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ON WEAK COTYPE AND WEAK TYPE IN BANACH SPACES

VANIA MASCIONI

INTRODUCTION:  In 1977, T. Figiel, J. Lindenstrauss and V.D. Milman [6]  used a refined
version  of Dvoretzky’s theorem to prove that a Banach space X of cotype q (q 2  2) enjoys
the following property:

(P,) For every c > 0 there  is a constant C, > 0 such that, for every n and every

n-dimensiona1 subspace  E of X , we canfrnd  a subspace  F of E such that

dim F > C n2fg- E and d(F,4?pF)  2 l+ e

(bere  d( ., .) denotes  the usual Banach-Mazur distante).

In [6] some examples were also given to show that this  implication may not be reversed.
Later on, in 1986, property (PZ) was thoroughly investigated by V.D. Milman and

G. Pisier [32],  who proposed to cali it weak cotype 2, in view of the fact that the well-known
concept  of cotype 2 is modified by replacing in a specihc  manner ei -convergente  by what is
known elsewhere as «weak 1,  »-convergente.  More precisely, one of the results contained  in
[32] asserts that X has weak cotype 2 if and only if there  exists a constant C such that, for
al1 n,

(*) UyJWU)  := SlfJ ka,(wu)  < C7rJu)7r.+),

vu E uq,m, w f L(x,e;),

where CL,.. .) denotes the k-th approximation number and 7rT  (resp. 7r2  ) is the r-summing
(resp. 2-summing) idea1 norm (see $0 for the definitions). The usual cotype 2 property is

. .obtamed by replacmg m (*) (T;,~ (wu) by the e, -norm

q IN) := c q.( w(1),
k

which is lmown to define  the trace class norm for operators on Hilbert spaces.
Motivated by this, G. Pisier [43] went on only recently to exploit such concepts further

and to develop in particular  a theory of so-called weak Hilbert spaces. In this work, he also
introduces  a procedure to define  weak properties in general.

Starting from this general point of view, we intend to develop to some extent a theory
of weak cotype an weak type. This will be done in $2 and $3, after we have  provided the
necessary  background on weak properties in 5 1.
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We shall clarify, in the context of loca1 Banach space tbeory, the relations of weak co-
type and weak type to distance  to Hilbert spaces, volume ratios, and spaces of vector-valued
L,-functions  , and we shall discuss extension properties of certain operators.

It will turn out that severa1 lmown consequences of cotype and type actually characterize
weak cotype and weak type, thus allowing a deeper insight in the locai theory of Banach
spaces. Generalizations of old results and «weak analogues»  of well-known theorems (of
Grothendieck’s Theorem, for instante)  will also be obtained.

Among others, we shall see that for q > 2 (resp. p < 2 ) spaces of weak cotype q
(resp. weak type p) show a behaviour which is different from what is known for q  = 2 (resp.
p = 2 ). For example, weak cotype q coincides  with a well-known propery introduced  by
L. Tzafriri [47] and called equal-norm  cotype q  , provided q  > 2 , whereas in case q  = 2 this
latter notion  is known to be the same as cotype 2, cf. [12]  (of course, an analogue statement
holds for weak type p, p < 2 ).

The concluding $4 contains some further results related to Hilbert spaces. We shall prove
that being a weak Hilbert space is not a three space property, and we shall generalize some
characterizations of weak Hilbert spaces to Banach spaces having weak type p and weak
COtypePl(P-  1),  1  <P<2*

This work is an updated version  of my PbD. thesis, written  at the University of Zurich
under the supervison of Prof. Hans Jarchow. 1 would like to thank him for his advice and
helpful comments,  and for several discussions.

0. NOTATION  AND BACKGROUND

(0.1) x, Y, . . . . E, F will denote  (mal) Banach spaces. The letters E, F , . . . , will be
reserved for finite-dimensiona1 spaces. Given X , we will denote  by X* its dual and by Br
its closed unit hall, i.e. {z E X: 11~11 < 11, where Il.11  is the norm in X. The canonical
embedding of a Banach space X in its bidual X** will be denoted by Kx . The family of
al1 finite-dimensional (resp. of al1 finite-codimensional) subspaces of X will be denoted by
Dim (X) (resp. by Cod (X) ).

If dim(E)  = dim(F)  < 00,  tben d(E,  F): = inf{llTIIIIT-‘II: T anisomorphism
E + F} is the so-called Banach-Mazur distante  behveen E an F.
(0.2) The set of al1 operators (= continuous linear maps) between X and Y is denoted by
L( X, Y) and is endowed with the usual operator  norm. T* is the continuous adjoint of an
operator  T .
(0.3) We shall use the standard Banach spaces

ep : = {<q> E RN : ClaklP < CO}, 1 < p < 00,

eoo : = (((~~1  E RN : sup &l < oo},
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with the norms

ll<~k>II, : = (~I%lPP, P < =A
IK’Yk)ll, : = S”P  k-4.

Theindex p in II.II, will often be dropped. If n E IN , k?;( 1 < p < 00) is the n-dimensional

with the usual

conventions if p = 1 or p = 00.
(0.4) We say that X contuins  the 4?; ‘s  uniformly if there exists a constant C such that, for

each n E IN , there  is an isomorphic embedding j, : .$ + X such that 1 jj, II 1 li;’ II < C .
(0.5) X is K-convex if and only if X contains the 1; ‘s uniformly (see [40]).
(0.6) Let p E [ 1, m] . A Banach space X is an Lp-space if there  is an e > 0 such that, for

every E E Dim (X) , we can find an F E Dim (X) containing E such that d( F, J!F F, <
1+ E. X is an C2 -space if and only if it is isomorphic to a Hilbert space. Details on ,!Zr,-spaces
can be found in [23].
(0.7) Let p E (0 , 00) . Given (aJ E IR” , denote  by ( a;)  the nonincreasing rearrangement
of ( lc+.l)  . Then we can define  the Lorentz sequence spaces

ep,l := {(a,) E IR” : Ca~n~‘~p*  < 00)

and
ep,co := {((Y,)  E R” : sup  cr~n’/P  < co),

endowed with the quasi-norms

up,l  ( ( CU,))  := C a~nb’/p’ * l/P(resp .up,-(  (a,)) := sup a,n ) .

lp,l  and ~p,co are thus complete quasi-normed  spaces. Equivalent norms can be given if
p E (1, 00) (see [38] 13.9.5). We shall not explicitly deal with the more general Lorentz
sequence spaces .$,*.

(0.8) An Orlicz jiinction M : IR + --+  R + is a continuous nondecreasing and convex function
such that M( 0) = 0 and /im,  M(t) = 00.  Given such an M,  we define  the Orlicz sequence+
space .& by

<oe forsomep>O

with the norm

Il(cr,)jl:=inf  {p>O:ZM(y) <l}.
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.& is a Banach space. An extensive account of the theory of Orlicz sequence spaces is given
in [25-j.
(0.9) As concems  quasi-normed operator  ideals, we adopt more or less the notation  of A.
Pietsch’s book [38]. In particular, al1 the components  of a given quasi-normed ideal are sup-
posed to be quasi-Banach spaces (with respect to the ideal quasi-norm under consideration).
If A is a quasi-normed ideal with the quasi-norm LY (denoted by [A, (Y]), [Ad,  CL@] de-
notes the dual ideal. An operator  T is in Ad if an only if T* is in A, and in this case
ad(T)  := Q(  T*) . Further, [ A*, (Y*]  denotes the adjoint ideai . Recali that if X (or Y) is
finite-dimensional, then T is in A*( X , Y) if and only if

CV*(T)  := sup{tr(TS)  : SE L(Y,X),IlSll  5 1)

.is finite. Here tr denotes the usual trace of finite rank operators. We shall use the fact that,
if [ A, CE] is a normed ideal, (Ad) * = ( A*)d  isometrically, i.e. ( crd)  * and (CZ*)’  coincide
as well (see 1381 9.1.6).
(0.10) Let [ A , CL] and [B , /3] be quasi-normed ideals. Using Pietsch’s notation  (see [38]
Ch. 7), an operator  T E L(X , Y) belongs to the «left-hand  quotienbj  A-’  . B whenever

a-l *P(T) := sup{j?(ST)  : S EA(Y,Z),CZ(S)  2 1) < 00.

