n$.

By the hypothesis, there exist some $c's\in K$ such that: $\sum_{l_1+\ldots+l_n=0}^s c_{l_1\ldots l_n}\cdot f_1^{l_1}\ldots f_n^{l_n}=0\;,$ with $s,\,l_1\,,\,\ldots,\,l_n\in N\,.$

For the properties of valuation we have:

$$\nu(c_{l_1...l_n}\cdot f_1^{l_1}\ldots f_n^{l_n})=\nu(c_{t_1...t_n}\cdot f_1^{t_1}\ldots f_n^{t_n}),$$

then

$$\nu\left(\frac{c_{l_1...l_n}}{c_{t_1...t_n}}\right) = \nu\left(f_1^{t_1-l_1}\dots f_n^{t_n-l_n}\right) = \sum_{j=1}^n (t_j-l_j)\cdot\nu(f_j).$$

Thus $\nu\left(\frac{c_{l_1\dots l_n}}{c_{t_1\dots t_n}}\right)$ turns out to be a generator of $H_{i_{\overline{j}}}$ with $\overline{j}=\max\{j:t_j-l_j\neq 0\,,\,j=1,2\,,\dots,n\}$, which is a contradiction.

3. AN INDUCTIVE CONSTRUCTION OF NASH HARDY FIELDS IN SEVERAL VARIABLES

We recall some definitions [7].

Definition 3.1. A semi-algebraic subset A of \mathbb{R}^n is said to be a semi-algebraic cell iff it is inductively obtained in the following manner:

- 1) if $A = \{a\}$, $a \in \mathbb{R}$ then A is a cell and dim.(A) = 0; if A = (a,b), $a,b \in \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$, then A is a cell and dim.(A) = 1
- 2) let $A \subset \mathbb{R}^n$ be cell with $\dim(A) = k$ and $f: A \to \mathbb{R}$ be a semi-algebraic continuous function then its graph $\Gamma(f)$ is a cell and $\dim(\Gamma(f)) = k$
- 3) let $A \subseteq \mathbb{R}^n$ be a cell with $\dim(A) = k$ and $f: A \to \mathbb{R}$, $g: A \to \mathbb{R}$ be semi-algebraic continuous functions such that $f(\underline{x}) < g(\underline{x}) \ \forall \underline{x} \in A$ then the set $(f, g)_A = \{(\underline{x}, y) : \underline{x} \in A, f(\underline{x}) < y < g(\underline{x})\}$ is a cell and $\dim((f, g)_A) = k + 1$.

Let \mathcal{F}_1 be the filter of \mathbb{R} with the basis $\mathcal{B}_1 = \{(0, 1/n) : n \in N\}$. We denote by K_1 the Hardy field of germs of 1-variable rational functions in 0 for \mathcal{F}_1 and by \overline{K}_1 its real closure.

 \overline{K}_1 is the field of germs in 0 for \mathcal{F}_1 of 1-variable Nash functions [3];

Let $I_1=\{f\in\overline{K}_1\colon f>0\,,\,\nu(f)>0\}$. We denote by $C_2(f,U)$ the cell $(0,f)_U$ where $f\in I_1$ and U is any element of \mathcal{B}_1 such that $f(x)>0\,\,\forall x\in U$. Let $C_2(f,U,m)=C_2(f,U)\cap B_2(0\,,\,1/m)$ where $B_2(0\,,\,1/m)$ is the open ball of \mathbb{R}^2 with center in 0 and radius 1/m.

Proposition 3.1. $\mathcal{B}_2 = \{C_2(f, U, m) : f \in I_1, U \in \mathcal{B}_1 \text{ with } f|_U > 0, m \in N\}$ is an open connected basis for a filter \mathcal{F}_2 of \mathbb{R}^2 converging to 0.

