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GENERALIZED JACOBI IDENTITIES
DIETER BLESSENOHL and HARTMUT LAUE

1. INTRODUCTION

Inany Liering (L, +, o), the following equations hold for arbitrary elements z ;i € L:

I19$2+$2ﬂ$1:0

(ml O :[:2) O I3 + (3;3 O II) O fﬂz + (ﬂ:z Q .TE) O 'Il = 0 (JB.CE}bi idﬂﬂtltjf).
In [4, (9a)], Wever already notes that one also has

((zyo0xy)0oxg) oxy+((zy 02y) 0Oy) O T4+

+((z30z4)0z)0oxy) + ((Z40T3)03,) 0z =0,

and proves some further similar assertions in the same paper [4, Hilfssatz 1]. The aim of this
note is, roughly spoken, to determine all relations of this kind.

As the relations in question shall hold in any Lie ring, we consider them as relations of free
generators z; of a free Lie algebra over an arbitrary commutative ring R with identity 1 V),
Then it turns out that in order to determine all relations of the type mentioned above one has
to describe a certain right ideal of the group ring of some symmetric group over . In fact, our
main result will solve the problem by exhibiting an /2-basis of this «right ideal of generalized
Jacobi 1dentities».

Our approach makes use of Witt’s theorem [1, 2.3.3] on the embedding of a free Lie al-
gebra L 1n a free associative algebra A. We begin by defining group actions on A and then
exploit these for the study of L. Not all details of our introductory analysis of the module
structures of A and L will be used in full for our description of generalized Jacobi identities.
We have, however, attempted to present this analysis in its natural general setting, to avoid an
unsatisfactory ad hoc collection of merely pragmatic statements.

2. GROUP ACTIONS ON FREE ALGEBRAS

Let K be a commutative ring with 1, n € IN, and A be the free associative R-algebra with

n free generators x,,...,z,.. The set of all monomials z; -..Z; , where m € IN, and

" . 5
Il'il'l

b

i1,-.-,1,. € {1,...,n},arean R-basis of A. Thcnurnbcrmiscallcdmedegraaﬁfmil . T

(1) To our knowledge, only recently rigorous and conscious attempts have been made to develop substantial parts
of Lie theory over more general scalar domains than fields (compare, e.g., the expositions in {1] and [2]).
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Forall m € IN,, let A_ be the R-span of all monomials of degree m. Then (writing 1 for
the empty monomial, the identity element of A),

Aﬂ = Rl:
A, =Rz, + Rz, +...+ Rz,

A, = Rz? + Rz xy + ...+ Rz,2_+ R,z + ...+ Rz, x_+ ...+ Ra?

n?

Foralll € {1,...,n} we define the z;-degree of the monomial z; ...z, tobe the number

ofallj € {1,..., m} such that Ty = 2. I ky, o by € N, we write A(k,, ..., k) for the

R-span of all monomials whose z;-degree is k; for 1 < j < n. Then, for example,

A(1,0,...,0) = Rz,
A(1,0,...,0,1) = Rz,z_+ Rz T,

Obviously, forall m € N,

An= Yo  Alky,...,k,).

(kg enrky)
ky+..+k,=m

Let G := GLyx(A;) = GL(n, R). We define an action of G on A by
(1) (:1*:1[1 ...mim)q« = (miﬂ)“'(mim'?’) forally € G

and R-linear extension. This yields a homomorphism of ¢ into End 5 A, as one easily verifies
a(~v8) = (ay)d foralla € A,~, 6 € . Thus A i1s a G-right module and may therefore
likewise be viewed as an RG-right module. Each element of G maps any monomial of degree
m onto an R-linear combination of monomials of degree m. Hence A, is an RG-submodule
of A, forallm € IN.

The R-spaceA,, admits an action of the symmetric group S,,, given by

(2) o(z; ...z, Y i=x, ...T; forallo € S
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and R-linear extension. For o, 7 € S, , we have

(o7)( Ty - '-'5:'“) =Ty e T

mimr)

- U( :EI'IT

=U(T(Ii1 ‘e :a:,;m))¢

Hence we have an antihomomorphism of S, into End ; 4, , making A, intoan RS, -left
module. Under the action of an element o € S,,, the factors z; ,...,z; of a monomial

T, ...z; are permuted. Hence, for 1 < [ < n, the z;-degrees of z, ...z, and of

H tm 1 ‘m

U(Eil

z, ) are the same. This yields

(3) The R-spaces A(ky, ..., k, ) where k, + ...+ k_=mare RS, _-submodules of A__.