Here 2 ranges over al1 Banach spaces. CZ’-* . p is a quasi-nomi on A-’ . B and a norm if p
is. The «right-hand  quotient»  A . B-’ and its quasi-norm Q . ,Ei are defined analogously. If
XisaBanachspace,wewriteB(.,X) cA(.,X)  (resp. A(X,.) c B(X,.)) whenever
the identiy map id, belongs to A . B-’  (resp. to A-’ . B).
(0.11) For 0 < p 5 q < CO, the idea1  I$r of al1 (q , p) -summing operators consists  of al1
operators T: X + Y for which a constant  C exists such that

for al1 finite sequences 5i , . . . , 5,  E X . The least such C is denoted by T~,~(  T) . This tums

IIp  p into a quasi-normed ideal (it is normed if p 2 1). If p = q we write [ IIp,  rrp]  instead

of [ qp 9 mp,p] : this is the idea1 of p-summing operators.
We shall in particular use the follwing properties of 2-summing operators:

(0.12) [l-I, , rr2]  = [Il;, $1 (see [38] 19.2.8 and 19.2.13).
(0.13) A particular case of the Pietsch factorization  theorem States  that T: X -+ Y is
2-summing if and only if there  exist a compact space K, a probability measure ~1  on K
andoperators A f L(X,  C(K)), B E L(L,(K, p),  Y) such that T = BJ,A,  where
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J, : C(K) -t L, ( K , p) is the canonica1 injection. From the metric  extension property of
the spaces L,(  cl) one deduces that, given T E II, (X , Y) and a Banach space 2 contain-
ing X as  a subspace, there  is an extension T’ f II (2, Y) of such that 7rz  (T’) = x2(T)
(see  [38]  17.3.7 and C.3.2).
(0.13’) The following statements follow frorn  the fundamental Grothendieck’s inequality,
and they are usually referred to as «Grothendieck’s  Theorem» (see for instante [38] 22.4.2
and 22.4.4):
(a) AU operators defined on an &-space  and taking values in an C, -space are 2-summing.
(h) All operators defined on an C, -space and taking values in an C, -space are 1-summing.
(0.14) The next result connects the concept  of 2-summing operator  with  the existence of ellip-
soids of maximal volume in the  unit halls  of finite-dimensiona1 spaces (cf. [ 141).  For a proof
see,  for instante,  [4]  (Lemma 2):

If dim E = n, then there  exists un isomorphism uE f L(Q  , E) such  that jluEll = 1 and

?T2(uE1)  = nII2  . Moreover,
E := ?&?p$

is the ellipsoid of maximal volume contained  in 3,.

(0.15) Let E, uE , and E be as in (0.14). The volume ratio of E is defined by

The main results about the volume ratio may be found in [33], [36] and [46].
,(0.16)  If p E [ 1, CO] , Ir,, r,] is the idea1  of p-factorable  operators. Recali that

T E I’r(X  , Y) if there are a space L, = LP( p) and operators A : X + L, , B : L, --f  Y**

such that BA = K,T. Theideal norm 7, on rP is given by r,(T): = inf IlAlI  . lIBII,
where the infimum extends over al1 factorizations as above.
(0.17) [r,$,r&l  = m,, rrr]  and [r;,7;] = [IIa,z$. Moreover, [II;,$]  = [T,,r,]

and [(l-I$*,(7r$*] = [r1,7r]  (see1381 19.3.10and9.3.1).
(0.18) Throughtout this work, ( gk) will be used to denote  a sequence of independent standard
gaussian variables on some probability space. An important property of ( gk) is the following
result of J. Hoffman-Jorgensen  [ll]: if 0 < p < q < 00 there is a constant  cPq  such that, for
every finite sequence z1 , . . . , x,  from a Banach space X ,
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Here E is the expectation (integral) sign.
(0.19) [ IIr,  x,J is the ideal of 7-summing  operutors, which was first defined in [22].  An

operator  T belongs to K,(  X , Y) if there  is a constant C such that, for al1 zi , . . . , z, E X ,

where ( gk)  is as in (0.18). r7(T)  is the least constant C satisfying the above  inequality.
Note that

T,(T) = su~{n,(Tn) : u E L(-q,X),  nf w, ~~u~~  5 1).

.(0.20) Let u E L(.4?;  , X) . Then, by rotational invariance of the gaussian measure  on IR”,

for some (in fact, ah) orthonormal  basis fi , . . .,  f, of e$.
(0.21) If 0 < p < 00, men IIr  c I$, and there is a constant cp  such that, for al1 T in Ilr ,
+9 2 cp-JT> (WlTh.6).
(0.22) Let T E L( X , Y) . The n-th approximation (resp. Weyl, Hilbert, entropy) number of
T is defined by

a,(T) := inf{llS-TII : SE L(X,Y),rank(S)  < n}

(resp. by

s,(T) : = sup{a,(Tu)  : u E L(e,,X), ~~~~~  5 1)

h,(T) : = sup{s,(  UT) : IJ Eu&~,>,ll4I  511

e,(T) :=inf{~>O:3y,,...,y2,1  EYsuch  thatT(B,) c

C :i; (Yi  + +)})’

The following facts on mese numbers are taken from [38]  Chs. 11 and 12, and from [39].
(0.23)Ifs E {CI, CC, h, e},then(s,(T)),, isanonincreasingsequenceand s,(T) = lITII.
Moreover, a,(T) 2 s,(T) 2 h,(T) for al1 n E N and 0 = a,(T) = 3;,(T)  = h,(T) if
rank(T)  < n.
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(0.24) If X is a Hilbert space, then a,(T) = zn( T) for al1 n E IN , and

a,(T) = sup a,(Tl,).
E&dX)

(0.25) If T is compact, then a,(T) = a,(  T’)  for al1 n E IN .
(0.26) h,(T) = h,(T*) for al1 T and al1 n E N .
(0.27) Let s E {a , z , h , e} . We define  the quasi-normed operator  ideals

s;,q  := {T : (%(T))ngN E &), 0 < p < cm, q E { 1, e0)

and
S; := {T : (s,(T)),, E $,>, 1 I P I 00,

the quasi-norm being given by

(cf. (0.7)) resp. by
$07 := ll(&‘Xll,.

(028)Letr,p,q,u,u,wE[l,ool  besuchthat

1 1 1 1 1 1-+-=-, -+-=-,
pqruvw

andlets E {a,z,e}.  Then,ifT  E S;y(X,Y),Sf  S;,U(Y,Z),wehaveST f
s&,,(X, Z> and

c&(ST)  I 21’r$JS)$,J7T

(0.29)  Let q E 12 , 00) . Then S$ c II,,z  c  St,,m and there are constants  cg, ci such that

fer  al1 operators T belonging to the appropriate ideals.
(0.30)  If q E (2, 04, then  S; c 1$2 and there  is a constant  c” such that

for al1 T. Further, if X is a Hilbert space, then S;(X  , .) = II,,2 (X, .) .
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(0.31) Let 4 E (2 , 00) and r E [ 2 , q) . Then there  is a constant crq  such thtat

rT2(T) < c- v nl/r-l/q~z,,co(T)

for al1 rank n operators T .
(0.32) The next lemma, due to G. Pisier 1431,  will be often useful to us:
Let a! be any idea1 quasi-norm on L(C;  , X) . Suppose there is a constant C such that, for
allu~L(~$,X) andforallnEN,

(here [z] denotes  the greatest integer less or equa1 to z). Then there  is a constant C’ , de-
pending only  on C , such that

$J4 i C’44

foralluEL(e;,X)  andforallnEN.

Pisier’s proof actually shows that C’ < (3 /2) ‘/QC .
(0.33) TO conclude, we introduce the notions of type, cotype and related concepts. We restrict
to the Gaussian case. For details  about the relation between Gaussian and Rademacher type
or cotype see, for instante,  [33].

A Banach space X is said to have cotype q (q f [ 2 , 00) ) if there is a constant C such
that, for al1 z1 , . . .,  z, E X,

where ( gi) is as in (0.18). For fixed n, let Cq( X , n) be the least such C , and put Cg< X) =
sup Cq( X , n) , SO that X has cotype q if and only if Cq( X) < 03. Cq( X) is the so-called
nEN
cotype constant of X .

X has equal-norm  cotype q if the inequality  above  is only supposed to hold for vectors
zi of equal norm (e.g. such that Ilzill = 1 for al1 i).

Similarly, X is said to have type p (p E ( 1, 21) if there is a constant C such that, for al1
51,  **-> z,EX,
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For fixed n, let TP< X , n) be the least such C . Put Tp(  X) : = supsN Tp(  X , n) , SO that
X has type p and only if TP< X) < 03.  T,(X)  is the type constant of X .

X has equal-norm fype p if the inequality in the definition of type is only supposed  to
hold for vectors zi of equa1 norm.
(0.33’) A Banach space X has type p if and only if it is K-convex and X* has cotype p*
(cf. (0.5)). This fact is fundamental  for the so-called «duality»  between type and cotype. Of
course,  a similar statement holds for equal-norm type and equal-norm cotype as well.

Let p E [ 1, OEI).  Then the Cr-spaces  (cf. (0.6)) have type min(p, 2) and cotype
max(  p, 2) . L,-spaces  have neither type nor cotype, as it follows from (0.36). A result
of Kwapien [19]  States  that X is an &-space (i.e. is isomorphic to a Hilbert space) if and
only if X has type 2 and cotype 2.
(0.34) Given a Banach space X let p(X) := sup{p  : X has type p} and g(X) :=
inf {g : X has cotype q}. Then the Maurey-Pisier Theorem asserts that X contains the

q(x)  ‘s  and *e q(x) ‘s uniformly (see [30]). This has the following corollaries:

(0.35) X does not contain  the ep’s uniformly (i.e. X is K-convex) if and only if X has
typepforsomep>  1.
(0.36) X does not contain  the e; ‘s uniformly if and only if X has cotype q for some q < CO.
(0.37) Since a K-convex space does not contain  the e; ‘s  uniformly, it does not contain  the
&‘s uniformly as well, SO that (0.36) implies that K-convex spaces also have cotype g for
some finite q .

1. WEAK PROPERTIES

Let X be a Banach space and [ A , CY]  , [B , ,0] be quasi-normed ideals. Following G. Pisier
[43]  we say that X has the property P(  (Y,  p) if there is a constant C such that

n(u)  5 cp(u), Vu E L(l;,X) t’n~  N .

Clearly, if id, E A . B-’ then X has P( (Y, p) . One  may show that the converse does not
hold in general.

Similarly, we say that X has  the property Q( cy,  p) if there  is a constant C such that

a(v)  5 Cp(v), Vu  E L(X,!;), V’E N .