Proof. Let $C_2(f,U,m)$, $C_2(g,V,n) \in \mathcal{B}_2$. Then: $C_2(f,U,m) \cap C_2(g,V,n) \supset C_2(h,W,s)$ where $h = \min\{f,g\}$ in \overline{K}_1 , $s = \max\{m,n\}$ and W is any cell of \mathcal{B}_1 such that f(x) - g(x) has constant sign $(>0, =0, <0) \ \forall x \in W$.

Theorem 3.1. The ring K_2 of germs in 0 following \mathcal{F}_2 of 2-variables rational functions turns out to be a Nash Hardy field.

Proof. Let $P(x, y) \in R[x, y]$. We prove, by induction over the degree of y that P(x, y) has constant sign in some set of \mathcal{B}_2 . If $\deg_y \cdot P(x, y) = 0$ then $P(x, y) \equiv P(x)$ and its germ is in \overline{K}_1 .

If $\deg_y \cdot P(x, y) = n$ then $\left(\frac{\partial P}{\partial y}\right)(x, y)$ has constant sign in some $V \in \mathcal{B}_2$. If

$$\left(\frac{\partial P}{\partial y}\right)(x,y) = 0 \ \forall (x,y) \in V \text{ then } P(x,y) \equiv P(x).$$

Otherwise the semi-algebraic sets $Z(P(x,y)) \cap V$, where (Z(P(x,y))) denotes the zero set of P(x,y), has a finite number of connected, semi-agebraic components [1].

By the implicit function theorem for Nash functions, $Z(P(x,y)) \cap V$ is stratified in the graphs of a finite number of Nash functions α_1 , α_2 , ..., α_k .

If 0 is a cluster point of $Z(P(x, y)) \cap V$ then we consider the α_i 's defined over some cell of \mathcal{B}_1 , belonging to I_1 .

So P(x, y) has constant sign over any $C \in \mathcal{B}_2$ such that: $C \subset \bigcap_i C_2(\alpha_i, U_i, m_i)$.

Thus any 2-variables rational function f(x, y) has constant sign over a suitable set of \mathcal{B}_2 .

 K_2 is then a Nash Hardy field and its real closure \overline{K}_2 turns out to be the Hardy field of germs in 0 following \mathcal{F}_2 of 2-variables Nash functions.

Remark. rank $\overline{K}_2 = \text{rank } K_2 = 2$. In this case the principal convex sub-groups of $\nu(K_2^*)$ and $\nu(\overline{K}_2^*)$ are the sub-groups H_1 and H_2 , $H_1 \subset H_2$, generated respectively by $\nu(x)$ and $\nu(y)$.

Inductively, we denote by K_n the Hardy field of germs in 0 following the filter \mathcal{F}_n (with basis \mathcal{B}_n converging to 0) of *n*-variables rational functions and by \overline{K}_n its real closure. So we define:

$$I_n = \{ f \in \overline{K}_n : f > 0, \nu(f) > 0 \}.$$

Moreover $C_{n+1}(f,U)$ is the cell $(0,f)_U$ where $f\in I_n$, $U\in\mathcal{B}_n$ with $f|_U>0$ and $C_{n+1}(f,U,m)=C_{n+1}(f,U)\cap B_{n+1}(0,1/m)$ where $B_{n+1}(0,1/m)$ is the open ball of \mathbb{R}^{n+1} .

As in the 2-variables case we can prove the following proposition:

Proposition 3.2. $\mathcal{B}_{n+1} = \{C_{n+1}(f, U, m) : f \in I_n, U \in \mathcal{B}_n \text{ with } f|_U > 0 \text{ , } m \in N\}$ is an open connected basis for a filter \mathcal{F}_{n+1} of \mathbb{R}^{n+1} converging to 0.

We obtain then the following theorem:

Theorem 3.2. The ring K_{n+1} of germs in 0 following \mathcal{F}_{n+1} of (n+1)-variables rational functions turns out to be a Nash Hardy field.