A general version of the following statement is well known (and due to Schur to our
knowledge) in the context of tensor algebras (see, €.g., [3, 4.(2.31)]):

4) The actions of RG and RS, on A, commute.

Letoe §,,ye€G. Forl <7< nletcﬂ(l < [ < m) be the elements of R such that

(L
Ty = 2 c;;x;. Then

"

’.f_-‘"i\\‘. ‘,,—""'"#-""'-\
g

i3

O

K

Ry

=

I
—3
o)
R
a
3
3
q
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— ( E Cllﬂimi) e ow ( E Cim:r'!ml)
1<i<n 1<I<n

= (E{IU'T) Teeet (mfﬂw’T)
= (cr(ml-[ "'mim))q’*

Obviously, this implies (4).
The natural action of S, on 4,, given by
(5) z.o:=x, for 1<i1<n oc€S8_,

and linear extension, yields an embedding of S, into G. Via (1), this action extends therefore
to A where one has, by (5),

(6) (Zg ...z; JO =3 ... T forallo € S, .

In particular, any A_ 1s an RS, -right module under this action.
Now we set m = n. The foregoing discussion yields

(7 Via (2) and (0), A, is an RS, -left and right module. By (4), the left and right actions
commute.

The RE-subspace A(1,...,1) of A_ 1s, by (3), invariant under the RS_-left action, and, by
(6), invariant under the RS, -right action. Obviously, {z,, ...z, |0 € S,} is an R-basis of
A(l,...,1). We have

(8) Ty Tpy) = Typy -+ T,, lorallo,7€S,.

Hence, under the left action, A(1, ..., 1) is isomorphic to the regular RS, -left module.
Moreover, we have

(9) (ZT{g++ T )T=2y,,...2,,, forallo, 7€ S5, ,

whence A(1, ..., 1) is likewise isomorphic to the regular £S5, -right module under the right
action. In particular,

(10) o(zy...2,) =(z,...3,)a foralla € RS, .
We now turn to the Lie multiplication in A which is defined by

acaob:=ab—ba foralla,bc A.
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Let I C A be the Lie algebra generated by z,, ..., z_. By Witt’s theorem, L is free and
freely generated by z,, ..., x,. Forallm, k,,..., k. € IN,, we set

L :=LNA,_,
L(ky,..., k) :=LNA(k,...,k).

Clearly L, = {0 } and L, = A,. For m > 2, things become more difficult. The R-rank

of L is given by Witt’s formula ([1,3.1.3]). For example, the R-rank of L, 1s (;) , whereas

the R-rank of A, is n*. The Specht-Wever theorem ([1,2.5.5]) is a criterion for an element
of A_ to belong to L in the case that R is a field of characteristic 0. The crucial mapping
of A, onto L in its proof will also be important for our investigations: We set w, := 0 and
form > 1,asin [4,4)],

2
w,, = [[Gid—(j,..., 1)) =
j=m
=(id— (m,..., 1)) -...-(id— (2,1)) € RS,
Then
(11) milm...cmim=wm(mii...:E{m) forallm € N

where, by inductive definition, the «left normed Lie monomial» z; o...o z; 1is defined to
be (35;'1 0...0 mim_lj 0 I; for m > 2. We prove (11) by induction on m. As w, = id, (11)

holds for m = 1. For m > 2, we have (using the induction hypothesis in the third step),

wm(fr}il . .::::-m) =(id—(m,..., 1))(mm_1(mi1 .. .Iim))
=(1d—(m,..., 1))(("-‘-’7“_1(55,;1 X 'mfm-1))mim)
=(id—(m,...,))(=z; ...z; )z, )

=($i1 D...Gmim_i)mim m(m,...,l)(:t:il 0...0Z; )T, .

tm—1 m

But(m,...,l)(zil...mi )=x. z. ...z, .Hence

(m,...,)(wz; )=z, w foralwed, ;.
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In particular, (m, ..., 1)((m1i1 0...0 zim)ml-m) = I, (mil ©...0X; _1),which completes

the inductive step, yielding (11).
As a consequence, we note

(12) (z; o...oz; )y=(z;79)0...0 (z; 7) forallyeG.