As above, we can easily see that if id, E B-’ . A then X has Q( CL>,  p) , the converse being
again  false in general.

The two concepts are essentially dual to each other, as it is seen by the following straight-
forward  lemma:
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Lemma 1.1. (a) If X has P( cx,  p) then X has &(/3*,  Q*)
(b)IfX has Q(Q, /3)  then X has P(p*,  a*).
(c) zf CZ** is equivalent to cy  and p** is equivalent to p, then P( CY,  /3)  is equivalent to

QW 9 a*>  .

We illustrate these concepts by

Proposition 1.2. (a) X has cotype q, q E [2 , 00) , iff X has P(T~,~,  7~~).

(b) X has type p, p E (1, 21, iff X has P(TT,,  (TT~,,~)*~), or else, iff X has

&((75&5 $1.
(c) X does not contain  the L?;  ‘suniformly  (i.e. X is K-convex) iff X has P( 7rT,  ( TJ *d) ,

or else, iff X has Q( T:, 7~;)  .

(d) X does not contain  the & ‘s  uniformly iff X has P( TT~,  7m)  .

Proof . (a) and (b) follow from [44], whereas (c) follows form a characterization of K-con-
vexity by T. Figiel and N. Tomczak-Jaegermann [SI and from (0.5).

We only prove (d). By the Maurey-Pisier Theorem (0.36),  X does not contain  the &‘s
uniformly iff X has cotype q for some q < 00. The latter implies that al1 operatore  from an
&-space  imo X are (q + E) -summing  for al1 e > 0 (use, for instante,  [42] Cor. 2.7 and
[38] 22.6.4). By (0.21),  al1 lY,-operators  into X must be 7-summing.  In particular,  X has
Pb7 > roo) *

Assume now that X has P( 7r7, 7,) . We get immediately r,( .,  X) c lI,( .,X)  and

a constant C, not depending on n such that 7rY(  s) 2 C, IIsII  for al1 s f L(eg,  , X) . We
shall reach a contradiction from assuming that X contains the f!; ‘s  uniformly: let C, be a
constant such that, for some isomorphic embeddings  j, : 1; -+ X ,

sup Ili,ll Ili;‘II 5 (72.
nEN

This implies

“?p&g I Ili;lllqn) I Ili~‘Ilc,Ili,ll I c,c2.

Now, if ( gk) is as in (0.18) we have, by the definition of 7-summing  operators,

The integra1 on the left is known to be of the order of magnitude of (log n) ‘j2 (see [l]
Cor. VIII.4.4),  hence we have reached the desired contradiction. 0
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Let [ A , CU]  bea quasi-normed ideai and X a Banach space. On L( .$,  X) and L( X, e;)
we define the quasi-norm ZUD  by

wa(u) := sup{$Jvu)  : v E L(X,e;),  (Y*(v)  5 l), vu E JW&x>,

and
w(u(v)  := sup{a~,,(vu)  : u E L(lZ,X),  ti*(u) 5 l}, vv E L(x,q),

respectively. One  may easily show, for example, that W(Y  = w( (Y**) is always true and that
wa is maximal on L(J!;,  X) , resp. L(X ,1;)  , if (Y*  is surjective, resp. injective.

Let [B , p] be another quasi-normed ideal. Following Pisier ([43],  43), we say that X
hm theproperty  weak-P(  Q, p) if X has P( WQ,  p) . Thus X has weak-( (Y , /?)  if and only
if there is a constant C such that

uf,,<vu) 5 Ca*(v>p(u>, vn, vu E L(-q,X>,  vv E L(X,Q.

Similarly, X has the properry  weak-Q(  Q, p) if X has Q( W(Y, p) i.e. if and only if
there is a constant C such that

ut,, 2 Ca*(u)/3(v),  Vn, Vu E L($,X), Vv E t(X,J$).

Lemma 1.3. (a) W(Y  < LY  both on L($  , X) and L(X , lz> .
fb) P( Q  , p) * weak-P(  cy , P)  .
fc) Qta,  P)  + Weak-Qta,  P).
(d) If  /3  is equivalent  to p** on L(X,l;) , then weak-Q( <Y, ,/?)  is  the same as weak-

ptP’,a*j.
(e)w(&)  =(~wcr)~onL(l~,X),andw(c@)  <(~cr)~on L(X,G).

Proof . (a) Let u E L($  , X) , v E L(X ,1;)  . Since the nuclear norm (denoted by v1  ) of
operators between Hilbert spaces coincides  with cr;  (see [38] 15.5.3),  we have

up,,(vu> 5 cqvu) = zq(vu) < a*(v)cy(u>,

which proves (a).
(b),  (c) and (d) follow easily from the definitions and part (a).
(e) follows from the definitions and from the identity cz*d  = a>*  . 0

There are important properties which coincide with their weakened form, notably theprop-
erties of not containing the 1:‘s (resp. the el ‘s) uniformly.
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Proposition 1.4. The weakproperty associated  to havingfrnite  cotype isfrnite cotype.

Proof . By (0.36),  X has finite cotype if and only if X does not contain  the 1; ‘s uniformly.
Hence, by 1.2 (d) and 1.3 (b), it suffices to prove that P( w~~, 7,) implies P( 7rY, 7,)  .
Suppose that X contains the e;‘s uniformly and let j,, : .rZk  --t  X , n E IN , be isomorphic

embeddings such that sup 1 lj,jj Ilj;’  II = C < CKI.  By i,, we denote  the identity of Rn
regarded as a map .t?;  -f $. Then

7,(i,~2.00) I Ili,ll Il&xll = IMI.

Let v,  E L(X,Q) be an extension of j;’ such that IlunII  = Ilj;‘II (there  exists such an
extension by the metric  extension property of e&). We have, by duality,

Now, by Grothendieck’s Theorem ( 0.13’) ,

for some constant nt . Further it is known that there is a constant n2 such that

c,KJ i “2 . [n/log(n+  1)]‘/2

(see [46] Ch. 1.4). Hence, if X is supposed to have P( w?rr  , 7,) , there  must be a constant
n such that, for all n,

a contradiction. 5

Proposition 1.5. Weak K-convexity is equivalent to K-convexity.

This is due to Pisier [43].  We provide  a proof for completeness. We start by an easy lemma.

Lemma 1.6. There  is  a constant n such that
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for al1 t E L(e,  , $!) andfor al1 n.

Proof . Let t E L(4?, ,1;)  , s E L(.Q  ,1,)  . Since II;  = II, isometrically,

By Grothendieck’s Theorem (0.13’) , there  is a constant C such that mZ(t)  5 Clltll .
Furhter, since e, has cotype 2, x2(s) 5 C, (e,) . n,,(s) . Hence

Itr(st)I I ~q4Iltll,

where n : = CC, (e,) . By definition, this means that n;(t)  5 nl It II.

Next we quote the following simple observation form [33] 15.5:

0

Lemma 1.7. Let CY  be an injective norm defmed  on L( E, F) for some finite dimensiona1
normed space E and al1 finite dimensiona1 normed spaces F . Then, for any Banach space
X > F, every v E L( F , E) admits an extension V f L( X , E) with LY*(  V) = Q*(V)  .

Proof of Proposition 1.5. By proposition 1.2 (c) an lemma 1.3 (b)  it suffices to show that
P( wn7,  ( 7riT7)*d)  implies P( 7r7,  (7~~)*~)  . Suppose X is not K-convex, i.e. let X contain

the ey ‘s  uniformly (cf. (0.5)). Let i, : 1; -+ X be isomorphisms such that sup 1 li,] ) ) Ii;’  II =
C < 00, and let i,,, be the identity of Rn regarded as  a map $ -+ e;.  Since T+ is injective,

we may apply lemma 1.7 to obtain an extension un E L(X ,472)  of i, ,..+,j;’  such that

where K is the (universal) constant appearing in lemma 1.6. Just as in the proof of proposition
1.4, there is a constant K’ such that

q(G,l)*)  = qc&) i C,(qJ7&Q> 5 n’n[log(n+  l)]-‘?

If we assume that X has P( wnIr7, ( 7rY)  *d) , there must be a constant n0 such that, for each
nEN,

n=&&J,j,~2,1)  5 Ico~~((ini,,l>*)~~(v~>  i

Q@&[log(n+ 1)]-‘/2,

which is impossible.
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Of course, weak-P(  (Y, p) is nothing but P( Q!,  p) whenever iua!  is equivalent to cy  on
L(q , X) . In the light of 1.4 and 1.5 it is tempting to  conjecture that w7r7 is equivalent to

nT on L(e;, X) . This, however, is false, since for example weak type p is always strictly
weaker than type p, as we will see in $3. On the other hand, the next proposition will enable
us to show that weak (weak cotype q) is again weak cotype q , whenever q > 2 (see Corollary
2.2). As we will sec, an analogous result holds for weak type p, p .K 2 .

Proposition 1.8. Consider rhe quasi-norms 7~~,~,  u;,~ (q E [2 , 00)) on L(e;, X) for

some Banach space X . Then:
(a) ~4,~  is equivalent c$~, q E [ 2 , 00) .

(b) wo’qa, isequivalent c$~, q E (2, CO).

In case q = 2 , (a) was already stated in [43], $3. We shall need the following lemma:

Lemma 1.9. Let q E (1 , 00) . There  is a constant  C such that

forallvEL(X,Q).

