GENERALIZED JACOBI IDENTITIES

DIETER BLESSENOHL and HARTMUT LAUE

1. INTRODUCTION

In any Lie ring $(L, +, \circ)$, the following equations hold for arbitrary elements $x_j \in L$:

$$x_1 \circ x_2 + x_2 \circ x_1 = 0$$

 $(x_1 \circ x_2) \circ x_3 + (x_3 \circ x_1) \circ x_2 + (x_2 \circ x_3) \circ x_1 = 0$ (Jacobi identity).

In [4, (9a)], Wever already notes that one also has

$$((x_1 \circ x_2) \circ x_3) \circ x_4 + ((x_2 \circ x_1) \circ x_4) \circ x_3 + \\ + ((x_3 \circ x_4) \circ x_1) \circ x_2 + ((x_4 \circ x_3) \circ x_2) \circ x_1 = 0,$$

and proves some further similar assertions in the same paper [4, Hilfssatz 1]. The aim of this note is, roughly spoken, to determine *all* relations of this kind.

As the relations in question shall hold in *any* Lie ring, we consider them as relations of free generators x_j of a free Lie algebra over an arbitrary commutative ring R with identity 1 ⁽¹⁾. Then it turns out that in order to determine all relations of the type mentioned above one has to describe a certain right ideal of the group ring of some symmetric group over R. In fact, our main result will solve the problem by exhibiting an R-basis of this «right ideal of generalized Jacobi identities».

Our approach makes use of Witt's theorem [1, 2.3.3] on the embedding of a free Lie algebra L in a free associative algebra A. We begin by defining group actions on A and then exploit these for the study of L. Not all details of our introductory analysis of the module structures of A and L will be used in full for our description of generalized Jacobi identities. We have, however, attempted to present this analysis in its natural general setting, to avoid an unsatisfactory ad hoc collection of merely pragmatic statements.

2. GROUP ACTIONS ON FREE ALGEBRAS

Let R be a commutative ring with $1, n \in \mathbb{N}$, and A be the free associative R-algebra with n free generators x_1, \ldots, x_n . The set of all monomials $x_{i_1} \ldots x_{i_m}$, where $m \in \mathbb{N}_0$ and $i_1, \ldots, i_m \in \{1, \ldots, n\}$, are an R-basis of A. The number m is called the degree of $x_{i_1} \ldots x_{i_m}$.

⁽¹⁾ To our knowledge, only recently rigorous and conscious attempts have been made to develop substantial parts of Lie theory over more general scalar domains than fields (compare, e.g., the expositions in [1] and [2]).

For all $m \in \mathbb{N}_0$, let A_m be the R-span of all monomials of degree m. Then (writing 1 for the empty monomial, the identity element of A),

$$A_0 = R1$$
,
$$A_1 = Rx_1 + Rx_2 + \ldots + Rx_n$$
,
$$A_2 = Rx_1^2 + Rx_1x_2 + \ldots + Rx_1x_n + Rx_2x_1 + \ldots + Rx_2x_n + \ldots + Rx_n^2$$
, .

For all $l \in \{1, ..., n\}$ we define the x_l -degree of the monomial $x_{i_1} ... x_{i_m}$ to be the number of all $j \in \{1, ..., m\}$ such that $x_{i_j} = x_l$. If $k_1, ..., k_n \in \mathbb{N}_0$, we write $A(k_1, ..., k_n)$ for the R-span of all monomials whose x_j -degree is k_j for $1 \le j \le n$. Then, for example,

$$A(1,0,...,0) = Rx_1,$$

$$A(1,0,...,0,1) = Rx_1x_n + Rx_nx_1.$$

Obviously, for all $m \in \mathbb{N}_0$,

$$A_m = \sum_{\substack{(k_1, \dots, k_n) \\ k_1 + \dots + k_n = m}} A(k_1, \dots, k_n).$$

