Note di Matematica Vol. IX - n. 2, 267-277(1989)

TWO-NORM SPACES AND SUMMABILITY
A. ALEXIEWICZ, M. SZMUKSTA-ZAWADZKA

Abstract. We determine the general form of continuous linear functionals over the two-norm
space of bounded Toeplitz summable sequences. From this we deduce some inclusion and
consistency theorems. It was recognized many years ago [3], [7] that the two-normspace
technique is the proper tool in investigation of the bounded efficiency field (i.e. the set of
bounded summable sequences) of Toeplitz methods. However these results were so far not
presented in full extent in any paper, in particular the general form of ~ -continuous function-
als (for the definition see below) in those spaces was not given. We fill this gap, which enables
us to obtain some inclusion theorems which lead in turn, to the well known consistency the-
orems of Mazur and Orlicz [6] in a sharpened form. We adopt the following notation and
conventions. The terms of all sequences will be indexed starting with zero, the k -th element
of the sequence z will be denoted by w (z). The symbols I=,c and ¢, will stand for the
space of bounded, convergent and to null convergent sequences, respectively; §;; will denote
the Kronecker symbol.

1. THE UNDERLYING SPACES
First we recall some facts about two-norm spaces [1], [2], [5].

A two-norm space is a triplet (X, || ||,]| ||°) in which X is vector space over the field
of real and complex scalars, || || and || ||° are norms, the first being finer than the second

one. Besides the convergence corresponding to these norms we shall consider as intermediate
convergence, -y, defined as follows. The sequence (z_) is called «-convergent to z, (written

z, 5 x,)if sup ||z, || < oo and lim ||z — x,||° = 0. The two-norm space is called ~-
n

N—00
complete if every sequence (z,) satisfying (Ip( W~ Zo(m) 2, 0 whenever p(n) — oo and

g(m) — oo is y-convergent. It is called y-normal if lim ||z, — z,||® = O implies that

Ti=00

llzo]] < Jﬂnm Iz, || The space is both ~-complete and ~-normal if and only if the unit ball

S := {z € X : ||z|| < 1}is complete for the metric p(z;y) := ||z —y||°. Aset A C X
is called ~y-closed if it contains all ~-limits of ~- convergent sequences of its elements, it is
called ~y-dense if every element of the space X is the ~-limit of a sequence of elements of
this set.

A functional f over the space (X, ]| [|,|| ||°) is called ~-linear if it is linear and sequen-
tially continuous for the convergence . A two-norm space is said to possess the Banach
property if the limit of every pointwise convergent sequence of ~-linear functionals is ~-
lincar. H. Steinhaus [9] seems to be the first in dealing with ~-continuous functionals in
concrete cases. Not every «-complete two-norm space has this property, however, there are
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known some sufficient conditions for this. The one we shall use reads
(o) given any element z, € S and € > 0, there exists an integer K anda 6 > 0 such

that every element z € S satisfying ||z||° < & is of form:

T=0,T)+0,Ty+...+ 0%,
where z,,...,2, €S, 0, +...+0, =0, |oy|+ ...+ |0,| < K and ||z, — z,]|° < & for
1=1,2,...n

Theorem 1.1. Let the space (X, || ||,|| ||°) be y-complete, ~-normal, and let is possess the
property (o) , then it has the Banach property.

Proof. Let f, be ~-linear functionals and let the sequence ( f,(x)) converge pointwise to
f(x), this functional is, of course, linear; to prove its -~y -linearity it is enough to show that it
is continuous at zero on the ball S endowed with the metric p. Since the functionals f, are
continuous on the ball § which is complete for the metric p, those functionals are, as well
known, equicontinuous at a point-z, in S, which means that, given any n > 0, there exists
an £ > 0 such that z € S together with ||z — Iu”ﬂ < g imply |f (z) — f,(z4)]| < m for
every n. Choose § and K according to the condition (o) andlet z € S, ||z — z,4]|® < 6.
Let z,,...,Zy, 0,,...,0, have the same meaning as in (o). Then |f,(z) — f,(zo)| <7
for j=1,...,N and

N

Y i £u(35) — fo(Zp)]

J=1

N
j=1

N
<Y lojllfalz)) = fulzo)] < K.
1=1

2. TOEPLITZ METHODS OF SUMMABILITY

All sequences we deal with are composed of complex numbers (the «real» case is simpler).
Let (A= (ay) : 4,5 =0,1,...) beaninfinite matrix of complex numbers. Given a sequence
z,let

e, (x) := E 6, 7;(Z);

=1

if the above series converges for every n and if there exists

a(z) := lim a_(z),

N—o0
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the sequence a is called A-summable to a(z) we write also in this case A-im =n (z) =
a(z). The procedure assigning the A -limit to some sequences is called the Toeplitz method
of summability.

