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GEOMETRY OF EXCEPTIONAL WEBS EW(4, 2, 2) OF MAXIMUM 2-RANK
VLADISLAV V. GOLDBERG and RADU ROSCA

1. PRELIMINARIES
1.1. Definitions

A d-web W(d, n, r) of codimension r is given in an open domain D of a differentiable
manifold M™ of dimension nr by d foliations X_, a = 1, ..., d, of codimension r if
leaves (web surfaces) of X through a point w € D are in general position.

Two webs W(d, n, r) and W(d, n, ) with domains D C M™ and DC M™
are equivalent 1f there exists a local diffeomorphism ¢: D — W(d, n, r) D such that
X)) =W(d,n rX,,a=1,...,d.

Suppose that a dweb W(d, n, r) is defined in some open domain D C X™ by the
Pfaffian equations

d
zfml”igfhh AE‘;:U’ q=1,2, y Ty
a—1
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The last condition means that the functions f

ai;...4

are constant on leaves V. C X .
9

The g-rank R_ofa W(d, n, r) is the maximum number of linearly independent abelian
g-equations admitted by the W(d, n, r) (see [1]).

The important problems are:

1) To determine an upper bound on E_ .

2) To describe webs W(d, n, r) of maximum g-rank .

Let P! be a projective space of dimension r+ n— 1, G(n— 1, r+ n— 1)
be the Grassmann manifold of its (n — 1)-dimensional subspaces P™ ', and let X (z)
be the Schubert variety of its (n — 1)-dimensional subspaces that pass through a point
r € P™" 1 _ A smooth manifold V ¢ P™™ ! of dimension r determines in some domain
U C G(n— 1,7+ n— 1) afoliation of codimension r whose leaves are 2(z),z € V. If
V,a=1,...,d,d > n+1,are d given smooth manifolds of P!, then in some domain

D C P! they determine a d-web of codimension r. Such a web W(d, n, ) is said to
be a Grassmann web. We denote itby GW(d, n, 7).
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A Grassmann d-web is said to be algebraic if the varieties V, generating it belong to
an algebraic variety V; of dimension r and degree 4. Such a web will be denoted by
AW{(d,n, 7).

A web W(d, n, r) whichisequivalentto GW(d, n, r) (resp. AW{(d, n, r))is called
Grassmannizable (resp. algebraizable).

Let us consider now an (n+ 1)-web W(d, n, r) on amanifold M™ . Let T,(M™) be
the tangent space of M™ at p. Its subspaces TP(VH) ,u=1,...,n+ 1, tangent to leaves
V, through a point p € M™ define in Tp( M™) a Segre cone C,(7, n) with the vertex p.
Note that the projectivization of C (7, n) with the vertex p. Note that the projectivization of

C,(r, n) is a Segre manifold S(r—1,n—1) = P! x P*1 | A Segre cone C,(r, n) car-
ries two families of flat generators £ (7) and ( (n) of dimension r and n respectively. The

field of Segre cones defines on M™ an almost Grassmann structure AG(n— 1, v+ n—1)
associated with W(d, n, r). Its structure group is the group G = GL(7r) x SL(n) of
transformations of TP(M ") . The cone Op(r, m) 1S 1nvariant under transformations of
G [2].

An almost Grassmann structure AFG(n— 1, r+ n— 1), 18 r-semi- integrable (resp.
n-semi-integrable ) 1f there exists a family of r-dimensional surface W™ (resp. W")on M™
such that T, (W7) = (r) (@esp. T, (W?") W7 (resp. W") [2].

If the structure AG(n—1, r+n—1) associated with W ({n—1, n, r) is r-semi- integrable
(resp. n-semi-integrable ), the web W(n—1, n, r) 1sisocline (resp. transversally geodesic)
(see [2], [3]).

If AG(n— 1, r+ n— 1) is both r— and =»-semi-integrable, and only in this case,
the structure AG(n — 1,r + n — 1) is locally Grassmann and the corresponding web
W{(n— 1,n,7) is Grassmannizable [2, 3].