Let $G := GL_R(A_1) \cong GL(n, R)$. We define an action of G on A by

(1)
$$(x_{i_1} \dots x_{i_m}) \gamma := (x_{i_1} \gamma) \dots (x_{i_m} \gamma) for all \gamma \in G$$

and R-linear extension. This yields a homomorphism of G into End R, as one easily verifies $a(\gamma\delta)=(a\gamma)\delta$ for all $a\in A$, γ , $\delta\in G$. Thus A is a G-right module and may therefore likewise be viewed as an RG-right module. Each element of G maps any monomial of degree m onto an R-linear combination of monomials of degree m. Hence A_m is an RG-submodule of A, for all $m\in \mathbb{N}_0$.

The R-space A_m admits an action of the symmetric group S_m , given by

(2)
$$\sigma(x_{i_1} \dots x_{i_m}) := x_{i_{1\sigma}} \dots x_{i_{m\sigma}} \quad \text{for all } \sigma \in S_m$$

and R-linear extension. For $\sigma, \tau \in S_m$, we have

$$(\sigma\tau)(x_{i_1}\dots x_{i_m}) = x_{i_{(1\sigma)\tau}}\dots x_{i_{(m\sigma)\tau}}$$

$$= \sigma(x_{i_{1\tau}}\dots x_{i_{m\tau}})$$

$$= \sigma(\tau(x_{i_1}\dots x_{i_m})).$$

Hence we have an antihomomorphism of S_m into $\operatorname{End}_R A_m$, making A_m into an RS_m -left module. Under the action of an element $\sigma \in S_m$, the factors x_{i_1}, \ldots, x_{i_m} of a monomial $x_{i_1} \ldots x_{i_m}$ are permuted. Hence, for $1 \leq l \leq n$, the x_l -degrees of $x_{i_1} \ldots x_{i_m}$ and of $\sigma(x_{i_1} \ldots x_{i_m})$ are the same. This yields

(3) The R-spaces
$$A(k_1, ..., k_n)$$
 where $k_1 + ... + k_n = m$ are RS_m -submodules of A_m .

A general version of the following statement is well known (and due to Schur to our knowledge) in the context of tensor algebras (see, e.g., [3, 4.(2.31)]):

(4) The actions of RG and RS_m on A_m commute.

Let $\sigma \in S_m$, $\gamma \in G$. For $1 \le j \le n$ let c_{jl} ($1 \le l \le n$) be the elements of R such that $x_j \gamma = \sum_{l=1}^n c_{jl} x_l$. Then

$$\begin{split} \sigma((x_{i_1} \dots x_{i_m}) \gamma) &= \sigma \left(\left(\sum_{1 \leq l \leq n} c_{i_1 l} x_l \right) \cdot \dots \cdot \left(\sum_{1 \leq l \leq n} c_{i_m l} x_l \right) \right) \\ &= \sigma \left(\sum_{(l_1, \dots, l_m)} \left(\prod_{j=1}^m c_{i_j l_j} \right) x_{l_1} \dots x_{l_m} \right) \\ &= \sum_{(l_1, \dots, l_m)} \left(\prod_{j=1}^m c_{i_j l_j} \right) x_{l_{1\sigma}} \dots x_{l_{m\sigma}} \\ &= \sum_{(l_1, \dots, l_m)} \left(\prod_{j=1}^m c_{i_j l_{j\sigma^{-1}}} \right) x_{l_1} \dots x_{l_m} \\ &= \sum_{(l_1, \dots, l_m)} \left(\prod_{j=1}^m c_{i_j l_{j\sigma^{-1}}} \right) x_{l_1} \dots x_{l_m} \\ &= \sum_{(l_1, \dots, l_m)} \left(\prod_{j=1}^m c_{i_j \sigma^{-1}} \right) x_{l_1} \dots x_{l_m} \end{split}$$

$$= \left(\sum_{1 \leq l \leq n} c_{i_{1\sigma}l} x_{l}\right) \cdot \ldots \cdot \left(\sum_{1 \leq l \leq n} c_{i_{m\sigma}l} x_{l}\right)$$

$$= (x_{i_{1\sigma}} \gamma) \cdot \ldots \cdot (x_{i_{m\sigma}} \gamma)$$

$$= (\sigma(x_{i_{1}} \ldots x_{i_{m}})) \gamma.$$

Obviously, this implies (4).

