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ON WEAK COTYPE AND WEAK TYPE IN BANACH SPACES
VANIA MASCIONI

INTRODUCTION: In 1977, T. Figiel, J. Lindenstrauss and V.D. Milman [6] used a refined
version of Dvoretzky's theorem to prove that a Banach space X of cotype ¢ (q > 2) enjoys
the following property:

(Pq) For every € > 0 there is a constant C, > 0 such that, for every n and every
n-dimensional subspace E of X, we can find a subspace F' of E such that

dm F>C,7/* and d(F,£mF) < 1+ ¢

(here d( ., .) denotes the usual Banach-Mazur distance).

In [6] some examples were also given to show that this implication may not be reversed.

Later on, in 1986, property ( P,) was thoroughly investigated by V.D. Milman and
G. Pisier [32], who proposed to call it weak cotype 2, in view of the fact that the well-known
concept of cotype 2 is modified by replacing in aspecific manner £, -convergence by what is
known elsewhere as «weak £, »-convergence. More precisely, one of the results contained in
[32] asserts that X has weak cotype 2 if and only if there exists a constant C such that, for
all n,

(%) crioo(vu) = Sl::p ka,(vu) < C"Tp,(u)ﬂz(v);
Vue L(4,X), vel(X45),

where o,( ) denotes the k-th approximation number and us (resp. m, ) is the y-summing
(resp. 2-summing) ideal norm (see §0 for the definitions). The usua cotype 2 property is
obtained by replacmg'm () of ,(vu) by the £, -norm

of(vu) = E a,(vu),
k

which is known to define the trace class norm for operators on Hilbert spaces.

Motivated by this, G. Pisier [43] went on only recently to exploit such concepts further
and to develop in particular a theory of so-called weak Hilbert spaces. In this work, he also
introduces a procedure to define weak properties in general.

Starting from this genera point of view, we intend to develop to some extent a theory
of wesk cotype an weak type. This will be done in §2 and §3, after we have provided the
necessary background on weak propertiesin § 1.
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We shal clarify, in the context of local Banach space theory, the refations of weak co-
type and weak type to distance to Hilbert spaces, volume ratios, and spaces of vector-valued
Lp-functions , and we shall discuss extension properties of certain operators.

It will turn out that several known consequences of cotype and type actually characterize
weak cotype and weak type, thus allowing a deeper insight in the local theory of Banach
spaces. Generalizations of old results and «weak analogues» of well-known theorems (of
Grothendieck’s Theorem, for instance) will also be obtained.

Among others, we shall see that for ¢ > 2 (resp. p < 2) spaces of weak cotype ¢
(resp. weak type p) show a behaviour which is different from what is known for g =2 (resp.
p =2 ). For example, weak cotype ¢ coincides with a well-known propery introduced by
L. Tzafriri [47) and called equal-norm cotype q , provided g > 2, whereas in case ¢ = 2 this
|atter notion is known to be the same as cotype 2, cf. [12] (of course, an analogue statement
holds for weak type p, p < 2 ).

The concluding §4 contains some further results related to Hilbert spaces. We shall prove
that being a weak Hilbert space is not a three space property, and we shall generalize some
characterizations of weak Hilbert spaces to Banach spaces having weak type p and weak
cotype p/(p— 1), 1<p<2.

This work is an updated version of my Ph.D. thesis, written at the University of Zurich
under the supervison of Prof. Hans Jarchow. 1 would like to thank him for his advice and
helpful comments, and for several discussions.

0. NOTATION AND BACKGROUND

0.1 x,Y,.... E, Fwill denote (mal) Banach spaces. The letters E, F, ..., will be
reserved for finite-dimensional spaces. Given X , we will denote by X* its dua and by By
its closed unit ball, i.e. {z € X: ||z|| < 1}, where ||.]| is the norm in X. The canonical
embedding of a Banach space X in its bidua X** will be denoted by Ky . The family of
all finite-dimensiona (resp. of all finite-codimensional) subspaces of X will be denoted by
Dim (X) (resp. by Cod (X) ).

If dim(E) = dim(F) < oo, then d(E, F): = inf {||T||||[T!||: T anisomorphism
E — F}isthe so-called Banach-Mazur distance between E an F.
(0.2) The set of all operators (= continuous linear maps) between X and Y is denoted by
L( X, Y) and is endowed with the usual operator norm. T* is the continuous adjoint of an
operator T .
(0.3) We shall use the standard Banach spaces

éptz {(ak)ERN:Zlak|p<oo}, 1< p<oo

Lo:={(cy) € RN sup |ey| < oo},
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with the norms
(el = (Z]aP) P, p < oo,

N lo = = SUP |oy].

Theindex p in ||.|, will often be dropped. If n € N, £5( 1 < p < o) is the n-dimensional

analogue of Ep. Note that (2;)* = E;‘. isometrically, where p* = , with the usua

4
(p—1)
conventions if p=1or p = oo.

(0.4) We say that X contains the £5's uniformly if there exists a constant C such that, for
each n € N, there is an isomorphic embedding 7, : £ — X such that ||, ||| 17;}]|< C .

(05) X is K-convex if and only if X contains the £7 ‘s uniformly (see [40]).

(0.6) Let p €[ 1, 0o] . A Banach space X is an Ep—space if there isan € > 0 such that, for
every E ¢ Dim (X) , we can find an F € Dim (X) containing E such that d( F, Zf,im Fy <
1+ . Xisan L, -space if and only if it is isomorphic to a Hilbert space. Details on L,-spaces
can be found in [23].

(0.7) Letp € (0, co) . Given () € IR" , denote by ( «}) the nonincreasing rearrangement
of (|a,|) . Then we can define the Lorentz sequence spaces

ﬁpJ = {(an) cIR” : Ea:n"l/p‘ < 00)
and
Ep,oo = {(a-,.) € RN sup a:'n,l/p < oo}’

endowed with the quasi-norms

Tp1 ((a,))=Z a:n"l/”' (resp -0, (a)) := sup ainl/p)

EPI and £, ae thus complete quasi-normed Spaces. Equivalent norms can be given if

p € (1, co) (see [38] 13.9.5). We shall not explicitly deal with the more general Lorentz
sequence spaces £, ..

(0.8) An Orlicz jiinction M :R* - R* s a continuous nondecreasing and convex function
such that M(0) = 0 and tlim M(t) = co. Given such an M, we define the Orlicz sequence
—00

space £,, by
2y = {(aﬂ) cRYN: M (1%—') < oo for some p > 0}

with the norm

(e = inf {p> 0:5M (“’;;') < 1}.
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£, is a Banach space. An extensive account of the theory of Orlicz sequence spaces is given
in[25].

(0.9) As concerns quasi-normed operator ideals, we adopt more or less the notation of A.
Pietsch's book [38]. In particular, all the components of a given quasi-normed ideal are sup-
posed to be quasi-Banach spaces (with respect to the ideal quasi-norm under consideration).
If A isaquasi-normed idea with the quasi-norm « (denoted by [A, al), [ A%, a?] de-
notes the dual ideal. An operator T isin A¢ if anonly if T*isin A, and in this case
o®(T) = o T*) . Further, [ A*, &*] denotes the adjoint ideal . Recall that if X (or Y) is
finite-dimensiona, then T isin A*( X, Y) if and only if

o*(T) = sup{tr(TS) : E L(Y,X),|IS|| < 1)

is finite. Here ¢r denotes the usua trace of finite rank operators. We shall use the fact that,
if [ A, «]isanormed idea, (A%) * = ( A*)¢ isometricaly, i.e. ( @) * and (a*)¢ coincide
as well (see [38] 9.1.6).

(0.10) Let[ A, o] and [B, B3] be quasi-normed ideals. Using Pietsch’ s notation (see [38]
Ch. 7), an operator T € L(X , Y) belongs to the «left-hand quotient» A~ . B whenever

o™V B(T) = sup{B(ST): S € A(Y,2),a(8) < 1} < oo.

Here Z ranges over all Banach spaces. o~! . g isaquasi-nomi on A~'.B and anormif g
is. The «right-hand quotient» A . B~! and its quasi-norm « . = are defined analogoudly. If
XisaBanachspace,wewriteB(.,X) C A(., X) (resp. A(X,) c¢ B(X,)) whenever
the identiy map id, belongsto A . B-! (resp. to A~!. B).

(0.11) For 0 < p< g < oo, the ideal Hq’p of all (q, p) -summing operators consists Of all
operators T: X — Y for which a constant C exists such that

n 1/q " 1/p
(EIIT%H") <C sup (Zl(w*,fb‘i)l”)
i=1

z*€Bx« \ ;o1

for all finite sequences z, , . . ., z,, € X . The least such C is denoted by 7 (T) - This tums
a,, into a quasi-normed ideal (it is normed if p > 1). If p = q we write [ Hp, m,] instead
of [1L,,, ﬂp_p] . this is the ideal of p-summing operators.

We shall in particular use the follwing properties of 2-summing operators.
0.12) [, , m] = [II7, m3] (see [38] 19.2.8 and 19.2.13).
(0.13) A particular case of the Pietsch factorization theorem states that T: X — Y is
2-summing if and only if there exist a compact space K , a probability measure 1 on K
andoperators A € L(X, C(K)), B € L(L,(K, u), Y) such that T = BJ, A, where
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J, - C(K) = Ly ( K, p) is the canonical injection. From the metric extension property of
the spaces L ( ) one deduces that, given T € I1, (X, Y) and a Banach space Z contain-
ing X as a subspace, there is an extension T' ¢ I'I2 (Z,Y) of such that m, (T') = m,(T")
(see [38] 17.3.7 and C.3.2).