Thus we see thatany (n+ 1)-web W(n—1, r+ n— 1) defines an almost Grassmann
strucutte AG(n—1,r+n—1) .

Aweb W(d, n, r),d > n+1,1salmost Grassmannizable if all almost Grassmann struc-
tures defined by 1ts (n+ 1) -subwebs coincide. We will denote sucha webby AGW (d,n, 1) .

If n=2,1e. for W(d, 2, r), the condition of almost Grassmannizability is that all its
basis affinors X}, a=4,...,d;1,1,..., r,arescalar: )} = 6};\ (see [4]).

For almost Grassmannizable webs AGW(d, 2, r) we can define the notions of isoclinity
and transversal geodesicity as we did above for W(n— 1, r+ n— 1) because we have only
one AG(1, r+ 1) connected with AGW (d, 2, r) (see [5], [6]).

If a web AGW(d, 2, r) is isocline (but not transversally geodesic and therefore not

d
Grassmannizable) and satisfies the condition ) k;; = O (which is the condition of alge-

a=1 0

braizability for a Grassmannizable web), we will call such a web almost algebraizable and will
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denote it by AAW(d, 2, r) (see [5], [6]).

1.2. Developments in the rank problems

During the intensive development of web geometry in the 30’s these problems were consid-
ered for webs W(d, n, 1) int he plane (n= 2), 3-space (n= 3), and n-space, sometimes
for any d > 3, sometimes for some particular values of d (see [7]). SS. Chern in 1936 found
the upper bound n(d, n, 1) for the rank R, of W(d, n, 1) for any = (seec [8]). At that
time he did not find webs W(d, n, 1) of maximum rank .

Recently when S.S. Chern and P.A. Griffiths recognized that the same number #(d, n, 1)
is the maximum genus of a non-degenerate algebraic curve of degree d in a complex projec-
tive space P™ of dimension n, they used algebraic geometry results and proved (see [91, [10])
that so called «normal» webs W(d, n, 1) of maximum rank n(d, n, 1) are linearizable
(equivalent to a web W(d, n, 1) whose all lecaves ar hyperplanes) and algebraizable (hyper-
planes mentioned belong to an algebraic curve of degree d in the dual space).

In all mentioned papers concerning with the rank of webs the rank was considered with
respect to abelian 1-equations. It was the only possibility because webs studied in the papers
were webs of codimension one.

As 1t was mentioned, in the case of W(d, n, 1), where r > 1, the rank can be defined
with respect to abelian g-equations where g =1,2, ..., 7.

Int he paper [11], S.S. Chern and P.A. Griffiths found the upper bound #(d, 2, r) on the
rank /f_ and showed that webs of maximum r-rank problems for webs W(d, 2, r):

DIfr>2andd<r+1,the r-rank R_of aweb AGW(d, 2, r) isequal to 0.

1
1) The maximum?2 -rank of AGW(d,2,r) isequalton(d,2,2)= 6_( d—1)(d—2)(d—3)
(1t matches the Chern and Griffiths result obtained in [11] for general W (d, n, 7))).
1) Aweb AGW(d,2,2),d > 4,isof maximum 2 -rank if and only if it is algebraizable.

iv)Aweb W(4,2,2) is of maximum 2 -rank one if and only if
a) it is an almost algebraizable web AAW(4,2,2) or
b) it is a non-isocline almost Grassmannizable web AGW(d, 2, r) for which the mid-

dle affine connection of the canonical affine connections induced by alla 3-subwebs of
AGW(d,2,r) is equiaffine.

These results show that the P.A. Griffith’s conjecture that webs W(d, 2, r) of maximum
r-rank are algebraizable 1s true for webs AGW (D, 2, 2),d > 4, and is not true for webs
Ww4,2,2).