The natural action of S_n on A_1 , given by

(5)
$$x_i \sigma := x_{i\sigma} \quad \text{for} \quad 1 \le i \le n, \quad \sigma \in S_n,$$

and linear extension, yields an embedding of S_n into G. Via (1), this action extends therefore to A where one has, by (5),

(6)
$$(x_{i_1} \dots x_{i_m}) \sigma = x_{i_1 \sigma} \dots x_{i_m \sigma} for all \sigma \in S_n.$$

In particular, any A_m is an RS_n -right module under this action.

Now we set m = n. The foregoing discussion yields

(7) Via (2) and (6), A_n is an RS_n -left and right module. By (4), the left and right actions commute.

The R-subspace A(1,...,1) of A_n is, by (3), invariant under the RS_n -left action, and, by (6), invariant under the RS_n -right action. Obviously, $\{x_{1\sigma} \dots x_{n\sigma} | \sigma \in S_n\}$ is an R-basis of A(1,...,1). We have

(8)
$$\tau(x_{1\sigma} \dots x_{n\sigma}) = x_{1\tau\sigma} \dots x_{n\tau\sigma} \quad \text{for all } \sigma, \tau \in S_n.$$

Hence, under the left action, A(1, ..., 1) is isomorphic to the regular RS_n -left module. Moreover, we have

whence A(1, ..., 1) is likewise isomorphic to the regular RS_n -right module under the right action. In particular,

(10)
$$\alpha(x_1 \dots x_n) = (x_1 \dots x_n) \alpha \quad \text{for all } \alpha \in RS_n.$$

We now turn to the Lie multiplication in A which is defined by

$$a \circ b := ab - ba$$
 for all $a, b \in A$.

Let $L \subseteq A$ be the Lie algebra generated by x_1, \ldots, x_n . By Witt's theorem, L is free and freely generated by x_1, \ldots, x_n . For all $m, k_1, \ldots, k_n \in \mathbb{N}_0$, we set

$$L_m := L \cap A_m$$

$$L(k_1, \dots, k_n) := L \cap A(k_1, \dots, k_n).$$

Clearly $L_0=\{0\}$ and $L_1=A_1$. For $m\geq 2$, things become more difficult. The R-rank of L_m is given by Witt's formula ([1,3.1.3]). For example, the R-rank of L_2 is $\binom{n}{2}$, whereas the R-rank of A_2 is n^2 . The Specht-Wever theorem ([1,2.5.5]) is a criterion for an element of A_m to belong to L_m in the case that R is a field of characteristic 0. The crucial mapping of A_m onto L_m in its proof will also be important for our investigations: We set $\omega_0:=0$ and for $m\geq 1$, as in [4,(4)],

$$\begin{split} \omega_m &:= \prod_{j=m}^2 (id - (j, \dots, 1)) = \\ &= (id - (m, \dots, 1)) \cdot \dots \cdot (id - (2, 1)) \in RS_m. \end{split}$$

Then

(11)
$$x_{i_1} \circ \ldots \circ x_{i_m} = \omega_m(x_{i_1} \ldots x_{i_m}) \quad \text{for all } m \in \mathbb{N}$$

where, by inductive definition, the «left normed Lie monomial» $x_{i_1} \circ \ldots \circ x_{i_m}$ is defined to be $(x_{i_1} \circ \ldots \circ x_{i_{m-1}}) \circ x_{i_m}$ for m > 2. We prove (11) by induction on m. As $\omega_1 = id$, (11) holds for m = 1. For $m \ge 2$, we have (using the induction hypothesis in the third step),

