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SEMIGROUPS IN CARTAN DOMAINS
OF TYPE FOUR

E. VESENTINI

1. J*-ALGEBRAS AND BOUNDED SYMMETRIC DOMAINS

Let # and % be complex Hilbert spaces, and let (%, #) be the complex Banach
space of all bounded linear opcrators % — # . For A € &( %, F), K A* € L (#, %)
will indicate the adjoint operator of A.

A J*-algebra is a closed linear subspace & of £L( %, #) such that,if A € & then
AA*A € & . The nouon of J*-algebra has been introduced by L.A. Harris in [5]. We refer
to this paper for all basic facts on J*- algebras, and to [6], [7], [8] for further developments.

For example, @ = (%, #) isa J*-algebra. If n = dim¢ # < oo and m =
dimge % < 0o, = Z(H,#)(can be identified with €™ and) is called Cartan factor
of type one. This terminology has been extended by L.A. Harris to the infinite dimensional
case.

If % = C,Z(C,#) canbe canonically identified with the Hilbert space # which is
then a J*-algebra. If # = 2, the Banach space & (#) = L (H,#) of all bounded
linear operators on S is a J*-algebra. By the Gelfand-Naimark theorem [23], every C*-
algebra is therefore a J* -algebra.

A conjugation in the complex Hilbert space S is, by definition, a continuous anti-linear
map z — T of # into itself, which is involutory and has norm < 1. It turns out that a con-
jugation is necessarily a surjective isometry of # . Conjugations always exist in all complex
Hilbert spaces and may be so chosen to coincide with their adjoints. Given a conjugation

x — T on ¥ , the linearoperator *A defined for A € Z(#) by tAz = A*T is continuous
on # and is called the fransposed operator of A. The space

% = {Ac B (FK) A= A)

1S a J*-algebra, which is called a Cartan factor of type two by an extension of the familiar
terminology introduced when dim ¢ # < oco.

Similarly, the space
E={AcF(H):'A=-A}

1s a J* -algebra, called a Cartan factor of type three.

A Cartan factor of type four is a self-adjoint (i.e. *-invariant) closed subspace & of
Z(F) such that A € T implies that A% is a scalar multiple of the identity I = | g on
H .

A% =al
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for some a € €. By definition, A* € & , and then
A* =Gl.

If Be€ %, then B> = b] and (A + B)? = c] forsome b and ¢ in €. Hence AB + BA is
a scalar multiple of the identity:

(1.1) AB+BA=(A+B)* -A*>-B*=(c—a-b)1I.
For B = A*, then
AA*A = (AA*+ A"A)A— A*A’ = (c—2Rea) A —aA* € &,

proving thereby that a Cartan factor of type four is a J* -algebra [5].

The open unitball D ofa J*-algebra & is a bounded, homogeneous, symmetric domain
[S], 1.e. the group AutD of all holomorphic automorphisms of D acts transitively on D,
and every point of D is an isolated fixed point of an involutory element of AutD. In the
case in which & 1s a Cartan factor, D 1s called a Cartan domain. In the finite-dimensional
case, the Cartan domains of the four types listed above exhaust all finite-dimensional bounded
symmetric domains, except for two domains of complex dimensions 16 and 27 respectively.
It was shown by O. Loos and K. McCrimmon [19] (cf, also [20]) that these domains are not
the open unit balls of J* -algebras.

Since D is a homogeneous ball, the Kobayashi differential metric x of D coincides with
the Carathéodory metric (U,

Let I'soD be the semigroup of all holomorphic maps of D into D which are isometries
for k. The invanance property of x implies that AutD is a subgroup of IsoD. Contrary to
what happens in the finite-dimensional case, if dimg & = oo, AutD is properly contained in
IsoD:

(1.2) AutD 5 IsoD.

In the finite-dimensional case, the Cartan domains were described by E. Cartan [1] in 1935
as quotient of connected simple Lie groups, and their homogeneity was a direct consequence
of the construction. However (leaving obviously aside the cases of the unit disc of € and of
the polydisc in €™"), the determination of AutD came only later. The first general result is
due to C.L. Siegel [26] who in 1943 determined AutD for any Cartan domain D of type two.
Siegel’s ground-breaking paper inspired further research by H. Klingen [16], [17], [18] for

(1) For all properties of invariant metrics referred to in this paper, see e.g. [4].
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domains of type one and three, and by U. Hirzebruch [13] for domains of type four. In the
case of the open unit ball D of any J*-algebra % , similar question arise for AutD, and - in
the infinite dimensional case - generate, in view of (1.2), parallel and still largely unsolved
problems for the semigroup [soD.