(0.13') The following statements follow from the fundamental Grothendieck’s inequality,
and they are usually referred to as «Grothendieck’s Theorem» (see for instance [38] 22.4.2
and22.4.4):

() All operators defined on an L__-space and taking valuesin an L, -space are 2-summing.
(b) All operators defined on an L, -space and taking values in an L, -space are 1-summing.
(0.14) The next result connects the concept of 2-summing operator with the existence of ellip-
soids of maximal volume in the unit balls of finite-dimensional spaces (cf. [ 141). For a proof
see, for instance, [4] (Lemma 2):

If dim E = n, then there exists an isomorphism uy € L(£3 , E) such that ||ug||= 1 and
my (ug') = n'/2 . Moreover,

€ = ug(Bp)
is the ellipsoid of maximal volume contained in Bp,.

(0.15) Let E, ug , and & be asin (0.14). The volume ratio of E is defined by

1
(B) = vol By \'/* [ vol uz' (Bg) !
VIR =\ Vol & - vol By

The main results about the volume ratio may be found in [33], [36] and [46].
(0.16) If p e[ 1, co], [T, v,] is the ideal Of p-factorable operators. Recall that
T eI (X, Y)if there are aspace L, = L,(p) and operators A: X — L, B L, —» Y™
such that BA = KT Theideal norm o, on I, is given by ~,(T) : = inf [|A]|. || B]|,
where the infimum extends over all factorizations as above.
(017) [T2,~%] = I, m] and [T}, 471 = [TIE, 1. Moreover, [I1},7}] = [T, ,7.,]
and [(I1H*, (nd)*] = [T, 7] (see [38] 19.3.10and9.3.1).
(0.18) Throughtout this work, ( g,) will be used to denote a sequence of independent standard
gaussian variables on some probability space. An important property of ( g,) is the following
result of J. Hoffman-Jgrgensen [11]:if 0 < p < ¢ < oo there is a constant c,,, such that, for
every finite sequence z, , . . ., z, from a Banach space X ,

p) 1/p

o\ 1/q
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Here E is the expectation (integra) sign.
(0.19) [Hﬁ/ y ] is the ided of -summing operutors, which was first defined in [22]. An
operator T belongs to T1,( X , Y) if there is a constant C such that, for all z;, ..., z, € X,

o\ 172
(E ) < C sup
I*€B

b
where ( g,) is as in (0.18). =, (T) is the least constant C satisfying the above inequality.
Note that

n 1/2
(EZ I(I*,mk)V) ,
k=1

Egk(w)ka

k=1

7, (T) = sup{7(Tu) : u € L(&,X), ne N, ||u]| < 1).

(0.20) Let w € L(Z5 , X) . Then, by rotationd invariance of the gaussian measure on R™,

a2\ 1/2
ﬂ,,(u) = (E )

for some (in fact, all) orthonormal basis f, , . . ., f, of 5.

(0.21) If 0 < p < 00, then Ilp c IL,, and there is a constant ¢, such that, for all T in HP ,
m,(T) < ¢,m,(T) ([22] Th. 6).

(0.22) Let T € L( X, Y). The n-th approximation (resp. Weyl, Hilbert, entropy) number of
T is defined by

> gw)u(fy)
k=1

a,(T) =inf{||S~-T|| : & L(X,Y),rank(S) < n}
(resp. by

s(T) : = sup{a,(Tu) : u € L(4,,X), [lu|l <1}
h(T) : = sup{z,( vT) : v € L(X,4),|]v|| < 1}
en(T) :=inf{e > 0: Jy;,..., .1 € Y such that T(By) C

2»—]
C Y (y; +€By)}).

The following facts on these numbers are taken from [38] Chs. 11 and 12, and from [39].
(0.23)If s € {a, 7, h, e} ,then (s,(T)),en iSanonincreasingsequenceand s,(T) = ||T|.
Moreover, a,(T) > s,(T) > h,(T) for alln € N and 0 = a(T) = z,(T) = h(T) if
rank (T) < n.
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(0.24) If X is a Hilbert space, then a(T) = z,(T) for alln € IN, and

0, (T)= sup a,(T|g).
Bedim(X)

(0.25) If T is compact, then &(T) = a,( 7*) for alln € IN .
(0.26) h,(T) = h, (T*)forall Tand alln € N .
(027)Let sc{a,z,h, €} . Wedefine the quasi-normed operator ideds

Spa =T+ (5,(T))uens € 2,5}, 0<p<oo, g€{Loo}

and
Sy = AT : (5,(Then €4}, 1< p <00,

the quasi-norm being given by

02 (T) 1= 0, ((s,(T]))),
(cf. (0.7)) resp. by
ap(T) = ||(s.(TH]l,-

(0.28) Let r, p, g, u, v, w € [1, co] besuchthat

andlets € {a, z, e}. Then,if T € S;,(X,Y), S € 5 (Y, Z), we have ST €
S (X, Z) and

07, (ST) < 2170} (8)0; (T).

(0.29) Letqe([2, 00). Then S;‘,] C Hq,Z C S’g’m and there are constants Cyo c; such that

O oo(T) < ey 2 (T) < ca® (T)

‘g gl
for all operators T belonging to the appropriate ideals.
(0.30) If g € (2, 00), then S7 C I1,, and there is aconstant ¢ such that

my2(T) < clo?(T)

for all T. Further, if X is a Hilbert space, then S5(X | ) = 0, (X ).
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(0.31) Let g€ (2, oo)and r €[ 2, g) . Then there is a condtant c,, such thtat

7,(T) < ernl/r—l/qo-;oo(T)

for all rank n operators T .

(0.32) The next lemma, due to G. Pisier [43], will be often useful to us.

Let o be any ideal quasi-norm on L(£7 , X) . Suppose there is a constant C such that, for
alu e L(Z;, X) andforallne N,

Az (8) < Cn Mo u)

(here [ z] denotes the greatest integer less or equal to z). Then there is a constant C' , de-
pending only on C, such that
02 o(1) < Clo(u)

forall u € L(£3, X) andforall ne N.

Pisier’s proof actually shows that C' < (3 /2) Y/4C .
(0.33) To conclude, we introduce the notions of type, cotype and related concepts. We restrict
to the Gaussian case. For details about the relation between Gaussian and Rademacher type
or cotype see, for instance, [33].

A Banach space X is said to have cotype q (g €[ 2, oo0) ) if there is a constant C such
that, for all z, , .. ., z, € X,

2) 1/2

n 1/q
(E llz;ll") <C (E
i=1

where ( g;) isasin (0.18). For fixed n, let C (X', n) be the least such C , and put C ( X) =
sup Cq( X', n), o that X has cotype g if and only if C (X) < oo.C (X) is the so-called

neN
cotype constant of X .

X has equal-norm cotype q if the inequality above is only supposed to hold for vectors
z; of equal norm (e.g. such that ||z,|| = 1 for all i).

Similarly, X is said to have typep (p € ( 1, 2])if there is a constant C such that, for all

Tyy.., T, €X,
2 1/2 n 1/(]
o] )=o)
i=1

Z g,‘(w) I,

i=1

E g{(w)m,'
=
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For fixed n, let T ( X, n) be the least such C . Put T.( X) : = sup, T,(X, n), o that
X hastype p and only if T ( X) <oo0.T,(X) isthe type constant of X .

X has equal-norm type p if the inequality in the definition of type is only supposed to
hold for vectors z; of equal norm.

(0.33') A Banach space X has type p if and only if it is K-convex and X* has cotype p*
(cf. (0.5)). This fact is fundamental for the so-called «duality» between type and cotype. Of
course, @ similar Statement holds for equa-norm type and equal-norm cotype as well.

Let p €[ 1, oo). Then the Ep—spaces (cf. (0.6)) have type min(p, 2) and cotype
max( p, 2) . L.,-spaces have neither type nor cotype, as it follows from (0.36). A result
of Kwapieri [19] states that X is an £,-space (i.e. is isomorphic to a Hilbert space) if and
only if X has type 2 and cotype 2.

(0.34) Given a Banach space X let p(X) := sup{p : X has type p} and g(X) :=
inf {g : X has cotype g}. Then the Maurey-Pisier Theorem asserts that X contains the
Ly xy 's and the £y, 'S uniformly (see [30]). This has the following corollaries:

(0.35) X does not contain the £7’s uniformly (i.e. X is K-convex) if and only if X has
type p for some p > 1.

(0.36) X does not contain the £, ‘s uniformly if and only if X has cotype ¢ for some g < co.
(0.37) Since a K-convex space does not contain the £; ’s uniformly, it does not contain the
22 *s uniformly as well, S0 that (0.36) implies that K-convex spaces also have cotype g for
some finiteg .

1. WEAK PROPERTIES

Let X beaBanach spaceand [ A, o], [ B, 3] be quasi-normed idedls. Following G. Pisier
[43] we say that X has the property P( e, f) if there is a constant C such that

o(w) < CAu), Yu € L(&,X) VnE N .

Clearly, if id, € A. B~ then X has P( «, B) . One may show that the converse does not
holdin general.

Similarly, we say that X has the property Q( «, B) if there is a constant C such that
a(v) < CB(v), Yo € L(X,8), Vn€ N.

As above, we can easily see that if id, € B! . Athen X has Q( «, f) , the converse being
again false in general.

The two concepts are essentially dual to each other, as it is seen by the following straight-
forward lemma:
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Lemma 1.1. (a) If X has P( «, f§) then X has Q(58*, o)
(b) If X has Q(«, B) then X has P(8*, «*).
(c) If & is equivalent to oo and g** is equivalent to 3, then P(«, §) is equivalent to

QB o),
We illustrate these concepts by

Proposition 1.2. (a) X has cotype ¢, ¢ €[2, c0) , iff X has P(m_,, 71,1) |

(b) X has type p, p € (1, 2], iff X has P(m,, (wp.,?_)*d), or else, iff X has
QU )%, ).