This follows from (4) and (11), as (z; o ... o z; )y = w,((z; ... 3; )7)

Il

wm((w:‘I ¥) ..i(:cimfy)) = (‘Ti: v) o...0 (f‘::‘m’?)- In particular, L _ 1S a G-submodule of
A_ . Finally, applying (12) in the special case of m = n, we conclude

(13) (z;,,0...0z_)o=1z, 0...0% forallo,7€ S, .

nro

In particular, L(1, ..., 1) is a submodule of A(1, ..., 1), considered as an RS, -right
module (cf. (6)). (It should be noted that this is not true with respect to the left action (2).)

It 1s well known (see, e.g., [4, §1]) that L(1, ..., 1) is the R-span of the left normed Lie
monomials z;, o ...o0z, (o € S,). Therefore, as an RS, -right module, L(1, ..., 1) is
generated by z; o...o z, and hence cyclic.

3. THE RIGHT IDEAL OF GENERALIZED JACOBI IDENTITIES
We are ready for the key definition of this paper:

Definition. A generalized Jacobi identity of degree nover R is an element . € RS_ such that
(zy0...0z )t =0.

Ife= ) r o(r, € R),thismeansthat ) r z, o...oz_ =0.
oES, g€eS,

The mapping RS, — L(1,...,1),a — (z,0...0z )aisan RS _-right module epimor-
phism. Hence its kernel J is a right ideal of RS _ and obviously consists of all generalized
Jacobi identities of degree n over K. Replacing z, o ... o z_ by another left normed gen-

erator ;. o ...ox (7 € S ) leads to 7' T as the kernel of the corresponding RS, -right
module epimorphism. This simple observation may justify the recurrence on the special Lie
monomial z, o ... oz _ 1n our definition of a generalized Jacobi identity. Our notion does not
essentially depend on this particular monomial.

Our aim is to show that J is a free E-module of rank (n— 1)!(n — 1) and to determine
an R-basisof 7. Forall j € {1, ..., n} we set
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1

For example, n,
readily verifies

id, n, = —(2,1),m, = —(3,2,1) + (3,1), etc. In general, one

Il

2
(14) n;=—(,....,10 - [] Gid=(k,...,1)) forj>2.
k

#}.—1

The description of J rests on the following
Lemma. id— 17, € J forallj€{1,...,n}.

Proof . We show first
(15) (z;0...0z )w;=jz;0...0z, forallje {1,...,n}.
Indeed one has

(zy0...0z )w; = ((z;0...0 T)W;) 0Ty 0...0T,

= ((w{zy...2;))w;) 0T;,,0...02, by (11)
:wj((:ﬂl...scj)wj) 0T;110...0T, by (7)
=(w}2.(m1...mj))c}n:jﬂﬂ...cmﬂ by (10)
= J(wi(zy...2;)) 0T jy0...02, by [4, §3]
=j(zy0...03;)0%;,,0...0%, by (11).

Using (15) and the fact that wy = 0, we conclude that

(Elﬂ...ﬂfﬂﬂ)ﬂj =( 1z, n...omn)wj—-(mlm...cmﬂ)wj_l =ZI,0...0T,.

This proves our claim.

Theorem. J is afree R-module, freely generated by the elements o — n, .10 where o € S_
such that 1la# 1.

Proof . As J is arightideal of S, , our Lemma implies that o — n,0 = (1d — ﬂj) o e J for

allo € S, ,7€{l,....,n}. NowletT: = {o|oc € S,, 10 = 1} and B: = {p] there exists
o € S \T such that 8 = o — n;,-10}. Then (14) shows that

(16) M.10 € RT forallc €S, .
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Let (B) be the R-linearspan of B. By (16), (B) + RT = RS,. If ¢, € R such that