The description of AutD for an infinite dimensional Cartan domain D was first carried
out, for the open unit ball of a complex Hilbert space, by A. Renaud [22] (who extended to
any dimension results established by M. Hervé [10] in the finite-dimensional case) and by T.L.
Hayden and J.T. Suffridge [9]. The group AutD was investigated by T. Franzoni [3] for any
Cartan domain of type one, by J. Hervés [11] for the types two and three, and by L.A. Harris
[S] (cf. also [12]) for type four. All these papers follow the same pattern, which consists of
two steps. The first one exhibits a group of holomorphic automorphism acting transitively
on D. This group consists of "fractional" transformations which, in analogy to the classical
terminology for the unit disc of T, are often called "Mocbius transformations”. The second
step yields an explicit construction of the isotropy group ( Aut D), of 0in AutD. An essential
tool is here H. Cartan’s linearity theorem (cf. e.g. [4]) whercby every element of ( Aut D), is
the restriction to D of a linear automorphism of the Banach space & .

The knowledge of the subgroup of AutD consisting of the Moebius transformations re-
duces the construction of IsoD to the determination of the isotropy semigroup ( IsoD), of 0
in IsoD. At this point, however, the similarity to the case AutD ends, and the investigation
is made much harder by the fact that H. Cartan’s linearity theorem fails to hold for ( I soD),,
as examples show [28]. So far, the only case which has been exhaustively dealt with is that
of the unit ball of any complex Hilbert space [4, 28].

Let D be now a bounded domain in €. According to a classical theorem of H. Cartan [2]
(cf. e.g. [21]), the topology of uniform convergence on compact sets in D is the underlying
topology of a real Lie group structure in Aut.D for which the canonical map AutDx D — D
defined by the action of AutD in D is continuous (actually real-analytic). Hence the in-
vestigation of the structure of the group AutD, and more specifically the description of the
one-parameter subgroups of AutD, lies within the framework of Lie algebras.

In the infinite dimensional case different topologies may be considered in IsoD and Aut D,
leading to different one parameter semigroups. These latter have been investigated in [27]
when D 1s the open unit ball of any complex Hilbert space, and in [29] in the case of any
Cartan factor &' (% , #) when at least one of the two Hilbert spaces # and % has finite
dimension.

The present paper will report on a similar investigation in the case of Cartan domains of
type four.

2. CARTAN FACTORS OF TYPE FOUR AS HILBERT SPACES

The spectral representation of continuous linear operators whose squares are scalar multiples
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of the identity has been investigated in [30] in the general case in which the operators act on
a complex Banach space % .
Let A € (%) . The following lemma has been established in [30].

Lemma 2.1. If A%2 = ol and a#0, at least one of the two square-roots of a is contained in
the spectrum o( A) of A. If\/a € o( A) and if Q is the spectral projector associated to \/a, A
is expressed by

A=+va(2Q-1).
Ifa=0, then

(EI — A)~! =% <r+ %A) forallé € T\ {0}.

If a# 0, A is invertible in £ (%) and

1
_1 — IR .

Corollary 2.2. Ifa# 0 and c(A) = {\/a}, then A is a scalar multiple of the identity: A =

Val.

Now, let A and B be two non-vanishing elements of Z£'( %) such that

(2.2) A%’ =al, B*=bI,(A+ B)* =cl,

for some a,b,cin €. Then (1.1) holds, and, forall § € C.

(2.3) ({1 - AB)({I —BA) = ({ - &) - &)
where £, and £, are the roots of the quadratic equation
E°+(a+b—c)f+ab=0.