(c) X does not contain the £1’s uniformly (i.e. X is K-convex) iff X has P(,_, (ﬂq) *d) ,
or else, iff X has Q( nf, 7).

(d) X does not contain the £7 s uniformly iff X has P(7,_,v_) .

Proof . (a) and (b) follow from [44], whereas (c) follows form a characterization of K -con-
vexity by T. Figiel and N. Tomczak-Jaegermann [8] and from (0.5).

We only prove (d). By the Maurey-Pisier Theorem (0.36), X does not contain the £7.’s
uniformly iff X has cotype ¢ for some g < co. The latter implies that all operators from an
L. -space into X are (g + ¢) -summing for all e > O (use, for instance, [42] Cor. 2.7 and
[38] 22.6.4). By (0.21), all T"_-operators into X must be y-summing. In particular, X has
Py, 7).

Assume now that X has P(,, 7,) . We get immediately I'_(-, X) ¢TI (-, X) and
a constant C not depending on » such that m, ( s) <C, ||s|| for all s € L(£Z , X) . We
shall reach a contradiction from assuming that X contains the ¢ s uniformly: let ¢, be a
constant such that, for some isomorphic embeddings j,, : 22, — X ,

sup 1711 172111 < €,
nelN

This implies
7 (idp ) < |7 my(G) < Wit ICH Al € G 6y
Now, if ( g,) is asin (0.18) we have, by the definition of ~-summing operators,

[ s lao)ldw < mGidy).
R 1<k<n bl

The integral on the left is known to be of the order of magnitude of (log n) 1/2 (see [1]
Cor. VIIL4.4), hence we have reached the desired contradiction. u



On wesk cotype and weak type in Banach spaces 77

Let[ A, ] beaquasi-normed jdeal and X a Banach space. On L( &5, X) and L( X, £})
we define the quasi-norm we: by

wau) 1= sup{of (vu) : vV € L(X,£3), &(v) < 1}, Vu € L(£5,X),

and

wa(v) ;

sup{of o(vu) 1 v € L(&,X), ' (w) <1}, W € I(X,5),

respectively. One may easily show, for example, that woa = w( o**) is aways true and that
wa IS maximal on L(£5, X) , resp. L(X , £5) , if o* is surjective, resp. injective.
Let [B, B] be another quasi-normed ideal. Following Piser ([43], §3), we say that X

has the property weak-P( «, B) if X has P(wa, 8) . Thus X has weak-( «, 8) if and only
if there is a constant C such that

Ui‘vw(vu) < Ca*(v)B(u), Vn, Yu € L(£5,X), Vv € L(X,43).

Similarly, X has the property weak-Q( «, B) if X has Q( wa, p) i.e. if and only if
there is a constant C such that

of o(vu) < Ca(u) B(v), VN, Yu € L(£,X), Vv € L(X,£3).

Lemma 1.3. (a) wa < « both on L(4; , X)and L(X , £3) .

(b) P(a, B) = weak-P(a, B) .

(c) Q(a, B) = weak-Q(a, B).

(d) If Bis equivalent to f** on L(X,£}), then weak-Q( e, B) is the same as weak-
P(B*,a*).

(e) w(od) = (wa)? on L(£3, X),and w(a?) < (wa)? on L(X, 5).

Proof . (a) Letu e L(&;, X) , v € L(X, £;) . Since the nuclear norm (denoted by v; ) of
operators between Hilbert spaces coincides with o (see [38] 15.5.3), we have

01 (V) < 07(vu) = vy (vu) < o (v)a(u),

which proves ().
(b), (c) and (d) follow easily from the definitions and part (a).
(e) follows from the definitions and from the identity o*¢ = o . o

There are important properties which coincide with their weakened form, notably the prop-
erties of not containing the £7,’s (resp. the £} ‘s) uniformly.
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Proposition 1.4. The weakproperty associated to having finite cotype is finite cotype.

Proof . By (0.36), X has finite cotype if and only if X does not contain the £7, ‘s uniformly.
Hence, by 1.2 (d) and 1.3 (b), it suffices to prove that P(wm,, 7,) implies P( 7, 7..) -
Suppose that X contains the £7. ’s uniformly and let j, @ £2 — X, n € N, be isomorphic
embeddings such that sup |7,]| [l7;' || = C < co. By i, we denote the identity of R™
regarded as amap 4, — £;. Then

’Yw(jniZ,oo) S ”]ﬂ” ”":2,00” = ”]n“

Let v, € L(X,£" ) be an extension of ;! such that ||, || = ||j; || (there exists such an
extension by the metric extension property of £2 ). We have, by dudlity,

3o 29) < 117 17 (10 2) <77 G, (L2 M3 (i)
Now, by Grothendieck’s Theorem ( 0.13) ,
7y (s 2) < Kpllige2 |l = 5y '/

for some constant «, . Further it is known that there is a constant «, such that

C, (L) < Ky - [/ log(n+D]V?

(see [46] Ch. 1.4). Hence, if X is supposed to have P( wm, , 7,) , there must be a constant
& such that, for all n,
nsg?,m(im,ZvnjniZ,oo) s Nﬂ;(iw,lvn)qm(jniz,oo) S

<kCr Kyl log(n+ ]2,

a contradiction. o
Proposition 1.5. Weak K-convexity is equivalent to K-convexity.
Thisis due to Pisier [43]. We provide a proof for completeness. We start by an easy lemma.

Lemma 1.6. There is a constant x such that

my (1) < ]|



On weak cotype and weak type in Banach spaces 79
for all t € L(£,, £3) andfor all n.

Proof . Let t€ L(¢,, &3), s € L(£3 , £,) . Since I1; = I, isometrically,
[tr(st)| < my(s)m, ().

By Grothendieck’s Theorem (0.13') , there is a constant C such that =, (¢) < Cl|t|| .
Furhter, since £; has cotype 2, m,(s) < C, (£;) . n,(S) . Hence

ltr(st)| < s, ()| [l

where x : = CC, (£,) . By definition, this means that m () < &| [¢ |]. o
Next we quote the following simple observation form [33] 15.5:

Lemma 1.7. Let « be an injective norm defined on L( E, F) for some finite dimensional
normed space E and all finite dimensional normed spaces F . Then, for any Banach space
X DF,every v € L( F, E) admits an extension V € L( X, E) with a*( V) = «*(v) .

Proof of Proposition 1.5. By proposition 1.2 (c) an lemma 1.3 (b) it suffices to show that
P(wm,, ( m,)*¢) implies P(x_, (7,)*%) . Suppose X is not K-convex, i.e. let X contain
the £z s uniformly (cf. (0.5)). Let j, : €2 — X be isomorphisms such that sup | |j, || |17;*1] =
C < oo, and let 1, be the identity of R™ regarded as amap £ — £7. Since 7 is injective,

we may apply lemma 1.7 to obtain an extension v_ € L(X , £3) of i, ,j;" such that

m(v,) = w30y 500 <t Ime g ) < sl

where « is the (universal) constant appearing in lemma 1.6. Just as in the proof of proposition
1.4, there is a constant ' such that

(i3, = T(ing2) < (LRI Ty iy p) < w'mllog(n+ 11712,

If we assume that X has P( wm,, (m,)*, there must be a constant =, such tht, for each
ne N,

n=07 o (V7,7 1) < Rom((Jriy 1)) W (v,) <
<ryOrr'nllog(n+ 1)]71/7,

which is impossible.
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Of course, weak-P( e, f) is nothing but P( o, ) whenever we is equivaent to o on
L(£2 , X) . In the light of 1.4 and 1.5 it is tempting to conjecture that w, is equivalent to

m, on L(Z;, X) . This, however, is false, since for example weak type p is always dtrictly

weaker than type p, as we will see in $3. On the other hand, the next proposition will enable
us to show that weak (weak cotype q) is again weak cotype q , whenever g > 2 (see Corollary

2.2). As we will sec, an analogous result holds for weak type p, p < 2 .

Proposition 1.8. Consider the quasi-norms Ta2 Ogm (A €2, 00)) ON L(£3, X) for
some Banach space X . Then:

(a) wm,, is equivalent og ., g €[ 2, 00).

(b) wos , isequivalent o . q € (2, 00).

Incase ¢ = 2, (a) was already stated in [43], §3. We shall need the following lemma:
Lemma 1.9. Letqge (1, 00). There is a constant C such that

0% o(¥) < (6%)"(v) < O (1)

forallve L(X, £3).
Proof .Letv € L(X, £3), u € L(£;, X) . By [38] 13.9.6 and 154.6,
O oo(v) < (071)*(vu) < (o7) (V) ||u]].
By the definiton of the Weyl numbers, this implies
0% (V) < (07,)*(v).
By (0.28),ifu € L(£3 , X) andv € L(X, £3) ,
[tr(vw)| = o¥(vu) < 262 o (1)0F (w),

which means that
(671)*(v) < Co%i o (v),

by the definition of the adjoint norms. o

Proof of Proposition 1.8 We consider only the case 2 < g¢< co. Because of the identity
I1y =1, (0.12), the case ¢ = 2 is even easier to deal with.

Let w € L(£5, X) and let E be an n-dimensiona subspace of X which contains u(Z3).
Further, let j,: E — X be the natural enbedding. By (0.14) there is an isomorphism
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v€ L(E, £3) suchthat m,(v) = n'/* and |[v=" || = 1. By (0.13), there exists an extension
V € L(X, £) of v such that m,(V) = m,(v) = n!/2. Forall k < n we get

kay(u) =ka,(Ggv™'Vu) < kay(Vu) =
=ka,(vu) < nl/chm (;;13/7”) <
<% sup{of o(tu) 1 t € L(X,£5),my (1) <1} <
g'n}/zwﬁz(u).