Proof.LetuEL(X,Q), u E L(e, X) . By [38]  13.9.6 and 154.6,

By the definiton of the Weyl numbers, this implies

By (0.28),  if u E L($ , X) and v E L(X,  f?;)  ,

which means that

by the definition of the adjoint norms. 0

Proof of Proposition 1.8 We consider only the case 2 < q < 00. Because of the identity
II;  = Il, (0.12),  the case q = 2 is even easier to dea1  with.

Let u E L(e;, X) and let E be an n-dimensional subspace of X which contains u(Q).
Further, let jE: E --f  X be the natural embedding. By (0.14) there is an isomorphism
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UEL(E,.J$)  suchthat rITz(u)  = n*i2 and IIu-’ 11  = 1. By (0.13),  there  exists an extension
V~L(X,~)ofwsuchthatrr,(V)=~~(v)=n’/~.Forallk<nweget

ka,(u)  =ka~(&lrlvu) < ka,(Vu)  =

=ka,(uu)  5 n’f2~y,,

<7d2 sup{a&&u)  : t E L(X,t;),7T2(t)  5 1) 5

~n’hm2(u).

By (0.31) and since CL  2 Cp implies W(Y  2 Cwp (by definition), there  is a constant cq
depending only on q such that

wlr2(u)  < c n1f2--‘lQwa”- Q ,,c&)-

Therefore,  letting k : = [ 7421  we obtain, for some constant n ,

9421  (u) 5 Rnl’~wa,o,,(u).

By (0.32),  there is a constant K’  depending only on n such that

q,,=J  u) I ~‘W$J u) ,

which proves @)  by 1.3 (a).
Further, by (0.29) and 1.3 (b), there  is a constant nrr  such that

W~Q,,(U) I vJ7rq,2(4

for al1 u E L(.Q , X) . TO complete the proof, it remains to show that there  is a constant ~~
such that, for any u E L(e;  , X) ,

w7rq,2(4  I ~2~94&>~

TO see this, note that, by (0.28),

wn,,2w  =suP{$&4 : 21 E UX,W,nE W7rq,2)*(4  5 1) <

<q,,&d suPIa;*,, (VI : ‘v E UX,Q,nE w77,,2)*(4  I 11.
By trace  duality  and (0.29),  there is a constant ‘ca  such that

b;,l)*cJ>  I: d7rq,2)*(4

for al1 IJ  E L(X , e;) . By lemma 1.9,

w7rq,2(4  s %Jq,&>,

and thus the proof is complete (let ICS : = 2 n3 ).
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Lemma 1.10. Let u E L( X , e;) , g f [ 2 , CG) . Then

Ca) wa(v)  = super&, WCY(  vlE)  , for al1 quasi-norms CZ  such  that CZ* is  injective.

(0’) wdv) = suP&Cod(X) wcy(  QFv)  , for al1 quasi-norms <y such that CY* is  surjective.

(b) a;,, (v) = sup EDim(X)  $,&1E).

Proof . We have only to show « 5 ».
(a)Let u E L(e;, X), CZ*(U) < 1. Put E,,: = u@)  and let u. f L(e;,  Eo) be
such that u = juo , where j is the natural embcdding of E, in X . Since CL>* is injective,
a*(uo) = Q*(U) and

4,,bJ4 = of,, (vIEouO) 5 wa(vlEo) 5 sup w&&)
%Dim(X)

Since u was arbitrary, (a) is proved.
The proof of (a’) is similar,
(b)  By (0.24) and (0.29,

c&Jv)  = ~;,&J*>  = sup ~;,,(Qv*) ,

where the supremum extends over aIl quotient maps Q defined on X’ with finite dimensiona1
range. For al1 such Q we have, by (0.25),

= supEE~(X) ~Q,,%) %

the last inequality following from locai reflexivity (see, e.g., [13]  17.57). 0

We are now ready to prove a companion result to proposition 1.8. We point out that
proposition 1.11 (b) will be used to prove that weak (weak type p) is nothing but weak type
p-when  1 < p < 2 (Corollary 3.2).

Proposition 1.11. Consider the quasi-norms (7~~,~)  d, a&,  (g f [ 2 , 00)) on L( X , ez)

for some Banach space X . Then:
(a) w(~~~)~  isequivalent to ai,, g E [2, CS).

0) w$&, is equivalent to cr&,  g E (2 , CO) .

Proof . (a) Let v E L( X , e;) . Since ( 7rq,2)dd  = 7rg,2 , proposition 1.8 (a) yields two absolute
constants  ICS  , ICS such that

wQdv*) I ~pQ,,b*)  5 “pT&*) = np((nq,ZY)(v*).
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By (0.25) and 1.3 (e) we get

Application of 1.10 (b)  completes  the proof of (a).
(b) is proved analogously, using 1.8 (h)  and (0.25).

8 3

2. WEAK COTYPE

Let q E [ 2, 00) . By 1.2 (a) and 1.3 (d), a Banach space X has weak cotype q if X has
P( ‘u17~~,~  , 4) , i.e. if there  is a constant C such that

for al1 u E L(.Ej , X) , wcL(X,t;)  andnElN.
Given a Banach space X and q E [ 2 , CO) , we define  wC&X)  to be the smallest C

such that

with the usual agreement inf 0 = CO. We cali wC,( X) the weak cotJpe  q constant of X .

Proposition  2.1. Let q f [ 2 , CO) , and X be a Banach space. The following conditions are
equivalent:
(a) X has weak cotype q .
(bj There is a constant C such that, for al1  u E L(e; , X) and al1  n f N ,

(cl  There is a constant C such that,for  everyjnite-dimensiona1 subspace  E of X ,

wC,(E)  5 C.

(4 id, E S&, . 117-’  , i.e. al1 r-summing  operators t with values in X satisfr

Pro@. (a) ¢j (b).  By the considerations above  and by 1.8 (a), X has weak cotype q iff X
has  Pb;,, , ~,r)  .
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(b)  =S (c). Let E E Dim( X) and let u E L(1;,  X) . If jE is the natural embedding of
E into X we have

It follows that wC,(  E) 5 wC,(X)  .

(c) =S (b).  Let u E L( f?;  , X) and E : = u( 5) . Then, if jn is the natural embedding of
E imo X and u0 : e!j --f E is such that u = jEuo , we have

Consequently, wC,(X)  5 sup
EEDim(X)

wC,(  E) and (b)  follows.

(b)  =s (d). By (0.24) we have

for al1 u E L( 4, X) . Let now T E II,( 2, X) , 2 being an arbitrary Banach space, and

21 E Ltq, .Q,  llull 2 1. We get

ai,, < wC,tX)n7(Tu> I wC,(X)nJT).

By the definition of the Weyl numbers, (d) follows.
(d) =S (b).  IS  trivial. 0

Remark:  We have  actually proved that wC,(X)  = sup
EEh

wC,(  E) for al1 Banach spaces

X .
As it was already announced, from 2.1 and 1.8 (b)  we deduce the next

Corollary 2.2. If 2 < q < CO,  weak (weak cotype q) is equivalent to weak cotype q .

Problem 2.2.*.  Does the same holdfor weak cotype 2?

Equal-norm  cotype q is a natura1 weakening of cotype q (see (0.33) for the definitions).
However, Pisier [12] has proved that the two notions are the same in the case q = 2 . In
particular,  it will be clear from the examples given after theorem 2.10 that weak cotype 2
is strictly  weaker than equal-norm cotype 2. In this light it is surprising to discover that, if
q > 2 , weak cotype q and equal-norm cotype q coincide. This, together with several other
characterizations, is the content  of the next theorem:
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Theorem 2.3. Let q E (2 , CO) , and X be a Banach space. The following conditions are
equivalent:
(a) X has  weak cotype q .
(b)  For each T E [ 2 , q) there  is a constant n, such  that

C (X, n) < tc nl/‘-l/q,.r - T Vn E N.

(d) X has equal-norm cotype q.
(e) L,( ~1,  X) has weak cotype q for al1  T E [ 1, q) and al1  measure spaces (CII , p) .
(B L,(p  , X) has weak cotype q for some T E [ 1, q) and some (nontrivial) measure space

W,P>.

Proof. (a) + (b).  Let T E [ 2 , q) . It is easy to deduce from the definitions (0.33) that
C,(X,  n) is the least IC such that, for al1 u E L(J$  , X) ,

It follows then from (0.3 1) that there  is a constant C such that

7rT,2(  u) 5 Cn1’r-‘iqc7~,m( u) < wC,(  X)Cn1ir-1~q7r7(  21)

for al1 u E L(l; , X) , which proves (b).
(h) + (c), is trivial.
(c) + (d). Let T E [2 , q) and K be such that

C,(X,n)  i nnlfr-l/q, Vn E N,

andlets,,s2,..., z, E X be norm-one  vectors. We have

i.e.
2

(Il Il)

112
n

nllq <  n E  Egizi-
i=l

Consequently, X has equal-norm cotype q .
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(d) + (a). Let X have equal-norm cotype q. We lirst show that, for every m E lN ,
every w E L(17,  X) , and every orthonormal basis fi , fi, . . .,  f,  of ey,

ml’qFj; IIWJII 5 cq4,-

C being a constant  which depends only on X . Define

FJ! IIWJII
hi := -Ilw(fj),l fi, i = 0,. . . , m,

(O/O: = 0). Then, since llw( hi)ll = mink Ilwfkll  for al1 i, we have

m”‘f$!bfdl  = ($lWJll’)li’<

by the equal-norm cotype q property of X .
Since

forall  hEey,by]

(E

[F I(h, hi)l’) 1’2 I (2 I(h, i.)‘) 1’2
\i=l / \i=l

xoposition 3.7 of [41]  we have

egiw(hi)
i=l

and the claim is proved.
Let now u E L(e;,  X) be given. Using a well-known lemma (see e.g. [37] lemma 7),

we may construct an orthonormal basis fi , f2 , . . . , f, of 1; such that ak( u) 2 IIu(  fk)  II,
k= 1, . . . . n. Then, by what was shown above,

i.e. X has weak cotype q (by proposition 2.1).
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(a) =S (e). Let tìrst r E [l,  23. Let (Q , p) be a measure space and q , zz2  , . . . , z, E
L,( ~1,  X) . By (a) + (b)  and (0.18),  there  is a constant  K such that

and hence

k,,Xi(W),,’  5 (rc?wl’q)w &Xi(W) y
i=l Il Ili=l

for al1 w E C!  . Integrating with respect to  w we get, by Fubini3 Theorem,

which means that L,( ,Q , X) has equal-norm  cotype q , i.e. weak cotype q , by (a) + (d).
Next, we consider the case r E (2 , q) . By (a) + (b), if x1 , x2 , . . . , IC,,  E L,(p,  X)

we have

i.e.