In the sequel E( Eu) will denote the set of all A-summable (to zero A -summable) se-
quences. Both are vector spaces under addition and multiplication, by scalars defined co-
ordinatewise. The method A is called conservative (null-conservative) if every convergent

sequence (to zero convergent sequence) 1s in A.
Those methods are characterized by

Theorem 2.1. (Toeplitz [10], Kojima [5], Schur [8]). The method A is null-conservative if
and only if

o0
(i) 14]) = sup 3~ fa,y1 < oo,
T ng
(ii) for every j there exists

a; = lim Q-

The method is conservative if moreover
(iii) there exists

Sy = lim E Gy -

o0
Notice that for null-conservative methods E la ;| < [|A]] and that a,(z) exists for ev-
j=0
ery bounded sequence z. In the sequel all methods will be supposed to be al least null-
conservative.
We shall be concerned with two subspaces [*° N A and [®° N A, of A called the bounded
efficiency and the bounded null-efficiency field, respectively. Both can be equipped with the
two-norm space structure when setting

||z|} := sup |m,(z)],

|z||° := sup 27w, (z)] + sup la, (z)].

The norm || || is finer than || ||°. From the inequality |a(z)| < ||z]|° it follows that the

functional a is -linear. A standard argument shows that the spaces [* N A and [® N Eﬂ
are ~y-complete and « -normal.
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Lemma 2.3. (Mazur and Orlicz [6]). Let the method A be null-conservative and let = €
N .;‘-1'0 . Then, given any € > 0 and natural n, there exists a p and a sequence z such that

7, (T) Jor k < m,
m(2) =4 o,m(z) forn<k<n+p,
0 forn+ p <k,
where 1 2 0,1 20,0 2 ... 2 Opip 2 O and such that

la,(z) —a, (2)| < ¢

for every n.
The decisive role in this paper plays

Theorem 2.3. The space I*° N ﬁn possesses the property (o).

Proof. Let 0,,0,, 0, denote the three roots of degree 3 of 1. We will make use of the fact that
for complex u,v such that |u] < 1,]|v] < 1 we have |u + crju| < 1 for some o;. Given any
Ty € S and € > 0, choose n > 0 so that (3 + 2||A]|n) < €/4 and, then, natural n so that
2-" < 36/4. By Lemma 2.1 there exists a sequence z and a p such that m,(2) = 7,.(zq)
for k < m,|m(2)| < |7 (zy)| for n< k < n+ p,m.(2) = 0 for n+ p < k and such that
la,(2) — a,(zo)| < n forevery k. Therefore z € S and ||zy — 2]|° <2 "+ n< §/4+ 1.

Let z € S,||z||° < & := n/2™P. Then |n,(z)] < 2*%6 for k < n+ p. Since |m,(z)| <
1 for every k, there exist ¢, € {0,,0,,04} such that |n,.(2) — g, m (z)] < 1. Let the
sequences z,, z,, T, be defined by

m(2) + g,m(x) fork < m,
ﬂk(ﬂ:j) = <{ m(2) forn< k< n+ p,

m(z)/30; forn+ p < k.
Then z,,25,2; € §,z = 0,3, + 0,7, + 03%3,|01| + |o,| + |o3| = 3 and
m(2) — ﬂk(:ﬂj)l < |m(z)| for j =1, 2, 3 and every k. Therefore |a, (2 — Ij)l <
n+p n+p
E Gk (2 — ;)| + E CmpMi(z — ;)| < 22 la T ()] + |, (2)] <
k=0 ' k>ntp k=0

n+ 2||A]127? < n+ 2||A]|2™78, for |m(z — x;)| < |m(z)] for k < n+ p. Since
|7 (2 —2,;)| <2 and m (2 — z;) =0 for n< k < n+ p, we obtain

Iz — z;]I° < 27" + 20+ 2||Alln < 3n/4

and finally
0 0 0
lzo = z;|I” < llzo = 2" + 2 — 7" <&

From Theorem 1.1 we obtain
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Theorem 2.4. Let the method A be null-conservative, then every pointwise limit of a se-

quence of ~-linear functionals on 1° N A, is v-linear.

A similar property shares the space (1° N A, || ]I, 11 [[%) -

Theorem 2.5. Let the method A be conservative, then the conclusion of Theorem 2.4 is valid
in the space (A, || {11 I1*).