By (0.31) and since o < Cp implies wa < Cwp (by definition), there is a constant ¢,
depending only on ¢ such that

wm, (u) < anllz_l/"wa;m(u).
Therefore, letting k : = [ n/2] we obtain, for some constant « ,
g (U) < nn‘l/"wcgm(u).
By (0.32), there is a constant ' depending only on « such that
0o W) < KWOL oo (),

which proves (b) by 1.3 ().
Further, by (0.29) and 1.3 (b), there is a constant , such that

wog (1) < kywm,,(u)

for all w € L(£3 , X) . To complete the proof, it remains to show that there is a constant «.,
such that, for any u € L(£3 , X) ,

wrg (1) < Ky0g ().
To see this, note that, by (0.28),
gy (u) =sup{0f oo (vu) 1 v € L(X,5),n€ N, (n,9)*(v) <1} <
<207 (1) sup{og (V) 1 v € L(X,£3),n€ N, (m5)"(v) < 1}.

By trace duality and (0.29), there is a constant &4 such that
CANOEQACPING

forallv e L(X , £) . By lemma 1.9,
w5 (u) < 2R507 (u),

and thus the proof is complete (let &, : = 2 &5 ).
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Lemma 1.10. Letve L(X, £5),9€[2, 00). Then

(@) wa(v) = SUP pepim(xy wo v|g) , for all quasi-norms o such that o* is injective.
(@') wa(v) = SUP pecoa(xy W Qpv) . for all quasi-norms o such that o* is surjective.
(b) 0,00 (V) = SUP geDim(x) Tg,00(?]E) -

Proof . We have only to show « < ».
(ALet v € L(£, X), o*(u) < 1. Put E;:= u(£F) and let uy € L(£3, Ey) be
such that u = ju,, wherej isthe natural embcdding of E, in X . Since o* is injective,
a*(uy) = a*(u) and

07 (V1) = Ui”w(v[Eouo) < wa(leo) < sup wa(v|g)

EeDim(X)

Since u was arbitrary, (a) is proved.
The proof of (a) is similar,
(b) By (0.24) and (0.29,

Og00(¥) = 07 (V") = sup 07 o, (Qv™) |

where the supremum extends over all quotient maps Q defined on X* with finite dimensional
range. For all such Q we have, by (0.25),

08 (QV) =02, (" QD < sup  a% (v7]p) =
EeDim(X**)

= sup o? (v
EEDirrlx)(X) aco(Vlg)

the last inequality following from local reflexivity (sce, e.g., [13] 17.57). o

We are now ready to prove a companion result to proposition 1.8. We point out that
proposition 1.11 (b) will be used to prove that wesk (weak type p) is nothing but weak type
p'when 1 < p< 2 (Corallary 3.2).

Proposition 1.11. Consider the quasi-norms (m,) d,og’m (@€[2,00))on L(X, &)
for some Banach space X . Then:

(@) w(m,,)? isequivalent to o, g €[2,00).

(b) wag , is equivalent to Ogo0r 9E (2, co).

Proof . (@) Letv € L( X, £;). Since( m,

22)%=m, , propostion 1.8 () yields two absolute
constants &, , &, such that

w5 (v7) < Ky 02, (1") < kw5 (v) = myw((m, )% (v7).
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By (0.25) and 1.3 (€) we get

w((7, )9 (V™) < 5,020 (0) < Ryw((m, )% (u™).

Application of 1.10 (b) completes the proof of (a).
(b) is proved analogoudly, using 1.8 (b) and (0.25). o

2. WEAK COTYPE

Let g€[ 2, c0) . By 1.2 () and 1.3 (d), a Banach space X has weak cotype ¢ if X has
P(wm,,, m,), 1€ if there is a constant C such that

0? o(v1) < C(m, )" (v) ()

forallue L(45, X) , v € L(X,45) andn€N.
Given a Banach space X and ¢ €[ 2, c0) , we define wC,(X) to be the smallest C
such that
Ogo(t) <Cm(v), Vu€L(f,X), VneN,

with the usual agreement inf § = co. We call wC,( X) the weak cotype g constant of X .

Proposition 2.1. Let g € [ 2, co), and X be a Banach space. The following conditions are
equivalent:
(a) X has weak cotype ¢ .
(b) There is a constant C such that, foral/u € L(£; , X)and alln€EN,
ogm(u) < C’ﬂ',,( u).

(c) There is a constant C such that, for everyjnite-dimensional subspace E of X ,

wC,(E) < C.
(d)1idy € Squo . II;1 , 1.e. all y-summing operators t with values in X satisfy

(2,(D))neN € 44 00-

Proof . (4) < (b). By the considerations above and by 1.8 (a), X has weak cotype ¢ iff X
has P(0] o, 7).

g,00y T
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(b) = (). Let E € Dim( X) and let u € L(£5, X) . If jg is the naturad embedding of
E into X we have

02 o) = 02 (jipt) < WCHX) T, (jgu) < wC,(X)m(u).

It follows that wC,( E) < wC(X) .
(€)= (). LetueL( £, X)and E : = u(£3). Then, if j isthe natural embedding of
E into X and u, : £§ — E issuchthat u= jgu, , we have

0g0o(1) = 0g (1) < wC(E)m, (1uy) = wC (E)m, (u).

Consequently, wC,(X)< sup wC,( E) and (b) follows.
E€Dim(X)

(b) = (d). By (0.24) we have
0g o) L wC (X)), (u)

forallu e L( &2, X) . Letnow T € 1'1,1( Z,X), Z being an arbitrary Banach space, and
veE L, 2), ||u <1. We get

0% o(T1) < wC(X)m (Tu) < wC(X)m (T).

By the definition of the Weyl numbers, (d) follows.
(d) = (b). Is trivial. 0
Remark: We have actually proved that wC(X) = sup wC,( E) for all Banach spaces
E€Dim(X)
X.
As it was already announced, from 2.1 and 1.8 (b) we deduce the next

Corollary 2.2. If 2 < q < oo, weak (weak cotype @) is equivalent to weak cotype q .
Problem 2.2.*, Does the same holdfor weak cotype 27

Equal-norm cotype q is a natural weakening of cotype q (see (0.33) for the definitions).
However, Pisier [12] has proved that the two notions are the same in the case q =2 . In
particular, it will be clear from the examples given after theorem 2.10 that weak cotype 2
is strictly weaker than equal-norm cotype 2. In this light it is surprising to discover that, if
g > 2, weak cotype q and equal-norm cotype ¢ coincide. This, together with several other
characterizations, is the content of the next theorem:
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Theorem 2.3. Let q £ (2, c0), and X be a Banach space. The following conditions are
equivalent:

(a) X has weak cotype q .

(b) For each+ € 2, Q) there is a constant £, such that

G, (X, n) < nt/m1e VneN.
(d) X has equal-norm cotype q.
(e) L,( ., X) has weak cotype q forall - €[1, q) and all measure spaces (Q, y).

() L, (1, X) has weak cotype q for some r €[1, g) and some (nontrivial) measure space
(Q, p).

Proof . (8) = (b). Let + €[ 2, q) . It iseasy to deduce from the definitions (0.33) that
C,(X, n) isthe least & such that, for all v € L(£; , X) ,

mo(u) <k -m(u).
It follows then from (0.3 1) that there is a constant C such that
o (W) < Cnt/™i6?  (u) <wC ( X)Cn'/™Hom (u)
for all w € L(£5 , X) , which proves (b).
(b) = (c), is trivial.
(c) = (d). Let 1 €[2, q) and  be such that
C(X,n) < sul/m1e VneN,

andlet z,, z,, ..., =, € X be norm-one vectors. We have

o 12

[ n 1/r
7Ll/'r = (E”"E;HT) S an/r—l/q E
=1

nl? < EE

n
E :91‘55;
i=1

" ”2 1/2
D20,
i=1 il

Consequently, X has equal-norm cotype q .
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(d) = (a). Let X have equal-norm cotype g. We first show that, for every ;m € IN,
every w € L(£7, X) , and every orthonormal basis f, , f,, .. ., f,, of £,

ml/a min [lw( )| < Omy(w),

C being a constant which depends only on X . Define

~min w4

h, =—=———f  i=0,.,
N TEVIEL

., m,

(0/0: = 0). Then, since ||w( h,)||= min, ||wf,|| for all i, we have

ml/e Il;rlglrrrln ”wfk” = (Z ”w(h,-)”q> <

by the equal-norm cotype g property of X .
Since

ngw(f,')
i=1

i=1
o I\ 172
<C (E ) gw(h) ) :
i=1
m 172 m 1/2
(E I(h, hi)IZ\] < (5? Ik, f,-)l2>
i=1 / \i=1
forall h € £5*, by Xoposition 3.7 of [41] we have
o o\ 1/2 o\ 172
(E Zg,'w(h-;)l ) < (E h ) =7T,,(’w),
i=1
and the claim is proved.
Let now u € L(£3, X) be given. Using a well-known lemma (sce e.g. [37] lemma7),
we may congtruct an orthonormal basis f,, f, , . .., f, of £ such that a,( v) < ||u( £,) ||,
k=1, ....n. Then, by what was shown above,

.....

i.e. X has weak cotype ¢ (by propostion 2.1).
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(@ = (e). Letfirst r €[1,2]. Let (2, p) beameasure spaceand z; , z, , . .., T, €
L.( p,X).By (@ < (b)and (0.18), there is a constant « such that