By (2.3), 6 (AB) C {&,,&}. Since (§,1 — AB)(&,I — BA) = 0,if & ¢ o(AB), then
BA = ¢, 1, and (2.3) yields

(- - AB) = (- ) - &)1
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forall ¢ € €, whence AB = §, . Because §; ¢ o( AB), then £, # &, , contradicting the fact
that

¢, A= ABA = A(BA) = ¢, A,

proving thereby that
a(AB) = o(BA) = {£,,§, }.

A direct computation using (2.3) shows that, if £, # &,

1
(€ — &) — &)

(61— AB)™" = : (6,1 — BA) —

= — BA
E—E)(E —&) (&I =54,

forall { # £, ,{# £, . proving

Lemma 2.3. If§, #&,,€, is a pole or order one of (-1 — AB) ' and of (-1 — BA)™! with
1

1
residues (&1 — BA) and
{& — &

{1 — &

(6,1 - AB).

Similarly, £, is a pole of order one of (-] — AB)~! and of (-] — BA)~' with residues

({1 — BA) and (&, 1 — AB).

1 1
& — & &6
Lemma 2.4. If¢, = &, ,€, is a pole of order two of (-1 — AB)~! and of (- — BA) ™.

Now, let & be a Cartan factor of type fourandlet A,B € & . By (1.1), AB*+ B*A1isa
scalar multiple of the identity. Setting

(2 4) AB* + B*A =2(A|B)I,

the function A, B — (A|B) € C is a positive-definite inner producton % , such that

1 |
~IIAIP < (Al4) < ullAIP forall A€ E,

where || || denotes the norm in the Banach space & [5]. Thus the inner product expressed by
(2.4) defines in & a complex Hilbert space norm which is equivalent to || ||. Conversely, as
was shown by L.A. Harris in [5], any complex Hilbert space endowed with a conjugation can
be obtained as the Hilbert space associated to a Cartan factor of type four.

If A is orthogonal to I, then

0=2(A|NI=AlI+1A=2A.

Corollary 2.2 yields
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Lemma 2.5. If & contains an element whose spectrum consists of a single non-vanishing
complex number, thent = C.

If A € & i1sanormal operator, (2.4) implics that A is a scalar multiple of a unitary operator.
If A itself is unitary, by Lemma 2.1 A is expressed by

A=¢e*(2Q-1),

where 0 € R, 0(A) = {e, e "} and, by (2.1), the fact that A is unitary is equivalent to Q
being an orthogonal projector. Hence, every unitary operator in @ is a scalar multiple of a
self-adjoint, unitary operator. In conclusion, the following lemma holds [5]:

Lemma 2.6. Every normal operator in a Cartan factor of type four is a scalar multiple of a
self-adjoint unitary operator.

Since A% = 0 is equivalent to the condition
KerA D RanA,

every isometry contained in % 1S a unitary operator.

According to a general result of Kadison-Harris [5] the complex extreme points of the
closed unit ball of any J*-algebra & coincide with the rcal extreme points and are those
operators A € & satisfying

(2.6) (I — AAZ(I — A*A) =0

identically for all Z € % . In particular, every extreme point is a partial isometry, and (2.6)
implies that, i1f A 1s a linear 1sometry, then A is an extreme point of the closed unit ball.
Let now D be the open unit ball of the Cartan factor of type four %, and lct A be an

extreme point of D. Then A is a partial isometry. If A is not an isometry, then KerA# {0},
and therefore A> = 0. Hence A** = 0, and choosing Z = A*, (2.6) yields A* = 0, i.e.,
A = 0. That proves

Proposition 2.7. The extreme points of D are all the unitary operators in .

Since the Banch space & is reflexive [25], the Krein-Milman theorem, Proposition 2.7
and Lemma 2.6 yield

Proposition 2.8. Any Cartan factor of type four is spanned by its self-adjoint unitary opera-
tors.

The set of these operators is called a spin-system.
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Some of the results established above will now be instrumental in expressing the norm || ||
in terms of the inner product (]). Choosing in (2.2) B = A*, thenb = @,

c = 2(Rea+ (A|A))
and o( A*A) consists of the roots of the quadratic equation
(2.7) €2 —2(A|A)E + |a)* = 0.
Since A*A 1s hermituan, c( A*A) C R, 1.e.,

(Al4)* — o> >0,

la] < (A]4).

But |a] is the spectral radius p( A%) = p(A)? of A%. Hence

(2.8) p(A) = V]a| < (AlA)!/? forall A€EE.