C Ilxi<w)ll’  I (n7n1”-“‘)‘E CgiXi(W) r,

i=l Il Ili=l
for al1 w E SL . Integration against ~1  yields, again by Fubini? Theorem,

C,(  L,(  p, X) > n) 5 ICr7w1’q,

which shows that L,( p,  X) has weak cotype q , by (a) + (c).
(e) =b-  (f)  + (a) are trivial.
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Remarks:  (A) It is not clear whether T = q can be included  in (e) and (f)  or not. If q = 2 ,
L,(X) has weak cotype 2 iff X has cotype 2, as it is proved in [32].

(B) A first proof of the equivalente of(a) and (d) was obtained in collaboration with U.
Matter: the one given above  is somewhat different from the original one  (compare [283).

Corollary 2.4. Let q E (2, 00) , and X be a Banach space. Then X has weak cotype q iff
there  is a constant K such that, for any n-dimensiona1  subspace  E of X ,

1/2-llqC2(E) 5 nn

Proof . By theorem 2.3, X has weak cotype q iff there  is a constant n2 such that

C,(X,n) < tm1f2-1’q, nE  N.

By [44] th. 2, for any n-dimensional subspace E of X we have

Since clearly C, (E , n) 2 C, (X , n) , we get

C , ( E )  < 2&/2-‘lq.

TO see the converse, let zi , x2, . . . , x,  E X be arbitrarily given. Since

C2( Spa {zl,.  . . , x,)) 5 d/2-1/q,

we get from the definitions

Hence,
C,(X,  n) 5 td/2-1fg, Vn E N,

SO that X has weak cotype q by theorem 2.3. 0
The concept  of weak cotype is closely related to the existence of almost euclidean finite di-

mensional subspaces. TO provide  some further information, we will need a couple  of lemmas.
The proof of the first one  can be found in [32].
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Lemma 2.5. Let F be a Banach space and u E L( q , F) . Then for every k 2 n there  is a
subspace G of $ with codim  G < k such that

Lemma 2.6. There  is  a constant c such that, for any n-dimensiona1 space E and any iso-
morphism u E L(E, &) , there exists a volumepreserving operator  v E L(pW)  with

Proof . By homogeneity, we may assume IluI  1 < 1. Let & be the maximal volume ellipsoid
contained in B, . By Lemma 10 in [27], there  are a volume preserving operator  in L( e;)
and an absolute constant c such that

since u& C uB, c Be. Now, it is known that VT( 4?;) 2 Gz1j2  for some absolute constant

E, SO the lemma follows. ?

Theorem 2.7. Let q E [ 2 , CO), and X be a Banach space. Then

(a) There  exists 6 E (0 , 1) and a constant C such that every n-dimensiona1 subspace  E of
X contains a subspace  F with

dim F 2 6n and d( F, .@”  ‘) < Cn1/2-‘/q.

(b) There  is a constant C such that,for  al1 n E N and every n-dimensiona1 subspace  E of
X,

VP(  E) < cn1/2-‘lq.-

(c) X has weak cotype q.
(d) There  is a constant C such  that, for every n-dimensiona1 subspace  E of X ,

Cnllq < m7( id,).
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(e) For each E > 0 , there is a constant C, such that every n-dimensiona1 subspace  E of X
contains a subspace  F with

dim F > Cn2fq- t and d(F,hhF) < l+ e.

Remark:  It follows that if q = 2 the five conditons above  are equivalent. We get thus some
of the characterizations of weak cotype 2 obtained by V.D. Milman and G. Pisier (see [32],
Cor. 5).
Proof . (a) =+ (b).  Just take the Milman-Pisier proof for the case q = 2 , with minor changes
~321.

(b)  + (c). If o>) holds, by Lemma 2.6 there  is a constant C = C(X) such that, for any
n-dimensionaI  subspace  E of X and any isomorphism  u E L( E, 12) , we can find a volume

preserving operator  IJ E L(1;) such that etcnl (vu) 2 Cn-‘IqIIuII.  Reasoning as in Pajor’s
proof of Theorem 2 in [34], we see that this implies that X has weak cotype q .

(c) =+ (d). By proposition 2.1, if X has weak cotype q then urC,(  E) 5 urCq( X) for al1

subspaces E of X . Let E E Dim (X) be n-dimensional, and let u f L(e;, E) . We have

and, by the definition of the Weyl numbers,

The left hand side  is greater than Cn’/Q for some universal constant C ([37] Th. 12),  hence
(d) follows.

(d) + (e). Let X satisfy (d) and E be an n-dimensiona1 subspace of X . Since

q&) = sup{K+) : u E Ue;,E),  Il41 = 11,

a compactness argument yields an u E L(e) E) such that x7( u)T~(  id,) and ~~u~~ = 1.
Further,  we may assume that u is one-to-one.  It follows from [33] 151.1  and 5.1, that there
is a universal constant C’ such that

(1 >

112
7r7(u) = tali2 s”-,  l140112d~(E) i C’n1/2MrI

where S”’ : = {E fq:  ll~ll= 11. p is the normalized Haar measure on S”’ and UT is

the median of the function r(C)  : = IIu(  c) II on S”’ with respect to ~1.  SO,

cn%-1/2  < M
Cl  -+’
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Now, by the Figiel-Lindenstrauss-Milman version  of Dvoretzky’s Theorem ([63,  Th. 2.6),
given E > 0, there  area constant C, and a subspace F of E witb

and

d(F,epF) < l+ E. 0

Remark:  just as in [32]  Th. 1, it is possible to prove that if (a) of theorem 2.7 holds for a
Banach space X and for one 6 E (0 , 1) , then it holds for al1 6 f (0 , 1) . Of course, in this
case C will depend on S .

Problem 2.7*. It would be interesting to know which of the implications appearing in theorem
2.7 may be reversedfor q > 2 , as it is known to be the case if q = 2 .

In the presente  of K-convexity, however, we are able to prove the following

Theorem 2.8. Let q E (2 , oo)  and let X be K-convex. Then X has  weak cotype q if
and only z!f  there  exist 6 f (0, 1) and a constant C such that, for every n E IN , every
n-dimensiona1 subspace  E of X contains a subspace  F with

dim F 2 Sn and d( F,.@” ‘) < Cn1/2-‘lq.

Proof . Let X be K-convex. If X has weak cotype q , by 2.4 there  is a constant r; such that,
for any n-dimensional subspace E of X we have

T2(E*)  < C,(E)K(E)  < nn- - 1/2-1/qK(X),

where K(X) < 00 is the (gaussian) K-convexity constant of X. Now, by a result of
V.D. Milman ([31],  Th. 5.1), given 6 E (0,l) there  is a constant C such that, for every
n-dimensional subspace E of X , there is a subspace F of E with

dim F 2 6n and d(F,F,ihF)  5 CT,(E*)

Combining both inequalities for T, (E’) , we see that the desired property holds. The opposite
implication is 2.7 (a) =S (c). 0

If we require type 2 instead of K-convexity in theorem 2.8, the situation is more pleasant,
since we are now able to avoid the machinery of «proportional  subspaces». We prepare our
statement again by a lemma:
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Lemma 2.9. Let q E [ 2 , 00) and let X have type 2 and weak cotype q . Then

r,t.,m c qJ.,X).

Proof . By Grothendieck’s Theorem (0.13’) , l-i c II,d  . l-F’ and this yields

T, or1 c(T2  .n$r,-l crpyl=n,,

by [38] 21.35. Hence, if X has weak cotype q we have, by proposition 2.1,

T, w,m c S~,,(*,X).
In particular,  if X has type 2 (ie., if id, E T2) we get the lemma. 0

The converse is also true  whenever X has type 2; we shall prove this together with other
equivalent statements in 4.5. But 2.9 suffices ah-eady to yield the follwing  improvement of
2.7 for spaces of type 2:

Theorem 2.10. Let q E (2, CO) and let X have type 2. Then X has weak cotype q ifand
only if there  is a constant C such  that, for any n-dimensiona1 subspace  E of X ,

d( E,!;)  2 Cn1/2-‘lq.

Further, there  exists a projection P of X into E with

Proof . We use an argument from [36] cor. 22.1. Let E be an n-dimensiona1 subspace of X
and let s: 1, + E be a quotient map. By lemma 2.9, there is a constant C such that

c&G>  I WII = c.

By (O-31),  there  is a constant C, depending only on q such that

7r2(  s)  2 cqn’~2-1qJ  s)  < cqcn112-“q.