Proof. Let the sequence ( f,) of -linear functionals converge pointwise to the functional
filetzo € 1N ﬁ\ [N ﬁu (if such element does not exist it is nothing to prove) and let

z, 0. Then z, = u_+ [a(z,) /a(zy)1z,, Where u, € [N A, and u, — 0. Therefore
fo(z,) = f,(u,) +a(z,)f,(z4)/a(zy)] — O, from which the assertion follows.

3. LINEAR FUNCTIONALS OVER THE SPACE I[N A

Now we shall determine the general form of ~y-linear functionals over the spaces we deal
with.
Let X be a vector space, (Y, ]| ||y) - a normed space and L - a linear operator from X

to Y. The functional defined as ||z||* = ||Lz||, is a seminorm on X . In this situation we
have the

Lemma 3.1. A linear functional f is continuous over the space (X ,|| ||*) if and only if there
exists a continuous functional g over (Y,|| |ly) such that f(z) = g(Lz).

Proof. Necessity. Let f be continuous, then |f(z)| < ||fl] llzll* = |f]] ]|Az]|. We define a
linear functional h over the subspace RngA of Y by setting

h(z) = f(Lx) for z=Lzx.

This functional is uniquely determined, for if Lz, = Lz,, then f(Lz,) = f(Lz,) itis also
bounded since
|h(2)| = |f(L)| < || £l WLz = | A1} 1|=]".

By the Hahn-Banach theorem there exists a bounded linear functional g over the space

(Y]l lly) suththat g(2z) = h(2) for z € RngA, whence f(z) = g(Lz) forevery z € X.
The sufficiency of the condition is obvious.

Theorem 3.2, Let the method A be null-conservative, then the functional f is linear over

o0
the space I N A’u if and only if there exists a sequence (o) such that E la,| < 00 and

=0

f(z) =) a,m(z).
=0
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Proof. For z € 1° N A, let ||z||® = sup, 2-"|m,(2)],]|z||9 = sup, |a,(z)| then || ||° isa
norm and || ||3 - a seminorm and [[x][° = ||w]l? + [|=]l3.
First we establish the general form of a continuous linear functional f over the space

(IWHZD,H lﬁ'). By a theorem of Zeller ([11], p. 468), f(z) = f,(z) + f,(x) where f, and

£, are linear functionals continuous over the space (1 N Ay, || |I1) and (1 N A4, |I9),
respectively. Let L,z = (27", (zx)), L,(z) = (a,(z)), then L;,L, act from the space

I® N Ay 10 co, ||z]]} = [|Ly ]l |2 = lIL22]|, so by 3.1

o0 o0 oo oo o0
E c,a.(x) = E z Cplpi Tp(T) = E (1) E (e
n=0 n=0 k=0 k=0 n=0

o0 oo o0 o0 oo
since Y Y legllaw] < 1Al Il Let dy, =27"b, + ) cia,, then) | |d,| < oo
n=0 k=0 n=0

n=0 k=0
and
(%) f(z) =) d,m(z).
n=0

Thus every functional linear and continuous over the space (I N ﬁu L) is of form (*)

oo
where E |, | < oo (the converse is not true).

n=0

Now let f be a -linear functional over the space (1% N Ay, || ||, I |°). By a theorem
of Alexiewicz and Semadeni ([4], p. 132) there exist continuous linear functionals g, over

I N A, such that

f(z) =) 9.(z)
=0

o0 oo
and Y ||g,l| < 0o, where ||g,|| = sup{llg,(z)|| : ||z|| < 1}. Thus g,(z) = ) ey m(z)
n=0 k=0
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o0 o0 o0
and g, = E |, | < 00. Therefore E E la, | < oo and
k=0 n=0 k=0

f()=)] ) aum(z) =) a,m,(2),

=0 k=0 n=0

oo o0
where a, = E a;, and E la, | < oo.
k=0 n=0

Conversely, let the functional f be of the above form. Then the functionals f, := a, 7, ()

are continuous over 1° N Ay ||f.|l = |la,l], f(z) = E fi(z) so, again, by [1] p. 132 the
k=0
functional f is ~y-linear.

Theorem 3.3. Let the method A be conservative, then the functional f is ~y-linear over the

space (1° 0 Ay, || 11, 1| II°) if and only if there exist scalars a and a (n=0,1,...) such

oo

that a | < 0o and
) el
=0

f(z) = aa(z) + Y a,m, (7).
n=0

Proof. We need only to consider the case where there exists an wy € [ N A such that

a(zy) # 0. Then as shown in Section 2, there exists a projection map L:I1°NA — i““r‘izn
suchthat z = Lz+[ f(z4) /a(zy)]1z,. Therefore f(z) = (foL)(z)+ ([ f(z)/a(zy)]a(zx).