For A# 0, the equation (2.7) has one positive and one non-negative real root, and p( A* A)
must be the largest of these roots, i.e.,

(2.9) p(A*A) = (AlA) + /(A]A)?2 - |af?.

Because p( A*A) = ||A*A|| = ||A|[?, and

(2.10) 2(0A|A")] = AA+ AA=2al,
then
(2.11) (A|A*) = a,

and (2.9) becomes

14|17 = (A]A4) + V(A]A)? — |(A]A")]2.

The unit ball D in the Banach space & is defincd by the inequality

V(AJA)2 — |(AlAM ]2 < 1 —(A]A).
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If A € D, then by (2.5)

(AlA)* — |[(A|AM ] < (1 - (A]4))>.
Hence A € D if, and only if,

(Al4) < 1,1 —2(A|A) + |(A|AD]* > 0.

Since, by (2.11) and (2.8), [( A|4*)| < (A|A), then

D={Ae@ . (A]A) <%(1+[(A|A‘)|2) < 1}.

3. HOLOMORPHIC AUTOMORPHISMS OF CARTAN DOMAINS
OF TYPE FOUR

Changing notations, let £ be a real Hilbert space, and let # = # + 1.4 be its complex-
ification with the corresponding conjugation £ + in = £ — 1n (£, n € %) and the complex
Hilbert space structure defined by

. 2 2 2
€ + anl}” = |[E]1° + ||nll*.

Let (|) be the corresponding inner product in S, and let D be the domain in S# dcfined by

D= {EE%:HEHZ <%(l+|(z|E)|2){ 1}.

In view of the results of §2, D is a Cartan domain of type four. As such, D is a boundcd,
convex, homogeneous, symmetric domain.

Assume on €? the canonical conjugation. The Hilbert space direct sum ¥ & C? is
endowed with a conjugation leaving # and € “ invariant, and whose restrictions to % and
to €2 coincide with the given ones.

Let (]) denote also the inner product in # @ €2, and let J € Z(F @ C*) be the real
operator defined by the matrix

I O \
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where I denotes, as before, the identity operator on 5 and I, is the identity operator in C 2

Forp =t (*z,u;,u,) e o C:(ze€ H u,,u, € C),let D' be the set in F @ C*
defined by

(Jplp) =0, (Jplp) <O,

1.€.,
(3.1) (2[%) = u} + 03, ||z] = (z]2) < |uy* + Juy .

u _ .
If p e D', then u, u, # 0. Furthermore I'm —-# 0, since otherwise
U2

Jug [+ Jug |? = Ju; + uy 2,
while, by (3.1) and the Schwarz inequality,

2, 2
luj + u3| = |(z|2)]| < ||5l7||2 < |”'1[2 + |“2|2+

Let D be the set
5={p=t(tm,ul,u2)ED’:ImEL:}O}‘
2
e 1
For any point in this set, let z = — z. Then
u‘.1+1u2
u, —1u
(3.2) (27) = +—-2,
u1+1u1

U, — i,

2 _ u |2+ Juy|? Juy —duy P+ uy +duy )P ] ,
|z]I" = (z]2) < T . L == |1+
1 UZI |u1 + I‘Urzl 2

u + 1U,

1
Im —L = > (Imu, Reu, — Reu,Imu,).
uy  |uy|
Since, on the other hand,

1 —

— +iu2|2(1mu1Reu2 — Reu,Imu,),

u, + 1, B lu,

: . U . .
the inequality [ m—- > 0 is cquivalent to
U
2

< 1.
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: 1 S
In conclusion, the mapp — z = T T transforms bijectively the set of all complex
ul HI.Z

lines in D onto the domain D). Thus, letting D, = {p € D: u, +1uy, = 1}, themapp — 2
1S a bi-holomorphic map of D, onto D.

It is easily seen that the boundary dD of D consists of those points z € # at which at
least one of the two inequalities

Izl <1, 1=2|z||* + |(z[D)|* >0

becomes an equality. Denoting by d, D the closed subset of 3D where both incqualities
become equalities, the Schwarz inequality shows that

0 D={z€ F:|z||=1,Z=¢€"“2 for some 0 ¢ R}.

Going back to the representation of # as a Cartan factor of type four, by Proposition 2.7 g, D

is the set of all complex extreme points of D.
In the finite-dimensional case g, D is the Schilov boundary of D.