/2

= 1/r a 1
(lemmll') <12 (Enm;(w)uz) <
i=1 i=1

<km /712 gl /211 (E

r> 1/r

> gz(w)
1=1

and hence

T

2|l$;(w)ll’ < (rn!/TH9)E
E

) gmi(w)
=1

for all w € Q . Integrating with respect to w we get, by Fubini’s Theorem,

r 1/r

- 1/r
(E H-’E;IIE,(X)> <kl B
i=1

L.(X)
If we suppose ||z, || = ||z, || = ... = ||z,|| = 1, this becomes

1/r 1/2

n T n 2

W <x|E Eg,-m,- <k{E Zgizi ,
i=1 L,(X) G L(X)

which means that L, ( 2 , X) has equal-norm cotype ¢ , i.e. weak cotype ¢ , by (a) < (d).
Next, we consider the case € (2, ¢). By (@) « (0), if 2, z,,..., z, € L.(u, X)

we have
T) 1/7‘

sl

for all w € Q . Integration against y yields, again by Fubini’s Theorem,

o
E giTs
i

=1

n 1/r
(E”I;(W)Hr) < nrnl/f-llq (E
i=1

> gz (w)
i=1

2 llz )| < (5, /"M
|:

C,(L,(p,X) m< s nlm

which shows that L, ( x, X) has weak cotype g , by (8) < (C).
(e) = (f) = (a) are trivial.
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Remarks: (A) It is not clear whether r = ¢ can be included in (€) and (f) or not. If g = 2,
L,(X) has weak cotype 2 iff X has cotype 2, as it is proved in [32].

(B) A first proof of the equivalence of(a) and (d) was obtained in collaboration with U.
Matter: the one given above is somewhat different from the origina one (compare [28]).

Corollary 2.4. Let q € (2, 00), and X be a Banach space. Then X has weak cotype q iff
there is a constant « such that, for any n-dimensional subspace E of X |

C,(E) < sn!/*71/a
Proof . By theorem 2.3, X has weak cotype ¢ iff there is a constant &, such that
C(X,m) < wut?7V4 pe N,
By [44] th. 2, for any n-dimensional subspace E of X we have
C(E) <2C,(E,m).
Sinceclealy C, (E, n) < C, (X, n) , we get
C.(E) < 2rn!/271/9,
To see the converse, let z,, z,, ..., =, € X be arbitrarily given. Since
Cy(span {zy,..., z,D<nnt 2710,
we get from the definitions

2

n
Z 9;%;
i=1

. 1/2
(ZII%;IP) <wntl2U0 L E

i=1

Hence,
C,(X,n) < knt*7M9, vneN,

% that X has weak cotype ¢ by theorem 2.3. o
The concept of weak cotype is closely related to the existence of aimost euclidean finite di-
mensional subspaces. To provide some further information, we will need a couple of lemmas.

The proof of the first one can be found in [32].
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Lemma 2.5. Lei F be a Banach space and u € L( £}, F) . Then for every k<n there is a
subspace G of £3 with codim G < k such that

llulgll < k72 d(F, 6™ F)m, ().

Lemma 2.6. There is a constant ¢ such that, for any n-dimensional space E and any iso-
morphism u € L(E, £}, there exists a volumepreserving operator v € L(£7)) with

e (vu) < cor( E)n 12 ||ul|.

Proof . By homogeneity, we may assume ||u| | < 1. Let & be the maximal volume élipsoid
contained in B . By Lemma 10 in [27], there are a volume preserving operator in L( £%))
and an absolute constant ¢ such that

1/n 1/n
1o (031 < (vol uBE) = ur(E) (vol ué > < vr( E)

vol B,, vol By, = ur(e)’

since u€ C uBy C By - Now, it is known that vr( £%) > n'/> for some absolute constant
¢, s the lemma follows. «

Theorem 2.7. Letq €[ 2, co0), and X be a Banach space. Then

(a) = (b) = (c) = (d) = (e) :

(@) There exists § € (0, 1) and a constant C such that every n-dimensional subspace E of
X contains a subspace F with

dmF>én and d( F, ggim F)SCHI/Z—I/q.

(b) There is a constant C such that, for gll n € N and every n-dimensional subspace E of
X,
vr( E) g Cnl/271g,

(c) X has weak cotype q.
(d) There is a constant C such that, for every n-dimensional subspace E of X ,

Cnl/q S ﬂ-p{( |d,)
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(€) For each e >0, there is a constant C, such that every n-dimensional subspace E of X
contains a subspace F With

dmF > Cn2/% and d(F,£"F) <1+ ¢

Remark: It follows that if ¢ = 2 the five conditons above are equivalent. We get thus some
of the characterizations of weak cotype 2 obtained by V.D. Milman and G. Pisier (see [32],
Cor. 5).

Proof . (a) = (b). Just take the Milman-Pisier proof for the case ¢ = 2, with minor changes
[32].

(b) = (). If (b) holds, by Lemma 2.6 there is a constant C = C(X) such that, for any
n-dimensional subspace E of X and any isomorphism v € L(E, £ ) , we can find a volume
preserving operator N € L(Z7) such that e, (vu) < Cn~1/4||u||. Reasoning as in Pajor’s
proof of Theorem 2 in [34], we see that this implies that X has weak cotype ¢ .

(¢) = (d). By proposition 2.1, if X has weak cotype g then wC ( E) < wC (X) for all
subspaces E of X . Let E € Dim (X) be n-dimensiona, and let v € L(Z}, E) . We have

0g00() < wC (X)), (v) <wC (X)m (idg)||ul],
and, by the definition of the Weyl numbers,
05 oo(1dg) < wC (X) 7, (idg).

The left hand side is greater than Cn!/9 for some universal constant C ([37] Th. 12), hence
(d) follows.
(d) = (e). Let X satisfy (d) and E be an n-dimensional subspace of X . Since

7,(idg) = sup{m,(u) : u € L(4, E), [lull = 1},

a compactness argument yields an u € L(£3, E) such that m, (u)n_(id)) and||u|| = 1.
Further, we may assume that u is one-to-one. It follows from [33] 15.1.1 and 5.1, that there
is a universa constant C' such that

1/2
m,(u) = a'f? (/ Hu(é)llzdu(é)> < C'n'M,,

Sr-1

where 5*1: = {¢ € £5: ||¢|| = 1}, p is the normalized Haar measure on $™' and M, is
the median of the function (&) : = ||u( €) || on S with respect to . So,

C 1jg-112
57n/q <M,
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Now, by the Figiel-Lindenstrauss-Milman version of Dvoretzky's Theorem ([6], Th. 2.6),
given £ > 0, there area constant C, and a subspace F of E with

dim F > CnM?||ul|™ > CnM? > Cln?/t
and
d(F ™)y <1+ e 0

Remark: just asin [32] Th. 1, it is possible to prove that if (a) of theorem 2.7 holds for a
Banach space X and for one § € (0, 1) , then it holds for all § € (0, 1) . Of course, in this
case C will depend on § .

Problem 2.7*. It would be interesting to know which of the implications appearing in theorem
2.7 may be reversedfor g > 2, as it is known to be the case if q = 2.

In the presence of K-convexity, however, we are able to prove the following

Theorem 2.8. Letq € (2, oo) and let X be K-convex. Then X has weak cotype q if
and only if there exist § € (0, 1) and a constant C such that, for every n € IN , every
n-dimensional subspace E of X contains a subspace F with

dm F > én and d( F,™F) < onl/2-1s,

Proof . Let X be K-convex. If X has weak cotype q , by 2.4 there is a constant « such that,
for any n-dimensional subspace E of X we have

Ty(E*) < C(E)K(E) < s> 1K (X),

where K(X) < co is the (gaussian) K-convexity constant of X. Now, by a result of
V.D. Milman ([31], Th. 5.1), given § € (0, 1) there is a constant C such that, for every
n-dimensional subspace E of X , there isa subspace F of E with

dm F > én and d(F,4™F) < CT,(E*)

Combining both inequalities for T, (E*) , we see that the desired property holds. The opposite
implication is 2.7 (8) = (). 0

If we require type 2 instead of K-convexity in theorem 2.8, the situation is more pleasant,
since we are now able to avoid the machinery of «proportional subspaces». \We prepare our
statement again by a lemma:
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Lemma 2.9. Letq €[ 2, oo) and let X have type 2 and weak cotype q . Then

LX) €8 (LX),
Proof . By Grothendieck’s Theorem (0.13') , T ¢ 1§ . I, and this yields

T, -T, (T, -I) Ty cI, -t =10

17)

by [38]21.3.5. Hence, if X has weak cotype q we have, by propostion 2.1,
T, T (5 X) C 87 (+, X).

In particular, if X hastype 2 (i.e., if id, € T,) we get the lemma. o

The converse is also true whenever X has type 2; we shall prove this together with other
equivalent statements in 4.5. But 2.9 suffices ah-eady to yield the follwing improvement of
2.7 for spaces of type 2:

Theorem 2.10. Let q € (2, co0) and let X have type 2. Then X has weak cotype q if and
only if there is a constant C such that, for any n-dimensional subspace E of X ,

d( E,2) < Cnl/?-1,
Further, there exists a projection P of X into E with
IPIl < CT,(X)al /2715,

Proof . We use an argument from [36] cor. 22.1. Let E be an n-dimensional subspace of X
and let s: £, — E be a quotient map. By lemma 2.9, there is a constant C such that

07 o(8) < Clls|| = C.
By (0.31), there is a constant C, depending only on q such that
7y ( 8) < Cut*7i6% (5) < C,On' 12711,
Now, by the surjectivity of =, ;
d(E, ) = 1 (1dg) = ;m(s) < m(s),

and thus the desired estimate follows. The existence of a projection P of X onto E as above
is an immediate consequence of Maurey's extension theorem for type 2 spaces [29]. o
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Remark: Theorem 2.10 is not true for g = 2 since there are spaces of type 2 and weak
cotype 2 failing to be isomorphic to a Hilbert space. In fact, if g €[ 2, o), the space

X( q, 77) defined in [6] Ex. 5.3 (using a construction by W.B. Johnson) has an unconditional
basis, type 2 and weak cotype g (by 2.7 (&) = (C)), but not cotype g . This also shows that
the weak cotype g property is strictly weaker than cotype ¢, for allge[2, o).