Let us denote by f the restriction of the functional f to the space 1% N Eu: then fol =

_ 00 o0

f o L and by Theorem 3.2 f(Lz) = Y | a,m,(Lz), where )  |a,| < oo. Since Lz =
n=0 n=0

z — [a(z)/a(zq) 13, We see that 7 (Lz) = 7, (z) — [a(z)/a(z,)]7,(z,), Whence

f(z) = aa(z) + Y | a,m,(z)
n=0

with a = | f(z4) = Y | @,m,(zo) | /a(z,).
L =0 J

Conversely, each functional of this type is obviously ~-linear.
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4. INCLUSION THEOREMS

Now we shall deal with two Toeplitz methods A and B. Here b, , b ., b will have the obvious
meaning.

We are interested with the case when the bounded efficiency field of the method A is
contained in the efficiency field of the method B.

In this case, if the method A is null-conservative, so is the method B.

Theorem 4.1. Let the method A be null-conservative and let I* N .Hn C §, then for every
zel®N E{,

b(z) = ) a,m,(z),
=0

o0
where E la, | < 00.
n=0

Proof. By Theorem 2.4 the functionals b, are ~-linear as pointwise limits of the functionals

T E b,; m;(x) so, again, the functional b is «y-linear. Apply Theorem 3.2.
j=0

Theorem 4.2. Let the method A be conservative and let 1° N A C B, then there are scalars

o0
o, o, Such that E lae,| < oo and for every z € I nA
n=0

oo
b(z) = aa(z) + Y | a;m;().
j=0
Proof. The same as for Theorem 4.1.
Now we introduce the following notation. Let e = (6, : £k = 0,1,...),e, = (6, :
k =0,1,...), thena_ = a(e,),b, = b(e,). We shall denote also k,(z) = a(z) —

o0

E a ; ﬂj( z) . For conservative methods

=0
oo 00
ko(e) =1im Y a . —) a,
j=0 j=0

Letnow I® N A C B, then b, = aa, + «a,, therefore

b(z) = aa(x) + E (b; — aa ;) (x)

j=0
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for every z € I N A.

o0
Suppose now that k,(z) = 0 forevery z in l”n}i, then a(z) = E a ;7,(z), whence
J=0
b(z) =) b m(z)
j=0
in I°° N A.

Consider now the case when there exists an z, € [N A such that k 4(zo)#0. Then

b(zy) = aa(zy) + E (b; —aa ;)mi(zg).

7=0
which gives
b(m) = (kg(zy)/ks(zp)) [a(z) — E n_jﬂ}-(::) -- E b'jﬂf(m).
i §=0 ] j=0 |
So we obtain

Theorem 4.3. Let the method A be conservative and let 1° N A C B, then for every z €
*NA

b(z) = ko(2) kg(zo)/ky(zo) + Y b m(z)
j=0

if ky(zy)#0 for some z, or else

b(z) = z b,mi(z).
5=0

Now we are able to state some consistency theorems. Two Toeplitz mehtods A and B
are said to consistent for sequences of a set E if a(z) = b(z) forevery z € ANBNE.

Theorem 4.4. Let the method A be null-conservative, let k,(z) = 0 for every z € I N A

andlet I°N A C B. If those methods are consistent for null-convergent sequences, they are
consistent for bounded sequences.

o0
Proof. By Theorem 3.2 a(z) = E a,m.(z). Nowa = b, apply Theorem 4.3.
=0

Our main theorem reads
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Theorem 4.5. Let the method A be null-conservative, let 1°N A C B and let those methods
be consistent for null-convergent sequences. Then those methods are consistent for bounded

sequences if and only if either k,(z) = O for every z in I N A , or else if there exists a
sequence x, in I N A such that a(zy) = b(zy) and k,(zy) #0.

Proof. Necessity of the condition is obvious. Suppose it to be satisfied. The first case 1S cov-

ered by Theorem 4.4. In the second case a ; = b ; forevery j, whence k4(zg) = kg(z() #0

and, by Theorem 4.3, a(z) = b(z) in [N A.
As application one obtains

Corollary 4.6. Let the method A be null conservative, let [*° N A C B, and let those meth-
ods be consistent for null-convergent sequences. If k,(xy)#0 for some null-convergent
sequence x, , then those methods are consistent for bounded sequences.

The case when z, = e is the Mazur-Orlicz consistency Theorem ([4], p. 140).

In Corollary 4.6 one cannot get rid of the condition k,(z,) # 0. Indeed let the methods
A,B be such that a () = m,, (z) — my,,,(2),b,(2) = a,,(z). Both are conservative,
a(z) = 'jb( T) . fcir‘fnull-convergent sequences, however for z, = (1,-1,1,...) : a(zy) =
2,b(zg)=1.
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