If ||2|| = 1 and 1 — 2|z||* + |(2|2)|*> > 0, then
0 < 1=2|lz|* + (29> = =1+ |(z]D|* < =1+ |z]|* =0,
whence |(2|Z)| = 1 and 1 - 2||2||* + |(2]2)]* = 0, showing that

dDN{ze€ F :||z||=1}=0,D.

If p € 8D, then
(z|Z) = uf + uj, ||zlf® = (z]2) = |u, | + |u, |,

and there is a sequence {p‘*) =t (! u¥,uY)} in D converging to p, i.¢.,

z=1imz™, u, =limu?, 4, =limul?.
If u,#0 and u; + 1u, = 0, then
(v)
u
—i=—L = lim Eu]
ﬂz u,
- o'V
contradicting the fact that, being p'¥) € D, then Im (‘“) >0.1fuy, =0, thenu, =0, and
Uz

therefore ||z]|? = |u,|?> + |u,|> = 0. That proves
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Lemma 3.1. If0#p € 3D, then u, + iu, # 0.

Let A be the semigroup consisting of all lincar, real, continuous operators G on % & €2
such that

(3.3) '‘QJIG = J.

Let I' be the maximum subgroup of A consisting of those G € A which are invertible in
F(F & €%). Any lincar operator G on ¥ & €2 is represented by a matrix

A B, B,
G= ('IOI) Ey, E, |,
(‘IC;) E, Ejy

where A is a linear, real operator on #, B,, B,,C,,C, are real vectors in ¥, E,,, E,,,

E,,, E,, arereal scalars. The operator G is bounded on # ¢ € 2 if, and only if, A € Z(F).
Setting

B=(B,,B,) € Z(C* %),

C =" ((-|C)),(|Cy)) € F(H, C?),

E, E
B 11 12 € F(T?),
Ey By

then G € A if,and only if, A € & (&) and furthcrmore

(3.4) *AA - 'CC =1,
(3.5) ‘AB = 'CE,
(3.6) ‘EE - BB =1I,.

These three conditions can also be written as follows:

‘AA — (‘ICI)CI - ('lcz)cz =1,
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‘AB, = E|,C, + E;, C,;

Elzl + EZZI — ”31“2 = 1,E\E\, + E;| Ey, = (B,|B)), 5'122 + E%z - ||E":z||2 = 1.

Equation (3.6) implies that E is injective, i.e., det E# 0. Since F is a continuous function of
G for the strong topology, det E has the same sign on each connected component of A for
the latter topology.

Under which conditionson G € A is GD C D?
Since D is a connected component of D' and GD' C D/, then GD - 5, if, and only if,

GDND#9. Forp =t (z,u,,u,) € D', the point p’ = Gp is given by p' =t (*z' u},u}),
where
' = Az + u; B, + u, B,,

(3.8) u{ll - (IlCl) + E”‘ul + Elzuz,

u; = (z|Cy) + By uy + Epuy.

Choosing = = 0, then

P P
uy = Ejju + Ejpuy, uy = Eyup + Epuy,

.U E ) .
and u) # 0 because otherwise — = ——2% € R, contrary 1o the fact that Im — # 0. Since
) By, us
/ 2
u 1 —  |u u
IW‘;L:'—';—ZITH‘LL;HE:I ?Iz det E Im ‘—1,
uy;  |ug] |us | Us

then GD N D# @ if, and only if, det E > 0. This shows that the set A, defined by
Ay = {G €A :detE >0}

is a subsemigroup of A . Hence the set I'y = Ay, NI is a subgroup of I'. Lemma 3.1 implies

that, if det E > 0, u] + 1u), #0 forallp € _5\ {0}, where D is the closure of D.