Related spaces have been constucted by L. Tzafriri [47]: they also have an unconditiona
basis, type 2 and equal-norm cotype q but not cotype g if ¢ > 2. Since weak cotype g and
equa-norm cotype g are equivalent for ¢ > 2 (theorem 2.3), Tzafriri’s spaces turn out to be
exactly as useful (for our purposes) as Johnson's spaces cited above.

Let us now prove a couple of properties of weak cotype g spaces, which will enable us to
provide some counterexarnples to further questions related to our subject.

Proposition 2.11. Letqe[2, oo) and let X have weak cotype g. Then
Fo(X) € 87 (-, X).

Proof . By proposition 2.1 and (0.29), X has cotype g+ € for all e > 0 and thus, by (0.36), X
does not contain the €2, ‘s uniformly. Hence, by Proposition 1.2 (d) and again by proposition
2.1 the conclusion follows. o

Corollary 2.12. Let g €[ 2, oo) and let X have weak cotype g. Then there is a constant
C such that, for any n-dimensional subspace E of X , we have

a1 < C\(E),
where X(E) : = v (1dg) is the projection constant of E.

Proof . This follows from the fact that of .,( idg) > xnt/e for auniversa constant & ([37],
th. 12) and from 2.11. o

Asit is clear from the proof, corollary 2.12 holds under the wesker assumption
Fo(+,X) C S50l X).

Stated in this general form and for ¢ > 2, corollary 2.12 was first proved by U. Matter
(personal  communication).

Proposition 2.13. The Lorentz sequence space £, ; safisfies a lower 2-estimate (i.e. there is
a constant C such that

n 1/2
(EIII;HZ) <C
i=1

n
E T
i=1
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forallzy,z,,. ...z, €L With disjoint support), but does not have weak cotype 2.

Proof . That £, , sdtisfies a lower 2-estimate was observed in [3] prop. 3.2. On the other
hand, by th. 3.2 of [20], there is a constant C' such that

1/2
, n
o _— N.
A(22")Sc<log(logn)> e

By corollary 2.12 above, £, ; cannot have weak cotype 2. o

We conclude this section with a result on Orlicz sequence spaces. We will need another lemma
which is esentially known. We provide a proof for completeness:

Lemma 2.14. Let M be an Orliczjunction and let X, ¢ £, be the subspace spanned by
the first n coordinates. Then

M1

LCMUARS ooy

Proof . Consider the identities+: X, — £ andj : &2, — X, .
Let (o) € X,, 1 < k< m,and r € {1, ..., n} be such that

Ia'rl: sup ‘akl
1<k<n

If we define p, : =|a,|/M~! (1) and assume |a, | > O we have

() ex (50

P Po Po
and %0, by the definition of the norm in 2, ,
i (@)l = Sup |ay| = M~ (1)py <
1<k<n
<MD Iy, = M7 D) llx,

Since the latter inequality trivialy holds if |, | = 0, we have ||i]| < M~1( 1) .
To estimate || ] ||, notice that there is a vector (e) € £5, such that S/lcjp | | = 1 and
<n

||(C¥k)||x“ = (1@ lg,, =I5l
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Since it is readily checked that

lI(@)llg, = min {p: M ('—“—k—') - 1},
k=1 p
¢ lak|> ( i >
= M| — M| —
2 (Ilill <™

(M is nondecreasing) and thus | |7 || < 1 /M1 (1 /n) .
Combining the estimates for ||i||and | |; || we get finally

we have

M=(1)
,, - SN
d(Xn’Eco) g ”1” ”]” S M“l(l/n)
Proposition 2.15. Let M be an Orlicz function and let g €[ 2, o) . If £,, has weak cotype
q then there is a constant C such that M(€) > Ce? for all € > 0 sufficiently small. Zn
particular, if M(E) = €| log e|=*( @ > 0) , then £,, (which is known to have type 2 and
cotype q’ for all " > q) does not have weak cotype g .

Proof . If £,, has weak cotype q then, by corollary 2.12, there is a constant C' such that,

for alln € N, n!/9 < C'M\(X,) where X C £, is the subspace spanned by the first n
coordinates. Hence, by lemma 2.14,

M~ (1)

1/q ! ! i Ry
n/l s CNX,) < CUK,, 8) < Oy

for all n€ IN, and so
sup n!/? M1 (1 < CHA,
neN

where C: =[ C'M~!( 1)]?. Since M is nondecreasing this is easily seen to imply ME) >
Ce? for all e > 0 sufficiently small.

Let us now consider the special case M(g) : = €’|log ¢|~* (> 0) for all ¢ close to 0.
Let §_(e) (resp. p, (7)) be the modulus of convexity (resp. smoothness) of the Orlicz space
2, (see [25] 1.e for the definitions). It follows then from th. 1 of [26] that, for every ¢' > g,

8x(€) > e’ and  py(7) <y 7

for all e and 7 close to 0 and for some constants ¢, , ¢, . These inequalities together with
the main result of [7]imply that £,, has cotype ¢', ¢’ > q, and type 2. Finally, by what was
proved above, £,, does not have weak cotype q . «
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3. WEAK TYPE

Let p € (1,2]. By 1.2 (b) and 1.3 (d), a Banach space has weak type p if X has
Q(w(ﬂp.,z)d, ) (or, equivalently, if X has P(wm,, (. ,) %)y, i.e if and only if there is
a constant C such that

0% oo(V11) < O(,02)*(u) T v),

forall we L(£3, X) , ve L( X, £5) and all n € N . Given a Banach space X and
p €(1,2], we define wT,(X) to be the least constant C such that

97 oo(V) < Cm(v),

forall v € L(X, £) and alln € N (let wT,(X) : = oo if no such constant exists).
wT,( X) is called the weak type p constant of X .

Proposition 3.1. Letp € (1, 2]and X be a Banach space. The following conditions are
equivalent:

(a) X has weak type p.

(b) There is a constant C such that, for all nandfor all v e L(X, £),

a *
op.’m( v) < CTI',Y(‘U).
(c) There is a constant C such that, for every finite-dimensional subspace E of X ,

wT,( E)<C.
(d) id, € (n;)—l (85 4 e all I1}-operators t defined on X satisfy

(2, ())en € & o

Proof . (&) < (b). By the considerations above and by propositon 1.11, has wesk type p if
and only if X has Q( op. o, , 73)

(b) = (c). Let E € dim(X) and let v € L(E, £;) . By lemma 1.7, v admits an
extension w € L(X , £) such that mw( w) = m(v) . Let jg: E — X be the natural
embedding. We have

O 0o(V) =04 (W) < ope o (w) <

SwT(X)my(w) = wT (X)m(v),
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hence pr( E) < pr(X ).
(c) = (b).Let v e L(E, £5) . By lemma 1.10 (b), we get

Ug.m(v): sup c;.m(le)g
EeDim(X)

. < sup wT(E)ym(v|p) < Cmy(v),
E€Dim(X)
and thus (b) holds.
(b) < (d) is proved in the same manner as the corresponding statement in proposition 2.1.

0

Remark: We have actually proved that wT ( X) = sup wT ( E) for all Banach spaces
P EeDim(x) |
X.

It is straightforward to deduce from propositions 3.1 and 1.11 (b) the next

Corollary 32. 1f p € (1, 2) , weak (weak type p) is equivalent to weak type p.

Problem 3.2*. Does the same holdfor weak type 2?

The analysis of the weak type property is considerably smplified by the following duality
theorem:

Theorem 3.3. Let p € (1, 2]. X has weak type p if und only if X is K-convex and X*
has weak cotype p* .

Proof . Let X have weak type p and let u € L(£2, X*) . Put v: =u*|x , SO that u = v*
and, by (0.25),
Tpe o 1) =0';.,oo(v) < pr(X)ﬂ’;(‘U) =
=wT,(X)m(u") < wT(X)m, (u),

i.e. X* has weak cotype p* (as for the last of the preceding inequalities, see [46] th. 11.57).
To see that X must be K-convex, it is enough to show that the sequence (wT,( 1)), IS

unbounded. As always, given p, qe[ 1, oo] , let i, be the identity of R™ regarded as

amap £, — £7. Thenclearly of (41,17 ,) == and 7}(i; ;) < &, for some universal
constant  (Lemma 1.3). Further, by [38] 9.1.8,

n n

T 2(i2 00) — nt/p

(7\',,‘,2)*(’53,1) = (ﬂps,z)*(’iwg) = = nl/?,
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Assume that ( pr( £1)),en i bounded. Then, by definition, there is a constant C such

n= 0% (i1 5 iy 1) < C(my5) (85 )73y 5) < Crn'/?,

which is impossible.
Suppose now that X is K-convex and that X* has weak cotype p*. Then, if
ve L(X,5),

c;.‘w(v) =o;.,w(v*) < 'pr.(X*)'/rﬂl(v"‘) <
S'pr.(X*)K(X)ﬂ;(v),

pr(X) < pr.(X*)K(X) < cm.