$$\begin{split} \omega_m(x_{i_1}\dots x_{i_m}) &= (id-(m,\dots,1))(\omega_{m-1}(x_{i_1}\dots x_{i_m})) \\ &= (id-(m,\dots,1))((\omega_{m-1}(x_{i_1}\dots x_{i_{m-1}}))x_{i_m}) \\ &= (id-(m,\dots,1))((x_{i_1}\dots x_{i_{m-1}})x_{i_m}) \\ &= (x_{i_1}\circ\dots\circ x_{i_{m-1}})x_{i_m} - (m,\dots,1)(x_{i_1}\circ\dots\circ x_{i_{m-1}})x_{i_m}. \end{split}$$

But
$$(m, \ldots, 1)(x_{i_1} \ldots x_{i_m}) = x_{i_m} x_{i_1} \ldots x_{i_{m-1}}$$
. Hence
$$(m, \ldots, 1)(w x_{i_m}) = x_{i_m} w \quad \text{for all } w \in A_{m-1}.$$

In particular, $(m, \ldots, 1)((x_{i_1} \circ \ldots \circ x_{i_m}) x_{i_m}) = x_{i_m}(x_{i_1} \circ \ldots \circ x_{i_{m-1}})$, which completes the inductive step, yielding (11).

As a consequence, we note

(12)
$$(x_{i_1} \circ \ldots \circ x_{i_m}) \gamma = (x_{i_1} \gamma) \circ \ldots \circ (x_{i_m} \gamma) for all \gamma \in G.$$

This follows from (4) and (11), as $(x_{i_1} \circ \ldots \circ x_{i_m})\gamma = \omega_m((x_{i_1} \ldots x_{i_m})\gamma) = \omega_m((w_{i_1}\gamma) \ldots (x_{i_m}\gamma)) = (x_{i_1}\gamma) \circ \ldots \circ (x_{i_m}\gamma)$. In particular, L_m is a G-submodule of A_m . Finally, applying (12) in the special case of m = n, we conclude

(13)
$$(x_{1\tau} \circ \ldots \circ x_{n\tau}) \sigma = x_{1\tau\sigma} \circ \ldots \circ x_{n\tau\sigma} \quad \text{for all } \sigma, \tau \in S_n.$$

In particular, L(1, ..., 1) is a submodule of A(1, ..., 1), considered as an RS_n -right module (cf. (6)). (It should be noted that this is not true with respect to the left action (2).)

It is well known (see, e.g., [4, §1]) that L(1, ..., 1) is the R-span of the left normed Lie monomials $x_{1\sigma} \circ ... \circ x_{n\sigma} (\sigma \in S_n)$. Therefore, as an RS_n -right module, L(1, ..., 1) is generated by $x_1 \circ ... \circ x_n$ and hence cyclic.

3. THE RIGHT IDEAL OF GENERALIZED JACOBI IDENTITIES

We are ready for the key definition of this paper:

Definition. A generalized Jacobi identity of degree n over R is an element $\iota \in RS_n$ such that $(x_1 \circ \ldots \circ x_n)\iota = 0$.

If
$$\iota = \sum_{\sigma \in S_n} r_{\sigma} \sigma$$
 ($r_{\sigma} \in R$), this means that $\sum_{\sigma \in S_n} r_{\sigma} x_{1\sigma} \circ \ldots \circ x_{n\sigma} = 0$.

The mapping $RS_n \to L(1,\ldots,1)$, $\alpha \to (x_1 \circ \ldots \circ x_n)\alpha$ is an RS_n -right module epimorphism. Hence its kernel $\mathcal J$ is a right ideal of RS_n and obviously consists of all generalized Jacobi identities of degree n over R. Replacing $x_1 \circ \ldots \circ x_n$ by another left normed generator $x_{1\tau} \circ \ldots \circ x_{n\tau}$ ($\tau \in S_n$) leads to $\tau^{-1}\mathcal J$ as the kernel of the corresponding RS_n -right module epimorphism. This simple observation may justify the recurrence on the special Lie monomial $x_1 \circ \ldots \circ x_n$ in our definition of a generalized Jacobi identity. Our notion does not essentially depend on this particular monomial.