Setting 2 = : — x, (3.2) yields
u1 + 1“2

U, + 1u, 2 Tu + i, 29
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and, by (3.7) and (3.8),

u, + i‘u
! v 1 2
ﬂl + 1“2 -— S(G,Z)

where 6( G, z) is defined for z € # by
§(G,z) = 2(2|C; —iC,) + (E| — Eyy +1(Eyy + Ey ) (2]2) + Ey + E5y +1(Ey — Eyy)).
Hence 8(@G, z) # 0 for all z contained in a neighborhood of D. The function

~ 1
(3.9) Gz 5o

(2Az+ (1+ (2]2)) B, —i(1 — (2]9)) B,)

is holomorphic on a neighborhood of D, and furthermore 5‘( D) C D. A direct computation
shows that G — Gisa homomorphism of A, into the semigroup Hol( D, D) of all holomor-
phic mappings of D into itself. Hence the image Fﬂ of I'y is a subgroup of AutD. It will be

shown now that fﬂ is the entire group AutD, 1.e. that every holomorphic automorphism of
D is given by (39) forsome G € I,.

The following lemma is due to L.A. Harris [5] (and to U. Hirzebruch [13] in the finite
dimensional case; cf. also [12])

Lemma 3.2. Ifg € (AutD),, there exist § € R and a real unitary operator U on 5 such
that g(2) = €Uz forall z € D.

On the other hand, if G € A, is such that G(0) = 0, then B, = B, = C, = C, = 0 and

E,, —Ey +i(E;y + Ey) =0 E|, + Ey, +1(Ey, — E;,) = 2e7* forsome 6 € R, so that,
by (3.9),

é( z) = e Az.
Hence, if furthermore G € Ty, then G € (AutD),, i.e.,
(AutD), C T
It will be shown now - following essenually L.K. Hua [14, pp. 86-87] - that

Lemma 3.3. The group Fﬁ acts transitively on D.

Proof, a) Let z, € D. Since, as was just noticed, the map z — €**z is contained in G for

any # € R, replacing z, by e'’z, and choosing a suitable # € IR, it can be assumed that
(Rezy|Imzy) = 0, so thatwy = (24|z,) € R. Consider the non-singular 2 x 2 matrix

wy + 1 wy + 1
Mﬂ - 3
(wy — 1) —i(wy — 1) -
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and let L, € Z(C?,.%#) be the real (continuous) operator defined by

- - 1 - . _
Lo =229,Z) My = — w%((l —wy) (2o + Zy),1( 1+ wy) (29 — Zy)).
Since

t e et | lzoll*  wp »

2

Wo 1E2Y|

1 t37 -1
(Mu Mu) =

2(1 - 2.[|,z,:,||2 + w%)

1
1 (1+ wy)? 0 \

= >0,
=2z + |, |

(1 "wn)z/

then, denoting by E the positive square root of the positive hcrmitian operator
(I, — LoLo)~" -

1+ w 0
E = (1=2jz|]* + wp)'/? ° ) ,
0 1 — w,

one has
E(l, -*LyLy)E=1,.

Because I, —*L,Ly > 0,then||L,|| < 1. Hence ||'L,|| = |IL§ll = ||Lo]| < 1, and therefore
I—-Ly Ly > 0.1If A is the positive-definite real hermitian operator which is the positive

square root of (I — Ly 'Ly) ', then
A(I-Ly'Ly)A=1.

Letting
C='LyA, B=L,E,

A B
(3.4), (3.5), (3.6) are fulfilled, 1.e., G := € A, (because det E > 0).
C E
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b) It will be shown now that G € I',, proving more specifically that

A =tC
(3.10) G !=
~'B E
First of all
A =tC A B A2 _tCC AB-'CE I
g E |J\c E) \-Ba+teEC —BB+E*) | -l

by (3.4), (3.5), (3.6). Furthermore,
A'A-B'B=A>-BB=(1-Ly'Ly) ™ —LyE*'Ly =

=(I—Lg'Lo)™' = Lo(I, — LoLg) ™' 'Lo=(I—Lo'Le) ' = (I = Ly*Lo) ' Ly*Lgy =
= (I —Ly'Ly) ™' (I = Ly'Ly) = 1,
D'D-C'C=D*-C'C=(I, — LyLy) ™' — LeA* Ly =
= (I — LoLe) ™" = Lo(I = Lo'Le) 'Ly =
= (I, — LoLg) ™ = (I = LoLy) ™ LoLg = (I, — LoLy) (I, — LyLy) = L,
A'C —BE= ALy — LoE* = (I — Lo'Lg) 'Ly — Lo(I, — LoLg)™' =
= (I = Ly'Lo) 'Ly — (I = Ly'Ly) "' Ly = 0,

proving that G is invertible in Z (% & €?) and that G~! is given by (3.10).