Now, by the surjectivity of 72 ;

dtE,l;)  = 72tid,)  = 72(s) 5 73(s),

and thus the desired estimate follows. The existence of a projection P of X onto E as above
is an immediate consequence of Maurey’s extension theorem for type 2 spaces [29]. 0
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Remark:  Theorem 2.10 is not true for q = 2 since there  are spaces of type 2 and weak
cotype 2 failing to be isomorphic to a Hilbert space. In fact, if q E [ 2, CO) , the space

f( q, 7) defined in [6]  Ex. 5.3 (using a construction by W.B. Johnson) has an unconditional
basis, type 2 and weak cotype q (by 2.7 (a) =+ (c)), but not cotype q . This also shows that
the weak cotype q property is strictly weaker than cotype q , for al1 q E [ 2 , 00)  .

Related spaces have been constucted by L. Tzafriri [47]: they also have an unconditional
basis, type 2 and equal-norm cotype q but not cotype q if q > 2 . Since weak cotype q and
equal-norm cotype q are equivalent  for q > 2 (tbeorem  2.3),  Tzafriri’s spaces turn out to be
exactly as useful (for our purposes) as Johnson’s spaces cited above.

Let us now prove a couple  of properties of weak cotype g spaces, which will enable us to
provide  some counterexarnples to further questions related to our subject.

Proposition 2.11. Let q E [ 2 , oo) and let X have weak cotype q. Then

r,(.,m c sp,,(-,x).

Proof . By proposition 2.1 and (0.29),  X has cotype q+ E for al1 e > 0 and thus, by (0.36),  X
does not contain  the .!ZO,  ‘s uniformly. Hence, by Proposition  1.2 (d) and again by proposition
2.1 the conclusion follows. 0

Corollary  2.12. Let q E [ 2 , CO) and let X have weak cotype q. Then there is a constant
C such  that, for any n-dimensiona1 subspace  E of X , we have

nllq < CX( E),-

where X(E) : = roo( idE) is the projection constant  of E.

Proof . This follows from the fact that a;,,(  idE) 2: nn*lq for a universal constant  K ([37],
th. 12) and from 2.11. 0

As it is clear from the proof, corollary  2.12 holds under the weaker assumption

r,t.,m c s;,,(~,m.

Stated in tbis  general form and for q > 2 , corollary  2.12 was tirst proved by U. Matter
(personal communication).

Proposition 2.13. The Lorentz sequence  space e,,, satisfies a lower 2-estimate (i.e. there  is

a constant  C such that
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fora11  x1, x2, . . . . x,  E  h,,  with disjoint support),  but  does not have  weak cotype 2.

Proof . That e2,r satisfies a lower 2-estimate  was observed in [3]  prop. 3.2. On the other

hand, by th. 3.2 of [20], there  is a constant  C’ such that

By corollary  2.12 above, e2,r  cannot have weak cotype 2. 0

We conclude this section with a result on Orlicz sequence spaces. We will need another lemma
which is esentially known. We provide  a proof for completeness:

Lemma 2.14. Let M be an Orliczjùnction and let X,  c &  be the subspace  spanned by
thefirst  n coordinates.  Then

d(X,,e:)  I
M-‘(  1)

M-‘(  l/n) ’

Proof . Consider the identities i: X,  + 4?k and j : J?k -+ X,  .
Let(a,)EX,,lIkin,andrE{l,...,n}besuchthat

If we define  p0 : = lcx,.l/M-’  ( 1) and assume Icy,I  > 0 we have

and SO, by the definition of the norm in &,

IM-‘U)ll(q)lleM  = M-‘U)Ilbk)ll~~

Since the latter inequality trivially holds if Icy,I  = 0 , we have Ili]] < M-‘(  1) .
TO estimate II j II , notice  that there  is a vector (c+.)  E & such that sup Ir+ 1 = 1 and

k<n

lbk>IlX, = Ilbk>lh, = Ibll~
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Since it is readily checked that

we have

(M is nondecreasing) and thus 1 lj II 2 1 /M-l  ( 1 /n) .
Combining the estimates for Ilil 1 and 1 lj II we get finally

d(X,,$,)  i 1141 Ilill I M!;;;;n>  . ?

Proposition 2.15. Let M be un Orlicz function and let q E [ 2 , 00)  . If IZM has weak cotype
q then there is a constant C such that M(E) 2  CG far  al1  E > 0 sufjìciently  small. Zn
particular, if  M(E) = EQI  log el-“<  (Y  > 0) , then eM (which is known to have  type 2 and
cotype q’ for al1  q’ > q) does not have  weak cotype q .

Proof . If eM has weak cotype q then, by corollary  2.12, there  is a constant C’ such that,

for al1 n E N , n’/q 5 C’X(X,) where X,  c eM is the subspace spanned by the first n
coordinates.  Hence, by lemma 2.14,

diq < C’X(X,) 5 C’d(X,,ez)  2 C’MyLii))n)-

forallnElN,andso
sup n*jq M-l ( 1 /n) 5  C’lq ,
W-3

where C : = [ C’M-’  ( l)]q . Since M is nondecreasing this is easily seen to imply M(E) 2
CeQ for al1 E > 0 sufficiently small.

Let us now consider the special case M(E) : = EQ’I  log EI-~  ((Y > 0) for al1 E close to 0.
Let S,(E) (resp. p,(r))  be the modulus of convexity (resp. smoothness) of the Orlicz space
.& (see [25] 1.e  for the definitions). It follows then from th. 1 of [26] that, for every q’ > q ,

for al1 E and T close to 0 and for some constants  c1  , c2  . These inequalities together with
the main result of [7]  imply that .4& has cotype q’ , q1  > q , and type 2. Finally, by what was
proved above, -!TM  does not have weak cotype q . ?
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3. WEAK TYPE

Let p E (1,21. By 1.2 (b)  and 1.3 (d), a Banach space has weak type p if X has
Qb(~p.,,)d, ?r;) (or, equivalently, if X has P( wqr,  ( n,,,,2)  *)) , i.e. if and only if there  is
a constant C such that

for ali u E L(k?;,  X) , u E L( X,  f$‘)  and al1 n E N . Given a Banach space X and
p E ( 1,2]  , we define  wT,(X)  to be the least constant C such that

for al1 u E L(X,  .$) and al1 n E N (let wT,(X)  : = 00 if no such constant exists).

wT,(  X) is called the weak type p constant of X .

Proposition 3.1. Let p E ( 1 , 21  and X be a Banach space. The following  conditions are
equivalent:
(a) X has weak type p.
(b) There  is a constant C such that, for al1  n andfor al1 v E L(X , q) ,

(c) There  is a constant C such that, for every finite-dimensiona1 subspace  E of X ,

wT,(  E) < C.

(d) id, E (II;)-’ . ( S;,m)  d, i.e. al1  II;-operators t dejned on X satigy

Proof . (a) ¢j (b). By the considerations above  and by propositon 1.11, has weak type  p if
and only if X has Q( cr;.,,  , r;) .

(b)  +- (c). Let E E dim(X)  and let v E L( E, .$) . By lemma 1.7, u admits  an
extension ‘1~ f L(X , e;) such that 75;( ur)  = K;(U) . Let jE: E --t X be the natura1
embedding. We have
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hence urT,(  E) 5 wT,(X)  .

(c) =+ (b).  Let w  E L(E, .Q . By lemma 1.10 (b), we get

. 2 sup wT,(E)n;(&) i Cr+),
EEDim(X)

and thus (b)  holds.
(b)  + (d) is proved in the same manner as the corresponding statement in proposition 2.1.

0

Remark:  We have actually proved that wT,(  X) = s uP
EE%

wT,(  E) for al1 Banach spaces

X.
It is straightforward to deduce from propositions 3.1 and 1.11 (b)  the next

Corollary  3.2. If p E ( 1, 2) , weak (weak type p) is  equivalent to weak type p.

F’roblem 3.2*.  Does the same holdfor weak type 2?

The analysis of the weak type property is considerably simplified by the following duality
theorem:

Theorem 3.3. Let p E (1, 21. X has weak type p if und only if X is K-convex and X*
has weak cotype p* .

Proof . Let X have weak type p and let u f L(&;,  X*) . Put v: = u*jx  , SO that u = v*
and, by (0.25),

$*,,( u> =$+(~1 I ~TpW)$(v) =

=wT,(Xh;(u*)  I ~T,tW+),

i.e. X* has weak cotype p* (as for the last of the preceding inequalities, see [46]  th. 11.57).
TO see that X must be K-convex, it is enough to show that the sequence (urT,(  e;)),,  is
unbounded. As always, given p, q E [ 1, oo] , let i,, be the identity of IR” regarded as

a map .$ --f  e;.  Then clearly CY~,~ ( i,,2i2,1)  = n and rr;(il,2) 2 n,  for some universal
constant IC (Lemma 1.3). Further,  by [38] 9.1.8,
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Assume that ( wT,(  q)),, is bounded. Then, by definition, there  is a constant C such
that, for al1 71,

which is impossible.
Suppose now that X is K-convex and that X* has weak cotype p*. Then, if

lJ E L(X,Q>,

$*,,(u)  =$*@ (tJ*) < uJcp.(x*)7T@J*)  <

<wCp*(X’)K(X)7qu),-

i.e.

wT,(X)  2 wC,,(X*)K(X)  < cm.