Our aim is to show that \mathcal{J} is a free R-module of rank (n-1)!(n-1) and to determine an R-basis of \mathcal{J} . For all $j \in \{1, ..., n\}$ we set

$$\eta_j := \omega_j - \omega_{j-1}.$$

For example, $\eta_1=id$, $\eta_2=-(2,1)$, $\eta_3=-(3,2,1)+(3,1)$, etc. In general, one readily verifies

(14)
$$\eta_j = -(j, \dots, 1) \cdot \prod_{k=j-1}^2 (id - (k, \dots, 1)) \quad \text{for } j \ge 2.$$

The description of \mathcal{J} rests on the following

Lemma. $id - \eta_j \in \mathcal{J}$ for all $j \in \{1, ..., n\}$.

Proof . We show first

(15)
$$(x_1 \circ \ldots \circ x_n) \omega_j = j x_1 \circ \ldots \circ x_n \text{ for all } j \in \{1, \ldots, n\}.$$

Indeed one has

$$(x_1 \circ \ldots \circ x_n) \omega_j = ((x_1 \circ \ldots \circ x_j) \omega_j) \circ x_{j+1} \circ \ldots \circ x_n$$

$$= ((\omega_j (x_1 \ldots x_j)) \omega_j) \circ x_{j+1} \circ \ldots \circ x_n \qquad \text{by (11)}$$

$$= \omega_j ((x_1 \ldots x_j) \omega_j) \circ x_{j+1} \circ \ldots \circ x_n \qquad \text{by (7)}$$

$$= (\omega_j^2 (x_1 \ldots x_j)) \circ x_{j+1} \circ \ldots \circ x_n \qquad \text{by (10)}$$

$$= j(\omega_j (x_1 \ldots x_j)) \circ x_{j+1} \circ \ldots \circ x_n \qquad \text{by [4, §3]}$$

$$= j(x_1 \circ \ldots \circ x_j) \circ x_{j+1} \circ \ldots \circ x_n \qquad \text{by (11)}.$$

Using (15) and the fact that $\omega_0 = 0$, we conclude that

$$(x_1 \circ \ldots \circ x_n) \eta_j = (x_1 \circ \ldots \circ x_n) \omega_j - (x_1 \circ \ldots \circ x_n) \omega_{j-1} = x_1 \circ \ldots \circ x_n.$$

This proves our claim.

Theorem. \mathcal{J} is a free R-module, freely generated by the elements $\sigma - \eta_{1\sigma^{-1}}\sigma$ where $\sigma \in S_n$ such that $1\sigma \neq 1$.

Proof. As $\mathcal J$ is a right ideal of RS_n , our Lemma implies that $\sigma-\eta_j\sigma=(id-\eta_j)\sigma\in\mathcal J$ for all $\sigma\in S_n, j\in\{1,\ldots,n\}$. Now let $T\colon=\{\sigma|\sigma\in S_n, 1\sigma=1\}$ and $B\colon=\{\beta|\text{ there exists }\sigma\in S_n\setminus T\text{ such that }\beta=\sigma-\eta_{1\sigma^{-1}}\sigma\}$. Then (14) shows that