¢) Since

t 1+ w,
2Az, - C =
’ —1(1 — wy)

= A (2;,-0 - wzl 1((wﬁ — 1) (29 + Zp) + (w§ — 1) (2 “'Eu)))

0
= A(ZZD _— 22’-’0) = 0,

then, by (3.10) and (3.9), G-'(z,) = 0. That proves that I, acts transitively on D.
QED
In conclusion, the following theorem holds.
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Theorem 3.4. The map G — Gisa surjective homomorphism of I'y onto AutD.

The kernel consists of + the identity operator on # & C2.
Let ( z; -) be the Kobayashi differential metric of D atthe point z € D. Foreveryv € #

(03 v) = [|v]l* + V]|v||* — [(v[D) 2.
This shows that, if G € A, is such that G(0) = 0, then

(0; dG(0)v) = x(0; v)

for all v € #. This fact, together with lemma 3.3, yiclds

;{u C IsoD.

4. ONE-PARAMETER SEMIGROUPS OF HOLOMORPHIC ISOMETRIES

LetT : R, - & (#F & {132) be a strongly continuous semigroup such that T'(t) € A
forallt > 0. Since T(0) = I%Mz C Ay, then T'(t) € Ay forallt > 0. Since T'(t)
is a real operator for any ¢ > 0, the infinitesimal gencrator X of T' 1s rcal and in particular
its domain & ( X)) is conjugation-invariant. Viceversa, if the infinitesimal gencrator X of a
strongly continuous semigroup T is real (hence Z( X)) is a conjugation-invariant), then T'(t)
is a real operator for allt > 0. In fact for all p and all ¢ > 0O the exponential formula yiclds

t
T(H)p= lim (I - 12 X) "= lim (] — - X)""p=T(1)p.
n—+00 T

n—+ oo Ti
Since T'(t) is real, then '*7°(t) = T'(1)*, and thus (3.3) yiclds
(4.1) T(*JT()=J forall t>0.

By theorem III of [29], if T : R, — Z (% @ €?) is any strongly continuous semigroup

satisfying (4.1), there is a dense lincar subvariety & of # such that Z(X) = £ @ C* and
X 1s represented by the matrix

Xll XIZ X13

(1X13) X3 Xy
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where X, , X,, are vectors in #'; X, is acloscd operator on # withdomain ¥(X,,) = ¥

o . : Xy Xn |\
such that 1X,, is symmetricand 0 X;, C {£ € C: Ref < 0}; isa2 x 2
X3 Ay
Xn Xn
complex matrix such that 1 1s hermitian. Moreover, according to theorem III
X3 X3

of [29], if X,,, ..., X4, satisfy the above conditions, and Z( X, ) isdense in #, the operator

X defined by (4.2) on the domain (X) = (X,,) & C? is the infinitesimal generator of
a strongly continuous semigroup T satisfying (4.1). Moreover, T is the restriction to R | of

a strongly continuous group R — Z (¥ @ C?) if, and only if, iX 11 18 self-adjoint.
The operator X given by (4.2) 1s real if, and only 1if, X, 1s a real operator (and therefore
(X ,,) is conjugation invariant), the vectors X,, and X, are real and X,,, X3, X35, X33

A Am) o
are real numbers. The fact that 1 is hermitian implies then that Xy, = X33 =
X3 X3

0,X,, = —X,;. In conclusion, the following theorem holds:

Teorem 4.1. Let X be a linear operator on # & C*. Then X is the infinitesimal generator
of a strongly continuous linear semigroup T : R, — L (¥ & C?2) such that T(t) € A
(hence T'(t) € Ay) for allt > 0 if, and only if, there is a dense linear manifold & C #

such that Z(X) = @D & €2, and X is represented by the matrix

Xy X2 X3
(4.3) X=1¢Xy) 0 Xyn|,
([ Xy3) =Xy O

where: X,, € R, X,, and X, are real vectors in #; X, is a real, closed operator with
domain (X ) = &, such that 1 X, is symmetricand o( X)) C{€ € C: Re§ < 0}.