Proof. Let $P(x_1, x_2, ..., x_n, y) = P(\underline{x}, y) \in R[\underline{x}, y]$. Then $P(\underline{x}, y) = \sum_{i=0}^{s} P_i(\underline{x}) y^i$.

We need to modify the proof of theorem 3.1. in the case $\left(\frac{\partial P}{\partial y}\right)(\underline{x}, y) = 0$ once we

have stratified the set $Z(P(\underline{x}, y)) \cap V$ in the graphs of a finite number of Nash functions $\alpha_1(\underline{x}), \alpha_2(\underline{x}), \ldots, \alpha_k(\underline{x})$ and 0 is a cluster point of $\Gamma(\alpha_t)$ with dom. $(\alpha_t) \subset U \in \mathcal{B}_n$ for some $t \in \{1, 2, \ldots, k\}$.

Choosing a suitable $W \in \mathcal{B}_n$, $P(\underline{x}, y)$ can be considered as an element of $\overline{K}_n[y]$. So:

$$P(\underline{x},y) = P_s(\underline{x}) \prod_{l=1}^q (y - \gamma_l(\underline{x})) \prod_{r=1}^p \left[(y + \beta_r(\underline{x}))^2 + \delta_r^2(\underline{x}) \right]$$

with γ_l , β_r , $\delta_r \in \overline{K}_n$ and $\delta_r \neq 0$, $x \in W$, l = 1, 2, ..., q and r = 1, 2, ..., p.

Thus $P(\underline{x}, \alpha_t(\underline{x})) = 0 \ \forall x \in \text{dom.} \ (\alpha_t) \cap W \ \text{if it is different from the empty set. So}$ $\alpha_t(\underline{x}) = \gamma_l(\underline{x}) \ \forall \underline{x} \in \text{dom.} \ (\alpha_t) \cap W \ \text{for a certain } l \in \{1, 2, ..., q\}. \ \text{Then } \nu(\gamma_l) > 0 \ .$

If $h=\min\{\gamma_l\colon l=1,2,...,q\}$ in \overline{K}_n , then $P(\underline{x},y)$ has constant sign over $C_{n+1}(h,W,m)$.

 K_{n+1} is then a Nash Hardy field and its real closure \overline{K}_{n+1} turns out to be the Hardy field of germs in 0 following \mathcal{F}_{n+1} of (n+1)-variables Nash functions.

Then, utilizing inductively proposition 3.2. and theorem 3.1., we can construct from K_2 and \overline{K}_2 the Nash Hardy fields K_n and \overline{K}_n for every $n \in N$.

Remark. rank $\overline{K}_n = \text{rank } K_n = n$.

UNIVERDITA' STUDI DI LECCE

REFERENCES

- [1] G.W. Brumfiel, Partially Oredered Rings and Semi-Algebraic Geometry, London «Math. Soc. Lect.», Notes 37, Cambridge Univ. Press. (1979).
- [2] R. Palais, Equivariant, real algebraic, differentia topology, I. Smoothness categories and Nash manifolds, notes Brandeis Univ. (1972).
- [3] L.PASINI, Hardy fields in several variables, Atti Acc. Lincei Rend. fis. S. VIII, vol. LXXIX, Ferie 1985, fasc. 1-4, (1985).
- [4] L.PASINI, Generalized Hardy fields in several variables, Notre Dame Journal of Formal Logic Vol. 29, N 2, Spring 1988, pp. 193-197.
- [5] P. RIBENBOIM, Théorie des valuations, Les presses de l'Université de Montréal.
- [6] M. ROSENLICHT, The rank of a Hardy field, Trans. AMS, vol. 280, pp. 659-671.
- [7] C. STEINHORN, Notes, Florence Univ., (1985).

Received March, 2, 1988.
Dipartimento di Matematica
Università di Camerino
63302 Camerino
Italy

Dipartimento di Matematica Università di Siena 53100 Siena Italy