Because of this, it 18 natural to call webs W (4, 2, 2) of maximum 2 -rank exceptional
webs. We will denote them by EW(4,2,2).
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1.3. Double fibrations and webs
A double fibration (abr. DF) is a diagram

V7

T/ N\ T
X, X

where 7, X, and X, are smooth manifolds and
a) Z 1s a smooth fibration with respect to o, and m,,
b) m X my: Z — X, x X, 18 a non-degenerate injective diffeomorphism,

c) forany z,, z, € X,, z;#z, and §,, z, € X,, £, #&, we have correspondingly

1 —1 _1
Ty, Ty - Ty & F M -1y &y

The ideal of D F' can be found in the paper [12] of S.S. Chern. It was extensively used by
I.M. Gelfand and his collabrorators in their works on integral geometry (see for example the
paper [13]).

In [13] the authors write that «r; and , enable us to carry the various analytical objects
(functions, forms etc.) from X, to X, by first lifting them from X, to Z and subsequently
descending them to X, ».

Any 3-web W(3,2,r) defines an r-parameter family of DF. To get a DF', one has to
take the first two foliation of W(3,2,r) as X, and X,, fix a leaf V, of 3rd foliation and
consider Z as the manifold of pairs (V}, V,),V, C X, V, C X,, VNV, = A€ V;. It
is easy to see that Z — X; x X, 18 a smooth embedding. Note also that one gets more D F
taking any pair of foliations of W(d, 2, r) as X; and X, .

Fora d-web W(d,2,r),d > 3, one can construct d-2 r-parameter families of DF'.

In general for W(d, n,r),d > n+ 1, one can get d-n r-parameter families of n-fold
fibrations taking the first foliations as X, ..., X_.

In the present paper we will study geometry of exceptional webs EW (4,2, 2). In partic-
ular, some analytical objects (function, vector fields, forms) given on different foliations will
be mntroduced. The program outlined in [13] can be applied to these objects. Note that all our
considerations and results are of local nature.

-1 —
Ty + T Ty F Wy - T

2. EXCEPTIONAL WEBS EW(4, 2, 2) OF MAXIMUM 2-RANK
LetW(4,2,2) be afour-web of codimension two given on a four-dimensional differentiable
manifold M* by four foliations X _,a = 1,2,3,4, of codimension two.

Suppose that foliations X _,a = 1,2, 3,4, are given by the following systems of Pfaffian
equations:

(2.1) w=0, a=1,2,3,4; i=1,2
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where ti.:" and L;" are basis forms of the cotangent bundle T (M ) atpoint p € M*. Then as

is shown by the first author (see [14] or [15]) the forms .:af and L;i}l. are expressed in terms of

w* and w* as follows:

1 2

RPN PR SR SR SR P S
(22) YEYHY, Y EAY Y,
(2.3) det(M\)#0, det & —M)#0

where )} is the basis affinor of W(4,2,2).
We intend to consider webs W (4, 2, 2) of maximum 2 -rank . As we mentioned in Sec-
tion 1, such webs are always almost Grassmannizable and this implies [4]

(2.4) }.} = 6}}\.
Therefore

P S i
(2.5) W }\L;J + w.

For a pointp € D C M* we have

(2.6) dp = wiez + we?

where {e;], e} } is a basis in the tangent bundle T,( M*) at p.

It follows from (2.6), (2.1) and (2.5) that at p the vectors eg and ef are tangent to the
leaves V; C X, and V, C X, and the vectors e} — e? and e] — Me? are tangent to the leaves
V, C Xyand V), C X,.