(16)
$$\eta_{1\sigma^{-1}}\sigma \in RT \quad \text{for all } \sigma \in S_n.$$

Let $\langle B \rangle$ be the R-linear span of B. By (16), $\langle B \rangle + RT = RS_n$. If $c_{\sigma} \in R$ such that $\sum_{\sigma \in S_n \setminus T} c_{\sigma}(\sigma - \eta_{1\sigma^{-1}}\sigma) \in RT$, then $\sum_{\sigma \in S_n \setminus T} c_{\sigma}\sigma \in RT$, by (16). But this implies that $c_{\sigma} = 0$

for all $\sigma \in S_n \backslash T$. We conclude that

(17)
$$RS_n = \langle B \rangle \oplus RT$$

and, moreover, that B is an R-free set of (n-1)!(n-1) elements. As $B \subseteq \mathcal{J}$, all that remains to do is to prove that $\mathcal{J} \cap RT = 0$. It is well known that the elements $x_{1\sigma} \circ \ldots \circ x_{n\sigma}$ where $\sigma \in T$ form an R-basis of $L(1, \ldots, 1)$ (cf., e.g., [1,4.8.1. Lemma 5]). Therefore, the mapping $RT \to L(1, \ldots, 1)$, $\alpha \to (x_1 \circ \ldots \circ x_n) \alpha$, is bijective. Hence $\mathcal{J} \cap RT = 0$.

Finally we want to express our basis elements of \mathcal{J} as R-linear combinations of elements of S_n . We need the following

Proposition. Let $n \ge j_1 > \ldots > j_k > 1$. Then, in S_n , we have

$$(j_1,\ldots,1)(j_2,\ldots,1)\ldots(j_k,\ldots,1)=$$

$$= \begin{pmatrix} 1 & 2 & \dots & k & k+1 & k+2 & \dots & n \\ j_1 & j_2 & \dots & j_k & 1 & i_{k+2} & \dots & i_n \end{pmatrix}$$

where $1 < i_{k+2} < ... < i_n \le n$.

Proof by induction on k. The case k = 1 is obvious. As for the step from k to k + 1, we calculate, using the induction hypothesis,

$$\begin{split} &(j_1,\ldots,1)\ldots(j_{k+1},\ldots,1) = \\ &= \begin{pmatrix} 1\\j_1 & \cdots & k & k+1 & k+2 & \cdots & n\\j_1 & 1 & i_{k+2} & \cdots & i_n \end{pmatrix}(j_{k+1},\ldots,1) \\ &= \begin{pmatrix} 1\\j_1 & \cdots & j_k & 1 & 2 & \cdots & k+j_k-1 & k+j_k & \cdots & n\\j_1 & \cdots & j_k & 1 & 2 & \cdots & j_k-1 & i_{k+j_k} & \cdots & i_n \end{pmatrix}(j_{k+1},\ldots,1) \\ &= \begin{pmatrix} 1\\j_1 & \cdots & j_k & j_{k+1} & 1 & \cdots & k+j_{k+1} & k+j_{k+1}+1 & \cdots & n\\j_1 & \cdots & j_k & j_{k+1} & 1 & \cdots & j_{k+1}-1 & i_{k+j_{k+1}+1} & \cdots & i_n \end{pmatrix}, \end{split}$$

and indeed $1 < \ldots < j_{k+1} - 1 < i_{k+j_{k+1}+1} < \ldots < i_n \le n$.

Corollary. Let $X := \{\pi | \pi \in S_n, 1\pi > 2\pi > \dots > (1\pi^{-1})\pi < (1\pi^{-1} + 1)\pi < \dots < n\pi \}.$ (a) $\eta_j = \sum_{\substack{\pi \in X \\ 1\pi = j}} (-1)^{1\pi^{-1}} \pi \text{ for } n \geq j \geq 1.$

(b) If $\sigma \in S_n$ such that $1\sigma \neq 1$, then

$$\sigma - \eta_{1\sigma^{-1}}\sigma = \sigma + \sum_{\substack{\pi \in X \\ 1\pi\sigma = 1}} (-1)^{1\pi^{-1}} \pi\sigma.$$

Proof. By (14) and our Proposition, we have for $2 \le j \le n$

$$\eta_{j} = -\sum_{\substack{\pi \in X \\ 1\pi = j}} (-1)^{1\pi^{-1}-2} \pi = -\sum_{\substack{\pi \in X \\ 1\pi = j}} (-1)^{1\pi^{-1}} \pi,$$

proving (a). Therefore, if $\sigma \in S_n$ such that $1\sigma \neq 1$, then $\sigma - \eta_{1\sigma^{-1}}\sigma = \sigma + \sum_{\substack{\pi \in X \\ 1\pi = 1\sigma^{-1}}} (-1)^{1\pi^{-1}}\pi\sigma$,

as claimed in (b).