In analogy with theorem 2.3 and corollary 2.4 we are now able to prove the next

Theorem 3.4. Letp € (1, 2) and X be a Banach space. The following conditions are
equivalent;

(a) X has weak type p.

(b) For each v € (p, 2] there is a constant «, such that

T.(X,m) < 5,aP77 vreN
(c) There are an +€(p, 2] and a constant « such that

T.(X, n) gnn’/”‘l/’, VneN .
(d) X has equal-norm type p.

(e) L,(p, X) has weak type p for all + € (p, o) and all measure spaces (L2, p) .
AL p, X) has weak type p for some 1 € (p, oo) and some (nontrivial) measure space

().
(g) There is a constant « such that, for every n-dimensional subspace E of X |

T,(E) < snl/p-1/2

Proof (@) = (b). By [33],9.9, T,(X ,n) < K(X)C,.(X* | n) and thus (b) follows from
theorem 3.3 and theorem 2.3 (a) = (b).
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(b) = (c) istrivial.
(c) = (d). Suppose (c) holdsand let =z, , . . ., =, € X be norm-one vectors. Then

(E

i.e., X has equal-norm type p.

(d) = (a). Since X has equal-norm type p if and only if it is K-convex and X* has equal-
norm cotype p* (cf. (0.33)), (d) = (&) follows from theorem 3.3 and from the implication
(d) = (a) in theorem 2.3.

(@ = (e). Letr € (p, o0) and let (2, ) be a measure space. By theorem 3.3 and
theorem 2.3 (a) = (e), L,. ( u , X*) is K-convex and has weak cotype p* . It follows then
again form theorem 3.3 that L .( 1, X*) * has weak type p and, since L, 1, X) is isometric
to asubspace of L. (p, X*) *, L,(p, X) has weak type p (by proposition 3.1).

(e) = (f) = (a) are trivial.

Findly, the proof of (b) = (g) = () carries over without difficulty from the proof of
corollary 2.4. o

2\ 172

o 1/r
< wnlfpollT (Z uz.-u') = kP,
1=1

n
Z 9;T;
=1

With the ad of theorem 2.3 and thorem 3.4 it is now possible to obtain a generaization
of aresult contained in [ 16] (th. 3). In view of the equivalence between equal-norm cotype ¢
(resp. type p) and weak cotype g (resp. weak type p) for ¢ € (2, co) (resp.p €( 1,2)),
we can give a concise statement. Accordingly, we define the equal-norm cotype ¢ (resp.
equal-norm type p) constant by

C g=2 T =)
21 20 p

= .eT_:=
eC, {qu, ¢>2 (resp ely { wT,, p<2>.

Theorem 3.5. Letp €(1,2]and g€[2, 00). Let X be a Banach space of equal-norm
type p, Z C X a subspace, F an n-dimensional normed space and v € L( Z, F) . Then
there is an extension w € L(X, F) with

m(w) < ¢,y min{eC,(Z),eC,(F)}eT,(X)n' /P74 |v]|,

where ¢, is a constant which depends only on p and ¢ .

Sketch of Proof . Using (0.31) if p <2 0r ¢> 2, it is not difficult to find a constant ¢,,, such
that
[tr(sab)| < c||s||7$(b)m,(a),
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foralls € L(Z, F),a € L(£3,2),b € L(F, &) ,where ¢ := ¢y min{eC (2),eC (F)}
eTP(X)nl/P‘l/‘I.
Since 3 = mf . 7, by aresult of Kwapien ([38]17.4.3), this means that, if t ¢ L( F, 2),

ltr(st) | < ellsllv; (D)

which in turn is equivaent to
vy (1) < ey (1),

where v, denotes the 1-nuclear norm ([13], 17.5.2). Now, the last inequality proves also that
the operator
¢: N (F,2) - T;(F,X)

defined by ¢(z) = iz, where i: Z — X is the inclusion, is an isomorphic embedding.
Hence, by dudlity, the adjoint operator

¢ (X, F) - L(Z,F)

is a surjection (with norm c), which proves the theorem. o

Generalizing a result of B. Maurey, V.D. Milman and G. Pisier [32] have proved that X
has weak type 2 if and only iffor all § € (0, 1) there is a constant C; such that, for every
subspace Z of X and every operator vE L( Z, £}) , there exist an orthogonal projection
p: &5 — £; with rank (p) > 6n and anextension w € L(X, £3) of pv such that ||w|| <
Cs ||v] |. Maurey [29] had originaly shown that if X has type 2, then there is a constant C
such that, if Z and v are as before, there is an extension w ¢ L(X , £3) of v such that
[lw]| € C|lv]|. It is not clear whether the converse holds. Of course, because of the Milman-
Pisier result cited above, the last property implies that X has weak type 2.

Ifp € (1, 2 then the stuation for weak type p is closer to the sSituation in Maurey’s
Theorem: in fact, there is no need to work with a projection p.

Theorem 3.6. Letp (1, 2) and X be a Banach space. Then X has weak type p if and
only if there exists a constant C such that, for every subspace Z of X and evety operator
VEL(Z,4;), thereis anextension w € L( X, £}) of v such that

llwll < Cn!/P=12]ju]].

Proof . Necessity follows form theorem 3.5 above. As for sufficiency, let the condition hold.
Thus, if E is a k-dimensional subspace of X , there exists a projection p: X — E with

llpl| < CA(E, &) k!/P=1/2,
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In particular, if X were not K-convex we would be able to construct a projection p from
22 onto a (uniformly) Hilbertian n-dimensional subspace F such that | |p|| < C'nl/P-1/2 .
Since 1 /p —1/2 <1/2, this would be a contradiction, since ~, (£3) is of order n!/2 . S,
X is K-convex.

To prove that X* has weak cotype p* , we use the argument of [32] th. 10 (iii) = (i). Let
w € L(£5, X*) . By [32] prop. 7, there exists a subspace 7 of X with codim Z < [n/2]
such that, for some constant « ,

Jlu*]4]] < mr,,l(u)n_l/z.
By our hypothesis, there is an extensionv € L( X , £5) of u*|; such that
lloll < Cn' P12 w1

Since (u*|x = V) |z = 0, we have rank (u*|x = Vv) < codim Z < [n/2]. So, since
(v*|x —v)*=uv—v*and

[lo = (u = v =] £ anl/"'l/zqr,y(u)n‘l/2 = nC'n,,(u)n'l/”',

we get
a[n/Z](u) < NC’II’,,(u)n"I/P"

By (0.32), o o (u) < C'n,(u) follows with a suitable constant C', s0 X* has weak cotype

*

p - o

Theorem 2.8 and theorem 3.3 lead to the following characterization of weak type p:

Theorem 3.7. Let p e (1, 2]. A Banach space X has weak type p ifand only if there are
constants C and § € [0, 1) such that, for gJi n and every n-dimensional subspace E of a
quotient of X*, there exists a subspace F of E with

dm F > én and d(F,£™F) < opl/P-172,

Proof . Let E be an n-dimensional subspace of a quotient Z of X*, and note that Z* is
isometric to asubspace of X** | which aso has wesk type p, by 3.1. It follows easily that the
weak type p constant of E* is bounded by the weak type p constant of X , 0 that (reasoning
as in the proof of 2.8) the verification of necessity is complete.

Assume now that the condition holds. The assertion about subspaces aready implies weak
cotype p* for X* by theorem 2.7 (8) = (c). K-convexity of X is obtained as follows: if X
contains the 27 *s uniformly, X* has quotients aimost isometric to 27, s that our hypothesis
contradicts the result of Szarek about «large» subspaces of ¢ which was used in the proof
of theorem 3.6 (cf. [36] th.8.1). =
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We conclude this section with an analogue of theorem 2.7 (b) = (c) for weak type, thereby
generalizing a recent result of A. Pgjor [34]:

Theorem 3.8. Let p € (1, 2]. A Banach space X has weak type p ifand only ifthere is a
constant C such that, for every n-dimensional quotient E of X*,

vr(E) < CnlfP-1/2
Proof . The case p = 2 has been proved by A. Pgjor [34]. Further, if p < 2, sufficiency is dso
seen as in Pajor's paper with only minor modifications. To see that the condition is necessary,
we argue as follows: let E be an n-dimensional quotient of X* , and let uy € L(£5, E) be

an isomophism such that the image by ., of the unit ball of £3 is the elipsoid of maximal
volume inscribed in B, (0.14). By [35], there is a universal constant « such that

'nl/zen(ul_.;l) < Nﬂ,,((ug‘l)*);

where e_( -) denotes the n-th entropy number (0.22). Since X has weak type p, it is
K-convex and thus, by (0.14),

m,((ug)*) <K(X)m(ug) <
<K(X)Cy(B)m(ug') < n'*K(X)T,(E").

Now, E* isisometric t0 asubspace of X** , which has weak type p. Since p < 2, by theorem
34 there is a constant x/ such that T, ( E*) < x'n'/P~1/2 , s that we get

en(ugl) < mc'K(X)nl/p_l/z.
This proves the necessity since, by the definition of e, , we have
vr(E) < Zen(u;}l),

as it is easy to verify. al

4. APPLICATIONS TO WEAK HILBERT SPACES

By S. Kwapien [ 193, X is isomorphic to a Hilbert space if and only if X has P( m, , wg) .
Correspondingly, we say that X is a weak Hilbert space if there is a constant C such that

cg‘m(u) < Cﬂg(u), Yu € L(4;,X), Vne N.



On weak cotype and weak type in Banach spaces 103

For fixed n we let wqé") (X) : =inf C, the infimum being extended over al C as above,
o that X is awesk Hilbert space if and only if wry, (X) : = sup,cn wr” (X) < 00. A
wealth of chamcterizations and results about weak Hilbert spaces is to be found in G. Pisier's
paper [43], among which the fact that X is a weak Hilbert space if and only if it verifies
the weak analogue of Kwapied's result (cf. (0.33")), more precisely, if and only if it has
(simultaneously) weak type 2 and weak cotype 2.