It was shown in [5], [6] that for an isocline almost Grassmannizable web AGW (4,2 ,2)

we have the following equations:

dw* = w Aw'+ a,w Aw',
11 771 1
dw* = w! Aw? + a.w Aw’,

J 79 )
(2.7) Tk N
dx = A(b; — 0w+ (b, — Aa)w',
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—awr =k — k. )W o e Y w?
day — a0 = (s = k) + (g = k)9,

(2.8) ;L . ,
db; — bjuwj = [b(b; — a,) + Mky; — ki) 1w + (kyy — kiy)w?
where k;:, a = {,2,3,4, are symmetric in 1 and j and the quantities
(2.9) af, =a §°,
T gk
(2.10) }u—: = ;'Ir.E + -fzjkﬁé + gﬁjai + gﬁuﬁ}

are the torsion and curvature tensor of AGW (4, 2, 2). The quantities a}kﬂ in (2.10) are

symmetric in 7, k, £ and satisfy the relation a},, = 0.
For a non-isocline almost Grassmannizable web AGW (4, 2, 2) we have equatons (2.7)
and

(2.11) db; — bw; = [b(b; — a;) + A(b;; + p;; — ql.j)]t.iﬂ + b, .w’

i ij5
biiyy = Pripy = Myin 7 0-

Note that the last condition uniquely determines X i.e. the location of leaves of X, with
respect to leaves of X, X, , and X,. This location has been described geometrically in [6].

For webs W (4, 2, 2) of maximum 2-rank, this 2-rank is equal to one and the only
abelian equation for them has the form (see [5], [6]):

4
(2.12) Y Q=0
a=1

where

Ql+()s—~}s2)millhti1?‘,
— 1 2
Q, = (A — l)cni.r Afg ,

(2.13) _ 1, 1 2 4,2
Qa— /\U’(L{J +I£J)f\(ti} +'[£’ )1
Q, = r:r()uiu] +E£J]) f\(}ufl + %12)

are closed forms, o satisfies the equation

(2.14) dnfo() — 1)] = wk + (”f;bi)f,
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4

(2.15) kij = 0
a=1 ?

in the case of 1socline webs and

(2.16) bii;‘ = bij — 4;;

in the case of non-isocline webs of maximum 2 -rank .
Note that (;’\Qﬂ)2 = 0 and since forms L2 are closed, they are presemplectic [16].

3. GEOMETRY OF EXCEPTIONAL WEBS EW(4, 2, 2) OF MAXIMUM 2-RANK
3.1. Interior products associated with exceptional webs

For a web W (4, 2, 2) a 2-dimensional flat generator CP(Z) of the Segre cone OP(Z, 2) 1S

determined by a transversally geodesic bivector E' A E* where B! = ¢'el, E? = ¢fe? and
¢* satisfies the equation

(3.1) de* + £wi=0, i,j=1,2.

This bivector intersects the tangent 2 -planes T,(V,) to leaves V, along the directions
parallel to the vectors

W, =—¢€€, W,=t(e —¢;),
(3.2) 1 1 2
W, =t';, W, =E(e; — Xey).

Proposition 3.1. For an exceptional web W (4, 2, 2) of maximum 2-rank there are the

following relations among the interior products of forms L2, with respect to the vector fields
Wﬁ .

(3.3) iy Q, =

a )

(3 .4) Y iy Q=0

b

Proof . The proof 1s straightforward. According to the well-known definition, for a 2 -form Q
and vector fields £ and V we have

(3.5) (482),(V) = Q,(&(p), V)
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and for two 1-forms w and w'
(3.6) if(wf\w’) = ifwﬁw' —mf\ifw’.

According (3.5) and (3.6) to the vector field W, defined by (3.2) and forms €2 defined by
(2.13), one easily obtains that

o = ‘iwqﬂ] = (A= X)o(¢! : * - Esz;}]):
o = iy, & = (A = No(—¢lw? — uwh),

oy = £W4Q3 - (AE _ }‘)UIEI(’?"Z +l‘.5.'2) _62(%}1 +L£»’I)],

(3.7)

L_ﬂ":i = iwqu_ = 0

The realtions (3.3) and (3.4) for W, follows from (3.7). The proof for W,, W, , and W,
is similar.
Remark. If one changes W for Wu = kW _, then 15 2, will be factored by k and (3.3) and

(3.4) still will be held for W,

3.2. Exterior 3-forms associated with an exceptional web

Let us consider now two pairings («;, £2,) and (o, £2,) where o, o, and Q,, €, are
defined by (3.7) and (2.13) correspondingly. Two exterior cubic forms are associated with
these pairings:

Y=o AQ,y = o’ M1 - N (Ew! —lw?) Aw! Aw?,
(3.8) 1 1 2 2

P, = oy Ay =0 () — %2)2(52%’1 F—fltgz) mi.rl AL;:Z,

It 1s known that a vector field £ 1s an infinitesimal conformal transformation (abr. 1.c.t.)
of an exterior form w 1f the Lie derivative Efm 1S proportional to w:

(3.9) Lw=aw, a€C®(M*)

and £ 1S an infinitesimal automorphism (abr. 1.a.) of w if
(3.10) Lew=0.

The next definition is a generalization of these two notions.
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Definition 3.2. We will say that two exterior s-forms w, and w, define a quasi-recurrent Lie
derivative pairing generated by a vector field € if

(3.11) Low; = dlw;, 1,7=1,2, ol € C®(M*).

Note that in the definition we used the term that has been used by R. Rosca [17] in a similar
situation for a pair of vector fields.

Theorem 3.3. The exterior cubic forms v, and 1, determined by (3.8) are exterior recur-
rent and define a quasi-recurrent Lie derivtive pairing generated by the vector field W,. In
addition, the vector fields W,, W, ,a nd W5 are i.c.t. of both forms 1, and 1, and the vector
field W, isani.c.t. of the form v, .

Proof . First of all, it follows form (3.8), (2.14), and (3.1) that

(3.12) dp, = &, Ay, d, =8, A,
where
(3.13) §, = b,-t;:f, 6, = [(b, — a‘-)ti.r’: — aitif].

Equations (3.12) show that the forms 1, and 1, are exterior recurrent [18] with 6; and o,
defined by (3.13) as recurrency forms respectively.

To calculate the Lie derivatives qu ¥, and qu ¥, , we need the following formulas:

(Lo ;= Gy, 0%, — 0, Ny P + Ay, ), i=1,2,
iy, 01 = &by, iy 0y = b+ (A = Dayl,
iy, Y1 = —iy, Y2 = —0; A&y,

L d(—pw, ¥1) = —d(iy, ¥,) = [(q; —Zbi)t{Ji + uitif] N6 NS, .

(3.14) .

Using (3.14), we find that

[ w1 = (b + 20D €% + (o, = b€y,

(3.15) ._ Em% =[2b,+ (X — l)ﬂ;]ff‘!/)z.

Using a similar way, one can prove that

)Cwl'l,bl = (Ef_‘) ) L"W, '¢J2 = ﬂi‘ff'ﬂbzi
(3.16) Ly ¥y = b, Ly ¥y = (2b; — a) ',

£w3¢1 = (%) b:‘Ew}l! -sz% = “2bi‘f2¢2'

Equalities (3.15) and (3.16) prove the statements of Theorem 3.3.
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3.3. Infinitesimal automorphisms of exterior cubic forms associated with an exceptional
web

Let us find under what conditions the vector fields ¥/, defined by (3.2) are i.a. of a cubic form
(3.17) Y= fiy + 9%, f,g€CO(M?).
The differentials of f and g have the form
(3.18) df = fw' + fw', dg=gw'+ 7w’
For the vector field W/, we have
(3.19) iy f=—EF, iyg=—£7
Using (3.19), we can calculate the Lie derivative ﬁwl 1P

Ly =y )9, + f[-:wl".bz + (i, 9) Py + 9Ly, ¥y

f

(3.20) ~ ' '
- (hfi + bi;:) 'y + (—9; + 0;0) ;.

The vector field W, is an i.a. of 9 for any £* if and only if

(3.21) E:bif, 7. =ag.
Because of (3.21), equations (3.17) can be written 1n the form
(3.22) df = fiti.:i + fb,.%:‘/x, dg = gif.i.?i + gaitgi.