Furthermore, the semigroup T is the restriction to R , of a strongly continuous group if,
and only if, 1.X,, is self-adjoint.

The fact that for G € A (3.3) is equivalent to
G*'JG = J,

and Proposition 4.2 of [29] imply
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Proposition 4.2. Let M be adomainin €. There are no non-constant holomorphic functions
F: M — Z(H & C*) suchthat F(£) € A forall € M.

In particular, there are no non-trivial holomorphic semigroups with values in A .

The general results established in [29] for Cartan factors of type one provide some infor-
mation on the spectral structure of X in terms of the spectrum of the operator X, appearing
in (4.3).

There exists in the open right half-plane {¢ € € : Re§ > 0} a set C consisting of two
points at most and possibly empty, such that

o(X)=CU{£€C: ReE <0},

if 1X,, is symmetric but not self-adjoint. If 1.X,, is self-adjoint, decnoting by C’ the image of

C by the reflection § — —¢ around the imaginary axis, then
o(X)\iR =CuC".

The set C and, if 1.X,, is self-adjoint, the set C’ consist of polar singularitics of the resolvent
function (- — X) ™.

If1X,, is symmetric but not self-adjoint, then the set {€ € € : Re€ < 0}\C' is contained
in the residual spectrum of X.

Let® € Hol(C \ 0(X,,), & (C?)) be defined by

E— (61 - X)) ' XplXyp) —Xp — (€1 = X)) 7' X 51X )

D) = , |
Xy — (€1 - X11) 7 Xp| X 3) §— ((E1 — Xyy) 7 X 5]X3)

Then, by n. 8 of [29], the set C is the zero-sct of the restriction of the holomorphic function
£ — det® (£) to the open right half-plane.

By Theorem 4.1, @ (£) = ®(£). Thas shows that the set C (and thus also the set C') is
invariant by conjugation.

S. A RICCATI EQUATION

With the same notations as before, let T : R, — Z(# & C?) be a strongly continuous
semigroup such that T'(t) € A forall¢t > 0. The infinitesimal generator X of T is given by
the matrix (4.3). Letp° =* (*z%,u?,u)) € D(X), and consider the Cauchy problem

(5.1) p(t) = Xp(t)  (t>0),
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with the initial condition
(52) p(0) = p°.
Setting p(t) =* (*z(t), u,(t),u, (1)), (5.1) is equivalent to
(1) = X z(t) + u, () Xy + uy, (1) X3,

4 (t) = (z(1)]| X 3) + Xy3u,(2),
ﬂz(t) = (z(1) |X13) - X23“1(t):

and (5.2) is equivalent to

z(0) = Iu,ul(ﬂ) = u?,uz(ﬁ) = ug.

0
1 t
Let Im% > 0 and let 2° = T3 z° € DNZD(X,). Thus Imul( ) > 0 for all
Uy u; + iU, u,(t)

t > 0, and, setting

1
(5.3) z(1) = WOYTNG z(t),
then
z2(t) e DND(X,;) forall t>0.
Furthermore

u;(t) —1uy (1)

WOFTAC) = (2(1)|2(1)),
and z(t) satisfies the Riccati equation
1 —
(5.4) z2(t) = (X, +1 X553 2(2) + E(J&’.‘12 + 1X3)(2(t)|2(t))

—(2(t)| X, — 1 X 3)2(t) + %(X12 —1X3)
with the initial condition
(5.5) 2(0) = 2°.
The functiont — z(t) 1s continuous for the graph-norm
(5.6) z — ||z[| + || Xy, 2]

on Z(X,,). A similar argument to the proof of Thcorem VII of [29] (cf. also [27]) yields:
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1
Theorem 5.1. For any v > 0 and any choice of z2° = —; P 2 € DND(X,,), the
u; + 1l

functiont — z(t) defined by (5.3) for 0 <t < ~yisthe unique solution of the Riccati equation
(5.4) with the initial condition (5.5) and with z([0,~]) C DNY(X,,), which is contained

in CY([0,~], Z(C*, H)) and is continuous for the graph-norm (5.6).
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