Here we supplement this by an observation on Orlicz spaces which alows us to solve in
the negative the «thres space problem» for weak Hilbert spaces. given a subspace Y of X
such that both Y and X /Y are weak Hilbert spaces, does itfollow that X is a weak Hilbert
space, too? If we read «isomorphic to a Hilbert space» instead of «weak Hilbert space», the
answer is «now, as it was first proved in [5]. Later on, another counterexample was provided
by N.J. Kalton and N.T. Peck [15]; we will show that this solves in the negative the «three
space problem» for weak Hilbert spaces, too.

Proposition 4.1. Let £, be an Orlicz sequence space. Then £,  is a weak Hilbert space if
and only if it is isomorphic to £, , i.e. if and only if M (e) is equivalent to .

Proof . Let £,, be aweak Hilbert space. Since £,, has weak cotype 2, by proposition 2.15
there is a constant C; such that M( €) > C; ¢* for all e close to 0 , but this aready means that

£,, embeds (continuodly) into £, in the canonical way. Further, since clearly ¢,, does not

contain subspaces isomorphic to £ , by [25] 4.a4 and 4.b.1, (£,,) * and £,,. are isomorphic,

M* being the Orlicz function complementary to M (cf. [25] 4b.l). Since £,, has weak type

2, £,;. has weak cotype 2 by 3.3 and thus, by the same argument as above, there is a constant
C, such that M*(¢) >C, €* for all e close to 0. Since for al a = ( o) € £,, We have (see

[25] 4.).

[leellg, <sup {Z o fy ZM*(WIJ) < 1}
k k
< sup {Zakﬂk Y G < 1}
k k

1/2
i (530)
N LV
we also get that ¢, canonically embeds into ¢,,. It follows that ¢,, and £, coincide as sets
and have equivalent norms, S0 that M(e) must be quivalent to €. o

Kalton and Peck [ 15] defined the space Z, of all sequences ( ( a,, b,) ), OF pairs of
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real numbers such that
oo 1/2
g = (Z bi) < oo
n=1

and

o 12

1(Cag,b))eni | := B+ [E(an = b, log[b, 1671 1)* < oo

n=1 1
The latter expression is eguivalent to a norm, and Z, is a Banach space. One of the significant
features of Z, isthat it is not isomorphic to a Hilbert space, since it contains the Orlicz space
2y, , where N(e): =€ (log €) > for e close to 0. Since Z, is aso known to contain a subspace
Y such that both Y and Z, /Y are isometric to £, , Z, provides an example to show that
being isomorphic to a Hilbert space is not a «three space property» [15]. But £, even fails
to be a weak Hilbert space, by 4.1, 0 the same is true for Z, as well (athough it has cotype
2+ e and type 2 — ¢ for all postive e , by a general result proved in [5]). Hence we have the
following

Corollary 4.2. Being a weak Hilbert space is not a «three space property».

We prove now a proposition which clarifies the connection between wns™ (X) and the
so-called Grothendieck numbers /c,(X) for a Banach space X . Recall that, for all n € N,

k,(X) = sup{|det((z;,z))];1)| i 7; € By,z; € By.}.

A recent account of the theory of Grothendieck numbers is given in [9]. They were originaly
introduced by A. Grothendieck [10] and fist used by G. Pisier [43] to characterize weak Hilbert
spaces.

Proposition 4.3. Let X be a Banach space. Then

1
— sup k,(X) 1t < wd™ (X) < 3e*sup k(X))
6 t<n t<n

Proof. Letu e L(£5,X) ,VEL(X, £) . Itisknown (cf. [17] l.b.4 and |.b.2) that

07 polvu) = 1y 2 (lou) ],

where vu| 1 = ((vu)*vu)/? and (\(w))y IS sequence Of all eigenvalues of agiven
operator w € L (£5) , repeated according to multiplicity and arranged in nonincreasing order.
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By polar decomposition, there exists a partial isometry i € L(£3) such that |vu| = i*vu.
Further, by [38] 27.3.3,

X(vu]) = N (1" vu) = A\(ui’v), VtEN,

and ©
0% (vu) = supt|r(ui*v)| < €2 (sup k(X)) 3 (ui*v),
’ t<n t<n

where the inequality is taken from [9] 2.2.2. By another result of Kwapier (see €.g. [38]
17.4.3 and 19.3.10),

B (uitv) < mi(u)my (i*v) < mh(u)my (v),
since ||:]| < 1. It follows that
0% o(vu) < e*(sup k(X)) mg(u)m, (v),
tdn
hence, by definition,
wy (4) < € (sup k(X)) w3 (w).
<n

By the proof of proposition 1.4 and by (0.32), it follows then that of . (u) <3 wm, (u) , and
thus the right hand inequality is proved.
To prove the left hand one, let w € L(£5, X) , v € L(X, £) . By [9] 1.1.10, we have

n

k. (vu) = H ap(vu)

k=1
% that, by (0.28),
l
k (,Uu’)l/ni (y—)l/;—UI oo(vu) g ( I)l/'n o\ 1/n 02 w(u)az oo(v)

Further, since of _(v) < =, ( v) and by the well-known inegudity (n!) “1/n <3 /n, we get

k, (vu)'/™ < %w*yé") (X)7e(u)my (v).
Now proceeding as in the proof of [9] 1.6.2 and using [9] 1.6.3 we get the inequality
k(O < 6wnf? (X).

Since this is true for all n and since the sequence (wns™ ), 1S increasing, the desired result
follows. o



106 Vania Mascioni

Corollary 4.4. (Pisier [43]) X is a weak Hilbert space if and only if (k,(X) /") is
bounded.

With the aid of proposition 4.3 we are able to give among others an improvement of some
results of S. Geiss (see [9] 2.3.4):

Theorem 4.5. Let g €[ 2, co) and X be a Banach space. The following conditions are
equivalent:
(@) There is a constant C such that

wys™ (X) < Cnl/2719 vngN,
(b) There is a constant C such that
k(X)) < Cntf?Ye vne N

(¢) Ty(., X) C 57 (., X).
(d) TI§(., X) C 5% (-, X) . In other words, there is a constant C such that

02 o(u) < Omf(u), Vu € L(8,X), Vne N.

(e) H2,2,2(or -X) (o} qu'm(-r X) rWhere H2,2,2 = Fi—l P H2 P Fz_-l .
If q > 2, then conditions (a)-(e) above are equivalent to each of the following statements:

(f) There is a constant C such that, for every n € N and every n-dimensional subspace E
of X, there exists a projection p of X onto E such that

1, () < Cul/27110,

(g) There is a constant ( such that, for every subspace Z of X , every Banach space Y and
every operator v € L(Z , Y) with rank (v) < n, there exists an extensionw € L( X, Y)
of v such that

B w) < CrtP719 .

Further, if g €[ 2, oo), each of the conditions above implies that X has weak cotype q
and weak type g* ; in particular they characterize weak Hilbert spacesif q = 2.
Remark: if ¢ = 2, characterization (c) of weak Hilbert spaces may be considered as a «weak
analogue» of Grothendieck’s theorem (0 .13') .
Proof . By 4.3, (a) and (b) are equivalent. Let us now prove the equivalence of (c), (d) and

(e):
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(c) = (d) follows from I = T, . I, c I, .

(d) = (e) is consequence of the straightforward identities T1, , , = TI#- T, and 87, =
L P

(e) = (c). By Grothendieck’s Theorem (0.13') , for every L, -space the identity operator
is containcd in I1, » 5 ,sothat T'; C 11, 5 5.
Conditions (a)-(e) are equivaent if we can show (a) < (d). If g = 2, both (a) and (d)
characterize weak Hilbert spaces (by definition), so we assume g > 2.

(@ = (d). Letk<nandug L(£;, X) . By (a),

kl/zak(u) < wqé")(X)ﬂg(u) < Cnllz_l/q'lrg(u).
Letting £ = [ »/2] and using (0.32) we see that
00 (1) < C'r()

for some constant C' depending only on C and g , which gives a once (d).
(d) = (a). By (0.31) and (0.29), there is a constant C such that

09 oo 8) < Cnl/z_l/"c;"m( )

for all w e L( £2 , X) , and 0 (a) follows directly form the definition of w~3™ (X) .

To prove the assertion about conditions (f) and (g), we use the proof of (1, g) = (3,0) <
(4, g) of prop. 6 in [16] (after subgtituting everywhere Og o0 for m, ).

It remains to prove that if either of the conditions (a)-(e) is fullfilled, then X has weak co-
type g and weak type g* . Since 11Y extends the Hilbert-Schmidt operators, and since I, 22
is the largest such extension, we have I1, CTI, 22+ P (e) together with proposition 2.1 show
that X has weak cotype g . Let us now prove that X has weak type g* if it satisfies (c). Here
we may assume g > 2 (since in the case g = 2 conditions (a)-(€) are even equivalent to X
being a weak Hilbert space). By (c) there is a constant C such that, for all u € L(£5, X) ,

Op o) < Cy(u),
hence, by (0.31), there is a constant C' such that
my( 4) < C'nt/2 7y (u).

Now, the inclusions I1, C I1,, I{ ¢ I, and the corresponding inequalities between the
ideal norms show that there is a constant C” such that

m (u) < C'nP 7 end(w), VU E L(£3, X).
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The latter is easily seen to imply that

T,(X,n) < C'nll2~1/1 = gyla™=172

By theorem 3.4, X has weak type ¢*.
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