In analogy with theorem 2.3 and corollary  2.4 we are now able to prove the next

Theorem 3.4. Let p E ( 1, 2) and X be a Banach space. The following conditions are
equivalent:
(a) X has weak type p.
(b) For each  T E (p,  21  there  is a constant n, such that

T (X n) < n nl’p-l’r,r 9 -7 Vn E N

(c) There  are an T E (p,  21  and a constant K such that

T,.(  X, n) < ~n’/~-‘/~, Vn E N .

(d) X has equal-norm  type p.
(e) L,( p , X) has weak type p for al1 T E (p, 00)  and al1 measure spaces  (Q , p) .
@ L,( p, X) has weak type p for some T E (p,  00) and some (nontrivial) measure space

(Q 9 4.
(g) There  is a constant n such that, for every n-dimensiona1 subspace  E of X ,

T2(E) < nnliP-1/2
-

Proof . (a) + @).  By [331,9.9,  T,(X,  n) 2 K(X)C,,(X*  , n) and thus (b)  follows from
theorem 3.3 and theorem 2.3 (a) =+ (b).
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(b)  + (c) is trivial.
(c) FS (d). Suppose (c) holds and let zr , . . . , 5,  f X be norm-one  vectors. Then

i.e., X has equal-nonn  type p.
(d) + (a). Since X has equal-norm type p if and only if it is K-convex and X* has  equal-

norm cotype p* (cf. (0.33)),  (d) + (a) follows from theorem 3.3 and from the implication
(d) + (a) in theorem 2.3.

(a) + (e). Let 7 E (p, 00) and let (CJ  , p) be a measure space. By theorem 3.3 and
theorem 2.3 (a) + (e), L,,  ( p , X*) is K-convex and has weak cotype p* . It follows then
again form theorem 3.3 that L,.( ~1  , X*) * has weak type p and, since L,( ~1, X) is isometric
to a subspace  of L,.  (p , X*) * , L,( p,  X) has weak type p (by proposition 3.1).

(e) + (f)  * (a) are trivial.
Finally, the proof of (b)  + (g)  + (c) carries over without difficulty from the proof of

corollary  2.4. 0

With the aid of theorem 2.3 and thorem 3.4 it is now possible to obtain a generalization
of a result contained  in [ 161 (th. 3). In view of the equivalente between equal-norm cotype q
(resp. type p) and weak cotype q (resp. weak type p) for q E (2 , CO) (resp. p E ( 1,2)) ,
we can give a concise statement. Accordingly, we define  the equal-norm cotype q (resp.
equal-norm type p) constant by

eCq  : = 1 c21

wcq,
:Si  (-peT,:=  { :ip,  PJi).

Theorem 3.5. Let p E ( 1, 21  and q E [ 2 , 00). Let X be a Banach space of equal-norm
type p, Z c X a subspace, F un n-dimensiona1 normed space and v f L( 2, F) . Then
there  is an extension w E L(X , F) with

where cpq is a constant which depends only on p and q .

Sketch of Proof . Using (0.31) if p < 2 or q > 2 , it is not difficult to find a constant cW such
that
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forallsEL(Z,F),aEL(ezn,Z),bEL(F,e2),wherec:=c,min{eC,(Z),eC,(F)}

eT (X)~L’IP’/~.P

Since 7; = ~2” . 7r2  by a result of Kwapieri ([38] 17.4.3),  this means that, if t f L( F, 2) ,

IMst) I I 447:(~)

which in turn is equivalent to

where or denotes  the 1-nuclear norm ([133,17.5.2).  Now, the last inequality proves also that
the operator

defined by d(z)  = iz , where i: 2 -f X is the inclusion, is an isomorphic embedding.
Hence, by duality, the adjoint operator

f : I-,(X,F) --+ L(Z,F)

is a surjection (with norm c), which proves the theorem. 0

Generalizing a result of B. Maurey, V.D. Milman and G. Pisier [32] have provcd that X
has weak type 2 ìfand only iffor al1  6 E (0,l) there is a constant C!,  such that, for every
subspace  Z of X and every operator  v E L( 2, e;) , there exist un orthogonal projection
p: .JZi --f e; with rank(p) 2 6nand  anextension zu  E L(X, 4?;)  of pv such  that 11~11  2
C’ I]IJ]  1. Maurey [29] had originally shown that if X has type 2, then there  is a constant C
such that, if 2 and v are as before, there is an extension w E L(X , e;) of v such that
11~11  2 ClIvII.  It is not clear whether the converse holds. Of course, because of the Milman-
Pisier result cited above,  the last property implies that X has weak type 2.

If p f ( 1 , 2) then the situation for weak type p is closer to the situation in Maurey’s
Theorem: in fact, there  is no need to work with a projection p.

Theorem 3.6. Let p E ( 1, 2) and X be a Banach space. Then X has weak type p ifand
only if there  exists a constant C such that, for every subspace  Z of X and evety operator
v E L( 2, $) , there  is un extension w E L( X , g) of v such  that

Proof . Necessity  follows form theorem 3.5 above. As for sufficiency, let the condition hold.
Thus, if E is a k-dimensional subspace of X , there  exists a projection p: X -f E with

IlpII 1. Cd(E,&k1’P-1’2.
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In particular,  if X were not K-convex we would be able to construct a projection p from
e:”  onto a (uniformly) Hilbertian n-dimensiona1 subspace F such that 1 ]p]] 2 C’n11P-‘12 .
Since 1 /p - 1/2 < 1/2 , this  would be a contradiction, since 7i (-Q) is of order n’i2 . SO,
X is K-convex.

TO prove that X* has weak cotype p* , we use the argument of [32]  th.  10 (iii) + (i). Let
u E ,5(q, X*) . By [32]  prop. 7, there  exists a subspace 2 of X with codini  2 < En/23
such that, for some constant n ,

By our hypothesis, there  is an extension v E L( X ,1;)  of u*Is such that

Since (~‘1~  - v) 1s = 0, we have rank(u*lx - v) 2 codim  2 < [7a/21. So, since
(u*IX-v)*=u-v*  and

IIU - (u - v’)ll = ~~v~~ 5 nCn1’p-“29T7(u)n-‘/2 = &.+)n-‘/P’,

we get
a[+](u)  5 nC7r.JU)n-1’Fc

BY (0.32)~  q.,, (u) < C’Q u) follows with a suitable constant C’, SO X* has weak cotype

P*. 0

Theorem 2.8 and theorem 3.3 lead to the following characterization of weak type p:

Theorem 3.7. Let p E ( 1, 21. A Banach space X has weak type p ifand only if there are
constants  C and S E [0 , 1) such that, for al1 n and every n-dimensiona1 subspace  E of a
quotient of X’  , there exists a subspace  F of E with

dim F > 6n and d(F,etiF) < Cn1fp-‘J2.

Proof . Let E be an n-dimensional subspace of a quotient 2 of X*, and note that Z* is
isometric  to a subspace of X** , which also has weak type p, by 3.1. It follows easily that the
weak type p constant of E’ is bounded  by the weak type p constant of X , SO that (reasoning
as in the proof of 2.8) the verification of necessity  is complete.

Assume now that the condition holds. The assertion about subspaces already implies weak
cotype p* for X’ by theorem 2.7 (a) + (c). K-convexity of X is obtained as follows: if X
contains the 17 ‘s  uniformly, X’ has quotients almost isometric to eg,,  SO that our hypothesis
contradicts the result of Szarek about «large» subspaces of f?&  which was used in the proof
of theorem 3.6 (cf. [36] th.8.1). 0
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We conclude this section with an analogue of theorem 2.7 (b) + (c) for weak type, thereby
generalizing a recent  result of A. Pajor [34]:

Theorem 3.8. Let p E ( 1, 21. A Banach space X has weak type p ifand only ifthere is a
corzstant  C such  that, for every n-dimensiona1 quotient E of X8,

w(E) 5 Cn1/P-‘12.

Proof . The case p = 2 has been proved by A. Pajor [34].  Further, if p < 2 , sufficiency is also
seen as in Pajor’s paper with only minor modifications. TO see that the condition is necessary,
we argue as follows: let E be an n-dimensiona1 quotient of X’ , and let uE E L(1;,  E) be
an isomophism such that the image by uE of the unit ball of @ is the ellipsoid of maximal
volume inscribed in B, (0.14). By [35], there is a universal constant n such that

where e,( .) denotes  the n-th entropy number (0.22). Since X has weak type p, it is
K-convex and thus, by (0.14),

q(u~‘)*)  ImaqUE9  I

<K(X)C,(E)x,(u;‘) 5 d2K(X)T2(E*).

Now, E* is isometric  to a subspace of X** , which has weak type p. Since p < 2 , by theorem
3.4 there  is a constant IC’  such that T,( E’) 5 ~‘n’/p-l/~  , SO that we get

This proves the necessity  since, by the definition of e,  , we have

w-(E) I 2e,(ui1>,

as it is easy to verify. 0

4. APPLICATIONS TO WEAK HILBERT SPACES

By S. Kwapien  [ 193, X is isomorphic to  a Hilbert space if and only if X has P( 7r2  , r$) .
Correspondingly, we say that X is a weak Hilbert  space if there is a constant C such that

c$,&) 5 C&u), vu E L(l%,X),  VnE IN.
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For fixed n we let wq:n) (X) : = inf C, the infimum being extended over all C as above,

SO that X is a weak Hilbert space if and only if wrz(X)  : = sup,, wrln)  (X) < 00.  A
wealth of chamcterizations and results about weak Hilbert spaces is to be found in G. Pisier’s
paper [43], among which the fact that X is a weak Hilbert space if and only if it verifies
the weak analogue of Kwapied’s result (cf. (0.33’)),  more precisely, ìfand  only if it bus
(simultaneously) weak type 2 and weak cotype 2.