In particular, in the representation of a basis element β (= $\sigma - \eta_{1\sigma^{-1}} \sigma$) as an R-linear combination of the elements of S_n only 1 and -1 occur as coefficients. Thus, in a certain sense, one has always the same basis for the right ideal of generalized Jacobi identities, independent of the structure of R.

For an arbitrary element of RS_n , given as an R-linear combination of elements of S_n , it is easy to decide if it belongs to \mathcal{J} and then to write it as an R-linear combination of our basis elements of \mathcal{J} :

Remark. Let $c_{\sigma} \in R$ for every $\sigma \in S_n$. The following assertions are equivalent:

$$\sum_{\sigma \in \mathcal{S}_n} c_{\sigma} \sigma \in \mathcal{J}$$

(ii)
$$\sum_{\sigma \in S_n} c_{\sigma} \sigma = \sum_{\substack{\sigma \in S_n \\ 1 \sigma \neq 1}} c_{\sigma} (\sigma - \eta_{1\sigma^{-1}} \sigma)$$

$$\sum_{\substack{\sigma \in S_n \\ 1\sigma = 1}} c_{\sigma}\sigma = -\sum_{\substack{\sigma \in S_n \\ 1\sigma \neq 1}} c_{\sigma}\eta_{1\sigma^{-1}}\sigma$$

(We note as a consequence: The mapping $\sum_{\sigma \in S_n} c_{\sigma} \sigma \to \sum_{\sigma \in S_n} c_{\sigma} \eta_{1\sigma^{-1}} \sigma$ is the projection of RS_n onto RT with respect to the direct decomposition (17)).

Proof. Let
$$T:=\{\sigma|\sigma\in S_n,\ 1\sigma=1\}$$
. By (16), $\sum_{\sigma\in S_n}c_\sigma\sigma-\sum_{\substack{\sigma\in S_n\\1\sigma\neq 1}}c_\sigma\ (\sigma-\eta_{1\sigma^{-1}}\sigma)\in RT$.

This implies the equivalence of (i) and (ii) as, by (17), $\mathcal{J} \cap RT = 0$. The equivalence of (ii) and (iii) is obvious.

For example, the three identities corresponding to the equations at the very beginning of this paper are represented in the following way:

$$id + (1,2) = (1,2) - \eta_2(1,2),$$

$$id + (1,3,2) + (1,2,3) =$$

$$= [(1,3,2) - \eta_2(1,3,2)] +$$

$$+ [(1,2,3) - \eta_3(1,2,3)]$$
(Jacobi identity),
$$id + (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3) =$$

$$= [(1,2)(3,4) - \eta_2(1,2)(3,4)] +$$

$$+ [(1,3)(2,4) - \eta_3(1,3)(2,4)] +$$

$$+ [(1,4)(2,3) - \eta_4(1,4)(2,3)].$$

REFERENCES

- [1] Y.A. BAHTURIN, Identical Relations in Lie Algebras, Utrecht 1987.
- [2] N. JACOBSON, Lie Algebras, New York 1962.
- [3] R. KEOWN, An Introduction to Group Representation Theory, New York London 1975.
- [4] F. WEVER, Über Invarianten in Lie'schen Ringen, Math. Ann. 120 (1949) pp. 563-580.

Received November 24, 1987.

Dieter Blessenohl

Mathematisches Seminar der Universität

Ludewig Meyn - Str. 4

D 2300 Kiel 1

W. Germany

Hartmut Laue Dipartimento di Matematica Via Arnesano I 73100 Lecce Italy