Using the same way, one can find that the vector fields W, , W, , and W, are i.a. of 1 for
any ¢* if and only if the functions f and g satisfy respectively the following equations:

(3.23) df = —fb(w'+ fw', dg = g(a; —2b)w’ + G,

_ i g 1 i _ i i i
(3.24) df = fi(ti.r +-'.EJ)+ (l+ I) fb‘-t;, dg = gl-(f_;: "'{5’)"'295:%' }

df = f;.(Ow' + w') — (g, + b)) fw?,
(3.25) 12 2

dg = g,(Mw’ + [f(b; — a)) — 9(2b;+ (1 — Na)) Jw'.

We proved the following proposition:
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Proposition 3.4. The vector fields W, a = 1,2, 3, 4, defined by (3.2) are i.a. of the cu-

bic form 1 defined by (3.17) for any £* if and only if the functions f and g in (3.17) satisfy
respectively the equations (3.22), (3.23), (3.24), and (3.25).

We have to study now the compability of equaitons (3.22)-(3.25) with the equations (2.7),
(2.8), (2.15) forisocline exceptional webs and (2.7), (2.11), (2.16) for non-isocline exceptional
webs.

Theorem 3.5. The vector fields W, and W, (for any £*) can not be i.a. of the cubic form
1 defined by (3.17) if an exceptional web is non-isocline. In all other cases the set of forms
1, for which the vector fields W,, a = 1,2, 3,4, are i.a. of 9 for any €, depends on two
arbitrary functions of two independent variables.

Proof . In the case of W, we have (3.22). If an exceptional web id non-isocline, the exterior
differentiation of (3.22) by means of (2.7) and (2.11) leads to two exterior quadratic equations.
The first of them is:

j . f_. B ~ ‘

-

(3.26)

It follows from (3.26) that g;;; = 0 and the last one contradicts to a non-isoclinity of an
exceptional web (see (2.11)).

If an exceptional web is isocline, the exterior differentiation of (3.22) by means of (2.7)
and (2.8) gives the following exterior quadratic equations:

(3.27) af,;mifeo, ﬁgiﬁti.li=0

where

A f; =df; — f{,wl + f[a]{f-’ b + f(ku U) wt,

r= =

T j | — J
.ﬂgi —dg QJW '+ 9[5]%} hﬂ'}' + Q({CU‘ éﬂ,‘j) w,.

The number of unknown functions (A f; and Ag;) 1s equal to ¢ = 4. The consecutive
Cartan’s characters [19] are s; = 2,5, = 2, 8, = 0, and the Cartan’s number ¢ = s, +
2s, = 6. It follows from (3.27) that the general two-dimensional integral element depends
on N + 6 parameters. Because of Q = N, the system (3.22), (3.27) is involution and its
solution depends on two functions of two variables [19].

The proof for W, , W5 and W, 1s similar.
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3.4. Infinitesimal conformal transformations of exterior cubic forms associated with an
exceptional web

According to Theorem 3.3, the vector fields W, W, , and W, ari.c.t. of 9, and v, and W,
is that of 1), . We will find under what conditions vectors fields W_,a = 1,2,3,4, are i.c.t.
of the cubic form 1 defined by (3.17).

We will suppose that f# 0 and g# 0 and consider for example the vector field ;.
One can find from (3.9) and (3.20) that W, for any £ is an i.c.t. of ¢ if and only if

(3.28)

e b Y

g, 1
—Zi = _(p. — Xa)).
p A( ; — Aagg)

For the system (3.18), (3.28) for both 1socline and non-isocline exceptional webs one gets:
g=6,8=8,=8;=2,8,=0,Q=5;+2s,+3s;,=12, N =12,
We proved the theorem.

Theorem 3.6. The vector fieldsW,,a=1,2,3 4, for any ¢ ' are i.c.t. of the exterior cubic
form v defined by (3.17) if and only if the functions f and g in (3.17) satisfy (3.18) and re-
spectively (3.28) and equations similar to (3.28). The set of forms 1 depends on two functions
of three independent variables.
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