Here we supplement this by an observation on Orlicz spaces which allows us to solve in
the negative the «thre.e  space problem»  for weak Hilbert spaces: given a subspace  Y of X
such  that both Y and XjY are weak Hilbert space&  does itfollow that X is a weak Hilbert
space, too? If we read «isomorphic  to a Hilbert space» instead of «weak Hilbert space», the
answer is «no», as it was first proved in [SI.  Later on, another counterexample was provided
by N.J. Kalton and N.T. Peck [15]; we will show that this  solves in the negative the «three
space problem»  for weak Hilbert spaces, too.

Proposition 4.1. Let eM be an Orlicz sequence  space. Then .fM  is a weak Hilbert space if

and only if it is isomorphic to 1, , i.e. if and only if M(É) is equivalent to e2 .

Proof.  Let eM be a weak Hilbert space. Since eM has weak cotype 2, by proposition 2.15

there  is a constant  Cl such that M( 6) 2 C1 e2 for al1 E close to 0 , but this already means that
1, embeds (continuosly) into f?, in the canonica1 way. Further, since clearly eM does not
contain  subspaces isomorphic to f&,  , by [25]  4.a.4 and 4.b.1,  (e,)  * and e,,  are isomorphic,
M* being the Orlicz function complementary  to M (cf. [25]  4.b.l). Since & has weak type
2, f&. has weak cotype 2 by 3.3 and thus, by the same argument as above, there  is a constant
C, such that M*( E) 2  C, tz2  for al1 E close to 0. Since for all LY = ( CYJ E .& we have (see
[25] 4.b).

\k  /

we also get that e,  canonically embeds into eM. It follows that .& and e2 coincide as sets

and have  equivalent  norms, SO that M(E) must be quivalent to e2. 0

Kalton and Peck [ 151 defined the space 2, of al1 sequences ( ( CZ,,  b,)  )nEN  of pairs of
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real numbers such that
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and

Il((~,,b,>),&I  := P+ Fb,,  - b,log~lb,lP-11)2
1

112
< oo.

Wl

The latter expression is equivalent to a non-n, and 2, is a Banach space. One  of the significant
features of 2, is that it is not isomorphic to a Hilbert space, since it contains the Orlicz space

eN , where N( E) : = c2  (log E) 2 for E close to 0. Since 2, is also known to contain  a subspace
Y such that both  Y and Z,/Y are isometric  to e2 , 2, provides an example to show that
being isomorphic to a Hilbert space is not a «three space property»  [15].  But EN even fails
to be a weak Hilbert space, by 4.1, SO the same is true  for 2, as well (although it has cotype
2 + t and type 2 - E for al1 positive c , by a general result proved in [5]).  Hence we have the
following

Corollary  4.2. Being a weak Hilbert space is not a «three  space property».

We prove now a proposition which clarifies the connection between ~72”’ (X) and the
so-called Grothendieck numbers /c,(X) for a Banach space X . Recai1 that, for al1 n E IN ,

IC,(X)  := sup{ldet((~i,~f),nj_l)l  : 5i f Bx,~f  E Bx.}.

A recent  account of the theory of Grothendieck numbers is given in [9].  They were originally
introduced  by A. Grothendieck [lo]  and fist used by G. Pisier [43]  to characterize weak Hilbert
spaces.

Proposition 4.3. Let X be a Banach space. Then

lJt < UPyp (X) 5- 3e2 sup k,(X)“!
- t<n

Proof. Let u E L(.$,  X) , v E L(X)  1;).  It is known (cf. [17] l.b.4 and l.b.2) that

where IVU] : = ((vu)*vu) ‘j2 and OtW>t,N is sequence of al1 eigenvalues of a given
operator  ‘~1 E L (Q , repeated according  to multiplicity and arranged in nonincreasing order.
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By polar decomposition, there  exists a partial isometry  i f L(e;)  such that IuuI  = i*vu.
Further, by [38]  27.3.3,

and SO

X,( IlmI)  = x,(i*vo) = !Q(ui*v), vt f N,

cg&,&m) =*ylXt(oi*v)l < e2(:~Pk,(X)“‘)r;tui*u),
- -n

where the inequality is taken hom  [9]  2.2.2. By another result of Kwapied (see e.g. [38]
17.4.3 and 19.3.10),

since Ilill < 1. It follows that

hence, by definition,

?m2(u) 5 e2(supk,(X)“*)7r;(U>.
tgn

By the proof of proposition 1.4 and by (0.32),  it follows then that a;,,(u) 5 3 wrr2  (u) , and
thus the right hand inequality is proved

TO prove the left hand one, let u E L(!;, X) , v E L(X,  -Q)  . By [9]  1.1.10, we have

k,( vu) = f-J a,(vu)
k=l

SO that, by (0.28),

k,( vu> 11” < 1 2
- (n!)‘l”-,P,,(uu>  i (n!)‘ln~;,,<4aZ,,<4~

Further, since a;.,(v) 5 m2  ( V) and by the well-known  inequality (n!) -‘in 5 3 /n,  we get

Now proceeding as in the proof of [9] 1.6.2 and using [9]  1.6.3 we get the inequality

k,(X)‘/”  5 6~72” (X).

Since this is true  for al1 n and since the sequence (w7p) )%,, is increasing, the desired result
follows. 0
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Corollary 4.4. (Pisier 1431) X is a weak Hilbert space if and only if (k,,(X) l/“)SEn\r  is
bounded.

With the aid of proposition 4.3 we are able to give among others an improvement of some
results of S. Geiss (see [9]  2.3.4):

Theorem 4.5. Let q E [ 2, oo) and X be a Banach space. The following conditions are
equivalent:
(a) There  is a constant C such that

w-yp  (X) 5 CTI’/~-“~, Vn E N.

(6) There  is a constant C such that

k,(X)“” < Cn1/2-‘/q, Vn E IN.

(4 r,c.,  X) c sq,.J.>  x1.
(d) Il:<.  , X) c S&,(. , X) . In other words, there is a constant C such that

m:,,(u)  i C’ir,d(u),  Vu f L(lz,X), VnE N.

W  lJ2,2,2(.,  X) c Sgw<.,  X),  where J32,2,2 := rF*  -n2 .rF’.

If q > 2 , then conditions (a)-(e) above  are equivalent to each  of the following statements:
(B There  is a constant C such that, for every n E N and every n-dimensiona1 subspace  E
of X , there  exists a projection p of X onto E such that

v2 (p) 5 Cn*/2-‘iq.

(g.)  There  is a constant C such that, for every subspace  Z of X , every Banach space Y and
every operator  v f L( Z , Y) with rank (v) < n, there exists an extension w E L( X , Y)
of v such that

r2(  w) 2 Cn1’2-1’qllvll.

Further, if q E [ 2 , OO)  , each of the conditions above  implies that X has weak cotype q
and weak type q* ; in particular  they characterize weak Hilbert spaces if q = 2 .
Remark:  if q = 2 , characterization (c) of weak Hilbert spaces may be considered as a «weak
analogue»  of Grothendieck’s theorem (0 .13’) .
Proof . By 4.3, (a) and (b) are equivalent. Let us now prove the equivalente of (c), (d) and

W
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(c) + (d) follows from lI,d = rr . I, c Ii .

(d) + (e) is consequence of the straightforward identities 112,2,2  = II;. I;’ and S& =

sp>=  . r-,-l .
(e) + (c). By Grothendieck’s Theorem (0.13’) , for every Ci -space the identity operator

iscontainedinII~,,,sothat~, CII,,,.
Conditions (a)-(e)‘&e  equivalent if we’can show (a) -+ (d). If g = 2 , both (a) and (d)
characterize weak Hilbert spaces (by definition), SO we assume g > 2.

(a) =+ (d). Let k < n and u E L(.Q , X) . By (a),

Letting IC = [ n/2]  and using (0.32) we see that

for some constant C’ depending only on C and g , which gives at once (d).
(d) =+ (a). By (0.31) and (0.29),  there  is a constant C such that

g,< u)  5 cn1’2-“qcT;,,(  u)

for al1 u E L( e; , X) , and SO (a) follows directly form the definition of ~7:’ (X) .
TO prove the assertion about conditions (f)  and (g),  we use the proof of ( 1, g) + (3 , g) +

(4, g) of prop. 6 in [16] (after substituting everywhere cr’&  for 7rq,2  ).
It remains to prove that if either of the conditions (a)-(e) is fullfilled, then X has weak co-

type g and weak type g* . Since II7 extends the Hilbert-Schmidt operators, and since II, ,2 ,2
is the largest such extension, we have II, c  Il, ,2 ,2 , SO (e) together with proposition 2.1 show
that X has weak cotype g . Let us now prove that X has weak type g* if it satisfies (c). Here
we may assume g > 2 (since in the case g = 2 conditions (a)-(e) are even equivalent to X
being a weak Hilbert space). By (c) there is a constant C such that, for al1 u E L(q) X) ,

hence, by (0.31),  there  is a constant C’ such that

lr2(  u)  < C’n1f2-‘fq- 71(u).

Now, the inclusions  II c I$, II,d  c  Ir and the corresponding inequalities between the
idea1 norms show that there  is a constant C” such that

T+)  I c”n1’2-“qn;(u), vu E L(lT,X).
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The latter is easily seen to imply that

By theorem  3.4, X has weak type g*.
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