>, c¢,(0d—m,10) € RT,then Y  c¢_o € RT,by (16). But this implies that c_ = 0
oceS\T g€S\T

for all o € S, \T". We conclude that

(17) RS, =(B)® RT

and, moreover, that B is an R-free setof (n— 1)!(n— 1) elements. As B C J, all that

remains to do 1s to prove that J N RT" = 0. It is well known that the elements z, _o...oz__

where o € T form an R-basisof L(1,...,1) (cf., e.g., [1,4.8.1. Lemma 5]). Therefore, the

mapping RT" — L(1,...,1),a — (2, 0...01z_)a, s bijective. Hence 7 N RT = 0.
Finally we want to express our basis elements of J as R-linear combinations of elements

of S, . We need the following

Proposition. Letn>j, > ...> j. > 1.Then,inS_, we have

(j]:"'ll)(jZJ"'}l)”*(jk:‘”:l) =

Il

(12 kk+1k+2 n)

7179 Ji b 1, L

where 1 <1,.,<...<1 < mn

N —

Proof by induction on k. The case k = 1 15 obvious. As for the step from k to £ + 1, we
calculate, using the induction hypothesis,

(.}.1:“':1)“*(]‘}&]:'”:1) =

1 kk+1k+2 n ,
( )(}kﬂ,...,l)

1 Je 1 1, O

[
.

1 kk+1k+2 k+j,—1k+j, n +
=1 . . yo T (Jke1s-e05 1)
Jio T 1 Je— 1 gy, In

Il
~ N

1 kk+1k+2 k+j,,k+),+1 n
jl ”‘jk jk+1 1 .ij+l -1 2..¥c+,;v‘,ﬁ,1+l in |

ﬂ]]diﬂdﬁ@dl{...{jk+]—1{{k+jk+l+1{...{1: {?L

1n —
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Corollary. Let X:={nlr € S, 17> 27> ...> (Il D)r < (I~ '+ )w < ... < nn}.

(@n,= 3 (=D xwforn>j>1.

weX
la=y

(b)If c € S, suchthat 1o# 1, then

—1
0O—Ms-10=0+ E (-D'" 70,
neX

Ilno=1

Proof . By (14) and our Proposition, we have for2 < j < n

M, = — Z(“l)lw"—ﬂﬂ: L E(_l)lﬂ_iﬂ_’

TEX TeX
lw=) ln=j

proving (a). Therefore,ifc € 5, suchthatlo# 1,thenoc—n,no0=0+ ) (—1)1‘"-1175,
weX

lr=1g"!

as claimed in (b).

In particular, in the representation of a basis element 8 (= o —n,;,-1 o) as an R-linear
combination of the elements of S, only 1 and —1 occur as coefficients. Thus, in a certain
sense, one has always the same basis for the right ideal of generalized Jacobi identities, inde-
pendent of the structure of R.

For an arbitrary element of RS, , given as an R-linear combination of elements of S_, it is
easy to decide 1f it belongs to J and then to write it as an RE-linear combination of our basis
elements of J:

Remark. Letc, € R forevery o € S, . The following assertions are equivalent:

(i) S eo€d

gES,

(21) Z C,0 = E ¢, (0 — 1Ny,10)

og€Ss, i;rEji,
o

(ii1) Y ceo == cyMypmi0

og€eS, €S,
lo=1 lo#1
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(We note as a consequence: The mapping Y ¢ o — ) ¢_m,,-10 is the projection of RS_
oES, o€eS,

onto RT" with respect to the direct decomposition (17)).

Proof .LetT: = {olc € §,,10 = 1}. By (16), ) c,0— > ¢, (0 —n,10) € RT.
g€S, oES,
1o#1

This implies the equivalence of (1) and (11) as, by (17), J N BT = 0. The equivalence of (11)
and (i11) is obvious.

For example, the three identities corresponding to the equations at the very beginning of
this paper are represented in the following way:

id+(1,2) = (1,2) —n(1,2),
id+(1,3,2) +(1,2,3) =

=[(1,3,2) —7,(1,3,2)]+

+[(1,2,3) —m3(1,2,3)] (Jacobi identity),
id +(1,2)(3,4) +(1,3)(2,4) +(1,4)(2,3) =

=[(1,2)(3,4) — 5 (1,2)(3,4) ]+

+[(1,3)(2,4) — n3(1,3)(2,4)]+

+ [(1,4)(2,3) —n,(1,4)(2,3)].
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